Check for
updates

B DIGITAL Assoiation fie
ALM LIBRARY Compiim cinry @mwe")
{fs Latest updates: https://dl.acm.org/doi/10.1145/3723037

RESEARCH-ARTICLE

Sustainable Dependent Sub-Tasks Orchestration at
Extreme Edge Computing: A Partitioning-based Deep
Reinforcement Learning Approach

ZAHRA SAFAVIFAR, University College Dublin, Dublin, Leinster, Ireland

CHARAFEDDINE MACHALIKH, Kasdi Merbah Ouargla University,
Ouargla, Ouargla, Algeria

JUNFEI XIE, San Diego State University, San Diego, CA, United States

FATEMEH GOLPAYEGANI, University College Dublin, Dublin, Leinster,
Ireland

Open Access Support provided by:
University College Dublin
Kasdi Merbah Ouargla University
San Diego State University

PDF Download
),Q 3723037.pdf
. 01 January 2026

Total Citations: 0
Total Downloads: 487

Published: 10 May 2025
Online AM: 16 March 2025
Accepted: 02 February 2025
Revised: 22 November 2024
Received: 21 June 2024

Citation in BibTeX format

ACM Journal on Computing and Sustainable Societies, Volume 3, Issue 2 (June 2025)

https://doi.org/10.1145/3723037
EISSN: 2834-5533

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3723037
https://dl.acm.org/doi/10.1145/3723037
https://dl.acm.org/doi/10.1145/contrib-99661189160
https://dl.acm.org/doi/10.1145/institution-60005141
https://dl.acm.org/doi/10.1145/contrib-99661539723
https://dl.acm.org/doi/10.1145/institution-60069305
https://dl.acm.org/doi/10.1145/institution-60069305
https://dl.acm.org/doi/10.1145/contrib-99661536081
https://dl.acm.org/doi/10.1145/institution-60018926
https://dl.acm.org/doi/10.1145/contrib-99658963430
https://dl.acm.org/doi/10.1145/institution-60005141
https://dl.acm.org/doi/10.1145/institution-60005141
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60005141
https://dl.acm.org/doi/10.1145/institution-60069305
https://dl.acm.org/doi/10.1145/institution-60018926
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3723037&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3723037&domain=pdf&date_stamp=2025-05-10

Sustainable Dependent Sub-Tasks Orchestration at Extreme
Edge Computing: A Partitioning-based Deep Reinforcement
Learning Approach

ZAHRA SAFAVIFAR, Computer science, University College Dublin, Dublin, Ireland
CHARAFEDDINE MACHALIKH, New Technologies of Information and Telecommunication
school, Universite Kasdi Merbah Ouargla, Ouargla, Algeria

JUNFEI XIE, Electrical and Computer Engineering school, San Diego State University, San Diego, United
States

FATEMEH GOLPAYEGANI, University College Dublin, Dublin, Ireland

Extreme Edge Computing (EEC) promotes sustainable computing by reducing reliance on centralized data
centres and decreasing their environmental impact. By using extreme edge devices to handle computing re-
quests, the EEC reduces the energy demands for data transmission and execution, thereby reducing carbon
footprints. However, EEC introduces challenges due to the mobile, heterogeneous, and resource-limited na-
ture of these devices. Additionally, tasks are often complex and interdependent, complicating offloading and
workload orchestration. The dynamicity of EEC systems, where both task generation and resources can be
mobile, alongside task inter-dependencies, escalates the complexity of task offloading and workload man-
agement. To tackle these complexities, task partitioning emerges as a viable strategy. Moreover, in dynamic
edge computing scenarios, resource demand remains unpredictable, emphasizing the critical need to optimize
resource utilization efficiently.

In this article, we investigate the problem of tasks with inter-dependencies offloading in an EEC envi-
ronment where mobile and resource-constrained edge devices are employed as computing resources. In
this regard, a partitioning-based Deep Reinforcement Learning (DRL) for Dependent sub-Task Orchestra-
tion (DeTOrch) model is proposed. DeTOrch uses a state-of-the-art partitioning method for decomposing
tasks and proposes a novel mobility task-orchestration mechanism to minimize the task completion time and
maximize the use of edge devices’ resource. The simulation results show that the proposed model can sig-
nificantly improve the task success rate and decrease task completion time. In addition, in various scenarios
with different levels of mobility, the proposed model outperforms the baselines while utilizing the resource
of edge devices.

CCS Concepts: « Computing methodologies — Planning under uncertainty;

Additional Key Words and Phrases: Edge computing, dependent tasks orchestration, deep reinforcement learn-
ing (DRL), task partitioning, extreme edge computing

This publication has emanated from research supported in part by a grant from Science Foundation Ireland under Grant
number 18/CRT/6183 and National Science Foundation under Grant CAREER-2048266.

Authors’ Contact Information: Zahra Safavifar, Computer science, University College Dublin, Dublin, Dublin, Ireland;
e-mail: zahra.safavifar@ucdconnect.ie; Charafeddine Machalikh, New Technologies of Information and Telecommunica-
tion school, Universite Kasdi Merbah Ouargla, Ouargla, Algeria; e-mail: mechalikh.charafeddine@univ-ouargla.dz; Junfei
Xie, Electrical and Computer Engineering school, San Diego State University, San Diego, California, United States; e-mail:
jxie4@sdsu.edu; Fatemeh Golpayegani, University College Dublin, Dublin, Ireland; e-mail: fatemeh.golpayegani@ucd.ie.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 2834-5533/2025/05-ART11
https://doi.org/10.1145/3723037

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0001-8531-5068
HTTPS://ORCID.ORG/0000-0003-2811-9903
HTTPS://ORCID.ORG/0000-0001-7406-3221
HTTPS://ORCID.ORG/0000-0002-3712-6550
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3723037

11:2 Z. Safavifar et al.

ACM Reference Format:

Zahra Safavifar, Charafeddine Machalikh, Junfei Xie, and Fatemeh Golpayegani. 2025. Sustainable Dependent
Sub-Tasks Orchestration at Extreme Edge Computing: A Partitioning-based Deep Reinforcement Learning
Approach. ACM J. Comput. Sustain. Soc. 3, 2, Article 11 (May 2025), 31 pages. https://doi.org/10.1145/3723037

1 Introduction

Edge computing is a promising solution that brings computation closer to the end-user. It involves
using high-capacity servers, such as Multi-Access Mobile Edge Computing (MEC) servers, to
manage users’ demands and workload at the network’s edge [14]. The increasing development and
popularity of advanced IoT applications, such as augmented reality (AR), online gaming, and au-
tonomous vehicle-related applications, have led to a significant rise in computing and communica-
tion services demands [26]. Therefore, providing scalable and adequate computational resources
at the network’s edge is crucial.

However, increasing the number of MEC or other high-capacity servers poses sustainability-
related concerns due to high maintenance costs and increased CO, emissions. Recent studies indi-
cate that data centers account for about 1% of global electricity usage, which is projected to increase
as digital services grow [16, 28]. This has led to an urgent call for sustainable computing solutions
to reduce energy consumption and produce carbon emissions across computing infrastructures. In
response, researchers have proposed sustainability-focused IoT applications, such as sustainable
smart homes [5], smart agricultural applications [10], and other similar machine learning-based
applications [32, 42, 43]. Although these applications contribute to sustainability, they cannot fully
address the environmental impact caused by increasing computational demands. This challenge
highlights the need for a sustainable computing paradigm, moving from centralized computing
models to decentralized approaches. Extreme Edge Computing (EEC) supports this transition by
minimizing the use of high-capacity servers at the edge and harnessing the distributed vast compu-
tational power present at edge devices, such as smartphones, laptops, and tablets. [4, 34]. However,
the EEC environment is highly dynamic; edge devices are heterogeneous, resource-constraint, and
mobile in nature. Therefore, it is necessary to employ a workload orchestrator that can operate in
such an environment with a high level of dynamicity [35].

In real-world scenarios, various IoT applications need to run composite tasks consisting of mul-
tiple sub-tasks that may depend on each other. These sub-tasks are required to be executed in a
specific sequence within a minimum span of time [26]. For composite tasks offloading into the
MEQ, task partitioning is an approach to reduce latency when a given computational task can be
partitioned into multiple sub-tasks and assigned to different resources [12]. In addition, some of the
sub-tasks can be executed in parallel, which helps reduce the task’s total latency and completion
time.

A composite task consists of sub-tasks with inter-dependencies, often represented as directed
acyclic graphs (DAGs). Researchers typically use graph theory-based partitioning approaches to
divide an application sub-tasks into different clusters. Considering the heterogeneity of devices,
the main aim of proposing partitioning models is to reduce completion time [3, 12, 13, 24]. Decreas-
ing energy consumption is also considered by References [42, 44]. The author in Reference [13]
proposed a partitioning model to minimize the cost of mobile devices, which includes computation
delay, energy consumption, and the price paid to the server.

Previous research has made significant progress in dependent sub-task offloading in edge com-
puting. However, most focus has been on offloading tasks to high-volume stationary servers such
as MEC servers, with less emphasis on scenarios involving edge devices’ computing resources in
EEC. In EEC scenarios, devices at the edge of the network with no or restricted computational

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

https://doi.org/10.1145/3723037

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:3

capabilities struggle to complete delay-sensitive large tasks. However, edge devices used as com-
puting resources are more resource-constrained and heterogeneous compared to MEC servers. In
addition, task generators and resource devices can be mobile in the EEC environments, which in-
creases the risk of task failure. Offloading composite tasks with varying dependencies on various
mobile devices even increases failure risk. As for the dependent sub-task offloading process, we
have to deal with more than two mobile devices communicating with each other over varying time
intervals. In Reference [30], the authors proposed an optimization model for dependent sub-tasks
offloading where mobile edge devices are involved as a helper or computing resource. They use
historical data to predict the mobile devices’ destination and offload the sub-tasks only on devices
that are located in the offloading range. However, they assume all edge devices are homogeneous
in terms of computing resources and also consider that all mobile devices are moving at the same
speed. This is not the case in the real world, where mobile devices are heterogeneous and can move
at various speeds and directions.

In this article, we investigate the offloading of composite tasks in the EEC environment consist-
ing of various sub-tasks that may be dependent on each other and need to be executed in a specific
order. A novel partitioned-based Deep Reinforcement Learning (DRL) approach to mobility-
aware Dependent sub-Tasks Orchestration (DeTOrch) is proposed, which aims to minimize
the composite task completion time through decreasing the sub-tasks waiting time while utilizing
the computing capacity of mobile edge devices as the primary resources and minimizing the usage
of high-capacity servers. This model proposes a heuristic trajectory prediction algorithm using ba-
sic location data to predict the likelihood of device failure caused by device mobility. We conducted
extensive simulations, and the results show that the proposed DeTOrch scheme performs highly
reliably in an EEC environment with a high degree of device mobility. Moreover, it is efficient in
terms of devices and network energy usage and task completion time.

The rest of this article is organized as follows: Related work is summarized in Section 2. The
system model is represented in Section 4, and the problem modeling is described in Section 5.
Mobility-aware DeTOrch is presented in Section 6. The proposed work is evaluated in Section 7.
The article concludes by giving an outline of the future directions of this work in Section 8.

2 Related Work

Sustainability has become an important consideration in the design and operation of computing
systems, especially as the demand for energy-efficient and environmentally responsible solutions
continues to rise [11]. Researchers across various domains actively explore and propose innova-
tive strategies to enhance sustainability, including energy-aware computing architectures [22],
resource-efficient algorithms [8, 33], green energy production [27, 41], green data centers [1], and
implementing edge computing solutions [17]. In edge computing environments with limited re-
sources and critical energy concerns, sustainable practices are essential for long-term viability.
Considering sustainability in task offloading and orchestration solutions enhances performance
while minimizing environmental impact, promoting energy-efficient computing [36].

There have been a large number of methods for offloading dependent sub-tasks in edge comput-
ing environments with varying criteria and assumptions. In Reference [2], the authors proposed
a model for scheduling delay-sensitive and computationally intensive inter-dependent tasks for
parallel or sequential offloading to multiple MEC servers. Their approach aims to optimize both la-
tency and offloading failure probability. They developed heuristic solutions based on conflict graph
models and genetic algorithms. An improved genetic algorithm-based dispersed scheduling algo-
rithm has been introduced by Reference [25] to minimize the average task computing latency while
ensuring transmission reliability. To design this algorithm, various environment characteristics,
such as differences in computing power, communication modes, task computation latency, queu-

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:4 Z. Safavifar et al.

ing latency, transmission latency, and random generation of computational tasks, are considered.
A situation-aware orchestration of resource allocation and task scheduling to achieve collabora-
tive rendering in a distributed IoT system is proposed by Reference [7]. This work optimally aligns
resource capacity and task demands by adapting to dynamic system conditions and acknowledg-
ing the interplay between diverse tasks and heterogeneous resources. It uses a genetic algorithm
to solve the problem of redundant task scheduling. The authors in Reference [39] have proposed
a model that tackles the problem of offloading dependent sub-tasks in a Mobile Edge Computing
system. Their model aims to minimize three objectives simultaneously: the application completion
time, the energy consumption of the mobile device, and edge computing fee. This is formulated
as a multi-objective Markov Decision Process (MOMDP) that uses a vector-valued reward,
where each reward component corresponds to an objective. Additionally, they have proposed a
multi-objective reinforcement learning-based schema to ensure that more important preferences
are given priority during Q-network training, which helps maintain previously learned policies
effectively.

Task partitioning is an approach that has been used by a number of researchers to reduce the la-
tency of a composite task in edge computing environments, particularly in the MEC. Graph theory-
based partitioning algorithm is used to group several tasks into individual clusters. Each cluster
is composed of parent-child tasks and is considered as a single job [21]. Then they schedule each
partition using the Bacterial Foraging Optimization Algorithm (BFOA) to find the schedules
for the partitioned workflows and attempt to find the near-optimal schedule with minimum sched-
ule length. The Mobile Computation Offloading Partitioning (MCOP) algorithm, described in
Reference [44], is designed to enable dynamic application partitioning and computation offloading
in mobile environments. MCOP leverages weighted call graphs to optimize the application parti-
tioning process, considering various cost models and tradeoffs between saving time/energy and
reducing transmission costs/delay. The algorithm selects which parts of the application are to be
offloaded to the cloud/edge server and which parts are to be executed locally to minimize energy
consumption or reduce execution time. The authors in Reference [12] propose a joint optimization
approach for task partitioning and user association in MEC systems to reduce user latency. They
used a mixed integer programming approach to solve the problem, which can be divided into two
cases: independent and dependent tasks. They derived optimal solutions for task partitioning in
both cases and proposed a user association scheme that achieves near-optimal results using dual
decomposition. The authors of Reference [23] proposed a real-time heuristic algorithm based on
dynamic programming that makes joint decisions for task partitioning and offloading, as well as
system and application-level adaptation. Reference [13] proposed an approach for partitioning and
offloading DNN tasks in multi-user MEC networks. The authors use layer-level computation par-
titioning to break down the DNN tasks for local or server computation. The approach aimed to
minimize each MD’s cost by formulating the optimal DNN-task partitioning and offloading strat-
egy. They designed two distributed algorithms based on aggregative game theory to achieve this
optimal strategy.

The authors in Reference [3] introduced Dirichlet deep deterministic policy gradient
(D3PG), a DRL approach derived from DDPG. The model flexibly partitions tasks, offloads sub-
tasks to edge servers, and adjusts computational frequencies to maximize task completion, mini-
mize energy consumption, and reduce total time. Reference [24] proposed EDGEVISION, a sys-
tem framework for partitioning and orchestrating computer vision applications on heteroge-
neous edge computing platforms that consider both CPUs and GPUs. The EDGEVISION abstracts
the heterogeneous hardware resources and task run-time environments and divides the applica-
tion into individual tasks to be orchestrated and deployed into the heterogeneous edge nodes.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:5

They also propose two scheduling algorithms to minimize the processing latency and the overall
system cost.

Most of these studies have focused primarily on the heterogeneity of devices and tasks, with
only a few taking into account the mobility of devices. An edge device selection and task offloading
method considering mobility in a wireless Distributed Edge Computing (DEC) environment is
proposed by Reference [19]. They formulate the problem of minimizing the response time for task
offloading of mobile devices. While they considered the mobility of devices, they only considered
tasks that were independent. In Reference [26], the authors proposed a scheme for offloading tasks
in mobile applications with task-dependency requirements in multi-slot MEC systems. They aimed
to minimize task failure by considering various delay constraints, different dependencies, online ar-
rival patterns, and execution order of all tasks. To achieve this, they developed a migration-enabled
multi-priority task sequencing algorithm, which determines the optimal task execution order by
deducing five necessary theorems. Additionally, they developed a DDPG-based learning algorithm
to adapt to online environments. They considered the mobile devices that offload dependent tasks
on stationary MEC servers.

The Energy-Efficient Task Offloading (EETO) algorithm is developed by Reference [30] for
dependent sub-tasks in a cooperative edge computing environment. In this setting, mobile end de-
vices contribute to computation and communication relay support within a sliced-edge network.
EETO accommodates arbitrary task dependencies characterized by a general task dependency
graph and employs deep learning for trajectory prediction using users’ historical data. The study
formulates the task offloading optimization problem as a quadratically constrained quadratic
programming (QCQP) problem, utilizing a solution strategy involving semidefinite relaxation
and stochastic mapping to obtain task offloading decisions. Although they took into account the
mobility of both the task generator and the resource devices, they did not consider the heterogene-
ity of devices and the different speeds of mobile devices.

Many studies have explored the offloading of dependent sub-tasks relying on heuristic or meta-
heuristic algorithms, such as those presented in References [2, 7, 23, 25], as the problem is known
to be NP-hard. However, these algorithms often lack the ability to fully adapt to dynamic edge
computing scenarios due to their high complexity and time-consuming nature [39]. To address this
issue, some researchers have employed Reinforcement Learning techniques, as seen in studies such
as References [3, 15, 39]. A few studies also consider the mobility of devices, such as References [19,
26, 30, 37]. However, none of these models take into account the orchestration of dependent sub-
tasks in the EEC environment, particularly when both the task generator and resources are mobile
and can move at varying speeds and directions. This study aims to propose a solution for dependent
task orchestration that maximizes the use of mobile edge devices as a computational resource and
minimizes composite task completion time. The following section explains the motivation scenario
of this article.

3 Motivation Scenario

As a motivation scenario, consider a community in a remote developing region. The region suf-
fers from water shortages, while agriculture is the main source of income. In addition, this area
has hard water, which has damaged the pipe system and further complicates access to clean wa-
ter. To address these challenges, local authorities have proposed implementing sustainable smart
irrigation [10] and water softener systems [5]. These systems aim to optimize water use while
preventing further pipe scaling and environmental harm.

Setting up these systems requires IoT sensors to monitor water quality, soil moisture, and lo-
cal demand, in addition to computational resources capable of running machine learning (ML)
applications for data-driven optimization. Since this community is far from any developed area,

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:6 Z. Safavifar et al.

Orchestrator

Sends an offloading
. request and receives a
- ,destination as a response

Sends task to execute " ¥

and returnaresult ,

/ Pd

Edge devices . v

— U ;ﬁﬁ - MEC server
O O — o

Fig. 1. Orchestration area.

it only has a nearby MEC server to offload the computing task and data. However, this is already
mostly occupied with other applications, and there is no budget for setting up a new high-capacity
server. Therefore, using available computing resources at edge devices—such as personal comput-
ers, laptops, and smartphones—would be the only reasonable option.

Water softening and irrigation scheduling require precise timing and resource efficiency. This
can be achieved by employing feedback control systems that dynamically adjust based on real-time
data from sensors. Although these applications are designed based on sustainability criteria to use
less energy for computing, as ML-based applications, they still need to process vast amounts of
data in real-time. Their tasks often exceed the capabilities of individual edge devices. As a result,
the processing tasks need to be broken down into smaller partitions and distributed across multiple
devices. However, edge devices are heterogeneous and have limited resources. They may be carried
by community members who are moving by walking or micro-mobility vehicles such as bicycles.

In such a scenario, a workload orchestration system is needed to find the optimum device for
each offloaded task. The goal is to enhance the use of edge device computing resources and reduce
the reliance on MEC servers, all while ensuring that the processing results meet the predefined
Service Level Agreements (SLAs) and Quality of Service (QoS) requirements.

4 System Model

This section provides a detailed description of how edge devices interconnect with each other in
an EEC environment considered in this article. It also examines the conceptual modeling of the
diverse resources used by these edge devices.

4.1 Device Model

Consider an EEC environment comprising a MEC server and a variety of heterogeneous edge
devices (i.e., laptops, smartphones, IoT sensors, and wearable). The total number of edge devices,
d; with computing capability, is denoted as D. Consequently, there exist D+1 computing resources
denoted as Dg = {d;|j € {1,2,...,D+1}}. All devices in the area are connected to a network with
a high computing-powered orchestrator, O, placed on device d,, as shown in Figure 1. We assume
that the communication range of the MEC server covers the entire area, while edge devices can
only communicate with other devices within a limited range. Each edge device is characterized

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:7

by a set of parameters: d; = [d}“, dc"”’f’ d, dNe,dP, dPr, d3*, dMe, dQ“ dY,dX,d)] Here, d| is

the identifier of a device d;, and dc° ; ? refers to the CPU power per core of the device, measured
in million instructions per second (MIPS). d“* refers to current CPU utilization of device.

dJN ¢ represents the number of CPU cores. dJB indicates the remaining battery level, set at 100 for
non-battery-based devices. dJD’l denotes the dynamic energy consumption per second during the
computing process, and df’l refers to the static energy required to stay connected to the network

and remain powered on. Additionally, dJM"

is a binary value representing the device’s mobility

state, and deu is the number of tasks waiting for execution at the device.

Furthermore, we assume that each device d; is allocated equal bandwidth of ‘W (measured in
Hz) on the network to communicate with the orchestrator O7. Hence, the edge devices can send
requests and receive responses with equal network priorities.

4.2 Composite Task Model

A task T; generated by any edge device is a task consisting of K sub-tasks, denoted as T; =
{¢iklk e {1,2,...,K},i € {1,2,...,I}}, which are required to execute in a specific order. I refers
to the total number of composite tasks which is generated in the system. Each sub-task is char-

acterized by an array ¢; , = [{l e § §S’Z {L“’ (Cl“t lsg,]. Here, {fi denotes the identifier

of the sub-task, &; 4, and gl. . represents the set of prerequisite sub-tasks that must complete exe-
cution (including compilation and result generation) before {; , can begin processing. ¢ ls ;;Z is the

size of the sub-task. ¢ lLl‘jt represents the overall latency that the sub-task ¢; ; can tolerate. Addi-

é‘/Clat

tionally, refers to the computing latency the sub-task §; ; should meet during execution on

the device. { lsl‘j and ¢ l.R,f denote the total size of the offloading request and result data transmitted
over the network, respectively.

4.2.1 Tasks Dependency Model. The task dependency in this study is presented as a DAG, G =
(T, E), where T represents sub-tasks set as vertices, and E represents dependency among the sub-
tasks as edges, {fg — gz% € E [20], as shown in Figure 2.

Composite tasks in this article are defined with two models of dependencies among the sub-
tasks, namely, sequential and general. In sequential dependency, each sub-task depends on the
completion of only one previous sub-task and general dependency in which a sub-task may depend
on the completion of one or more of the previous sub-tasks [2] (see Figure 2 for illustration.)

4.2.2 Composite Task Partitioning Model. We consider composite task T';, consisting of K sub-
tasks labeled from 1 to K, which can have sequential or general dependencies between them. Using
the algorithm is explained in Section 6.1, each composite task T; is divided into N partitions P; =
{pi.nln € {1,2,...,N},i € {1,2,...,I}} where N < K. Each partition is represented as Pin =

lI ‘il, p{jfl] which consist of m number of sub-tasks when (1 < m < K). pI 4 is the identifier of
the partition and p * is the dependency score that is calculated by counting all sub-tasks in other
partitions that depend on sub-tasks in partition p; ,.

4.3 Computing Model
Suppose the orchestrator Oy selects device d; as an offloading destination for sub-tasks of partition
Pi.n- Each sub-task, g; ., is required to wait for a specific time interval T"‘]/c“]” This interval is the

sum of two components: the duration for which the sub-task has to wait until the previous related
tasks are completed and the time the task has to spend in the queue on the destination device
before its execution.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:8 Z. Safavifar et al.

1
/ \ / \ 3 2 3 4 — 5
4 5 6 7 - N B B l
) ') (”10\‘\ ,/9) ’/8 Y /7) £ 6
/ \ \ \ 4 4 4
£ 8 \\‘ £ 9 \“‘
110
(a) Task with general dependency. (b) Task with sequential dependency.

Fig. 2. Composite tasks.

After waiting for rl.“]/(“j“ , the sub-task {; , is executed. The execution time of sub-task ¢; ; run-

ning on the selected device d; is calculated as:

Siz
Exec _ i,k
i,k,j — ,Comp" (l)
dj

The total task processing time ‘L'P °¢ for each sub-task {; ;. from when an offloading request is
submitted to the orchestrator till the result is returned is:

Proc _ TNet +r Srv +TWazt

Exec
kg = Ting Tl Yk @)

ik,j°

where 1'1.Nn‘3§ represents the time for sending a request and receiving a response over the network

(network time) for each p; . ZS n denotes the orchestrator service time, which is the time taken
by the orchestrator to find a destination device, d;, for partition, p; ,, which contains g; ;.

As a QoS criterion, this study assumed that each sub-task, {; 4, has a designated computing
latency, ¢ i’cli‘”. This represents the maximum latency that the sub-task can tolerate during execu-

tion. To meet this requirement a sub-task with task size, { Siz_should be offloaded to a device with

Exec

computing power, d].c , that is capable of executing it w1th1n a time, 7; , equal to or less than

§ Clat To impose this constraint, we introduce a binary variable & . j to represent the resource

capability score, such that if {; ; is assigned to d; that meets the above criterion, then &; x ; is set
to 1; otherwise, it is set to 0. Mathematically, we have

+1 1f,L,Exec < ;Clat
i,k,j i,k (3)

Oikj=
o 0 otherwise.

Therefore, the Orchestrator, O, should select a device, d;, for partition, Pins that satisfies the
QoS requirements of all its sub-tasks. To consider the sub-task, {; ;, as a success, the total process-
ing time 77]COJC must be equal to or less than the total designed latency, L“t , as shown on Equation

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:9

(4) if whether a sub-task has been completed successfully or not.

+1 if gProc < rlat
Qi k,j = Bl oLk (4)
o 0 otherwise.

Furthermore, we use an indicator 0; i ; to specify whether a sub-task is offloaded to an edge
device or the MEC server, as shown below:

©)

0., = +1 ifd;is an Edge device
b = 0 ifd;is an MEC server.

Now, consider the composite task, T;, as a whole. Its execution is considered to be successful
only if all of its sub-tasks are completed successfully and the completion time of the composite
task is less than the maximum latency that is predefined for this task. Mathematically, we use ®;,
as shown below, to indicate whether a composite task is successfully completed or not.

L +1 if(Di,k,j = I,V{i,k € Ti (6)
' 0 otherwise.
Therefore,
K D+1
TiProc — Z Z T,'P]:(}c’
k=1j=1 "%
Proc; .. i rProc; k,j, if Zi,k is offloaded to device d;,)
T LK,] =
J 0, otherwise.

is the total execution time of the composite task T';.

4.4 Computational Energy Model

The energy model of this article is designed based on the model represented in Reference [18]. The
transmission energy, AITZ”] for sending an offloading request for task &; , and receiving a response
from d; over the network is estimated as:

Trn _ Net +Sd Rd
Aiky = Aevti e (G + Sik)- ®)

Here, A, is transmission energy per bit (Watt) and ({ lsl’f + {,Vflf) denotes the total size (bit) of the
offloading request and result data transmitted over the network. The computing energy /lf’,z“’f
consumed by the selected edge device d; with computing power djcomp to execute task ¢; ; with
size { f 17 is calculated by:

Exec _ (DA SAy;Exec
AExee = (@P} 4 dPhyelree,)

The de’l, as mentioned before, is dynamic energy that the device d; consumes each second dur-
ing the computing process. The df" refers to the static energy that a device needs to stay con-
nected to the network and remain powered on. The TLE;C(f;.c is computing time that is calculated by
Equation (1).

The energy required by the device d,, which is the host of orchestrator O to select the optimal
d;, is calculated by:

29

Cey = @+ a3 (10)

ik,j
The dP* is dynamic energy that the orchestrator device d, consumes each second during the
computing process. The d5* refers to the static energy that the orchestrator device needs to stay

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:10 Z. Safavifar et al.

connected to the network and remain powered on. Therefore, the total energy required to complete
the task offloading cycle from an edge device through O to the selected d; is given as:

tot _ 1Trn Exec O
Eiks = Aigs t Ak + ik (11)

4.5 Mobility Model

In the EEC environment, both task generators and resources can be mobile. Mobile devices move
in various directions and speeds within an area and can enter or leave the area. In this article, we
developed our model for pedestrian environments, where devices are carried by pedestrians or
individuals riding micro-mobility vehicles such as bicycles or scooters. The range of connection
for edge devices is more restricted than edge MEC servers, as depicted in Figure 1. Devices can
only communicate with devices that are located in their connection range. Such mobility behavior
in the environment leads to an increasing risk of failure due to potential disconnections between
devices when they move outside of the covered range.

Trajectory prediction is a well-known solution for mobility management in dynamic envi-
ronments. In this article, we employ the mobility trajectory prediction approach proposed in
Reference [38].

Consider a mobile device that is moving at a speed of dJV and at an angle of dj?’. At timestamp
t, the location of the mobile device is denoted as (de (t),d JY(t)). In this work, we assume that the

mobile devices move at a constant speed in a particular direction. Therefore, we can calculate the
possible location of the mobile device at timestamp ¢ + At using the following equation [40]:

dX(t + At) = (d¥ At) cos (d5)

(12)
dY (t + At) = (d) At) sin (d).

Since mobile devices might pause or change direction during the At time period, (dJX (t+At), d}/(t+
At)) can be considered as the next possible location. Using the calculated next possible locations
of both the source and destination devices, their possible distance can be calculated using the
Euclidean distance equation [40]. Note that this is calculated according to the time that the data
should be exchanged between these devices.

5 Problem Formulation

This article aims to achieve the following three objectives simultaneously:

I

- Lat _ _P

Obj; : max '21 maxg, er, i,/? -1, VE €T,
iz

1
Objp : max 3’ 0, ;VE; € T;,Vj€[1,D+1] . (13)
i=1

I
Ob]3 :max Z q)i
i=1

Obj; aims to minimize the total completion time for all composited tasks generated in the system.

This can be achieved by maximizing the time saved by completing the composite tasks earlier than
the maximum latency defined for their sub-tasks.

Obj, aims to maximize the utilization of the edge devices’ resources, thereby reserving the MEC

server for larger and more critical tasks. Obj; refers to maximizing the number of composite tasks

completed successfully. This objective can conflict with Obj; and Obj, when tasks are assigned

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:11

to edge devices with limited computing resources, which can increase the execution time and the
probability of task failure.

All aforementioned objectives can be consolidated into a single multi-objective problem, defined
as follows:

I
max)} (maxg, e, le?t - TI.P“’C) +0; 1 + D),
13

=1

VCir €Ti,Vj€e[1,D+1]

s.to: (14)
C1 : 5i,k,j = 1,V§i’k € Ti,Vi S [1,1],V] (S [1,D + 1]

. ~Proc Lat
Cy 1T Smax§ivkeri§i’k ,Vé(i’k eT;

where constraint C; guarantees that sub-tasks are assigned to devices with adequate resources to
execute them before predefined latency. C, indicates that the total processing time for all sub-tasks
must be less than the maximum predefined latency of the composite task. The problem in Equation
(14) is a non-linear mixed integer problem that needs to be solved to enhance the success rate of
composite tasks while utilizing heterogeneous edge devices. In our proposed model, we employ
deep reinforcement learning to find an optimal policy to achieve all the above objectives when
orchestrating tasks. The main notations used in this article are summarized in Table 1.

6 Mobility-aware Deep RL-based Dependent sub-tasks Orchestration Model

The mobility-aware Deep RL-based Dependent sub-Task Orchestration (DeTOrch) model intro-
duces a central orchestrator that knows the current state of all the available resources, such as
edge devices and a MEC server. This orchestrator is accessible to all edge devices and MEC server
in an orchestration area. DeTOrch employs a state-of-the-art partitioner that breaks down a com-
posite task into different partitions containing various numbers of sub-tasks. The DRL agent then
detects the optimum destination for each partition to minimize the task completion time and wait-
ing time of sub-tasks. Moreover, through trajectory prediction, the mobility-aware DeTOrch iden-
tifies and eliminates resources that might increase the risk of task failure due to their mobility,
prior to determining the optimal destination for offloading a partition.

6.1 Partitioner

For partitioning of the dependent tasks, we adopt the method presented in Reference [21]. Specif-
ically, Kaur et al. leverage betweenness centrality (BC), a graph theory concept that measures
node importance for partitioning a composite task graph. It hinges on finding the shortest paths
between pairs of nodes, with the aim of minimizing edge weights in directed graphs. Each vertex’s
BC represents the sum of these shortest paths passing through it. Each edge’s BC quantifies the
number of shortest paths they participate in. The partitioning process involves determining the
BC for each edge and removing the one with the highest BC index. To compute BC, Kaur et al.
utilize Brandes’ efficient algorithm [6] that calculates the BC for an edge (b, €) from vertex b € T
to vertex e € T, denoted as fp, in the following two steps:
(1) Let all predecessors of vertex e be L C T. The path lengths for all predecessors of vertex
b to vertex b and for all predecessors of vertex e to vertex e are first computed using the
following equation, which is referred to as the centrality index, c:

LR, (15)

Cr =
lk,e

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:12 Z. Safavifar et al.

Table 1. Main Symbols Used in This Article

Attributes Description

T; Composite task i
TiP roe Total processing time of a composite task i
14 l." i The ID of the sub-task k of task i
f;{z The size of the sub-task k of task i
fg The size of offloading request data
14 f]‘j The size of result data
icli“t The computing latency for the sub-task
14 li]‘:’ The maximum overall latency for the sub-task
14 i/}/]’(" Mobility state of the device that requested the task
i Device ID
djcomp The total MIPS available per core in the device
dJN ¢ The number of CPU cores available in the device
djc" Current CPU utilization of the device
df Remaining battery (for battery-based devices)
d]l.))1 The dynamic energy that device consumes each second for computing (W)
dj‘.” The static energy that device consumes to stay connected to the network and remain powered on (W)
dJ’.W" The mobility state of the device
deu Number of tasks waiting for execution at the device
d; 4 A binary value that shows whether the device is in offloading coverage of the task generator device
dj(The length value of the current location of the device in the area
dY The width value of the current location of the device in the area
dj/ Speed of device
d]‘.’ The angle that device is moving at timestamp ¢
Sin,j Resource compatibility score
e The ID of the partition n of task i
plbfl Dependency score of the partition
y{’ i Mobility failure possibility score for d; and previous partition device
plNrfj Mobility failure possibility score for d; and next partition device
T;SIZI; Orchestrator service time
rl]‘gf; Network time
Ti"/i? j” Waiting time
rlE,’: ej“ Execution time
Tf ,:"jc Total task processing time
Til:_)k,j Delay time
A'T;"J Total energy is consumed for data transmission over the network (W)
AICZV;IP Total energy that device consumes for computing a task (W)
Atb The energy is consumed for each bit of data (W) transmission over the network
A?k,j Total energy that orchestrator device consumes for selecting a device (W)
Prmec Offloading to a MEC server penalty
Prors Wrong resource assignment penalty
0 Indicator to show a sub-task has been offloaded to an edge device or MEC server
[Task success indicator
S Resource capability score
Nalt Number of alternative devices to offload a task
r Result reward

Here, [, represents the number of shortest paths from vertex k to vertex b. o, is the number
of vertices that depend on vertex e.
(2) The BC of the edge (b, e) is then obtained by summing up all centrality indices:

Bo,e = Z% (16)

kel

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:13

/\b

1
= " [8) (9) - ——
i 45 45 =
{:.//’V V\\‘\ //V V\\\ -_'.: 4 5 7
§\ 8 9) : :
In z _______________
o100
(a) Betweenness index for a task with general (b) Two partitions after first edge removal iteration of a task with
dependency. general dependency.
1 6

. ® 65
NN N

1 —— 2 3 -4 5
P1 P2

10 y ; y 4 A p ,”—«\\\
10 9 £ 8 i~ [6)
W W VWV @V

P1 P2 P3 P3
(c) Three partitions after second edge removal iteration of (d) Three partitions after second edge removal iteration of a
the composite task with general dependency. task with sequential dependency.

Fig. 3. Composite tasks partitioning steps.

Take the BC of edge (3, 6) of a composite task shown in Figure 3(a) as an example. The set of
predecessors of vertex e = 6 is L = {1, 3}. For each predecessor, we can find its centrality index.
Specifically, ¢; = 4 and ¢35 = 4, with ;3 = 1,53 = 1,133 = 1,56 = 1, and g5 = 3. Note that
vertices 8, 9, and 10 depend on vertex 6. Hence, we have f5 ¢ = 8. In Figure 3(b), the BC of each
edge is marked on the edge. To partition a composite task, edges with the highest BC are removed
following the steps below:

(1) Calculate the BC of all edges E in the composite task.

(2) Remove the edge that has the highest BC.

(3) Calculate the BC again for the two sub-graphs that are created as a result of the edge removal.
(4) Repeat steps 2 and 3 until the required edges are removed based on the predefined criteria.

For instance, after removing the edge between node 3 and 6, which has the highest BC, the
composite task is split into two sub-composite tasks, as shown in Figure 3(b). After partitioning,
the BC index is recalculated for the composite tasks graphs (i.e., Figure 3(b)), and the edge with the
highest BC is removed to obtain the smaller partitions as shown in 3(c). Therefore, the composite
tasks consist of 10 sub-tasks with general and sequential dependency shown in Figure 2; each is
broken down into three partitions (after removing two edges), as illustrated in Figure 3(c) and 3(d),
respectively.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:14 Z. Safavifar et al.

ALGORITHM 1: Check mobility failure possibility

1: function CHECKMOBILITYFAILURE(p;, n, dj, indicator)

//The indicator determines the function is called to find the

2: distance to the previous or the next partition.
3: failurePossibility < False // Possibility of failure due to
4: mobility
5: of floadingRange « 25 // Edge devices offloading range
6: p < 1// noise tolerant constant
7: if (indicator == "previous” & p; n.getType()! = 1) then
8: givenPartition « previousPartition
9: givenDevice «—
10: getOffloadingDestination(givenPartition)
11: else
12: if (indicator =="next” & p; n.getType() == 3) then
13: givenPartition < p; n
14: givenDevice « getDeviceSource(givenPartition)
15: At « maxLatencyOfPartition(givenPartition) // Find the maximum deadline to execute all sub-tasks of the
partition

16: (Xg1, Yq1) < predictNextLocation(givenDevice, At)
17: (X2, Ygz) < predictNextLocation(d;, At)

18: distance «—calculateDistance((X g1, Yq1), (X2, Ya2))
19: if (distance >= of floadingRange + p) then

20: failurePossibility « True

21: return failurePossibility

22:

23: function prEDICTNEXTLOCATION(d}, At)

24: //Based on Equation (12)

25: X « de + (d]y X At X cos(d]‘?’))

26: Y — de + (dJV x At x sin(df))

27: return (X, Y)

28:

29: CheckMobilityFailure(p;, , dj, previous)
30: CheckMobilityFailure(p;, n, dj, next)

6.2 Mobility Manager

The mobility manager is responsible for mitigating the risk of task failure due to mobility in var-
ious situations. As mentioned above, in the EEC environment, both task generators and resource
devices can be mobile, increasing the risk of task failure. This risk is exacerbated when dealing
with composite tasks with varying dependencies.

For a composite task that is partitioned into multiple partitions, each partition is assigned to a
device that can be either mobile or stationary. To avoid mobility-related failures, the orchestrator
must consider two important factors: (1) the distance between the source and each resource device
and (2) the distance between resource devices that need to exchange data between sub-tasks for
execution. The mobility manager assesses the likelihood of failure caused by mobility for each
device and upcoming partition based on these distances, as outlined in Algorithm 1.

The assessment distinguishes between three types of partitions:

— Type 1: For a Type 1 partition, there is no previous partition upon which it depends. It needs
to receive data from the source device (the device that requested the offloading of the task)
and sends output results to the host device of the next partition (the device to which the next
partition will be offloaded). For example, in Figure 3(d), P1 is Type 1.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:15

— Type 2: A Type 2 partition has at least one previous dependent partition and a next depen-
dent partition. The device that hosts this type of partition needs to communicate with at
least two devices that host previous and next partitions, other than the task source device at
specific times to exchange required data. In Figure 3(d), P2 is considered a Type 2.

— Type 3: A Type 3 partition has at least one previous dependent partition and no next depen-
dent partitions. For this type, the host needs to receive data from the previous partitions and
return the output results to the task source device. In Figure 3(d), P3 is considered a Type 3.

To avoid task failure caused by mobility, the orchestrator must find resources for partitions of a
composite task whose locations are within the connection range, of floadingRange, of each other
whenever data transfer between the devices is required. Lines 7 to 14 aim to assign host devices
according to the type of input partition. Then, on line 15, At, which is the maximum deadline
to execute all sub-tasks of the partition, is calculated. Lines 16—-18 use a trajectory predictor (see
Section 6.2) to predict the distance, distance, between devices hosting each partition at a specific
time At, when they need to exchange data, as shown in Equation (12).

Since the partitions arrive at the orchestrator in order (e.g., Type 1, Type 2, Type 3), predicting
the distance from the next dependent partition’s host device is impossible for partitions Type 1 and
2. For partition Type 3, since the results should be sent to the source device, the mobility manager
predicts the distance to the source device at the time it is ready to send back results. For predicting
the distance to the previous partition, since partition Type 1 has no preceding partition, the dis-
tance to the source at the offloading time is considered by the orchestrator. For a partition Type 2
or 3, the mobility manager predicts the distance to the previous partition at the time the results of
the previous partition are ready and need to be sent as input to this device, as shown in lines 7 to
10. Finally, based on the predicted locations of devices, the distance between devices is calculated
as shown in lines 16-18. If this distance is greater than the connection range, of floadingRange,
plus noise tolerance constant, p, the failurePossibility will be True; otherwise, it will be False.

6.3 Procedure of DeTOrch

The Mobility-aware DeTOrch model consists of seven steps (see Figure 4), encompassing all the
necessary processes from when an offloading request is received until the result is returned.

Step 1: The edge device sends an offloading request for a composite task to the orchestrator.

Step 2: The partitioner, as explained in Section 6.1, decomposes the composite task into multiple
partitions. Then, it sends an offloading request for each partition to the Workload Inspector.

Steps 3 & 4: The Workload Inspector retrieves the properties of all available resources and the
prediction data about the next possible location of devices from the inventory. Then, it creates a
state observation based on the attributes of the partition and resource devices, which is detailed
in Section 6.5.1. The resulting state is then sent to the orchestrator’s Deep RL component.

Step 4: The Deep RL component uses the Deep Q Network (DQN) algorithm based on the
architecture introduced in Reference [45]. The algorithm is designed to minimize the task com-
pletion time and sub-tasks waiting time by utilizing a reward function, which will be explained
in Section 6.5.3. The Resource Selector receives a list of scores for all actions (resource devices)
generated by the DQN.

Step 5: The Resource Selector is responsible for deciding the final destination resource for a given
partition. To do so, the sub-tasks QoS requirements of each partition, such as availability, reliabil-
ity, and response time, are considered. To ensure availability and reliability, it reduces the action
space by removing the potential host/destination resources that are outside the source device’s
connection coverage using the action masking technique, which will be described in Section 6.5.4.
Then, the selected destination resource is sent back to the workload manager.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:16 Z. Safavifar et al.

T —————
Edge devices Inventory Resources
GHI 3 /%.

S =N Partitioner Orchestrator | 6, "=
< 2

ce || 2t | 5 10

€ 8 | Workload Inspector T‘- Deep RL —

M| - 2§ ls - I

& - N

@ § [Mobility Manager Jq——n[Resource Selector] Edge Devices

L/ \ / /

Fig. 4. Mobility-aware DeTOrch orchestrator components and composite task offloading flow.

Step 6: At this step, the partition is offloaded to the selected resource (device), and all sub-tasks
are executed by the resource according to their dependency. Concurrently, the current status of
the resource in the inventory is updated.

Step 7: After the completion of each sub-task execution, the result is sent back to the edge
device that requested it. The status of device-available resources (i.e., memory, CPU utilization,
remaining battery power, etc.) in the inventory is then updated, and the Deep RL component of
the orchestrator receives a reward based on the outcome of the sub-task execution (i.e., success or
failure).

6.4 Implementing DRL on the Edge

To solve the problem described in Equation (14), our orchestrator is designed as a DRL [45] agent.
This requires modeling the problem in Equation 14 as a Markov Decision Process (MDP), which
can be expressed by a 5-tuple < S, A, T, R,y > defined as follows:

— S denotes the state space, encompassing the set of all valid states, i.e., s € S, where s repre-
sents the state of the agent.

— A denotes the action space, encompassing the set of all valid actions, i.e., a € A, where a
represents the action.

— T : SXAXS — TI'(S) is the transition function. It describes the transition from the current state
s; to the next state s;.1, given the current action a;, and outputs the probability distribution
over the next state.

— R : SXA — Ris the reward function that provides the immediate reward r for a taken action
a at time ¢ considering the state transition such that r, = R(s;, a;).

— vy € [0,1] is the discount factor to indicate the importance of the immediate or long-term
rewards. When y is 0, only the immediate reward is considered.

The DRL agent seeks to determine the optimal deterministic policy 7 : S — A that maximizes
the expected cumulative long-term rewards R;, as defined by the following Equation (17):

R, = Z YR(s¢, 3(t)+1)« (17)

=1
Alternatively, the optimal policy can be found by maximizing the action-value function Q,(s;, a;)
defined as follows:

Ox (s, ar) = E[Rsls; = s,a; = a]. (18)

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:17

As a result, the optimal policy can be found by choosing the action with the highest Q value in
each state, expressed as:

7(s;) = arg magx(Q(st, a)). (19)

To train the DRL agent, we apply the DQN [31].

It is worth noting that MDP relies on the Markov property, which requires that the next state
depends only on the current state and not on the previous states.

In the dynamic edge computing environment, ensuring the Markov property is challenging.
The state representation needs to be defined carefully to consider the changes in the environment
from the current state to the next. For instance, when modeling the state in the task orchestra-
tion system, each incoming task must be represented cautiously. There is a risk that a new task
with the same attributes may enter the environment simultaneously with a task that is already
completed. In such a situation, no changes can be detected. To address this issue, it is essential
for different tasks to be differentiable [45]. In this article, since we orchestrate a composite task
in the partition level instead of a sub-task level, we add a unique partition ID, pl{ ‘fl, for each in-

coming partition in the state. This ensures that the implementation of DRL satisfies the Markov
property.

6.5 DeTOrch DRL Modeling

In this section, we describe the DRL modeling of the orchestrator, defining its state s, action a, and
reward r as follows:

6.5.1 State. The state comprises the properties of the incoming partition that has arrived in the
orchestrator and a subset of properties of all available devices, d]’. . The subset of device properties
describes the current state of each available resource in the area at timestamp ¢, such as current
CPU utilization, remaining battery of the device, device queue size, and offloadability. Addition-
ally, to improve the algorithm’s accuracy, we calculate complex items such as resource compati-
bility score, relative mobility score, and mobility failure possibility score—based on the primary
attributes of the partition and device as described below:

— Relative mobility score (d'j.w"): It represents the relative mobility state of both task source
and resource device. This value is 1 if both the task and the resource device are mobile. If one
of them is mobile and the other one is stationary, then it is 0.5. If both devices are stationary,
then it is 0.

— Resource compatibility score (6; p, j): A binary value that shows whether a device has enough
CPU MIPS to execute the partition’s largest sub-task. This criterion is assessed by the
CheckResourceMatching function, represented in Algorithm 2. If the function output is True,
then &; , ; is set to 1; otherwise, this is 0. Section 6.5.3 explains in more detail how the
CheckResourceMatching function works.

— Mobility failure possibility score (u) is a binary value that is calculated for a device, d;, and
other relevant devices (when applicable). The device that needs to send data to d; (i.e., task
source or the previous partition host device) at a specific time is indicated as (/11{) nj)- And
the device that d; needs to send data to it (i.e., the next partition host device or task source)
after finishing all sub-tasks execution is referred to as (,ufvrf ;) These values are calculated by
the mobility manager, as explained in Section 6.2.

Therefore, d]’. is represented as: dj'. = [d’;d, d’jcu, d'f, d'jQu, d’j(.)ff, d’;wo, Sin,j» uf);ej, ,va,fj]
State,s, represents as:
D+1
s = {pin ULd}}} (20)

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:18 Z. Safavifar et al.

ALGORITHM 2: Check resources matching

1: function CHECKRESOURCEMATCHING(p;, 1, d;)
2 rf,’(“j,c « 0// Execution time
3 Si,k,j < 0// Resource compatibility score for sub-task
4: 8i,n,j < 1//Resource compatibility score for partition
5: for each {; x € pin do
6
7
8
9

rExec rSiz Comp
L {2k ld;

if TiExiC < {icliat then
Oik,j <1
Si.nj < Sinj A Oik,j
10: if 51""’]' == 1then

11: return True
12: else
13: return False

The transition function I' is unknown due to the complexity of the environment.

6.5.2 Action. The orchestrator DRL actions are limited to the number of edge devices with
computational resources in the environment plus 1 MEC server. Therefore, we define the action
space at timestamp ¢ to be a; € {aj,as,...,ap+1}- The score for all actions is calculated by the
neural network embedded in the orchestrator DRL process.

6.5.3 Reward. We aim to minimize the composite task completion time through decreasing the
sub-tasks waiting time while increasing the utilization of edge devices at the EEC layer compared
to the MEC. To accomplish this, we follow the below three principles to ensure optimum resource
assignment in this environment.

—To take advantage of the computing resource of edge devices, it is imperative that
partitions/sub-tasks that can be executed on the EEC layer are offloaded to the edge devices.

— To reduce the total sub-tasks waiting time, partitions/sub-tasks with higher dependency
scores should be executed on more powerful devices to decrease their execution time and
their dependent sub-tasks waiting time.

— To avoid failure due to latency, a partition must be offloaded to a device that allows all its
sub-tasks to meet their designed execution latency.

We designed the reward function according to the above principles. Agents were rewarded for
completing the sub-tasks earlier than the deadline and penalized for incorrect assignments to a
small resource that was not capable to execute all sub-tasks of the partitions in predefined deadline.
The orchestrator receives a reward, r; , j, from the environment at time ¢ after executing action
a;—y- The w is the delayed time it takes for an action to affect the environment. This reward is
based on the amount of time saved by completing a partition’s sub-tasks before their predefined
deadline.

The reward related to completion of a sub-task 7; i ; is the time that is saved by completing a
sub-task earlier than the predefined execution time is calculated by sub-task’s latency § Lat minus

sub-task processing time TP r“JC (see Equation (21)). The completion reward r for each partition

is the sum of all its sub- tasks completion reward r; i ; (see Equation (22)). The orchestrator can
get this reward for the partition p; , if all sub-tasks of the partition are successfully completed.
Otherwise, reward r; , ; will be 0.

Lat _ _Proc
Tik,j = Sik ik, j (21)

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:19

0 ifa {; k € pinis failed
o K 22
Tin,j (scaler(X 1k j))sViik € pi,n otherwise 2)
k=1
aler(x) = (1 - — @3
scaler(x) = T

To normalize the reward or penalty values between 1 and 0, a scaler function is defined as
represented in Equation (23) .

MEC Offloading penalty: The orchestrator receives a penalty P when the partition, p; n, is
sent to the MEC, when there are alternative edge devices within their offloading coverage, which

are capable of executing the sub-tasks.

pmee _ |0 i naty <=1 (24)
b -1+ scaler(pffl) otherwise.

Wrong Resource Selection penalty: The orchestrator receives a penalty " j when a partition is

offloaded to a device that one or all of its sub-tasks cannot meet their predefined execution latency.
This criterion is assessed by CheckResourceMatching() function that is represented in algorithm 2.
If the function output is False, then PZ",: S] is set to —2; otherwise, this is 0.

This function first calculates the execution time on device d; for each sub-task in the partition
based on Equation (1) (see Algorithm 2, line 6). Then, it checks if device d; has the required resource
and can execute all sub-tasks of the partition. Finally, if resource compatibility score of the partition
di,n,j is 1, then it returns True; otherwise, returns False.

By considering the explained penalties, the R(s, a) is the reward value in range [-2, 1] for state
s and action a that is calculated as shown in Equation (25).

R(s,a) =1+ Pmec + Purs (25)

6.5.4 Resource Selection. The orchestrator agent needs to select a destination device to offload
the partition. It does this by using a list of scores for all potential actions (resource devices) gener-
ated by the DQN. However, not all devices may be accessible at all times. To address this issue, it
employs a pruning process to filter out or exclude the resource devices located outside the task
source device connection range. In this article, the Resource Selector component is responsible for
detecting and removing impossible actions before selecting the final action. In this process, two
types of devices are detected and pruned:

— Non-offloadable devices: devices that are not within the connection range of the source
device at the offloading time.

— High-risk mobile devices: mobile devices that are anticipated by the mobility manager
using CheckMobilityFailure() function, demonstrated in Algorithm 1 to be located out of
the connection range at the time of data exchange between partitions/devices or at result
return time.

After the pruning process, the action with the highest score will be selected as the final action
(i.e., resource device).

7 Performance Evaluation

To evaluate the proposed model, we simulated a developing agricultural region experiencing water
shortages and issues related to hard water, as explained in Section 3. To address these challenges,

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:20 Z. Safavifar et al.

we have developed ML-based, data-driven applications, including smart water softeners and irri-
gation systems. To facilitate these solutions, IoT sensors have been deployed throughout the area.
A MEC server is established, providing coverage for the entire region. Additionally, various edge
devices, such as PCs, laptops, and smartphones, are equipped with computing resources and are
interconnected using a Device-to-Device (D2D) network. The goal is to facilitate real-time pro-
cessing of data collected from IoT sensors and other devices. This involves executing tasks using
the computing resources available on edge devices, thereby decreasing reliance on the MEC server.
At the same time, it is essential to ensure that applications operate smoothly and meet their QoS
requirements.

This section outlines the simulation settings and evaluates the proposed model’s performance
in comparison to existing state-of-the-art models. In designing the simulation setting, we draw
insights from how other researchers have defined their settings in similar works [9, 29, 45].

7.1 General Simulation Setting

All the characteristics of a real-world environment discussed throughout the article are included
in our scenarios. These characteristics are as follows:
Simulation environment: To evaluate the performance of mobility-aware DeTOrch in an ex-
treme edge environment, we simulated our designed scenarios using PureEdgeSim! [29]. This sim-
ulator enables evaluating resource management strategies in the EEC environments.
Resource-constrained heterogeneous devices: We consider an EEC environment that consists
of an edge server and five types of devices, including smartphones, laptops, Raspberry Pis, and
two types of IoT sensors (see Table 4). In the area, around 80% of devices are task generators and
only 40% of devices have computational resources.
Number of devices: To assess the model’s scalability with an increasing number of devices, the
number of devices ranges from 100 to 200.
Heterogeneity of tasks: We have defined four applications. Two of these applications, namely,
“App A” and “App B, consist of composite tasks with a general dependency model, as shown in
Figure 2(a). The other two applications, App C and App D, consist of composite tasks with se-
quential dependency, as depicted in Figure 2(b). In each composite task, all sub-tasks have varying
computing resource requirements andSLAs. Therefore, all devices may not be capable of execut-
ing all sub-tasks, and some sub-tasks must only be offloaded to specific devices for execution. For
example, in applications “App A” and “App C,” the sub-tasks with ID 1 can just be executed on
laptops and the edge server. The sub-tasks with IDs 3 and 5 cannot be executed on Raspberry Pi.
The detailed configurations of the sub-tasks in the general and sequential composite tasks are pre-
sented in Table 2 and Table 3, respectively. For all sub-tasks, we have set their request size ({5¢)
and result size ((®¢) to 1,500 and 50 kilobytes, respectively.
Fluctuated workload: To evaluate the model’s scalability with an increasing number of tasks,
two levels of workload are defined in our scenarios: “Medium” and “High.” At the “Medium” level,
tasks are generated at a rate of one per minute. At the “High” level, tasks are generated at a rate
of three per minute.
Mobility: Within the environment, 30% of all devices are mobile. Of these mobile devices, 18% are
both task generators and resources, while 12% are only task generators. These devices can easily
move within and join or exit the area.

For the energy and network models, we used the default settings and values in PureEdgeSim
[29], as shown in Table 4.

Thttps://github.com/CharafeddineMechali,kh/PureEdgeSim

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

https://github.com/CharafeddineMechali,kh/PureEdgeSim

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:21

Table 2. The Properties of Sub-tasks for Applications A and B with General Dependencies

required Overall Computing ;.. (£57%)
Application No.({'?) sub-task({®7) Latency({*%') Latency({"%) (GIPS)
1 - 0.3 0.3 30
= 2 1 1 0.65 10
% 3 1 1.1 0.8 20
< § 4 2 1.3 0.32 5
a. .S 5 2 3 2 50
] 6 3 1.5 0.15 2
< =
E 7 3 2.1 1 15
5) 8 6 2.5 0.65 10
~ 9 6 3.5 0.8 12
10 8,9 4 0.32 5
1 - 0.7 0.65 10
2 1 1.5 0.5 7
3 1 1.8 0.8 12
4 2 2 0.32 5
2 5 2 2.8 0.8 10
2-‘ 6 3 2 0.2 2
7 3 3.5 1 15
8 6 4 0.7 10
9 6 4.8 0.8 12
10 8,9 5.5 0.32 5
Edge devices Inventory Resources
GHI 3 }%.
Orchestrator A MEC Server
. Workload Inspector Tb Deep RL L R
o8 .=
[g 2 I l 5 —
1 g% T’ L Partitioner ‘ [Resource Selector } 6 D
s Edge Devices
(%

Fig. 5. DeTOrch orchestrator components and composite task offloading flow.

7.2 Benchmarks

We implemented the following algorithms as benchmarks to evaluate the effectiveness of our pro-
posed methods, including partitioning, DRL, and mobility manager:

— Mobility-aware DeTOrch: This is our comprehensive model for composite-task orches-
tration in an environment with complex mobility behavior, as explained in Section 6.

— DeTOrch: It is a variant of the proposed model without the mobility manager, as illus-
trated in Figure 5. As a result, the mobility failure possibility score (i) is not included in
the DeTOrch state. Additionally, during the resource selection phase, only non-offloadable
devices are pruned, and the high-risk mobile devices are not detected.

— DeTOrch without partitioning: It resembles an implementation of the DeTOrch model but
without using task partitioning. It orchestrates each sub-task individually. It is the baseline
for evaluating the partitioning method.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:22

Z. Safavifar et al.

Table 3. The Properties of Sub-tasks for Applications C and D Sequential Dependencies

required Overall Computing ;.. (£517)
Application No.({'¢) sub-task({R9) Latency({"*’) Latency({%) (GIPS)
1 - 0.3 0.5 30
= 2 1 1.2 0.65 10
E 3 2 2.5 1.25 20
5 4 3 2.85 0.32 5
U -
o, |E‘ 5 4 4.9 2 50
2" § 6 5 5 0.13 2
2 7 6 6 0.95 15
é 8 7 6.6 0.65 10
~ 9 8 7.5 0.8 12
10 9 7.8 0.32 5
1 - 0.7 0.65 10
2 1 1.3 0.5 7
3 2 2.1 0.8 12
4 3 2.5 0.32 5
~ 5 4 3.2 0.65 10
f:" 6 5 3.5 0.2 2
7 6 4.5 1 15
8 7 5.2 0.7 10
9 8 6 0.8 12
10 9 7.8 0.32 5

Table 4. Edge Devices Properties

Types Edge server Laptops Smart phones Raspberry Pis Sensor Typel Sensors Type2
Generate tasks No No Yes No Yes Yes
Total ratio(%) 1 11 18 11 48 12
Mobility No No Yes No No Yes
speed 0 0 1.4 0 0 12
CPU (GIPS) 400 110 25 16 - -
CPU (cores) 10 8 8 4 - -
Battery powered No Yes Yes No No No
Max computing

energy (w) 0.07 0.0014 0.0066 0.0015 - -

Static energy

consumption w) 0.027 0.00005 0.00047 0.001 - -

— DeTOrch with baseline DQN: It is an implementation of the DeTOrch model with base-
line DON, which uses the same state as input but defines the reward as 0 and 1 for
failure and success, respectively. It is the baseline for evaluating the proposed reward

function.

— Bacterial Foraging Optimization Algorithm (BFOA): It is a meta heuristic model intro-
duced in Reference [21]. It uses the same partitioning method, and we implemented it based
on the objectives formulated in Section 14.

All aforementioned benchmark models based on DQN are configured using hyperparameters

listed in Table 5.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:23

Table 5. Hyperparameters and Their Values

Hyperparameter Value
Learning Rate 0.0001
Discount Factor 0.8
Initial Exploration 0.99
Exploration Factor 0.9988
Final Exploration 0.1
Replay Memory Size 200000
Minibatch Size 50

Target Network Update Frequency 100

7.3 Evaluation Metrics

We define the following evaluation metrics, and in each scenario, we use a couple of them based
on the scenario objectives and characteristics.

— Composite task success rate: It is calculated by dividing the total number of composite
tasks that are successfully executed by the total number of generated tasks.

— Sub-tasks success rate: It is calculated by dividing the total number of sub-tasks that are
successfully executed by the total number of generated sub-tasks.

— Orchestrator service time: It is the duration from when a sub-task/partition arrives at the
orchestrator until the orchestrator assigns it to a device.

— Orchestrator device energy usage: It is calculated by the consumed energy per second
multiplied by the orchestrator service time.

— Composite task failure due to mobility: It is calculated by the number of failed composite
tasks divided by the total number of generated tasks.

— Composite task completion time: It is the sum of the waiting time and execution time
of all sub-tasks. Each sub-task’s waiting time includes the time it must wait for the sub-task
it depends on to finish, as well as the time it needs to stay in a device queue for execution.
The execution time of a sub-task depends on both the size of the task and the computing
resources of the device.

— Edge devices resource usage: It is calculated by the number of sub-tasks that are sent to
edge devices for execution divided by the number of generated sub-tasks.

— Total network transmission energy usage: It is the total energy used for transferring
data over the network in the offloading process, measured by Equation (8).

7.4 Simulation Scenarios

To assess various aspects of our work, we consider three groups of scenarios:

7.4.1 Scenarios Group I. In the first group of scenarios, we aim to evaluate the effectiveness of
the partitioning method in the proposed model. In these scenarios, we considered the DeTOrch as
the proposed model and DeTOrch without partitioning as the baseline model.

Evaluation metrics: The evaluation metrics used in these scenarios are Composite task success
rate, Sub-tasks success rate, Orchestrator service time, and Orchestrator device energy usage.

7.4.2 Scenarios Group II. In the second group of scenarios, we aim to evaluate the proposed DRL
model for task orchestration. In these scenarios, the DeTOrch is considered as the proposed model,
which is compared to (i) DeTOrch with baseline DON and (ii) BFOA. To evaluate this model, all the
characteristics of a real-world environment that are considered in general settings mentioned in
Section 7.1 are also considered

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:24 Z. Safavifar et al.

Table 6. Scenarios Groups | and Il Profile

Label Dependency type Workload No. devices
Gen-M-100 General Medium 100
Gen-H-100 General High 100
Gen-H-250 General High 200
Seq-M-100 Sequential Medium 100
Seq-H-100 Sequential High 100
Seq-H-250 Sequential High 200

Table 7. Scenarios Group Il Profile

Label Low speed(%) Medium speed(%)
Seq-H-200-L30 30 0
Seq-H-200-L30-M20 30 20
Seq-H-200-L30-M30 30 30

Evaluation metrics: The evaluation metrics used in these scenarios include the Composite task
success rate, Composite task failure due to mobility, Composite task completion time, Edge devices
resource usage, and Total network transmission energy usage.

For scenarios groups I and II, an environment with all characteristics explained in general set-
tings (Section 7.1) are considered. These aspects are reflected in the six scenarios listed in Table 6.
The simulation ran for 10 sets of 60 minutes each.

7.4.3 Scenarios Group Ill. The third group of scenarios aims to evaluate the mobility manage-
ment component in the proposed model. In addition to the general settings described in Section 7.1,
the following configurations are applied:

Resource-constrained heterogeneous devices: Five types of devices, as explained in general
settings (Section 7.1) are considered, with only Raspberry Pis being replaced with mobile Tablets.
Heterogeneity of tasks and resource-intensive tasks: Sequential tasks as outlined in general
settings (Section 7.1) are considered.

Number of devices and workload: The number of devices is set to 200, which all have a “High”
workload.

Mobility: Three mobility behaviors are defined: (i) Low mobility: 30% of all devices in the envi-
ronment are mobile at a low speed of 1.4 m/s (i.e., pedestrian) to the scenarios group L (ii) Medium
mobility: 50% of devices are mobile, 20% are moving at a medium speed of 4.3 m/s (i.e., bicycle
riding), and 30% are moving at a low speed. (iii) High mobility: 60% of devices are mobile, with 30%
of them moving at medium speed and 30% at low speed.

These aspects are reflected in the three scenarios listed in Table 7. The simulation ran for 10 sets
of 60 minutes each.

Baselines and evaluation metrics: The DeTOrch model is used as the baseline in comparison
with the proposed Mobility-aware DeTOrch model. The evaluation metrics used in these scenarios
include the Composite task success rate and Composite task failure due to mobility.

7.5 Results and Discussions

7.5.1 Scenarios Group | - Partitioning Effectiveness Assessment.

Composite task success rate: As shown in Figure 6(a), DeTOrch, when using partitioning
in all scenarios, outperforms the model that does not use partitioning, improving the composite

task success rate by 10%. Furthermore, upon comparing the success rate of sub-tasks as shown

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:25

=3 DeTOrch =3 Non-partitioned-DeTOrch 3 DeTOrch =3 Non-partitioned-DeTOrch
100+

=
=]
=)

©
o
1
©
o

I a
EITT '?EI@-;-
=

N
o

T
{1k

©
@

Composite Task Success Rate
Sub-task Success Rate (%)
8

~
o

1 T
o o o o o ® o $ o $ ® ®
N KN S N KN N S S 5 S S 5
S S A R ¥ooF XNy
& & & P e & & & & & 4 4
Scenario Scenarios
(a) Composition task success rate (b) Sub-tasks success rate
B =3 Non-partitioned-DeTOrch =3 DeTOrch
0 3 Non-partitioned-DeTOrch =1 DeTOrch > 800
E e
£ 15000 8
o
£ ? 600
g 10,000 2
e - l Y 4004
2 S
g E %
2 5000 B 5004
=1, = =, 1 .
5 - = i - 5 k3 £
i X ke = — - e -
1] I 1 [
g 0 T — T T — T g 0 T T T T T T
[&) N S & N = @,\@ QJ‘QQ ‘2‘5196 Y Q\;@Q ‘2‘,'190
& & & &K &£ & & & & &£ &£ &
Scenarios Scenarios
(c) Orchestrator service time (d) Orchestrator energy usage

Fig. 6. The simulation results for comparing DeTOrch and DeTOrch without using task partitioning.

in Figure 6(b), it is evident that the improvement in success rate for sub-tasks is approximately
3%, whereas, for composite tasks, it is around 10%. This occurrence is due to partitioning, which
reduces the impact of an incorrect resource assignment made by the orchestrator. For instance, let
us consider a scenario where the orchestrator operates with 90% accuracy. In a non-partitioned
system, to handle a composite task comprising 10 sub-tasks, each sub-task needs to be assigned to
a resource individually. Even if one of the assignments out of 10 is incorrect, the entire composite
task will fail. However, with partitioning, a composite task is partitioned into three, and the orches-
trator finds a resource for all sub-tasks in a partition at once. Consequently, in three rounds, the
orchestrator can handle all partitions of a composite task, and in 10 rounds, it can manage three
composite tasks. Therefore, if 1 out of 10 assignments is incorrect, only one composite task will
fail, and the other two will run successfully.

Orchestrator service time and energy usage: Figure 6(c) shows that the total service time of
the DeTOrch orchestrator is significantly reduced when partitioning is used by around 70%. This is
because partitioning allows the orchestrator to handle multiple sub-tasks with each action, result-
ing in fewer actions needed to orchestrate tasks. The orchestrator device’s processor consumes a
specific amount of energy for each process needed to carry out an action. Therefore, by reducing
the number of required actions, the processor’s time and energy consumption decreases, as shown
in Figure 6(d).

7.5.2 Scenarios Group Il - DRL Model Assessment.
Composite task success rate: The figure shown in Figure 7(a) indicates that DeTOrch outper-
forms the baselines in all scenarios of composite tasks. The proposed reward function enhances

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:26 Z. Safavifar et al.

=1 DeTOrch =1 Baseline-DQN =3 BFOA [DeTOrch =1 Baseline-DQN =3 BFOA

N
=]
1

100

g
&
8 3
< 15=1
g |8 a6 N 2
Il
) é T °
a? fag 9 ¥
: g
. f é 5 : . : i
x é E Il é -
g] -I-..-T- I % szl * *
70 T T T T T T g : ! ! ! . N N
y y Y y y Y S O & S S &
& F & R R A
& & & & & g & & & of & o
Scenarios Scenarios
(a) Composition task success rate (b) Composition tasks failure due to mobility

Fig. 7. The simulation results for comparing DeTOrch task success and failure rate to the baselines.

the composite task success rate while increasing resource utilization of edge devices and reducing
their completion time. When it comes to scenarios with general dependencies, DeTOrch improved
the success rate by more than 8% compared to the DeTOrch with baseline DQN and more than 3%
compared to the BFOA algorithm. In scenarios related to sequential tasks, DeTOrch increased the
success rate by more than 4% compared to both baselines.

It is worth noting that as can be seen in Figure 7(a) in all scenarios with a high workload
and a large number of devices, “Gen/Seq-H-200,” the success rate improves significantly com-
pared to other scenarios. This shows that DeTOrch is more scalable and reliable in extreme
environments.

Edge devices resource utilization: The graph shown in Figure 8(b) illustrates that DeTOrch
utilizes more resources on edge devices compared to the baselines in all scenarios. In most scenar-
ios, DeTOrch has assigned over 60% of sub-tasks to edge devices, whereas the baseline DQN has
assigned around 30% of sub-tasks to edge devices. On average, the BFOA has assigned about 50%
of sub-tasks for execution on edge devices. The reason for this is the penalty that we have defined
for offloading tasks to the edge server in cases when there is an alternative edge device available
for partition offloading.

Composite task completion time: The results presented in Figure 8(a) demonstrate that
DeTOrch significantly reduces the completion time in most scenarios compared to the baselines.
However, in the “Seq-M-100” and “Seq-H-100" scenarios, all models perform equally well. This is
because, in these two scenarios, the baseline models utilize the edge devices’ resources less com-
pared to other scenarios. As a result, most of the tasks are sent to the edge server, which is more
powerful and can execute tasks faster.

Total network transmission energy usage: The results depicted in Figure 8(c) show that
DeTOrch significantly decreases the network energy usage. On average, it reduces energy con-
sumption by more than 30% in most scenarios. The reduction is attributed to DeTOrch sending
fewer sub-tasks to the edge server, resulting in reduced data transmission between the edge server
and edge devices. Consequently, the overall energy used for data transmission over the network
is reduced.

7.5.3 Scenarios Group Il - Mobility and Task Structures. Results show that the composite task
with sequential dependency is more affected by the mobility of devices, as indicated in Figure 7(b).
In scenarios with general dependencies, failure caused by mobility is around 1% on average, while
in scenarios with sequential dependencies, it increases to more than 6% on average. The rea-
son for this is that in sequential dependent sub-tasks, parallel execution is not possible. This

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:27
3 DeTOrch =1 Baseline-DQN 3 BFOA g 3 DeTOrch 3 Baseline-DQN 03 BFOA
1,50,000 é 100
O 3
: o H s g
o
£ 1,00,000 s . g e = % s % 3 1
s ¥ 2 ik £ & P
K - 'I' g 4 &
o 50,000 g:'l' Py ¥ &=
E ar- 8 20
S - - I, é §
T T T T T T & T T T T T T
$ & N & & S 2 & & > & & >
(‘QJ\ (‘*’\ (‘gé\' o.""\ 028\ o.g? o§\ Qg‘\ 0*?‘ 0§\ Q'Q‘\ Q'%w
00 0@ 00 %0 ;"0 %0 (’G 00 (’0 %Q (1,0 90
Scenarios Scenarios
(a) Composite tasks total completion time (b) Edge devices resource usage
[DeTOrch 3 Baseline-DQN O BFOA
__ 250
3
< 200 'I'
©
3
g 7 t
3 150+ ? &
5 L)
< 100 ¥ é L]
- &
x %' =
3 504 =% -
s - 3
2z n
e T T 1 1 T T
o o o o o $
K S o N & S
R A A N M ¢
000 0@“ 000 %00 %0° %Q
Scenarios

(c) Total energy usage for data transmission over the network

Fig. 8. The simulation results for evaluating DeTOrch DRL algorithm effectiveness comparing the baselines.

3 Mobility-Aware DeTOrch =1 Baseline-DQN =3 BFOA

'
=)
1

Task Failure Due to Mobility (%)

T
Seq-H-200-L30H30
Scenarios

(a) Composition task success rate

=3 Mobility-Aware DeTOrch

-
[T
1

=
=

==

-_

Task Failure Due to Mobility (%)

0

= DeTOrch

T

=

Scenarios

T T
Seq-H-200-L30H30 Seq-H-200-L30H20

T
Seq-H-200-L3

(b) Task failure due to mobility in various mobility behaviors

Fig. 9. The simulation results for comparing mobility-aware DeTOrch failure caused by mobility rate to the
baselines.

can cause a significant delay between offloading the partition containing the last sub-task to
a mobile device and the time it can be executed. This gap can be quite high, which increases
the possibility of the resource device getting further away from the source device. Therefore,
to evaluate the mobility manager, we defined all scenarios based on sequential tasks and high
workload.

Composite task failure due to mobility: According to Figure 9(a), mobility-aware DeTOrch
reduces failure caused by device mobility in the most complex scenario with 60% mobility,

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

11:28 Z. Safavifar et al.

outperforming DeTOrch with DQN baseline by around 4% and BFOA by 48%. Moreover, in
comparison to DeTOrch, as shown in Figure 9(b), mobility-aware DeTOrch reduces failures due
to mobility around 70% in all scenarios with varying mobility behaviors which causes to improve
total task success rate by 5%. All of these are because of the mobility manager component, which
can predict failure using the trajectory prediction algorithm. Therefore, the orchestrator can
assign dependent partitions to devices that can transfer data safely when required.

In summary, to evaluate the effectiveness of partitioning, mobility manager, and the proposed
DRL model for tasks with general and sequential dependencies, we defined three categories of
scenarios. Our analysis showed that DeTOrch performs better in scenarios with general depen-
dencies in terms of task success rate and network energy usage than in scenarios with sequential
dependencies. However, for other evaluation metrics, tasks with both types of dependencies per-
form almost the same. The reason for this is that sub-tasks can be executed in parallel in tasks
with general dependencies, whereas in sequential tasks, it is not possible. Therefore, the time be-
tween the last sub-tasks being offloaded and their execution time is high, which increases the
risk of moving mobile devices and the distance between the devices that need to transfer data
during the task offloading process. The mobility-aware DeTOrch, which uses the mobility man-
ager component, improved the task success rate in sequential task scenarios by 5% compared to
DeTOrch.

It is also worth noting that the DeTOrch model performs much better in extreme scenarios,
“Seq/Gen-H-200,” in terms of task success rate and completion time, demonstrating the scalability
and reliability of our model.

8 Conclusion and Future Work

In this article, we extend a state-of-the-art task partitioning algorithm by proposing a deep re-
inforcement learning-based model for Dependent sub-Task Orchestration (DeTOrch) in an
EEC environment. The model aims to improve the composite task success rate while increasing
the usage of edge devices’ resources and decreasing the composite task completion time. These
objectives are achieved through partitioned-based DRL algorithms that we designed. In addition,
we introduce a novel mobility manager model that employs trajectory prediction and can oper-
ate in an EEC environment consisting of devices with complex mobility behavior. To evaluate the
effectiveness of partitioning, mobility manager, and the proposed DRL model, we defined three
categories of scenarios for tasks with general and sequential dependencies. The results show that
the mobility-aware DeTOrch outperforms the baselines in all scenarios and meets all defined ob-
jectives. Importantly, our approach promotes sustainability in computing systems by efficiently
utilizing edge resources. It reduces the energy consumption associated with excessive reliance on
high-capacity servers. It improves resource utilization across heterogeneous edge devices, thereby
promoting sustainability in computing systems.

The DeTOrch model runs on a central orchestrator, which is the risk of overloading the or-
chestrator device or making it a single point of failure. To manage such situations, a network
of orchestrators can be developed to facilitate federated learning, resulting in faster adaptation
and enhanced model scalability, robustness, and fault tolerance. Additionally, implementing a
load balancer can help distribute jobs among orchestrators, preventing overload on a single
orchestrator.

Moreover, the partitioning algorithm partitions all composite tasks into a fixed number of par-
titions, regardless of their varying dependency types and environment characteristics. However,
considering the dynamic nature of the EEC environment, future work could explore a dynamic
partitioning model. Such a model can incorporate learning techniques that take into account task
characteristics, environment characteristics, and resource availability as input parameters.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:29

Acknowledgments

For the purpose of Open Access, the author has applied a CC BY public copyright license to any
Author Accepted Manuscript version arising from this submission.

References

[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj Chakkaravarthy, David Brooks, and
Carole-Jean Wu. 2023. Carbon explorer: A holistic framework for designing carbon aware datacenters. In Proceedings
of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems
2 (2023), 118-132.

[2] Ahmed A. Al-Habob, Octavia A. Dobre, Ana Garcia Armada, and Sami Muhaidat. 2020. Task scheduling for
mobile edge computing using genetic algorithm and conflict graphs. IEEE Trans. Vehic. Technol. 69, 8 (2020),
8805-8819.

[3] Laha Ale, Scott A. King, Ning Zhang, Abdul Rahman Sattar, and Janahan Skandaraniyam. 2022. D3PG: Dirichlet DDPG
for task partitioning and offloading with constrained hybrid action space in mobile-edge computing. IEEE Internet
Things 3.9, 19 (2022), 19260-19272.

[4] Mhd Saria Allahham, Amr Mohamed, Aiman Erbad, and Hossam Hassanein. 2022. On the modeling of reliability in
extreme edge computing systems. In 5th International Conference on Communications, Signal Processing, and Their
Applications (ICCSPA’22). IEEE, 1-6.

[5] Suman Banerjee, Neil Klingensmith, Peng Liu, and Anantharaghavan Sridhar. 2017. Edge computing in the extreme
for sustainability. In Communication Systems and Networks: 9th International Conference, COMSNETS 2017, Bengaluru,
India, January 4-8, 2017, Revised Selected Papers and Invited Papers 9. Springer, 93-109.

[6] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 2 (2001), 163-177.

[7] Ruitao Chen and Xianbin Wang. 2022. Situation-aware orchestration of resource allocation and task scheduling for
collaborative rendering in IoT visualization. IEEE Trans. Sustain. Comput. 7, 4 (2022), 935-949.

[8] Santiago Correa, Gustavo Perez, Paulina Jaramillo, and Jay Taneja. 2023. Taking the long view: Enhancing learning on
multi-temporal, high-resolution, and disparate remote sensing data. In 10th ACM International Conference on Systems
for Energy-efficient Buildings, Cities, and Transportation. 11-20.

[9] Chrysoula Dikonimaki. 2023. Edge compute offloading strategies using heuristic and reinforcement learning tech-
niques. Ph. D. Dissertation. KTH Royal Institute of Technology, Stockholm, Sweden.

[10] Ankan Dutta, Surbhi Pal, Aishwarya Banerjee, Pratap Karmakar, Arpita Mukherjee, Debaprasad Mukherjee, and Pra-
bal Kumar Sahu. 2023. Survey on irrigation scheduling with machine learning. In International Conference on Smart
Trends for Information Technology and Computer Communications. Springer, 797-806.

[11] Mariam Elgamal, Doug Carmean, Elnaz Ansari, Okay Zed, Ramesh Peri, Srilatha Manne, Udit Gupta, Gu-Yeon Wei,
David Brooks, Gage Hills et al. 2023. Carbon-efficient design optimization for computing systems. In 2nd Workshop
on Sustainable Computer Systems. 1-7.

[12] Mingjie Feng, Marwan Krunz, and Wenhan Zhang. 2021. Joint task partitioning and user association for latency
minimization in mobile edge computing networks. IEEE Trans. Vehic. Technol. 70, 8 (2021), 8108-8121.

[13] Mingjin Gao, Rujing Shen, Long Shi, Wen Qi, Jun Li, and Yonghui Li. 2021. Task partitioning and offloading in DNN-
task enabled mobile edge computing networks. IEEE Transactions on Mobile Computing 22, 4 (2021), 2435-2445.

[14] Fatemeh Golpayegani, Nanxi Chen, Nima Afraz, Eric Gyamfi, Abdollah Malekjafarian, Dominik Schéfer, and Chris-
tian Krupitzer. 2024. Adaptation in edge computing: A review on design principles and research challenges. ACM
Transactions on Autonomous and Adaptive Systems 19, 3 (2024), 1-43.

[15] Jiaying Guo, Saeedeh Ghanadbashi, Shen Wang, and Fatemeh Golpayegani. 2023. Urban traffic signal control at the
edge: An ontology-enhanced deep reinforcement learning approach. In IEEE 26th International Conference on Intelli-
gent Transportation Systems (ITSC’23). IEEE, 6027-6033.

[16] Leo Han, Jash Kakadia, Benjamin C. Lee, and Udit Gupta. 2024. Towards game-theoretic approaches to attributing
carbon in cloud data centers. Retrieved from hotcarbon.org

[17] Amelia Holcomb, Linzhe Tong, and Srinivasan Keshav. 2023. Robust single-image tree diameter estimation with mo-
bile phones. Rem. Sens. 15, 3 (2023), 772.

[18] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S. Tucker. 2016. Fog computing may help to
save energy in cloud computing. IEEE J. Select. Areas Commun. 34, 5 (2016), 1728-1739.

[19] Youbin Jeon, Hosung Baek, and Sangheon Pack. 2021. Mobility-aware optimal task offloading in distributed edge
computing. In International Conference on Information Networking (ICOIN’21). IEEE, 65-68.

[20] Hidehiro Kanemitsu, Masaki Hanada, and Hidenori Nakazato. 2019. Multiple workflow scheduling with offloading
tasks to edge cloud. In 12th International Conference on Cloud Computing (CLOUD’19), Held as Part of the Services
Conference Federation (SCF’19). Springer, 38-52.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

hotcarbon.org

11:30 Z. Safavifar et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Mandeep Kaur, Sanjay Kadam, and Naecem Hannoon. 2022. Multi-level parallel scheduling of dependent-tasks using
graph-partitioning and hybrid approaches over edge-cloud. Soft Comput. 26, 11 (2022), 5347-5362.

Noah Klugman, Joshua Adkins, Emily Paszkiewicz, Molly G. Hickman, Matthew Podolsky, Jay Taneja, and Pra-
bal Dutta. 2021. Watching the grid: Utility-independent measurements of electricity reliability in Accra, Ghana.
In 20th International Conference on Information Processing in Sensor Networks (Co-located with CPS-IoT Week’21).
341-356.

Yu-Jen Ku, Sabur Baidya, and Sujit Dey. 2021. Adaptive computation partitioning and offloading in real-time sustain-
able vehicular edge computing. IEEE Trans. Vehic. Technol. 70, 12 (2021), 13221-13237.

Dapeng Lan, Amir Taherkordi, Frank Eliassen, Lei Liu, Stéphane Delbruel, Schahram Dustdar, and Yang Yang. 2022.
Task partitioning and orchestration on heterogeneous edge platforms: The case of vision applications. IEEE Internet
Things . 9, 10 (2022), 7418-7432.

Hui Liu, Zhaocheng Niu, Junzhao Du, and Xiaomin Lin. 2023. Genetic algorithm for delay efficient computation
offloading in dispersed computing. Ad Hoc Netw. 142 (2023), 103109.

Shumei Liu, Yao Yu, Xiao Lian, Yuze Feng, Changyang She, Phee Lep Yeoh, Lei Guo, Branka Vucetic, and Yonghui Li.
2023. Dependent task scheduling and offloading for minimizing deadline violation ratio in mobile edge computing
networks. IEEE . Select. Areas Commun. 41, 2 (2023), 538—554.

Lefu Magelepo, Fhazhil Wamalwa, Nathan Williams, and Jay Taneja. 2025. Two sides of a coin: Assessing trade-offs
between reliability and profit in mini grids and the policy implications for subsidies. Appl. Energy 378 (2025), 124726.
Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. 2020. Recalibrating global data center
energy-use estimates. Science 367, 6481 (2020), 984-986.

Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa. 2021. PureEdgeSim: A simulation framework for perfor-
mance evaluation of cloud, edge and mist computing environments. Comput. Sci. Inf. Syst. 18, 1 (2021), 43-66.
Mahshid Mehrabi, Shiwei Shen, Yilun Hai, Vincent Latzko, George P. Koudouridis, Xavier Gelabert, Martin Reisslein,
and Frank H. P. Fitzek. 2021. Mobility-and energy-aware cooperative edge offloading for dependent computation tasks.
Network 1, 2 (2021), 191-214.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski et al. 2015. Human-level control through deep reinforcement
learning. Nature 518, 7540 (2015), 529-533.

Aggrey Muhebwa, Colin J. Gleason, Dongmei Feng, and Jay Taneja. 2024. Improving discharge predictions in un-
gauged basins: Harnessing the power of disaggregated data modeling and machine learning. Water Resour. Res. 60, 9
(2024), e2024WR037122.

Shishir G. Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez. 2022. POET: Training neural networks on
tiny devices with integrated rematerialization and paging. In International Conference on Machine Learning. PMLR,
17573-17583.

Jorge Portilla, Gabriel Mujica, Jin-Shyan Lee, and Teresa Riesgo. 2019. The extreme edge at the bottom of the internet
of things: A review. IEEE Sensors J. 19, 9 (2019), 3179-3190. DOI : https://doi.org/10.1109/JSEN.2019.2891911

Zahra Safavifar, Saeedeh Ghanadbashi, and Fatemeh Golpayegani. 2021. Adaptive workload orchestration in pure edge
computing: A reinforcement-learning model. In IEEE 33rd International Conference on Tools with Artificial Intelligence
(ICTAI’21). IEEE, 856-860.

Zahra Safavifar, Eric Gyamfi, Eleni Mangina, and Fatemeh Golpayegani. 2024. Multi-objective deep reinforcement
learning for efficient workload orchestration in extreme edge computing. IEEE Access 12 (2024), 74558-74571.

Zahra Safavifar, Charafeddine Mechalikh, and Fatemeh Golpayegani. 2023. Fault tolerant robust adaptive workload
orchestration in pure edge computing. In International Conference on Agents and Artificial Intelligence. Springer,
370-386.

Zahra Safavifar, Charafeddine Mechalikh, Junfei Xie, and Fatemeh Golpayegani. 2023. Enhancing VRUs safety through
mobility-aware workload orchestration with trajectory prediction using reinforcement learning. In 2023 IEEE 26th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 6132-6137.

Fuhong Song, Huanlai Xing, Xinhan Wang, Shouxi Luo, Penglin Dai, and Ke Li. 2022. Offloading dependent tasks in
multi-access edge computing: A multi-objective reinforcement learning approach. Fut. Gen. Comput. Syst. 128 (2022),
333-348.

Gilbert Strang. 1991. Calculus. Vol. 1. Wellesley-Cambridge, Cambridge, MA.

Ju Wang, Ligiong Chang, Shourya Aggarwal, Omid Abari, and Srinivasan Keshav. 2025. Sustainable and low-cost
greenhouse soil moisture monitoring using battery-free RFID sensors. ACM Transactions on Sensor Networks 21, 2
(2025), 1-28.

Grant Wilkins, Srinivasan Keshav, and Richard Mortier. 2024. Hybrid heterogeneous clusters can lower the energy
consumption of LLM inference workloads. In 15th ACM International Conference on Future and Sustainable Energy
Systems. 506-513.

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

https://doi.org/10.1109/JSEN.2019.2891911

Sustainable Dependent Sub-tasks Orchestration at Extreme Edge Computing 11:31

[43] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona
Aga, Jinshi Huang, Charles Bai et al. 2022. Sustainable Al: Environmental implications, challenges and opportunities.
Proc. Mach. Learn. Syst. 4 (2022), 795-813.

[44] Huaming Wu, William J. Knottenbelt, and Katinka Wolter. 2019. An efficient application partitioning algorithm in
mobile environments. IEEE Trans Parallel Distrib. Syst. 30, 7 (2019), 1464-1480.

[45] Baris Yamansavascilar, Ahmet Cihat Baktir, Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. 2021. DeepEdge: A deep
reinforcement learning based task orchestrator for edge computing. arXiv preprint arXiv:2110.01863 (2021).

Received 21 June 2024; revised 22 November 2024; accepted 2 February 2025

ACM J. Comput. Sustain. Soc., Vol. 3, No. 2, Article 11. Publication date: May 2025.

