This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 1

A Multi-Layered Distributed Computing Framework
for Enhanced Edge Computing

Ke Ma, Student Member, IEEE, Junfei Xie, Senior Member, IEEE

Abstract—The rise of the Internet of Things and edge comput-
ing has shifted computing resources closer to end-users, benefiting
numerous delay-sensitive, computation-intensive applications. To
speed up computation, distributed computing is a promising
technique that allows parallel execution of tasks across multi-
ple compute nodes. However, current research predominantly
revolves around the master-worker paradigm, limiting resource
sharing within one-hop neighborhoods. This limitation can ren-
der distributed computing ineffective in scenarios with limited
nearby resources or constrained connectivity. In this paper,
we address this limitation by introducing a new distributed
computing framework that extends resource sharing beyond one-
hop neighborhoods through exploring multi-hop offloading and
layered network structures. Our framework involves transform-
ing the network graph into a shortest-path tree and formulating a
joint optimization problem based on the layered tree structure for
task allocation and scheduling. To solve this problem, we propose
two exact methods that find optimal solutions and three heuristic
strategies to improve efficiency and scalability. The performances
of these methods are analyzed and evaluated through theoreti-
cal analyses and comprehensive simulation studies. The results
demonstrate their promising performances over the traditional
distributed computing and computation offloading strategies.

Index Terms—Edge computing, distributed computing, multi-
hop offloading.

I. INTRODUCTION

HE proliferation of the Internet of Things (IoT) de-

vices has enabled a multitude of delay-sensitive yet
computation-intensive applications, such as face recognition,
environment monitoring, and augmented/virtual reality [1],
[2]. The surge of these applications drives the migration of
computing resources from the remote cloud to the network
edge closer to end-users [3]. Various architectures have been
proposed to enable edge computing [4], such as cloudlet
[5], mobile edge computing (MEC) [6], fog computing [7],
networked airborne computing (NAC) [8]-[10], and vehicle
edge computing (VEC) [11]. These architectures typically
consist of four key elements: 1) edge devices or end users (e.g.,
IoT sensors, smartphones) that generate data for processing;
2) edge servers (e.g., cloudlets, MEC servers) that provide
localized computing resources; 3) network infrastructure (e.g.,
base stations, Wi-Fi routers) that enables communication and
data transmission, and 4) an optional cloud backend for
handling heavy computational tasks or global coordination.
The edge servers are often deployed at base stations, cell

Manuscript received October 13, 2024.

Ke Ma is with the Department of Electrical and Computer Engineering,
University of California, San Diego, 92037, USA, and also with the Depart-
ment of Electrical and Computer Engineering, San Diego State University,
92115, USA. (e-mail:kem006 @ucsd.edu)

Junfei Xie is with the Department of Electrical and Computer Engineering,
San Diego State University, 92115, USA. (e-mail:jxie4 @sdsu.edu)

aggregation sites (e.g., malls, airports, and stadiums) or at the
edge of the core network (e.g., access points and gateways)
[6]. In VEC, edge servers are commonly deployed at roadside
units (RSUs) or directly on vehicles. In NAC, edge servers
are deployed on the drones. While edge computing offers
compelling benefits, such as low latency, cost effectiveness,
and improved data control and security, it also presents
notable challenges. The distributed nature of edge servers,
along with their inherent constraints in computing power,
memory capacity, and available bandwidth when compared
to the cloud, pose significant challenges to achieving high-
performance edge computing [12] [13].

To speed up computation at the edge, distributed computing
can be employed. Existing distributed computing strategies
typically adopt a master-worker paradigm [14] [3], where a
single master node partitions and distributes the task to mul-
tiple worker nodes that are directly connected to it. Although
the master-worker paradigm is simple to implement, it restricts
resource sharing within one-hop neighborhoods. However, in
edge networks, situations may arise where nearby servers
have very limited or no residual resources available or where
the master can connect to only a few neighboring servers,
rendering such master-worker based distributed computing
ineffective. Such situations are particularly common in loosely
deployed edge environments, regions with high user demand,
and networks with unstable or disrupted connectivity. For
instance, in high-demand hotspots with dense user populations
(e.g., transportation hubs and concerts), nearby edge resources
may be insufficient to meet computational needs. In remote
industrial IoT deployments (e.g., oil fields, power grids, and
mining sites), access to nearby edge servers is often limited
or unreliable due to sparse infrastructure. In disaster scenarios,
links to powerful nodes may be severed due to the destruction
of communication infrastructure. Furthermore, in vehicular
or drone-assisted edge computing networks, many devices
may lack direct connectivity to compute-capable nodes due
to mobility or communication range constraints.

In this paper, we overcome these challenges by exploring
resources at distant servers located multiple hops away. While
a similar idea has been explored in the MEC [15]-[21] [22],
[23] and Internet of Vehicle [23]-[26] [27] domains, where
computation offloading is proposed to address users’ and
vehicles’ computing demands, most existing studies focus on
offloading tasks to a single edge server located one or multiple
hops away, with intermediate servers serving solely as relays.
A few recent works [28]-[31] have considered offloading tasks
to multiple servers, but they overlook the task scheduling issue
addressed in this work and offer only heuristic solutions. To
the best of our knowledge, this is the first systematic investi-

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 2

gation into computation offloading to multiple servers across
multiple hops and into the benefits of layered structures for
improving distributed computing performance. Additionally,
we present efficient exact solutions for optimal task allocation
and scheduling, which are applicable not only to diverse
edge computing architectures but also to broader classes of
networked computing systems involving collaborative task
execution among multiple computing servers.
The main contributions are summarized as follows:

o A new multi-layered distributed computing framework:
The proposed framework explores layered network struc-
tures to fully utilize the capacity of the entire edge
computing network for enhanced system performance.
By transforming the network graph into a shortest-path
tree, the resulting layered structure simplifies the analysis
of task allocation and scheduling. Building upon this
tree structure, we formulate a mixed-integer programming
(MIP) problem to jointly optimize task allocation and
scheduling. To the best of our knowledge, this is the first
study to employ layered tree structures for investigating
multi-hop distributed computing. Notably, the proposed
framework is not limited to edge computing networks
but is broadly applicable to any networked computing
system.

o Two exact methods that find optimal solutions: To solve
the optimization problem, we first develop a central-
ized method that guarantees optimality. Leveraging the
layered network structure, which captures scheduling
dependencies, we then introduce a parallel enhancement
that preserves optimality while significantly reducing
execution cost by harnessing the inherent parallelism in
task distribution across different subtrees. We also present
an offline-online computation scheme that allows both
methods to execute in real-time. How these methods
generalize existing solutions is also discussed.

o Three heuristic methods for improving efficiency and
scalability: While the two exact methods offer optimal-
ity, their execution time grows rapidly as the network
expands. To mitigate this challenge, we introduce two
worker selection methods, as well as a genetic algorithm
for efficiently finding near-optimal solutions.

o Comprehensive simulation studies: To evaluate the per-
formance of the proposed approaches, we conduct ex-
tensive comparison studies. Our results demonstrate that
enabling resource sharing within the entire network leads
to better solutions compared to those found by the tradi-
tional distributed computing and computation offloading
strategies. Additionally, simulations are conducted to as-
sess the time efficiency of the proposed approaches and
the impact of their key parameters.

It should be noted that the multi-layered distributed comput-
ing framework was initially introduced in a short conference
version [3], which presented a different heuristic method
for solving the MIP problem. This paper provides a more
comprehensive and systematic investigation, featuring a set of
new and rigorously analyzed methods.

The rest of the paper is organized as follows. Sec. II

discusses related works. Sec. III describes the system model
and the problem to be solved. Sec. IV introduces the proposed
multi-layered distributed computing framework. The two exact
methods and the three heuristic methods are introduced in Sec.
V and Sec. VI, respectively. Sec. VII presents the results of
simulation studies. Finally, Sec. VIII concludes the paper and
discusses the future works.

II. RELATED WORKS

This section reviews existing studies related to this work.

A. Distributed Computing

In the field of distributed computing, the master-worker
paradigm has been widely used to implement parallel applica-
tions [9], [32]-[34]. In this paradigm, multiple workers share
the workload assigned by the master and communicate directly
with the master. To determine the optimal task allocation,
various distributed computing strategies have been proposed.
For instance, traditional server-based distributed computing
systems often divide the workload among workers equally or
proportionally according to workers’ computing power [32]. In
heterogeneous systems or those with mobile compute nodes,
stragglers, which are nodes with long response times, are
common and can significantly degrade system performance. To
mitigate the impact of stragglers, coded distributed computing
techniques [9], [32], [33] have recently become increasingly
popular. These techniques leverage coding theory to intro-
duce computational redundancies, thereby enhancing system
robustness against stragglers. While effective, they increase
the computational load and, consequently, the overall energy
consumption of the system. Additionally, they require greater
storage resources to handle the added redundancies.

Another popular paradigm is the hierarchical master-worker
paradigm [35], which involves a supervisor process managing
multiple sets of processes, each consisting of a master process
and multiple worker processes. It offers several advantages
over the traditional master-worker paradigm, including im-
proved scalability and fault tolerance [35]. However, it requires
careful coordination and synchronization among the supervi-
sor, sub-masters, and workers, which can complicate system
maintenance and debugging. Differing from these paradigms,
we investigate a multi-layer master-worker paradigm that is
composed of a single master and multiple workers operating
at different layers. By making the master directly access re-
sources across all workers, this centralized structure simplifies
the control logic and facilitates more efficient optimization of
resource allocation.

B. Computation Offloading

In the computation offloading domain, most existing studies
consider a single-hop single-server offloading paradigm, where
tasks are offloaded from users to a single edge server within
their communication range [15]-[21].

The tasks can be offloaded as a whole or partially, known
as binary offloading and partial offloading, respectively. Under
this paradigm, many algorithms have been designed to make

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 3

the optimal offloading decisions. For instance, studies in [15],
[16] examine the scenario where tasks are offloaded from a
single user to a single nearby server. [17] extends this analysis
by taking server mobility and task dependency into account.
There have also been studies that explore tasks from multiple
users, optimizing not only the offloading decisions (whether
to offload a task or determining the offloading ratio) but also
the allocation of resources to each user. For instance, [21]
considers the allocation of computing resources, while [18]
addresses the allocation of both computing and transmission
power resources. The allocation of communication resources,
including time slots under the Time Division Multiple Access
protocol and sub-channels under the Orthogonal Frequency-
Division Multiple Access (OFDMA) protocol, is considered in
[19]. These problems are typically solved using numerical ap-
proaches [19], [20]. Reinforcement learning has also emerged
as a promising tool for computation offloading [18], [21].
Although this single-hop single-server offloading paradigm is
easy to implement, it limits the amount of resources users can
access to a single nearby server.

In practical scenarios, it is possible that there are no
(powerful) edge servers nearby for the end users. To address
this limitation, researchers have started to explore multi-
hop offloading, enabling the offloading of tasks from users
to remote servers multiple hops away. Along this direction,
existing studies mostly consider offloading tasks to a single
server, as seen in [23]-[26], [36], [37]. Additionally, the three-
tier network topology comprising end users, edge servers and
cloud servers [38]-[41] has garnered considerable interest. In
their approach, tasks are offloaded either to a nearby edge
server one hop away or to a cloud server two hops away,
with edge servers acting as relays. In contrast, we consider all
servers reachable by users and aim to facilitate collaborative
computing among them.

There are also several works that investigate partitioning
tasks into multiple parts and offloading these parts to multiple
servers, which are most relevant to our study [28]-[31].
For instance, [28] investigates the joint routing and multi-
part offloading for both data and result. It employs a flow
model to capture data/result traffic and introduces a distributed
algorithm that finds solutions in polynomial time. [29] formu-
lates the multi-hop offloading problem as a potential game.
By dividing tasks into subtasks of equal size, each device
independently decides the number of subtasks to forward or
compute based on its economic utility. The study in [31]
addresses the distribution of a set of tasks, partitioned from
a complex application, to multiple cooperative servers that
may be multiple hops away. This problem is formulated as a
task assignment problem and solved by an iterative algorithm.
Another relevant work is presented in [30], which considers a
joint user association, channel allocation, and task offloading
problem. It solves this problem by combining the genetic
algorithm and deep deterministic policy gradient algorithm.
Although a similar offloading paradigm is considered in these
studies, they overlook the task scheduling issue addressed in
this work and provide only heuristic solutions.

Distinct from previous research, we delve into the essential
benefits of layered network structures while investigating how

network properties like topology and server resources affect
system performance. We also address the task scheduling
problem that arises when transmissions of subtasks share chan-
nels or relays, which has been overlooked by existing works.
Moreover, we propose both exact and heuristic methods to
solve the problem, and introduce an offline-online computation
scheme to enable real-time implementation and enhance their
ability to adapt to dynamic and mobile networks.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this section, we first present the system model and then
describe the problem to be solved.

A. System Model

Consider an edge computing system (see Fig. 1 for an
illustration) formed by NN + 1 edge servers, each with its own
unique set of computing and communication capabilities. In
this study, we focus on the common scenario where servers
are statically deployed at locations such as base stations,
cell aggregation sites, access points, gateways, or RSUs. The
servers can share resources with their neighbors either through
cables in wired networks or wirelessly when they are within
communication range. Additionally, a server can communicate
with its one-hop neighbors simultaneously using techniques
like Orthogonal Frequency Division Multiplexing [42]. For
simplicity, interference among the servers is not considered
in this study. This network scenario arises in many real-world
deployments, such as in smart city applications where edge
servers are deployed at various locations (e.g., at base stations,
airports and buildings) to process data from IoT devices [43];
in drone-assisted MEC systems where hovering drones are
deployed as edge servers to process computation tasks sent
from ground users [44]; and in VEC networks, where roadside
units act as edge servers to handle tasks offloaded from
vehicles [45].

Suppose one of the servers, referred to as master, has a
computation-intensive task that is arbitrarily decomposable
for parallel processing, such as matrix operations, image
processing, and Monte Carlo simulations. The primary focus
of this work is to investigate how such a task can be efficiently
processed by a network of servers. Where and how the master
receives this task is not within our interest. It could be
generated locally by the server itself, requested by a nearby
user, or assigned by a central orchestrator (e.g., a software-
defined networking controller [46] or a cloud service [47]). To
complete the task in a timely and energy-efficient manner, the
task is decomposed into subtasks and distributed to the other
servers, referred to as workers. The master (highlighted with
red) can transmit subtasks simultaneously to their neighboring
servers. However, for workers farther away, multi-hop offload-
ing is required, which means that each server in the network
can act as a worker, a relay, or both. When a subtask arrives
at a relay, it is added to a queue and processed in a first-in-
first-out order. A worker will not start executing the assigned
subtask until it receives the complete subtask package. When
a server acts as both a worker and a relay, it can perform the
relay process and execute the assigned task simultaneously.

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 4

X

[\ G
Edge Server Communication link (Wired or Wireless)
(o)

Figure 1. Network scenario.

In this preliminary study, we adopt several common assump-
tions made in existing studies [48], [49] to simplify our anal-
ysis. In particular, we assume that the network is stable with
no package losses or retransmissions. Additionally, we assume
that the computation result is relatively small, and hence the
delay incurred in transmitting the result from workers back to
the master is negligible. Under these assumptions, we model
the network as follows.

1) Network Model: The network is modeled as a directed
graph G = {N, &}, where N = {i|0 < i < N} is the set of
edge servers and & = {(4,7)|i,j € N,i # j} is the set of
server-to-server communication links that connect servers that
can communicate directly.

2) Computing model: Let f; denote the computing capacity
of server i, i.e., CPU-cycle frequency (GHz). Given a task of
size y, let b denote the total number of CPU cycles required
to process one task size unit. The time required for server @
to process this task can then be expressed by [50]:

b
ey = 22 (1)
' fi

3) Communication Model: Let R; ; denote the data trans-
mission rate from server ¢ to server j, which characterizes the
communication property between two servers. For instance, for
wired connections, I?; ; can be approximated using Shannon’s
Theory [10] as R;; = Bijloga(1 + 721), where Bj; is
the channel bandwidth, and s; ; and n; ; represent the signal
power and noise power, respectively. For wireless connections,
a feasible model [51] to apprg)ximate the transmission rate is
R; ; = B; jlogio(1+ W), where P; ; denotes the trans-
mission power, ¢; ; is the path loss factor, and h represents the
distance between the two servers. In this work, we assume that
R; ; is known to simplify the analysis, while its determination
depends on the specific communication technologies used and
is considered outside the scope of this study.

4) Energy Consumption Model: The energy consumed for
executing a task mainly constitutes two components: energy
consumed for computing and energy consumed for communi-
cation. The energy consumed for server ¢ to compute a task
of size y is given by [52]-[55]:

ES™P = yyb(f:)? 2)

where +; is the effective switched capacitance that depends
on the chip architecture of server . The energy consumed for
server ¢ to transmit a task of size y to server j is given by
[52]-[55]:
eomm _ ey 3)
i,J Ri;

where e; represents the transmission power of server 1.

B. Problem Description and Analysis

Without loss of generality, suppose the master receives a
task of size Y € R* to complete. Given the computing and
communication characteristics of the entire network, i.e., G,
{fi,Rij,ei, v}, Vi, j € N, which are assumed to be known
and can be collected, for example, by a central controller such
as a software defined networking controller [46] or through
message exchanges among the servers, we aim to jointly
minimize the task completion time and energy consumption
by partitioning the task into small subtasks and distributing
them to other servers in the network.

Finding the optimal solution to this problem is nontrivial
and challenging since it requires making decisions on several
aspects, including identifying which servers the master should
assign subtasks to, determining the amount of workload to
be assigned to each worker, and selecting the transmission
route for sending the subtask. Moreover, the order in which
the subtasks should be sent by the master is also a crucial
decision to make.

IV. MULTI-LAYERED DISTRIBUTED COMPUTING
FRAMEWORK

In this section, we present a multi-layered distributed
computing framework to solve the problem described in the
previous section. The framework first transforms the network
graph into a shortest-path tree and then exploits this structure
to derive the optimal task allocation and scheduling solutions.

A. Transforming Graph into a Shortest-Path Tree

Our framework first identifies all compute nodes that are
reachable from the master, along with the shortest paths to
these nodes. Each path represents the most communication-
efficient route that minimizes the transmission time for a single
bit of data. Notably, if multiple shortest paths exist for a
given node, one is selected at random. Conversely, if no path
exists, the node is deemed unreachable and excluded from
the graph. To determine these paths, we define the weight of
each edge (i,j) € £ as the inverse of the associated data
transmission rate, i.e., 1/R; ;, and apply Dijkstra’s algorithm
[56]. By unifying the shortest paths, we construct a shortest-
path tree, denoted as 7, which is rooted at the master, and
each node in the tree has a unique path from the master that
is the most communication-efficient. This tree structure offers
an intuitive and systematic representation of the distributed
computing system, capturing task distribution paths and node
hierarchy. This not only simplifies problem formulation but
also facilitates the analysis of task allocation, functional role
(relay or worker) of each node in task execution, and schedul-
ing dependencies as explained below.

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 5

To facilitate subsequent analysis, we re-label the nodes in
the tree 7 level-by-level from the root downward, and from
left to right within each level (see Fig. 2). Consequently, nodes
in lower levels have larger indices. Let Z; denote the set of
indices of nodes in level [€ {0,1,..., H}, where H is the
height of the tree. Then, UL Z; = N.

Notably, the master (root) can transmit subtasks to its one-
hop neighbors, i.e., nodes in Level 1, simultaneously. However,
if any one-hop neighbor has children, the subtasks assigned to
them, including the one-hop neighbor, have to be transmitted
one by one. This is because they share the same channel
between the master and the one-hop neighbor, and the data
arriving at the one-hop neighbor is processed in a first-in-
first-out manner.

This sequential transmission makes the offloading order of
the subtasks critical to the overall task completion time. For
example, consider the scenario illustrated in Fig. 2, where each
subtask (represented by a file icon) is labeled with the index
of the server to which it is assigned. Focusing on nodes 1
and 3 in the left subtree, the order in which their subtasks are
offloaded from the master (node 0) will lead to different overall
task completion times. Specifically, if the subtask for node 1 is
offloaded first, then node 1 only needs to wait for its subtask
to be transmitted from node O before it can start execution,
resulting in a waiting time denoted as ¢)~!. However, node 3
must wait for the subtask for node 1 to be transmitted from
node 0 to node 1, and then for its own subtask to be transmitted
from node 0 to node 1 and subsequently from node 1 to node
3, resulting in a total waiting time of #{71 + 371 4 173,
On the other hand, if the subtask for node 3 is offloaded first,
node 1 must wait for the subtask for node 3 to be transmitted
from node O to node 1, and then for its own subtask to be
transmitted, resulting in a waiting time of ¢)7! 4 ¢371. In
this case, node 3 only needs to wait for its subtask to be
transmitted from node O to node 1 and then from node 1 to
node 3, resulting in a waiting time of ¢3! 4 173,

Therefore, different offloading orders lead to different over-
all task completion times due to the variations in waiting times.
Notably, the offloading order for the subtask computed locally
at the master does not influence computation performance, as
the master can execute its subtask immediately. Additionally,
the offloading orders of servers belonging to one subtree of the
master do not impact the waiting times of servers in a different
subtree, since subtasks for servers in different subtrees can be
offloaded in parallel.

Based on above analyses, we next formulate a joint task
allocation and scheduling problem as a mixed integer pro-
gramming (MIP) model.

B. Mixed Integer Programming Model

1) Decision Variables: To specify the computation work-
load allocated to each node i € N, we introduce decision
variables y = {yo,¥1,...,yn}, where y; € [0,Y] represents
the size of the subtask assigned to node :. If y; = 0, it implies

[Amage/image.png

Figure 2. An example network represented by a layered tree structure.
Servers’ indices are highlighted in red.

that node ¢ is not assigned any workload. Note that the master
may choose to execute (part of) the task locally, in which case
1o would be nonzero, i.e., yo > 0.

To describe the offloading order for subtasks transmitted
from the master to the other nodes, we introduce decision
variables o = {01,02,...,0n}, Where o; € N\ {0},Vi €
N\ {0} and o; # 0;,Vi,j € N\ {0},i # j. When o; > oj,
node ¢ has a higher priority than node j to receive its subtask,
where ¢, j € '\ {0} and i # j.

2) Objective Function: We aim to achieve two objectives
simultaneously: minimize the time spent and minimize the
energy consumed by each node for executing the task. By
employing a weighted sum method, we define the objective
function as follows:

m?,\}[{ ’u)1Tit0tal + w2E12.Sotal (4)

J(y,0) = 0

= maxJi(y,0)
where wy, w2 > 0 are the weights, representing the relative
importance of the two objectives. T/°'* is the total time
required for node 7 to receive its subtask from the master and
complete the assigned subtask. Note that the time required for
completing the whole task is max T/°'%!, i € . Et°tel is the
total energy consumed by node ¢ during task execution. .J; is
introduced to denote the cost associated with node 7. In the
following sections, parentheses or subscripts may be omitted
for simplicity when there is no confusion.
Next, we derive the formulas for 77°! and Efotal,

3) Time Consumption: The task completion time for node
i, Tt is comprised of three components: 1) time taken
to transmit subtask of size y; from the master to node i,
denoted as T/"*"; 2) time spent waiting in the queues of relays
along the path to node i if any, denoted as T*"; and 3)
time to execute the subtask, i.e., 7;°"”. It is noted that the
waiting time 77°%* is impacted by the task sizes assigned to
other nodes and the offloading order, which complicates the
optimization problem considered in this study.

To obtain the transmission time Ti"‘m, we introduce the
notation p, to denote the sequence of nodes that lie on the
path from the master to node ¢, and the notation p;;, to denote
the k-th node in the sequence, where 1 < k < |p,|, pi1 =0
and p;p,| = 4. | - | finds the cardinality of a set. T;"*" can
then be expressed by:

0, ifi=0
lp;|—1 Yi

k=1 Rf’ikﬂf’i(kJrl) ’

tran __
TZ. =

&)

else

Let’s now consider the waiting time 7%, Let .A; denote
the full set of nodes in the ¢-th subtree of the master, where
t € Iy, and Uper, Ay = N \ {0}. Additionally, define
Bi = {jloj > o0;,i,j € At # j} as the set of nodes
whose subtasks will be transmitted before node <. Note that if
nodes ¢ and j belong to different subtrees, i.e., i € A; while
j ¢ A, the subtask for node j is transmitted using a different
channel that is orthogonal to the one used for node i, and
hence node ¢ does not need to wait for node j’s subtask to

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 6

be transmitted even if 0o; > 0;. Based on these definitions, we
can then express the waiting time as follows:

prwait 0, ifi=0o0r B; =0
A = 1 .
' > jeB; ZLpill T— ’

else
PskoPs(k+1)
(6)
where p, = p, N p;.
Based on (1), (5), and (6), we then have
rlvj,total — Tit'r‘ans + Tiwait + Ticomp (7)

4) Energy Consumption: With T!°* and (2)-(3), the en-
ergy consumption Ef°*% can then be expressed by:

EfOtal — Eicomp + § Eﬁ;erm (8)
JEC;

In the above equation, C; is the set of children of node 4,
whose subtasks will be relayed by node <.

C. Problem Formulation

Mathematically, the multi-objective optimization problem
can be formulated as follows:

Py : min J(y,0)

Y,0
N
s.t. Zyz =Y C1
i=0
0<y; <Y,VieN C2

0; e N\ {0}, Vie N\ {0} C3
OZ#OJ,V’L7]€N\{0},Z7£] C4

Constraint C'1 ensures that the total assigned workload sums
up to the total task size Y. Constraints C'2-C'4 guarantee that
each decision variable takes on valid values.

V. JOINT OPTIMIZATION OF TASK ALLOCATION AND
SCHEDULING

In this section, we introduce two exact methods to find the
optimal solution to the joint task allocation and scheduling
problem Py.

A. Centralized MILP-based Optimization (CMO)

1) Algorithm Description: It is noted that Py, which aims
to minimize the maximum cost of individual nodes, is a min-
max optimization problem. Hence, we can convert it into an
equivalent mixed integer linear programming (MILP) problem
by introducing an auxiliary variable z as follows:

Py: min z
Y,0,2

sit. z > Ji(y,0),Vi e N)
Cl-C4

Then, the minimum cost J* = z*, where z* is the minimum
value of z found by solving P;.

Problem P; can be further decomposed into two subprob-
lems. The first subproblem aims to optimize the task allocation
y, given a particular offloading order denoted as o = o:

Pl(a): min 2z
Y,z
stz > Ji(y,or),Vi e N
Cl1-C2

Denote the optimal solution to problem Pfa) at o = oy, as
{y* (o), z*(0r)}. The second subproblem aims to optimize
the offloading order o:

P{b): min z*(og)
oy,

Now let’s consider subproblem Pl(a), which can be solved
using Lagrange multipliers [57]. Particularly, the Lagrangian
function can be defined as follows:

N N
L(y,z,\,n)=z+ Z)‘i [Ji(y,or) — 2] + 1 (Zy2 - Y) ,

i=0 1=0
where A = [Ag, A1,..., An] and p are Lagrangian multipliers.
\; >0, Vi € N. Define

g(A) = min L(y,z, A,).

The dual optimization problem is then constructed as follows:

max g(A, p) (10)
A p
st. A>0

As the objective function and the inequality constraints in
our problem are convex, and the equality constraints are affine
and strictly feasible, Slater’s condition [58] is satisfied and
the strong duality holds. That means the optimal value of the
primal problem Pfa) is equal to the optimal value of its dual
problem (10). The optimal solution to 771(“) can then be found
by solving the following equation set, known as the Karush-
Kuhn-Tucker (KKT) conditions [59]:

O Ly, z, A\ pu) =0, Vie N

Bayi
@le'f(y,z,/\,u) =0
Zi:o Y=Y (11)

AiJi(y) —2) =0, Vie N
Ji(y) —2<0, Vie N
A >0, Vie N

To solve problem Pl(b), we can use exhaustive search. This
involves computing the cost z*(0y,) for each possible offload-
ing order o and selecting the one that yields the smallest
cost. However, as oy, can take ! possible values, evaluating
each possible value is time-consuming. A significant reduction
in the number of possible values to evaluate can be achieved
by exploiting the parallelism in sending subtasks belonging
to different subtrees of the master. Specifically, the offloading
orders for nodes in any subtree .A; are independent of those in
any other subtree Ay, where ,¢' € Z; and ¢ # t'. Therefore,
the number of possible values of o that need to be evaluated
can be reduced to [[,.7, |A¢[!. Algorithm 1 summarizes the
procedure of the proposed approach, named the centralized
MILP-based optimization (CMO).

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 7

Algorithm 1 CMO(7, Y)
1: for each oy, k € {1,2,...
2: Find {y*(op),
3: end for
4. 0" < argmin,, z"
5: return z*,y*,o*

,Hiezl ‘Az“} dO
z*(ox)} by solving equation set (11);

(1), 2% = z7(0%), y* y*(0")

2) Computational Complexity Analysis: As the equation set
(11) involves 2N + 4 unknown variables, solving it requires
O(N?) amount of time in the worst case [60]. The computa-
tional complexity of CMO is hence O([],cz, |A¢|!N?), with
a worst-case complexity of O(NIN3).

B. Parallel MILP-based Optimization (PMO)

1) Algorithm Description: The parallelism involved in
sending subtasks belonging to different subtrees of the master
can be further harnessed to greatly enhance efficiency. Specif-
ically, the key idea is to decompose problem P; alternatively
into two different subproblems. The first subproblem optimizes
the task allocation and scheduling for nodes within each sub-
tree, which can be solved in parallel. The second subproblem
optimizes the total workload assigned to each subtree.

Mathematically, let Y; be the total workload assigned to
nodes within the ¢-th subtree of the master, ie., Y; =
> ica, Yi- t € Ii. Additionally, let y, = {y;li € A;} and
o, = {o;|i € A} represent the decision variables associated
with nodes within the subtree .4;. Then, the first subproblem
can be formulated as follows:

Pl(a/) © omin oz
Yi,0t,%t
st ze > Ji(y,, 01), Vi € Ay
> ui=Y,
1A
0<y; <Y,Vie A
0; € N\ {0},VZ c A
0; 75 Oj,Vi,j S .At,i 7éj
Since tasks assigned to different subtrees can be transmitted
simultaneously, this problem can be solved independently and
in parallel for different subtrees.

Suppose given Y;, the optimal solution to problem Pfu) for
subtree A; is {Z:(Y3), ,(Y2), 0:(Y2) }. The second subproblem
aims to optimize the workload assigned to each subtree as well
as to the master, denoted as Y = {Y;|t € Z;} U {yo}, which
can be mathematically formulated as follows:

Pl(b,): min z
st.z>z(W),Vt eIy
z > Jo(Y)
v+ Y Y=Y
teT,
where Jo(Y) = w Tgo + wo B = wy y;ob +

Wa {voyob(f0)2 + Ztell ?goyz] Of note, this subproblem can
be conceptualized by abstracting each subtree as a single node.

4
S

OMaster

OWorkers O Abstract subtree

Figure 3. Illustration of how a network tree can be abstracted as a one-layer
tree.

Therefore, 7T is abstracted as a one-layer tree (see Fig. 3). The
optimization of the workload Y; assigned to each abstracted
node (subtree) thus does not require considerati/on of the
offloading order. Then, the optimal solution to be), denoted
as Y,*, Vt € Z;, can be used to derive the optimal solution to
the original problem P;. Particularly, y* = {y,(Y,")|t € 71},
and the optimal offloading order for nodes within each subtree
t is given by o.(Y}").

Solving problem Pl(a) given Y, is relatively straightforward.
However, directly addressing subproblem P(b/) is challenging
because Y; is continuous, and obtammg zt(Yt) in the con-
straints requires solving subproblem 771), Before we proceed
with our approach to solving these subproblems, we present
the following lemma and theorem, which allow for their
simplification.

Lemma 1. Given T and Y, for an arbitrary offloading
order oy, suppose {y*(og),z*(ox)} is an optimal solution
to problem Pl(a). Then, {%y*(ok), Y%z*(ok)} is an optimal

(a)

solution to P;"’ when the task size is changed to Y.

Proof. As detailed in Sec. V, the optimal solution to Pl(a)
can be found by solving the equation set (11). Suppose
{z*(ok), y*(0r), X" (o), p*(0g)} is the obtained optimal so-
lution for task size Y. Note that the cost of each node J; can
be expressed as a linear combination of the task assignments
{vo,y1,- -, yn}, e, Ji = aioyo + @iy + o+ @i YN
where {a; 0, ..., a; a7} are constants that depend on network
characteristics. Hence, equation set (11) can be simplified as:

SO A Pt L LBMIUND oy = 0, i € N
1-yMx=0

Yioui=Y

g (ai,oyo + a1y + .+ a VYN — Z) =0, VieN
@i 00 + a1y + .+ a vy — 2 <0, Vi eN

A >0, Vie N

When the task size is changed to Y’, the solution
’;, z*(ok), -y*(01), X" (01,), 1" (0,) } satisfies the above
equation set. This indicates that it is an optimal solution to

P}a) for task size Y. With this, the proof is now complete.]

Lemma 1 leads directly to the following theorem.

Theorem 2. Given T and Y, suppose {z ,y o*} is the
optimal solution to problem P;. Then, {Y z*, Y y*,0*} is

the optimal solution to P, when the task size is changed to
Y’

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 8

Proof. Theorem 2 can be directly derived from Lemma 1 when
o = o*. O

The proportionality property described 1n Theorem 2 in-
fers that, given the optimal solution to 731 for any Y/,

, {z2:(Y)), 9,(Y)),0:(Y/)}, the subproblem P1
51mp11ﬁed to:

can be

’P:Ec/) :min =z
y
Y,
st.z> Lz (Y))Vtel

Yy

z > Jo(Y)

Yo + Z Y, =
teZ,

Since Y} and z;(Y}/) are known (by solving 771“/)), 7716/) is
now straightforward to solve. /

Next, we describe our approach to solve subproblems P;*)
and Pl(c,). Particularly, for Pfa/), we can solve it by leveraging
the CMO algorithm (Algorithm 1). For each subtree A;, t €
71, we run the CMO algorithm on the tree formed by A, as
well as the master (as highlighted by the green dashed circle in
Fig. 3), denoted as 7T;, where the input Y can take any value.
Suppose the output generated by CMO for 7; is denoted as
{Zt, 9y, 0.}, where g, = {3;]i € A, }U{go} specifies the tasks
allocated to the nodes within 7;. Then we let Y, = ZZE A Uis
z(Y/) = max{Ji(9,, 0¢)|i € A;}. Given Yy and z (Y/) for
each t € Z;, we can then solve the subproblem 771(using a
commercial solver, such as Gurobi [61] and CVX [62].

Denote the optimal solution to subproblem P1 <) as Y=
{Y|t € Z} U {y$}. The optimal solution to the original
problem P; can then be derived as:

Y*
v = Lig,Vie Ately (12)
Y,
* Y* / *
2* = max ?éa)f?t’ z(Y)), Jo(¥Y") (13)

0, t € I, specifies the optimal offloading order for subtasks
assigned to each node within each subtree .A;, where subtasks
for different subtrees can be transmitted simultaneously.

Algorithm 2 summarizes the procedure of the parallel
MILP-based optimization (PMO) method.

Algorithm 2 PMO(T, Y)
1: for each t € 7; do
{Z:,9;,0:} + CMO(T;, Y) in parallel;
end for)
Find Y* by solving P\
Calculate y*, z* using (12) and (13), respectively;
return z*,y*, and {0t € 1 };

A

2) Computational Complexity Analysis: Since subtree Ty,
t € I, contains | A + 1 nodes, CMO(T:,Y) requires
O((JA:] + D(JA¢] + 1)?) time to execute. The complexity
of PMO is O(maxer, (JA:| + 1)!(J A + 1)%) with a worst-
case complexity of O(NIN3).

C. Offline-Online Computation

Despite the fact that the computational complexity of CMO
and PMO grows rapidly as the network expands, both can
be executed in real-time by transferring the majority of the
computations offline. This can be achieved by leveraging the
proportionality property presented in Theorem 2. Particularly,
for any task size Y, we can execute Algorithm 1 offfine to
derive a baseline optimal solution {z*,y*, 0*}. Then, during
online computations, upon receiving a new task Y’, we can
readily compute the associated 0pt1mal solutlon in real time by
scaling the baseline with a factor -, i.e., {¥-2*, Y y*,0*}.

This offline-online computation scheme also equips CMO
and PMO with the ability to potentially handle dynamic
networks with time-varying network characteristics. One ap-
proach to deploying them in dynamic networks is to peri-
odically execute Algorithm 1 to update the baseline solution
with the latest network information. Alternatively, the baseline
solution can be updated when significant network changes
occur, such as alterations in the network topology.

VI. HEURISTIC METHODS

In this section, we introduce three heuristic methods to
further speed up the computation.

A. Worker Selection

Through simulation studies, as presented in Sec. VII, we
find that the solutions produced by CMO and PMO typi-
cally improve as more workers participate in computations.
However, the rate of performance improvement diminishes as
the network size reaches a certain threshold. This observation
inspires us to consider selecting a subset of workers that
contribute the most to performance improvement. Next, we
introduce two worker selection methods: 1) a node pruning
(NP) strategy, and 2) a level pruning (LP) strategy. These
methods can be applied either individually or in combination.
When PMO is utilized, they can be employed to prune each
subtree 7T; before executing Line 2 in Algorithm 2.

1) Node Pruning (NP): The key idea of NP is to “prune”
nodes that are too costly to use. Specifically, this strategy
evaluates each node one by one. For a given node i, it estimates
the cost of using this node by performing partial offloading
[63], which finds the optimal task partition between the master
and node ¢ exclusively. The obtained cost, denoted as zf R
is then compared with the cost of local computing, i.e., the
cost of processing the entire task Y at the root node, denoted
as z(9), which can be obtained by running CMO(Zy,Y). If

the cost reduction, measured by za:(i;ff, exceeds a predefined
threshold 6, node ¢ is selected; otherwise, it is “pruned”. Here,
“prune” means that no workload is assigned to the node. If
the node is a leaf, it is removed from the tree. However, if
it is an intermediate node with unpruned children, it remains
and only acts as a relay.

2) Level Pruning (LP): The key idea of LP is to trim
nodes that are excessively distant from the master node,
whose computing resources are too costly to use considering
the significant communication costs. Specifically, this strategy

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 9

evaluates the top ¢ levels of the original network tree, remov-
ing levels from & 41 to H. The resulting tree, denoted as 7%,
satisfies 7¢ = T\ UL, 7.

B. Genetic Algorithm

The worker selection methods allow us to reduce workers
but may prune nodes that could significantly improve system
performance. Here, we introduce a genetic algorithm (GA)
[64] that allows us to evaluate large networks. It involves
two phases: initialization and training. In the initialization
phase, a population set O = {0} is first randomly generated,
which consists of P offloading orders (chromosomes). The
corresponding optimal task partition y*(oy) and cost z*(oy)
are then computed by solving (11), where z*(og) is the
fitness of the chromosome oj. Following the initialization,
the training phase starts with Elitism, which picks the top
a% of the fittest members from the current population and
propagates them to the next generation. After that, an it-
erative procedure is performed to create offspring. In each
iteration, two offloading orders are randomly picked from the
current population O according to the probability distribution

% ke{1,2,... ,P}}. Ordered crossover [65]
is then applied to create offspring. Subsequently, with a low
probability (5, mutation is performed to introduce diversity
into the new population by shuffling individual offloading
orders. The algorithm terminates upon meeting the stopping
condition at which point it outputs the best solution found. In
our simulations, we set the stopping condition for GA to be
reaching a maximum number of generations, denoted as G.

VII. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the performance of the proposed approaches. We start by
describing the experiment setup in Sec. VII-A. Next, we
conduct two sets of studies to evaluate the optimality and
efficiency of the proposed approaches in Sec. VII-B and Sec.
VII-C, respectively. We then investigate the impact of key
parameters in Sec. VII-D, followed by an analysis of the
effects of network characteristics.

A. Experiment Setup

We evaluated the proposed approaches on network graphs
generated using model [66], with nodes representing edge
servers and edges denoting the communication links. Each
graph was transformed into a shortest-path tree via the Di-
jkstra’s algorithm. Server computing capacities f; were uni-
formly sampled from [1, 10] GHz, and transmission rates R; ;
were randomly assigned from [10,100] Gbps to model het-
erogeneous edge computing systems. The effective switched
capacity (y; = 10%) and transmission power (e; = 30dBm)
were set based on measurements from prior work [3]. Tasks
were configured with a size of ¥ = 1Gbits and a computa-
tional intensity of b = 10® cycles/Gbit. All simulations were
executed on an Alienware Aurora 15 (Intel 19, 64GB RAM)
using Python 3.8, with Gurobi 9.5 for MILP optimization.

B. Optimality Analysis

We first evaluate the optimality of the two optimal ap-
proaches, CMO and PMO. For comparison, we implement
the following four state-of-the-art distributed computing and
computation offloading schemes as benchmarks:

o Local computing (Local): In this approach, the master
executes the entire task locally.

« Partial offloading (Partial): In this approach, the master
offloads part of the task to one of its one-hop neighbors.
The offloading ratio and offloadee selection are optimized
to minimize the task completion time.

o Master-worker distributed computing (Master-
worker): In this approach, the master distributes the
task to its one-hop neighbors using the master-worker
paradigm. The task allocation is optimized to minimize
the task completion time.

o Multi-hop offloading (Multi-hop) [67]: In this approach,
the master offloads the whole task to the most powerful
and reliable server in the network, which may be multiple
hops away.

Their performances are evaluated on four network graphs,
which are transformed into trees with varying depths and
breadths as illustrated in Fig. 4.

Figure 4. Network topologies evaluated in simulation studies.

In the first experiment, we set the weights in the objective
function to wy = 1 and ws = 0, which transforms the
objective of our approach to minimize the task completion
time only, just like the benchmarks. As shown in Fig. 5(a), our
approaches outperform all benchmarks across all scenarios.
Among the benchmarks, Local and Multi-hop have the poor-
est performance since they only use the computing resources
from a single server. Partial outperforms local computing and
Multi-hop by utilizing the resources from two servers. The
Master-worker achieves even better performance by utilizing
computing resources from all servers within one hop. This
experiment provides evidence that increasing the utilization of
resources leads to better computing performance.

In the second experiment, we set the weights w; = 0, ws =
1, thereby transforming the objective of our approach to focus
on minimizing energy consumption. As shown in Fig. 5(b),
our approach continues to achieve the best performance across
all scenarios. Among the benchmarks, Multi-hop exhibits the
worst performance due to the energy consumption associated
with multi-hop transmissions for large amount of data. On the

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 10

350 mm CMO/PMO

_so0| =2 _300) = o
g 001 O " & 200 :US::':"" LJ
S 300 o P
8 u < 150
Q2001 .H M 100
100 ._H 50
0 0

1 2 3 A 1 2 3 &
T0p.;,\o9%0po\ofa}opo\oqy«)po\og\l Topo\oqy(opc,\o9}09o\ofa\%opo\og\l

600| mmm cmo/AMO

Tot:

(@) (b)

Figure 5. Total cost J of different methods when considering (a) time
consumption only and (b) only energy consumption only.

contrary, while Local computing also performs poorly because
of the prolonged local computation time.

In the last experiment, we randomly set the weights to
wy = 0.5 and we = 0.05, so that both computation efficiency
and energy consumption are considered in our approaches.
Note that these weight values are also used in the follow-
ing experiments. Fig. 6(a) shows the comparison results,
demonstrating the promising performance of our approaches
in balancing task completion time and energy consumption. In
Fig. 6(b) and Fig. 6(c), we show the task completion time, i.e.,
max;ep TF°, and the maximum energy consumption by any
server, i.e., max;ecp Ef°%, respectively. The results indicate
that our approach generally outperforms all the benchmarks
in optimizing both objectives. However, for Topology 2, Lo-
cal computing achieves the best task completion time while
exhibiting the worst performance in energy consumption, high-
lighting the inherent trade-off between these two objectives.

= CMO/PMO
m Local

W Partial

EEm Master-worker

CMO/PMO
Local

Partial
Master-work

Iti-hop

0 0
8 &
Topo\o9%0\;,0\09%:90\09\4%0\09\1 Topo\09}0\230\093(0290\09}%0\09\1

(a) (W)

w

Max. energy cons. (Joule)

0
A
109°\°9%019°\°q\%<§>°\°g\%039°\°w

(©)

Figure 6. (a) Total cost, (b) task completion time, and (c) maximum energy
consumption of different methods.

C. Efficiency Analysis

In this subsection, we evaluate the efficiency of the proposed
optimal methods, CMO and PMO, as well as the proposed
heuristic methods, NP, LP, and GA. For the implementation
of the two worker selection methods, NP and LP, we first
use them to prune the network tree, and then apply PMO to

allocate tasks. GA is also implemented within the framework
of PMO, and employed to determine the task allocation for
each subtree, replacing CMO in Line 2 of Algorithm 2.

1) Small-Scale Networks: We first consider the four small-
scale network topologies depicted in Fig. 4. In this experiment,
the threshold parameter 6, in NP is set to 0.312,0.43,0.3,0.4,
respectively, such that one node in each topology is pruned.
The threshold parameter £ in LP is set to 5, 1,4, 2 for the four
topologies, respectively, resulting in the pruning of the last
level of each topology. For GA, the parameters are configured
as G = 5,P = 4,a = 0.2, = 0.05. To measure the
efficiency of proposed approaches, we run each method 20
times and record the mean execution time, denoted as Tyye.

Fig. 7(a) shows the costs of the solutions found by the five
methods. Comparing GA with the optimal methods, CMO and
PMO, reveals that GA can find optimal solutions for small
networks. This similarity in performance further demonstrates
the optimality of GA for small networks. The worker selection
methods, NP and LP, underperform compared to the other
three methods, which is attributed to the reduced number
of nodes involved in sharing the computational workload.
Moreover, comparing the performance of LP across different
topologies indicates that the extent of performance degradation
is closely related to the proportion of nodes pruned from
the network tree. Specifically, LP prunes 14.28%, 57.14%,
11.11%, and 37.5% of the nodes in the four topologies,
respectively. The largest pruning proportion occur in Topology
2, resulting in the maximum level of performance degradation.
For NP, as only one node is “pruned” in each topology, it
performs better than LP in these scenarios.

The base-10 logarithm of the execution time, i.e., 10g; ¢ Texe,
of each method is shown in Fig. 7(b). As expected, the
optimal methods, CMO and PMO, are more time-consuming
than the three heuristic methods. Moreover, PMO, being a
parallelized version of CMO, significantly reduces execution
time in Topologies 2-4 due to its parallelism. For Topology 1,
since the root has a single subtree, PMO is equivalent to CMO.
Among the heuristic methods, LP achieves the least execution
time by pruning the most nodes and significantly reducing
the search space. GA, on the other hand, is the least efficient
and even underperforms PMO in Topologies 2 & 4. This
suggests that for small networks, PMO can be directly applied.
Furthermore, comparing NP and PMO, we can observe that NP
does not improve efficiency in all scenarios, despite reducing
the number of workers. This is because only one node is
“pruned” in each topology, and the time saved by pruning
is offset by the overhead generated by the pruning procedure.

As the performance of the proposed approaches largely
depend on the network size, we further vary the network size
by increasing the number of subtrees, |Z; |, where each subtree
consists of 2 levels and 1 node in each level. The scenario
where the network size expands due to the growth of subtrees
is explored in the subsequent subsection. In this experiment,
we configure parameter 6, in NP in a way such that one
additional node is “pruned” when including an additional
subtree. Parameter £ in LP is set to 1 in all cases, meaning that
the node(s) in the last level are pruned. For GA, its parameters
are configured as P = 4,G = 100, = 0.2, 8 = 0.05. Fig.

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 11

Total cost |

w

ime /0g10Texe(S)
Lboop
oo o
1 =
—
h] d
29
3
—
-
y

+op0 O o000 F0100Y o100¥ * 2 oy

1 2
10 & g\{‘oPO\og\’

Top0 % opo\© o
() (b)

Figure 7. (a) Total cost J and (b) execution time of different methods for
different network topologies.

60
. e
- -1
it %150
o 8-175
g 3 © —2.00
e E 225
20 250 ¥
v _
10 X3 2.75 R .

Number of subtrees

(a)

1 2 3 4 5
Number of subtrees

(®)

Figure 8. (a) Total cost J and (b) execution time of different methods as the
number of subtrees increases.

8(a) shows the performance of different methods as the number
of subtrees |Z;| increases. As we can see, increasing the
number of subtrees results in a reduced total cost J, as more
nodes are involved in sharing the computational workload.
When comparing NP and LP, NP consistently outperforms
LP. It’s noteworthy that both methods prune the same number
of nodes, each trimming one node from every subtree. This
underscores the effectiveness of NP’s worker selection process,
which employs a more rigorous approach compared to LP that
simply selects nodes at the top levels. However, the simplicity
of LP makes it more efficient than NP, as shown in Fig. 8(b).
Additionally, from Fig. 8(b), we can observe a significant
increase in the execution time of CMO as more subtrees
are considered, compared to the other four methods. This is
due to the parallelism inherent in the other four methods.
Moreover, comparing PMO with the other methods further
demonstrates the good performance of PMO in both optimality
and efficiency in cases of small networks.

2) Large-Scale Networks: In this experiment, we consider
larger networks and evaluate the performance of the three
heuristic methods, NP, LP, and GA. For the implementation
of NP and LP, GA is applied after pruning to determine the
task allocation. Given that all these methods evaluate subtrees
in parallel and their efficiency is bounded by the largest
subtree, we evaluate their performance on networks with a
single subtree. This approach allows us to avoid considering
the impact of the number of subtrees. These networks are
randomly generated with node counts of 10, 20, 30, and
50. The parameters in NP and LP are configured to prune
a similar number of nodes as follows: the threshold 6, in NP
is set to 0.36,0.45,0.5,0.38, and the threshold £ in LP is
set to 4, 3,3, 12 for the corresponding networks, respectively.
The parameters in GA, applied across all methods, are set to

27.5 .
| —e— NP 0 1.51 —— NP
25.0 —= LP % —= P
—22.5] —~ ca K 10| - ca
% 20.01 5
8175 S 05
e [
§150] 2 o0
2125/ [=
10.01 8_0'5 ;::I-’/:/
7.5 & -1.0
10 20 30 50 10 20 30 50

Number of nodes Number of nodes

(a) (b)

Figure 9. (a) Total cost J and (b) execution time of different heuristic methods
as the number of nodes in the network increases.

P=4G=100,a =0.2,5 = 0.05.

As shown in Fig. 9(a), the total cost J generally decreases
with the increase in network size for each method, as more
nodes share the workload. Notably, the performance of GA
degrades when the network size increases. This is becasue
more servers are able to contribute to the task offloading. This
degradation occurs because GA is configured to terminate after
G = 100 iterations, and the larger search space introduced by
the increased network size makes it more difficult to find high-
quality solutions within the given iteration limit. Although
GA'’s performance can be improved by increasing the value
of GG, doing so would further increase its execution time, as
suggested by the results in Fig. 9(b). Comparing the three
methods, we can observe that GA outperforms the other two
methods by considering all nodes in the network. NP generates
better solutions than LP, although they prune roughly the
same number of nodes. Additionally, NP and LP achieve
performance comparable to GA in large networks (greater than
30 nodes), but with significantly lower execution times, as
shown in Fig. 9(b). This suggests that for large networks, NP
and/or LP can be applied first to select a subset of workers,
followed by GA for task allocation.

D. Parameter Impact Analysis

In this subsection, we investigate the impact of key pa-
rameters in the proposed heuristic methods, including (1) the
threshold 6,, in NP, (2) threshold & in LP. All experiments are
conducted on the network with 20 nodes, as described in Sec.
VII-C2. GA is employed for task allocation, using the same
configuration detailed in Sec. VII-C2.

1) Threshold 6,: In NP, a worker is selected if the cost
reduction from including this node exceeds the threshold 6,,.
Therefore, a higher threshold will result in fewer nodes being
selected and more nodes being “pruned”. This is demonstrated
by the results shown in Fig. 10(a). As we can see, the best
performance is achieved when 6, = 0, in which case no nodes
are “pruned”. The worst performance occurs at §, = 1, where
all workers are “pruned” and all computations are done locally
at the master. Moreover, as ¢, decreases, more workers are
selected, resulting in a decrease in cost J (see Fig. 10(a)) but
an increase in execution time T (see Fig. 10(b)). Notably,
when 6 is reduced to 0.4, J tends to converge. This suggests
that an appropriate value of 6, that balances optimality and
efficiency can be identified by selecting the value at which a
sharp change in cost J occurs.

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 12

Number of nodes Num?grzof nodes

10020 2018152 1 20 2018
14
80 L12
= $10
] ~
= £
g 40 E 6
[= 5
4
20 %
a 2
0 0
0.0 02 04 06 08 1.0 0.0 02 0.4 0.6 08 1.0
Threshold 6, Threshold 6,
(a) (b)

Figure 10. (a) Total cost J and (b) execution time of NP as the threshold 6,
increases. The upper z-axes show the number of nodes selected as workers.

Number of nodes Number of nodes
8 11 13 8 11 13

100 3 17 20 1 3 17 20
@14
_. 80 912
o 3
2 60 :10
o £ 8
T 40 6
© G 4
20 % 2
0 o
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Threshold § Threshold §
(@) ®)

Figure 11. (a) Total cost J and (b) execution time of LP as the threshold &
increases.

2) Threshold &: LP selects all nodes in the top & levels
as workers. In the special case when & = 0, no nodes are
selected, resulting in all computations being conducted locally
at the master. This leads to the highest cost .J, as shown
in Fig. 11(a). As £ increases and more nodes are selected,
performance improves, as indicated by the decreasing cost J.
However, the performance improvement slows down when &
exceeds 3. The best performance is achieved when £ reaches
its maximum value, H (height of the network tree), which is
12 in this experiment. Given the rapid increase in execution
time with higher £, as shown in Fig. 11(b), a proper value for
& can be chosen at the point where the rate of decrease in J
slows down.

E. Impact of Network Characteristics

The optimal task distribution decisions highly rely on the
network characteristics. In this subsection, we explore how
communication and computing parameters, specifically R; ;
and f;, affect these decisions. For this analysis, we focus on
Topology 4, as shown in 4 in Fig. 4.

In the first experiment, we vary Ry 1, which represents the
communication capacity between the master node (Node 0)
and its left child (Node 1), from 0.3 Gbps to 10 Gbps. All
other settings remain consistent with the previous studies.
The optimal task allocation derived by PMO is shown in
Fig.12(a). As the figure demonstrates, when Ry ; is small,
communication becomes a bottleneck, preventing the mas-
ter from offloading tasks to Node 1 or to its descendants.
However, as Ry ; increases, more workload is offloaded to
Node 1. Once Ry, exceeds certain thresholds, tasks are also
offloaded to Node 1’s children and even grandchildren. With

more nodes contributing to workload distribution, nodes in
the right subtree of the master begin to receive fewer tasks.
This study suggests that if a communication link is too slow,
both the connected downstream node and its descendants may
be pruned from the topology before executing CMO/PMO.
To understand the impact of the computing characteristic, we
instead vary the computing power of Node 1, f, from 0.022
GHz to 21 GHz. As shown in Fig. VII-E, the master starts to
offload tasks to Node 1 when its computing power exceeds a
certain threshold. Moreover, when it shares more workload, the
workloads assigned to all other nodes decrease simultaneously.

Notably, the network characteristics determine whether
tasks are offloaded to a node, regardless of the total task size
Y, as inferred from Theorem 2. To demonstrate this, we vary
Y while keeping the network characteristics constant. Table 1
summarizes the optimal task allocations and the corresponding
total costs computed by PMO. As shown, when Y increases,
both the workload assigned to each node y; and the total cost
J rise proportionally.

-0 = 2 = 4 =6
a1 = 3 5 7 % 0 -—® 2 -®= 4 -—®6
—- 1 —- 3 5 7
830 0200 s o o o & & & 4 .
a =4
©25 8175 N
S50 0 15.0 ~u
5 I—I—I—H—D_._'\-\ ;\12.5‘ -
@15 5 10.01
g 10 Jg s
s 5 iz g 507
a 7{,,_,7—_,‘/1 3 251
0 S 0.0

0.3 0.4 0.5 0.9 23 10
Communication power Ro1 Gbps

Y0022 0028 0039 0066 019821
Computing power f; GHz

(@ (b)

Figure 12. Optimal task allocations at different values of (a) Ro,1 and (b)

fi.

Table I
OPTIMAL TASK ALLOCATION AND TOTAL COST FOR DIFFERENT VALUES
OFY
y; (Gbits) Server ¢
0 1 2 3 4 5 6 7 Cost J
Y (Gbits)
Y =10 1.7 | 04 1.8 1.5 1.3 1.1 | 0.7 1.1 0.4
Y =20 34 108 | 3.6 3 26 | 22] 14 | 22 0.8
Y =40 6.8 1.6 | 72 6 52 | 44 | 28 | 44 1.6

VIII. CONCLUSION AND FUTURE WORKS

This paper introduces a novel multi-layered distributed com-
puting framework that expands the computing capabilities of
networked computing systems. Unlike conventional distributed
computing paradigms that limit resource sharing to one-hop
neighborhoods, our framework explores multi-hop offloading
to enable resource sharing beyond one-hop neighborhoods,
effectively utilizing the resources of the entire network. By
transforming the network graph into a shortest-path tree, the
resulting layered structure clearly captures node hierarchy and
task distribution paths, simplifying the analysis of task allo-
cation and scheduling. Building upon this layered structure,
we formulated an MIP problem that jointly minimizes task
completion time and energy consumption through optimal
task allocation and scheduling. Two exact methods, CMO and
PMO, were proposed to solve this problem optimally, with

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 13

PMO enhancing CMO’s efficiency by exploiting the paral-
lelism in task distribution across the master’s subtrees. We also
introduced an offline-online computation scheme to enable
the real-time execution of CMO and PMO, allowing them
to potentially handle dynamic networks with time-varying
characteristics. To further enhance efficiency and scalability,
three heuristic methods were introduced, including NP and
LP for reducing the number of workers and GA for efficiently
finding (sub-)optimal solutions. Simulation results demonstrate
the superiority of our approaches over existing distributed
computing and computation offloading schemes. Moreover,
PMO shows promising performance in both optimality and
efficiency for small networks. For larger networks, the results
suggest applying NP or LP to reduce workers before using
GA or PMO for task allocation. The results also show that
NP outperforms LP in terms of optimality but is less efficient
due to its more rigorous worker selection process. Addi-
tionally, studies on the impact of NP’s and LP’s parameters
offer insights into their configurations. Lastly, the analysis
of network characteristics highlights how the communication
and computing capacities of individual servers influence task
distribution decisions.

In the future, we will further enhance the practicality and
reliability of the proposed methods by systematically exploring
mobile edge servers, considering user-server association, and
addressing scenarios where multiple users request computing
services and may themselves be mobile. We will also inves-
tigate more general task structures (e.g., dependent tasks that
can be represented as directed acyclic graphs), study more
complicated edge system models, and explore the hierarchical
master-work paradigm.

ACKNOWLEDGMENT

We would like to thank National Science Foundation under
Grant CAREER-2048266 and CCF-2402689 for the support
of this work.

REFERENCES

[1] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot:
Applications, challenges, and opportunities with china perspective,”
IEEE Internet of Things journal, vol. 1, no. 4, pp. 349-359, 2014.

[2] K. Ma and J. Xie, “Joint task allocation and scheduling for multi-hop
distributed computing,” in ICC 2024-1EEE International Conference on
Communications. 1EEE, 2024, pp. 2664-2669.

[3] ——, “Joint task allocation and scheduling for multi - hop distributed
computing,” in ICC 2024 - IEEE International Conference on Commu-
nications, 2024, pp. 2664-2669.

[4] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures
for internet of things applications: A survey,” Sensors, vol. 20, no. 22,
p. 6441, 2020.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, pp. 14-23, 2009.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

[71 F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13-16.

[8] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne com-
puting,” IEEE Wireless Communications, vol. 26, no. 6, pp. 172-179,
2019.

[9] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “Learning and batch-
processing based coded computation with mobility awareness for net-
worked airborne computing,” IEEE Transactions on Vehicular Technol-
ogy, vol. 72, no. 5, pp. 6503-6517, 2023.

[10] H. Zhang, B. Wang, R. Wu, J. Xie, Y. Wan, S. Fu, and K. Lu,
“Exploring networked airborne computing: A comprehensive approach
with advanced simulator and hardware testbed,” Unmanned Systems,
2023.

[11] W. Fan, Y. Su, J. Liu, S. Li, W. Huang, F. Wu, and Y. Liu, “Joint task
offloading and resource allocation for vehicular edge computing based
on v2i and v2v modes,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 4, pp. 4277-4292, 2023.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

[13] M. Trigka and E. Dritsas, “Edge and cloud computing in smart cities,”
Future Internet, vol. 17, no. 3, p. 118, 2025.

[14] J. Linderoth, M. Yoder et al., “Metacomputing and the master-worker
paradigm,” Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Tech. Rep. ANL/MCS-P792-0200, 2000.

[15] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6774-6785, 2019.

[16] Q. Tang, H. Lyu, G. Han, J. Wang, and K. Wang, “Partial offloading
strategy for mobile edge computing considering mixed overhead of time
and energy,” Neural Computing and Applications, vol. 32, pp. 15383—
15397, 2020.

[17] Z. Liu, M. Liwang, S. Hosseinalipour, H. Dai, Z. Gao, and L. Huang,
“Rfid: Towards low latency and reliable dag task scheduling over
dynamic vehicular clouds,” IEEE Transactions on Vehicular Technology,
vol. 72, no. 9, pp. 12 139-12 153, 2023.

[18] J. Chen, H. Xing, Z. Xiao, L. Xu, and T. Tao, “A drl agent for jointly
optimizing computation offloading and resource allocation in mec,”
IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17508-17524,
2021.

[19] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397-1411, 2016.

[20] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proceedings of IEEE 14th Workshop on Signal Process-
ing Advances in Wireless Communications (SPAWC). 1EEE, 2013, pp.
26-30.

[21] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in Proceedings
of IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2018, pp. 1-6.

[22] Y. Guo, D. Ma, H. She, G. Gui, C. Yuen, H. Sari, and F. Adachi, “Deep
deterministic policy gradient-based intelligent task offloading for vehic-
ular computing with priority experience playback,” IEEE Transactions
on Vehicular Technology, 2024.

[23] W. Zhao, Y. Cheng, Z. Liu, X. Wu, and N. Kato, “Asynchronous drl
based multi-hop task offloading in rsu-assisted iov networks,” IEEE
Transactions on Cognitive Communications and Networking, 2024.

[24] C. Chen, Y. Zeng, H. Li, Y. Liu, and S. Wan, “A multihop task offloading
decision model in mec-enabled internet of vehicles,” IEEE Internet of
Things Journal, vol. 10, no. 4, pp. 3215-3230, 2022.

[25] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 24, no. 2, pp. 2169-2182, 2022.

[26] Z. Deng, Z. Cai, and M. Liang, “A multi-hop vanets-assisted offloading
strategy in vehicular mobile edge computing,” IEEE Access, vol. 8, pp.
53062-53 071, 2020.

[27] W. Zhao, P. Gao, X. Hong, X. Zheng, and N. Kato, “Ppo based task
offloading with ekf for position prediction in rsu-assisted iov,” IEEE
Transactions on Cognitive Communications and Networking, 2025.

[28] J. Zhang, Y. Liu, and E. Yeh, “Result and congestion aware optimal
routing and partial offloading in collaborative edge computing,” arXiv
preprint arXiv:2205.00714, 2022.

[29] J. Xie, Y. Jia, W. Wen, Z. Chen, and L. Liang, “Dynamic d2d multihop
offloading in multi-access edge computing from the perspective of
learning theory in games,” IEEE Transactions on Network and Service
Management, vol. 20, no. 1, pp. 305-318, 2022.

[30] H. Zhang, Y. Yang, B. Shang, and P. Zhang, “Joint resource allocation
and multi-part collaborative task offloading in mec systems,” [EEE

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3614551

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, OCTOBER 2024 14

(31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8877-8890,
2022.

C. Funai, C. Tapparello, and W. Heinzelman, “Computational offloading
for energy constrained devices in multi-hop cooperative networks,” IEEE
Transactions on Mobile Computing, vol. 19, no. 1, pp. 60-73, 2019.
B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “On batch-processing based
coded computing for heterogeneous distributed computing systems,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 3,
pp. 2438-2454, 2021.

——, “Multi-agent reinforcement learning based coded computation for
mobile ad hoc computing,” in /ICC 2021-1EEE International Conference
on Communications. 1EEE, 2021, pp. 1-6.

H. Zhang, J. Xie, and X. Zhang, “Communication-efficient §-stepping
for distributed computing systems,” in Proceedings of International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob). 1EEE, 2023, pp. 369-374.

K. Aida, W. Natsume, and Y. Futakata, “Distributed computing with
hierarchical master-worker paradigm for parallel branch and bound
algorithm,” in The 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid. 1EEE, 2003, pp. 156-163.

Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial iot-edge—cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 12, pp. 2759-2774, 2019.

Y. Wang, H. Wang, and X. Wei, “Energy-efficient uav deployment
and task scheduling in multi-uav edge computing,” in Proceedings
of International Conference on Wireless Communications and Signal
Processing (WCSP). 1EEE, 2020, pp. 1147-1152.

H. Qi, M. Liwang, X. Wang, L. Li, W. Gong, J. Jin, and Z. Jiao, “Bridge
the present and future: A cross-layer matching game in dynamic cloud-
aided mobile edge networks,” IEEE Transactions on Mobile Computing,
2024.

F. Liu, J. Huang, and X. Wang, “Joint task offloading and resource allo-
cation for device-edge-cloud collaboration with subtask dependencies,”
IEEE Transactions on Cloud Computing, vol. 11, no. 3, pp. 3027-3039,
2023.

Y. Sun, Z. Wu, K. Meng, and Y. Zheng, “Vehicular task offloading
and job scheduling method based on cloud-edge computing,” [EEE
Transactions on Intelligent Transportation Systems, 2023.

W. Almuseelem, “Energy-efficient and security-aware task offloading for
multi-tier edge-cloud computing systems,” IEEE Access, 2023.

T. Hwang, C. Yang, G. Wu, S. Li, and G. Y. Li, “Ofdm and its wireless
applications: A survey,” IEEE transactions on Vehicular Technology,
vol. 58, no. 4, pp. 1673-1694, 2008.

G. Ramkumar, “Enhancing cellular iot access with multi-hop uplink
noma, and mobile edge computing for smart cities,” in 2025 Interna-
tional Conference on Electronics and Renewable Systems (ICEARS).
IEEE, 2025, pp. 514-519.

Y. Yang, Y. Shi, X. Cui, J. Li, and X. Zhao, “A hybrid decision-
making framework for uav-assisted mec systems: Integrating a dynamic
adaptive genetic optimization algorithm and soft actor—critic algorithm
with hierarchical action decomposition and uncertainty-quantified critic
ensemble,” Drones, vol. 9, no. 3, p. 206, 2025.

S. Zhang, X. Tong, K. Chi, W. Gao, X. Chen, and Z. Shi, “Stack-
elberg game-based multi-agent algorithm for resource allocation and
task offloading in mec-enabled c-its,” IEEE Transactions on Intelligent
Transportation Systems, 2025.

A. Kaur, C. R. Krishna, and N. V. Patil, “A comprehensive review on
software-defined networking (sdn) and ddos attacks: Ecosystem, taxon-
omy, traffic engineering, challenges and research directions,” Computer
Science Review, vol. 55, p. 100692, 2025.

Z. Safavifar, E. Gyamfi, E. Mangina, and F. Golpayegani, “Multi-
objective deep reinforcement learning for efficient workload orchestra-
tion in extreme edge computing,” IEEE Access, 2024.

F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximiza-
tion in uav-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp.
1927-1941, 2018.

H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96-101, 2018.

J. Chen and J. Xie, “Joint task scheduling, routing, and charging for
multi-uav based mobile edge computing,” in Proceedings of IEEE
International Conference on Communications. 1EEE, 2022, pp. 1-6.
N. Fofana, A. B. Letaifa, and A. Rachedi, “Intelligent task offloading
in vehicular networks: a deep reinforcement learning perspective,” IEEE
Transactions on Vehicular Technology, 2024.

[52]

[53]

[54]

[55]
[56]
[57]
[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

G. Wu, Z. Liu, M. Fan, and K. Wu, “Joint task offloading and resource
allocation in multi-uav multi-server systems: An attention-based deep
reinforcement learning approach,” IEEE Transactions on Vehicular Tech-
nology, 2024.

L. Liao, M. Tao, A. Dong, R. Xie, and Y. Zhang, “Graph-convolutional-
network-enabled task offloading for industrial image recognition in
digital twin edge networks,” IEEE Internet of Things Journal, 2025.
W. Fan, Y. Zhang, G. Zhou, and Y. Liu, “Deep reinforcement learning-
based task offloading for vehicular edge computing with flexible rsu-rsu
cooperation,” IEEE Transactions on Intelligent Transportation Systems,
vol. 25, no. 7, pp. 7712-7725, 2024.

J. Wu, Y. Zou, X. Zhang, J. Liu, W. Sun, and G. Du, “Dependency-aware
task offloading strategy via heterogeneous graph neural network and
deep reinforcement learning,” IEEE Internet of Things Journal, 2025.
E. W. Dijkstra, “A note on two problems in connexion with graphs,” in
Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287-290.
S. Boyd, “Convex optimization—boyd and vandenberghe,” 2004.

A. Auslender and M. Teboulle, “Lagrangian duality and related mul-
tiplier methods for variational inequality problems,” SIAM Journal on
Optimization, vol. 10, no. 4, pp. 1097-1115, 2000.

Z.-Q. Luo and W. Yu, “An introduction to convex optimization for
communications and signal processing,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 8, pp. 1426-1438, 2006.

W. H. Greub, Linear algebra. Springer Science & Business Media,
2012, vol. 23.

J. P. Pedroso, “Optimization with gurobi and python,” INESC Porto and
Universidade do Porto,, Porto, Portugal, vol. 1, 2011.

D. A. Guimaraes, G. H. F. Floriano, and L. S. Chaves, “A tutorial on
the cvx system for modeling and solving convex optimization problems,”
IEEE Latin America Transactions, vol. 13, no. 5, pp. 1228-1257, 2015.
Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading
and trajectory design for uav-enabled mobile edge computing systems,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1879-1892, 2019.
S. Mirjalili and S. Mirjalili, “Genetic algorithm,” Evolutionary algo-
rithms and neural networks: Theory and applications, pp. 43-55, 2019.
K. Deep and H. Mebrahtu, “New variations of order crossover for
travelling salesman problem,” International Journal of Combinatorial
Optimization Problems and Informatics, vol. 2, no. 1, pp. 2-13, 2011.
P. ERDdS and A. R&wi, “On random graphs i,” Publ. math. debrecen,
vol. 6, no. 290-297, p. 18, 1959.

W. Gao, “Opportunistic peer-to-peer mobile cloud computing at the tacti-
cal edge,” in Proceedings of IEEE Military Communications Conference.
IEEE, 2014, pp. 1614-1620.

Ke Ma is currently a PhD candidate in the joint
doctoral program of University of California, San
Diego and San Diego State University. He received
the B.Sc. degree in Communication Engineer from
Donghua University, Shanghai, China, in 2019 and
- the ML.S. degree in Computer Engineer from Univer-
sity of California at Riverside, California, in 2022.

Junfei Xie (S’13-M’16-SM’21) is currently an As-
sociate Professor in the Department of Electrical
and Computer Engineering at San Diego State Uni-
versity. She is the recipient of the NSF CAREER
Award. Her current research interests include large-
scale dynamic system design and control, airborne
networks, airborne computing, and air traffic flow
management, etc.

Authorized licensed use limited to: San Diego State University. Downloaded on January 01,2026 at 18:15:50 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

