
Reachability in Deletion-Only Chemical Reaction

Networks

Bin Fu #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Timothy Gomez #

Massachusetts Institute of Technology,

Cambridge, MA, USA

Ryan Knobel #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Austin Luchsinger #

University of Texas Rio Grande Valley, Edinburg,

TX, USA

Aiden Massie #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Marco Rodriguez #

Massachusetts Institute of Technology,

Cambridge, MA, USA

Adrian Salinas #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Robert Schweller #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Tim Wylie #

University of Texas Rio Grande Valley,

Edinburg, TX, USA

Abstract

For general discrete Chemical Reaction Networks (CRNs), the fundamental problem of reachability –

the question of whether a target configuration can be produced from a given initial configuration –

was recently shown to be Ackermann-complete. However, many open questions remain about which

features of the CRN model drive this complexity. We study a restricted class of CRNs with void rules,

reactions that only decrease species counts. We further examine this regime in the motivated model

of step CRNs, which allow additional species to be introduced in discrete stages. With and without

steps, we characterize the complexity of the reachability problem for CRNs with void rules. We

show that, without steps, reachability remains polynomial-time solvable for bimolecular systems but

becomes NP-complete for larger reactions. Conversely, with just a single step, reachability becomes

NP-complete even for bimolecular systems. Our results provide a nearly complete classification of

void-rule reachability problems into tractable and intractable cases, with only a single exception.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of

computation → Problems, reductions and completeness

Keywords and phrases CRN, Chemical Reaction Network, Reachability, Void Reactions

Digital Object Identifier 10.4230/LIPIcs.DNA.31.3

Funding This research was supported in part by National Science Foundation Grant CCF-2329918.

1 Introduction

Background. In molecular programming, Chemical Reaction Networks [5, 6] have become a

staple model for abstracting molecular interactions. The model consists of a set of chemical

species (formal symbols) as well as a set of reactions that dictate how these species interact.

As an example, the reaction A + B → C + D describes chemical species A and B reacting to

form species C and D. While chemical kinetics are commonly modeled continuously using

ordinary differential equations, this approximation breaks down for systems with relatively

small volumes where species are present in very low amounts. Such systems are better

modeled as discrete Chemical Reaction Networks (which we will hereby be referring to simply

as CRNs), where the system state consists of non-negative integer counts of each species and

© Bin Fu, Timothy Gomez, Ryan Knobel, Austin Luchsinger, Aiden Massie, Marco Rodriguez, Adrian
Salinas, Robert Schweller, and Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on DNA Computing and Molecular Programming (DNA 31).
Editors: Josie Schaeffer and Fei Zhang; Article No. 3; pp. 3:1–3:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bin.fu@utrgv.edu
mailto:tagomez7@mit.edu
mailto:ryan.knobel01@utrgv.edu
mailto:austin.luchsinger@utrgv.edu
mailto:aiden.massie01@utrgv.edu
mailto:marcordz@mit.edu
mailto:adrian.salinas08@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs.DNA.31.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2 Reachability in Deletion-Only Chemical Reaction Networks

Table 1 Summary of reachability results. The notation (k, k − 1)+ means one or more void rules

of the form (k, k − 1) for k ≥ 2. The notation (k ≥ 3, g ≤ k − 2) means void rules with at least

three reactants that consume at least two species. The notation → NPC signifies that the step CRN

result follows directly from the basic CRN case.

Reachability Results

Basic CRNs (1-step) 2-Step CRNs

Void Rules Complexity Ref. Complexity Ref.

(2, 1) NL Thm. 11 NPC Thm. 12

(k, k − 1)+ O(|Λ|2|Γ|) Thm. 21 NPC Cor. 22

(2, 0) O(|Λ|2|Γ| log(|Λ|)) [1] NPC Thm. 9

(2, 0), (2, 1) O(|Λ|2|Γ| log(|Λ|)) Thm. 18 NPC Thm. 9

(k ≥ 3, g ≤ k − 2) NPC Cor. 24 → NPC -

state transitions occur stochastically as a continuous time Markov process [13]. It turns out

that this model of chemistry has deep connections to several other well-studied mathematical

objects. In fact, CRNs are equivalent [9] to Vector Addition Systems (VASs) [16] and

Petri-Nets [23] which were independently introduced to represent and analyze concurrent

and distributed processes. This underlying object also appears in the form of commutative

semigroups when only fully reversible reactions are considered [17, 22], and as Population

Protocols [4] when reactions must have exactly two input and two output elements.

Perhaps the most fundamental problem within these models is that of reachability which

asks: given an initial configuration and target configuration for a particular system, can the

target configuration be reached from the initial configuration by following some sequence

of legal transitions [20, 21, 25]? Although interest in this problem dates back to the 1970s

and 1980s, it was only recently resolved with a flurry of new results over the past few years

[10, 11, 12, 18, 19], which conclude that reachability is Ackermann-complete for these models.

Over the course of this 40+ year-long quest to determine the complexity of reachability,

scientists also began to discover the centrality of this problem. Several other important

problems from seemingly unrelated areas have been reduced to reachability, from system

liveness to language emptiness problems and more [14, 26], emphasizing the significance of

succinctly classifying reachability.

Despite the closure of this problem for general CRNs, and in fact due to how complicated

these systems can be, there is a natural motivation to explore reachability for more restricted

systems. Many papers have emerged that investigate reachability in restricted versions of

the model [7, 8, 15, 26, 31], but one of the most elementary restrictions is that of [1] and [2].

There, the authors consider deletion-only systems (called void rules) where reactions only ever

consume species and reduce the size of the system. The interaction rules for these systems

can be thought to convert some chemical reactants into inert waste species, or cause system

agents to “go offline” and become inactive. Similar work has also investigated reachability in

a slightly different version of size-reducing chemical reaction networks whose stoichiometric

matrices are totally unimodular [28, 29]. This limited class of systems permits tractable and

intractable problems, placing it along an interesting complexity boundary.

Related Work. In [1], the authors studied reachability for this restricted class of CRNs

that use (deletion-only) void rules (e.g., A + B → A or A + B → ∅). Under this restriction,

they prove NP-completeness for reachability using void rules of size (3,0) (3 reactants, no

3:4 Reachability in Deletion-Only Chemical Reaction Networks

▶ Theorem. Reachability for basic CRNs uniformly using size (k ≥ 3, g ≤ k − 2) void rules

is NP-complete, and is in P when uniformly using any other size void rule.

▶ Theorem. Reachability for 2-step CRNs with only void rules that use exactly one reactant

is in P, and is NP-complete otherwise.

▶ Theorem. Reachability for basic CRNs that use a combination of void rule types is in P

for combinations of (2,0) + (2,1) rules as well as (k, k − 1)+ rules, and is NP-complete for

any combination that uses (k ≥ 3, g ≤ k − 2) rules.

We begin the paper by defining void rules, Step Chemical Reaction Networks, and the

reachability problem in Section 2. Sections 3-6 establish the complexity of reachability based

on the size of rules used by a given system: Section 3 shows membership in NP for all

deletion-only systems. Section 4 considers bimolecular rule sets that are either all catalytic or

non-catalytic, and shows membership in P in either case. It also shows that, in contrast, the

problem becomes NP-complete with the inclusion of a second step. Section 5 expands this to

bimolecular systems with mixed catalytic and non-catalytic rules, and Section 6 considers

larger size rules which are polynomially solvable if all but a single reactant serve as catalysts,

and NP-complete otherwise.

2 Preliminaries

2.1 Chemical Reaction Networks

Basics. Let Λ = {λ1, λ2, . . . , λ|Λ|} denote some ordered alphabet of species. A configuration
−→
C ∈ N

Λ is a length-|Λ| vector of non-negative integers where
−→
C [i] denotes the number of

copies of species λi. For a species λi ∈ Λ, we denote the configuration consisting of a single

copy of λi and no other species as λ⃗i. A rule or reaction is represented as an ordered pair

γ = (
−→
R,

−→
P) ∈ N

Λ × N
Λ.

−→
R contains the minimum counts of each reactant species necessary

for reaction γ to occur, where reactant species are either consumed by the rule in some

count or leveraged as catalysts (not consumed); in some cases a combination of the two.

The product vector
−→
P has the count of each species produced by the application of rule γ,

effectively replacing vector
−→
R . The species corresponding to the non-zero elements of

−→
R and

−→
P are termed reactants and products of γ, respectively.

The application vector of γ is
−→
P −

−→
R , which shows the net change in species counts

after applying rule γ once. For a configuration
−→
C and rule γ, we say γ is applicable to

−→
C

if
−→
C [i] ≥

−→
R [i] for all i ∈ Λ, and we define the application of γ to

−→
C as the configuration

−→
C ′ =

−→
C +

−→
P −

−→
R . For a set of rules Γ, a configuration

−→
C , and rule γ ∈ Γ applicable

to
−→
C that produces

−→
C ′ =

−→
C +

−→
P −

−→
R , we say

−→
C →1

Γ

−→
C ′, a relation denoting that

−→
C

can transition to
−→
C ′ by way of a single rule application from Γ. We further use the

notation
−→
C →∗

Γ

−→
C ′ to signify the transitive closure of →1

Γ and say
−→
C ′ is reachable from

−→
C under Γ, i.e.,

−→
C ′ can be reached by applying a sequence of applicable rules from Γ

to initial configuration
−→
C . Here, we use the following notation to depict a rule (

−→
R,

−→
P):

−→
R [1]λ1 + · · · +

−→
R [|Λ|]λ|Λ| →

−→
P [1]λ1 + · · · +

−→
P [|Λ|]λ|Λ|. For example, a rule turning two

copies of species H and one copy of species O into one copy of species W would be written

as 2H + O → W .

▶ Definition 1 (Discrete Chemical Reaction Network). A discrete chemical reaction network

(CRN) C is an ordered pair (Λ, Γ) where Λ is an ordered alphabet of species, and Γ is a set

of rules over Λ.

3:6 Reachability in Deletion-Only Chemical Reaction Networks

TERM1 be the subset of configurations in REACH1 that are terminal. Note that after a

single step we have a normal CRN, i.e., 1-step CRNs are just normal CRNs with initial

configuration
−→
S 0. For the second step, we consider any configuration in TERM1 combined

with
−→
S 1 as a possible starting configuration and define REACH2 to be the union of all

reachable configurations from each possible starting configuration attained by adding
−→
S 1 to a

configuration in TERM1. We then define TERM2 as the subset of configurations in REACH2

that are terminal. Similarly, define REACHi to be the union of all reachable sets attained

by using initial configuration
−→
S i−1 plus any element of TERMi−1, and let TERMi denote

the subset of these configurations that are terminal. The set of reachable configurations

for a k-step CRN is the set REACHk, and the set of terminal configurations is TERMk. A

classical CRN can be represented as a step CRN with k = 1 steps and an initial configuration

of
−→
A =

−→
S 0.

Note that our definitions assume only the terminal configurations of a given step are

passed on to seed the subsequent step. This makes sense if we assume we are dealing with

bounded systems, as this represents simply waiting long enough for all configurations to reach

a terminal state before proceeding to the next step. In this paper, we only consider bounded

void rule systems; we leave more general definitions to be discussed in future work.

2.4 Reachability

The computational problem studied in this paper is reachability. Informally, reachability asks

if a given initial configuration
−→
A can be turned into a target configuration

−→
B by applying a

sequence of rules from the given CRN C. The precise problem statement is as follows.

▶ Definition 5 (Reachability Problem). Given an initial configuration
−→
A , a destination (target)

configuration
−→
B , and a step CRN CS = ((Λ, Γ), (

−→
S 0 =

−→
A,

−→
S 1,

−→
S 2, . . .

−→
S k−1)), determine

if
−→
B ∈ REACHk, i.e., is configuration

−→
B reachable for the given step CRN. In the case of

basic CRNs, this simplifies to: given configurations
−→
A and

−→
B , and basic CRN C = (Λ, Γ),

determine if
−→
B ∈ REACH−→

A,Λ,Γ
.

3 Membership in NP for void rule systems

We initiate our study of deletion-only systems by observing that reachability stays within

the class NP with only void rules, even with step-CRNs. This is straightforward to see in the

case of polynomial bounded volume (unary encoded species counts) as each rule reduces the

system volume by at least 1. But in the case of binary encoded species counts, the argument

is more subtle as such deletion sequences could be exponentially long. To deal with this

issue, we use the following rearrangement lemma that states that any order of void rule

applications can be rearranged such that all applications of a given rule occur in a contiguous

sequence. Given this lemma, any sequence of void rule applications can be rearranged into a

sequence that can be encoded and verified in polynomial time.

▶ Lemma 6 (Rearrangement Lemma). For any sequence of applicable void rules A, there

exists a sequence B that is a permutation of A such that all applications of a given rule type

occur contiguously.

Proof. Consider a sequence of applicable void rules A that is not contiguous. Suppose rule

x occurs at positions i and j in A, i < j − 1, and there is at least one non-x rule in between

them. Construct a new sequence A′ by shifting the x rule at position i up to position j − 1,

and shifting all rules in between down one position. This new sequence must be applicable

B. Fu et al. 3:7

as the only rule that moved to a higher index in the sequence is of type x, and we know

that x is still applicable at position j − 1 since x is known to be applicable at position j.

As this swapping preserves the applicability of the sequence while reducing the number

of non-contiguous blocks of one rule type in the sequence, we can repeat this process of

swapping rule positions until the sequence is contiguous. ◀

This lemma implies the existence of a polynomial-time verifiable certificate for “yes”

instances of the reachability problem for step-CRNs, giving us membership in NP.

▶ Theorem 7. The reachability problem for step-CRNs with void rules is in NP.

Proof. As a certificate, we utilize a contiguous sequence of applicable rules for each step

of the CRN, which must exist by Lemma 6. This sequence, while potentially exponential

in length, can be encoded with a sequence of rule types accompanied by a count on the

number of applications of each rule type. The result of such a sequence can be computed in

polynomial time and therefore can serve as a certificate for the reachability problem. ◀

4 Bimolecular Rules of Uniform-type: With or Without Catalysts

In this section, we focus on bimolecular systems with either all size-(2, 0) rules (non-catalytic)

or (2, 1) rules (catalytic). Recently, size-(2, 0) rule reachability in a single step was proven to

be polynomial [1]. For size-(2, 1) 1-step systems, we present polynomial-time algorithms for

reachability. In contrast, we show that in either scenario the problem becomes NP-complete

with the addition of a second step. Later in Section 5, we consider the scenario of CRNs

that use both (2, 0) and (2, 1) rules together.

4.1 Bimolecular Void Rules Without a Catalyst: (2, 0)

In [1], the authors proved that reachability in a CRN system with only size-(2, 0) rules is in

P by reducing from the perfect b-matching problem, which is a generalization of matching.

This takes the form of a traditional matching when all b-values are 1, and an uncapacitated

b-matching occurs when all edge capacities are assigned u(e) = ∞.

▶ Theorem 8 ([1]). Reachability for basic CRNs with binary encoded species with only rules

of size (2, 0) is solvable in O(|Λ|2 log(|Λ|)(|Γ| + |Λ| log(|Λ|))) time.

We now look at the problem with only one additional step, and show that it becomes

NP-complete by reducing from the graph 3-colorability (3-COL) problem. Given an instance

⟨G⟩, where G = (V, E) is an undirected graph, 3-COL asks if each vertex of G can be assigned

one of three colors such that no adjacent vertices share the same color. An instance of 3-COL

⟨G⟩ can be converted into a (2,0) 2-step CRN CS as follows.

Species. For each vertex v ∈ V , we create the species v, vR, vG, and vB. vC represents

an assignment of color C ∈ {R, G, B} to vertex v; the v species will be used to represent

assigning only one color to vertex v through specific reactions. We also create the species

X to verify that a corresponding color assignment of G in CS has no adjacent vertices that

share a color.

DNA 31

3:8 Reachability in Deletion-Only Chemical Reaction Networks

Steps and Rules. In step one (or
−→
S 0), for each v ∈ V , we add two copies of v and one copy

of vR, vG, and vB. We also create the assignment rule v + vC → ∅ for each C ∈ {R, G, B}.

Two of the three assignment rules created for v are applied to its respective species copies,

consuming all v copies and two of the three copies of vC . The remaining vC copy then

corresponds to assigning vertex v the color C. Additionally, for each edge (i, j) ∈ E and

C ∈ {R, G, B}, we create the edge rule iC + jC → ∅. If the remaining copy of both iC and

jC share a color C, they will be deleted by one of the edge rules.

In the second step (
−→
S 1), we introduce |V | copies of the species X. We also construct

the verification rule vC + X → ∅ for each v ∈ V and C ∈ {R, G, B}. All existing copies

of vC will be consumed by a X species. Thus, any remaining copies of X in the terminal

configuration indicates that some vC copies were deleted by an edge rule.

▶ Theorem 9. Reachability for 2-step CRNs with only rules of size-(2, 0) is NP-complete,

even for unary encoded species counts.

Proof. We reduce from the graph 3-colorability problem. Given an instance of 3-COL ⟨G⟩,

we convert G into a 2-step (2, 0) CRN CS , following the construction outlined above, and set
−→
A =

−→
S 0 and

−→
B to the empty configuration

−→
0 .

Forward Direction. Assume there exists a color assignment in G where no adjacent vertices

share a color. By the construction of CS , a sequence of assignment rules can be applied in
−→
A that results in a configuration of one copy of vC for each vertex that matches the color

assignment in G. Denote this new configuration
−→
S ′

0. Since no adjacent vertices share a color

in G, no edge rule will be applied in
−→
S ′

0, keeping the count of the vC copies to |V |. CS then

transitions to
−→
S1, introducing the |V | X copies. Since |V | VC copies were preserved, all vC

and X copies are deleted by verification reactions to reach the final configuration
−→
0 =

−→
B .

Reverse Direction. Assume there exists a sequence of applicable rules in CS that reaches
−→
B from

−→
A . First, removing all v species can only be accomplished by applying a sequence of

assignment rules. The resulting configuration
−→
S ′

0 is |V | vC copies. Assume no edge rule can

be applied in
−→
S ′

0. By the construction of CS , this implies that the matching color assignment

in G also does not have adjacent vertices sharing colors. We then add |V | X copies at the

second step, resulting in the deletion of all vC and X copies in the system by the verification

rules, resulting in a final terminal configuration of
−→
0 . If an edge rule was applied in

−→
S ′

0, at

least two vC copies were removed, causing the final count of X to be greater than 0. Note

that applying an edge rule before an assignment rule also guarantees
−→
0 cannot be reached,

as either 1) the assignment rules for the affected vC copies are then applied, removing those

copies and consequentially preventing some X copies from being deleted, or 2) more edge

rules are applied on the affected vC copies, which prevents all v copies from being deleted.

Therefore, the only way for CS to reach
−→
0 =

−→
B is for a color assignment to exist on all

vertices in G where no adjacent vertices share a color.

Theorem 7 shows reachability with void step CRN systems to be in NP. ◀

4.2 Bimolecular Void Rules with Catalyst: (2, 1)

In this section, we first show that reachability for size-(2, 1) void rules resides in the class

NL.

▶ Lemma 10. Let the implication graph G of a CRN (Λ, Γ) with size-(2, 1) void rules be

the graph where each node is a species λi and each reaction λi + λj → λj implies a directed

edge from λi to λj. A configuration
−→
B is reachable from

−→
A if and only if for each species λi

there exists a path to a node λr that holds one of the following properties:

B. Fu et al. 3:9

1.
−→
A [r] =

−→
B [r] > 0,

2. λr + λj → λj ∈ Γ where
−→
B [j] ≥ 1, or

3.
−→
B [r] ≥ 1 and λr + λr → λr ∈ Γ

Proof. We will refer to a node which satisfies one of these conditions as a root node. A path

from species λi to a root node λr means that we can delete enough copies of λi to reach the

target configuration. We will prove this recursively, inducing over the length of the path

from λi to λr, to create a reaction sequence through this process with our base case being

the end of the sequence.

For our base case, any node λi = λr can reach the target amount if it satisfies a condition

in the Lemma statement. In Case 1, the number of species in the starting configuration is

already the target amount so the claim is trivially true. In Case 2, we may use copies of the

species λj to delete λi using the leftover species in the target configuration. In Case 3, the

species may delete itself to reach the target amount.

For our inductive case, assume that there exists a reachable configuration such that any

species λk with a shortest path of length ≤ l to a node λr can be reduced to the target

amount
−→
B [k]. For a species λi with a shortest path of length l + 1, there exists an edge to a

species λk with length l. We can use the reaction λi + λk → λk to decrease λi to
−→
B [i] copies

at the start of the current sequence. It remains to prove that removing these copies does

not affect anything later in the sequence. If the closest node λr falls under case 1 or 3 then

removing λi does not affect it. If the closest node is case 2 and λi = λj , the species λi is the

one used to remove λr; thus, the condition
−→
B [j] ≥ 1 means that we leave at least a single

copy in the configuration that can be used to delete λr.

If a node does not have a path to a root node, then it either does not have any outgoing

edges, or all of its outgoing edges are part of some cycle where all nodes along each cycle

have a target count of 0. As a result, if the node does not fall into case 1, there is no way

of reducing the respective species to its target count without leaving some other species

unsatisfied. ◀

▶ Theorem 11. Reachability for basic CRNs with size (2, 1) void rules is in NL.

Proof. We will show that we can decide whether a node has no path to a root in log space;

thus reachability is in coNL = NL. We non-deterministically check a species λi, then for

every node λj reachable from λi in the implication graph, we check if λj satisfies any of the

conditions in Lemma 10. If we do not find such a node λj , then we reject.

If any node does not have a path to a root node, then some branch of this algorithm will

reject. Checking each path can be done in NL as this is a directed graph. Checking if a node

is a root node can be done in log space as it only involves edge queries and queries to the

target configuration. ◀

We now show that adding an extra step turns the problem NP-complete, as with (2, 0)

CRN systems. Here, we reduce from the classic 3SAT problem. Given an instance of 3SAT

⟨Φ⟩, we construct a (2, 1) 2-step CRN CS as follows.

Species. For each variable xi, we create a pair of species Ti and Fi, which represents

assigning xi a value of true or false, respectively. Additionally, for each clause cj , we create

the species Cj . The presence of a copy of Cj in a configuration of CS indicates cj has yet to

be satisfied by one of its assigned variables. Finally, we create the species X for “clean-up”

procedures.

DNA 31

3:10 Reachability in Deletion-Only Chemical Reaction Networks

Steps and Rules. In the first step (
−→
S 0), for each variable xi, we introduce one copy of

Ti and Fi. We also create a pair of assignment rules, one to represent assigning true to xi

(Ti + Fi → Ti) and one for assigning false (Ti + Fi → Fi). One of two assignment reactions

will be applied to the copies of Ti and Fi; the non-deleted copy represents assigning xi the

corresponding boolean value.

In the second step (
−→
S 1), we add a single copy of a clause species Cj for each clause

cj and a single copy of X. Additionally, given a clause cj and a variable of the clause

xk ∈ (xa, xb, xc), 3 separate verification rules created of the form Cj + Tk → Tk (for non-

negated variables) or Cj + Fk → Fk (for negated variables). If Tk/Fk is still present in CS ,

then Cj will be consumed by that species. Finally, for each variable xi, we create the cleaning

rules X + Ti → X and X + Fi → X to consume all present copies of Ti and Fi. Any Cj

species remaining in CS after the application of the cleaning rules indicates that it could not

be deleted by a verification rule.

▶ Theorem 12. Reachability for 2-step CRNs with only rules of size (2, 1) is NP-complete,

even for unary encoded species counts.

Proof. We reduce from 3SAT. Given an instance of 3SAT ⟨Φ⟩, we convert Φ into a 2-step

(2, 1) CRN CS via the reduction from above. Let
−→
A =

−→
S 0 and

−→
B be a single copy of X (X⃗).

Forward Direction. Assume there exists an assignment of variables that satisfies Φ to

true. A sequence of assignment reactions can be then performed in
−→
S 0 that results in a

configuration with only one Ti/Fi copy for each variable that matches the variable assignment.

In the second step, by the construction of CS , since the assignment satisfies Φ, each introduced

copy of Cj can be deleted with a verification reaction. Finally, the added X copy deletes all

remaining literal species. The final configuration of CS is then X⃗.

Reverse Direction. Assume there exists a sequence of applicable rules in CS that reaches
−→
B from

−→
A . First, a sequence of assignment reactions can be performed in

−→
S 0 that consumes

one of the Ti and Fi copy for each variable. We then add one copy of each Cj species and

one copy of X in the second step. Assume all Cj copies can be consumed by a verification

reaction. By the construction of CS , this implies that there exists an assignment of variables

in Φ that evaluates the formula to true. The X copy can delete the remaining Xi/Fi copies

with cleanup rules to reach the final configuration X⃗. If a Cj copy could not be removed, this

implies that the variable assignment couldn’t satisfy the corresponding clause. Therefore, the

only way for CS to reach X⃗ =
−→
B is for an assignment of variables in Φ to exist that satisfies

all clauses of the formula.

Theorem 7 shows reachability with void step CRN systems to be in NP. ◀

5 Bimolecular Rules of Mixed Type: (2,0) and (2,1)

In this section, we show that the reachability problem for general single-step bimolecular

void rules systems that include a mix of non-catalytic (2, 0) rules and catalytic (2, 1) rules is

in P. We show this via a reduction to the perfect b-matching problem in an undirected graph.

▶ Definition 13 (Perfect b-matching Problem). Given a graph G = (V, E), u : e ∈ E →

N ∪ {∞} to be edge capacities, and b : v → N to be the number of matchings a vertex can

take, does there exists an assignment to the edges f : e → N such that f(e) ≤ u(e) and
∑

e∈δ(v) f(e) = b(v) for all v ∈ V ?

Unlike reducing from reachability to perfect b-matching with only (2, 0) rules in [1], the

inclusion of catalyst rules requires a substantially more involved reduction. We therefore

begin with a brief overview of our reduction and then describe each step in greater detail.

Finally, we follow with a proof of correctness and a runtime analysis for the entire result.

B. Fu et al. 3:11

Overview

Our reduction transforms an instance of CRN reachability ⟨C,
−→
A,

−→
B ⟩ into an instance of the

perfect b-matching problem. The key idea is to identify which species involved in catalytic

(2, 1) rules can be fully deleted using just catalytic rules and which must be further deleted

using non-catalytic (2, 0) rules. If this distinction were known in advance, it would be

straightforward to construct a corresponding graph and solve reachability via a matching

instance.

To infer this structure, we first construct a directed graph T , which we refer to as the

catalytic deletion graph, where each vertex corresponds to a species λi and each directed edge

(λi, λj) represents a (2, 1) rule λi + λj → λj that catalytically deletes λi using λj . We then

compute the strongly connected components (SCC’s) of T and build a condensation graph

H whose nodes each represent a component of T . The structure of H allows us to identify

which catalytic species must be completely deleted via a non-catalytic (2, 0) rule.

Using this information, we construct an undirected graph G whose nodes effectively

represent species that must be deleted via (2, 0) or (2, 1) rules and whose edges represent

those corresponding rules. We then formulate a perfect b-matching instance on G where a

perfect matching exists exactly when there exists a valid sequence of (2, 0) and (2, 1) rules

that complements the catalytic deletions to reach the target configuration
−→
B .

Creating Catalytic Deletion Graph T

Given a CRN C = (Λ, Γ), we construct the directed graph T = (V, E) as follows. For each

catalyst void rule λi + λj → λj ∈ Γ, if
−→
A [i],

−→
A [j] > 0, we create vertices λi and λj and the

directed edge (λi, λj).

The intuition of T is that an edge from λi to λj represents the species λi being deleted

by the catalyst species λj . It then follows that a species whose respective vertex in T has an

out-degree of 0 can only be deleted by a (2, 0) rule. We label these vertices as mandatory

vertices. We also consider cycles in T in which each vertex (species) only has an out-going

edge to another vertex in the cycle. If the count of all represented species in the cycle in
−→
B

is zero, then regardless of the application of rules corresponding to the edges of the cycle,

there is guaranteed to be at least one remaining species left that can only be completely

removed by a (2, 0) rule. We label these cycles as mandatory cycles.

▶ Definition 14 (Mandatory Vertices). A vertex in T with an out-degree of 0.

▶ Definition 15 (Mandatory Cycles). A cycle in T in which each vertex 1) only has an

out-going edge to another vertex in the cycle, and 2) has a corresponding species count of 0

in
−→
B .

Creating SCC Condensation Graph H

Given a directed graph T = (V, E), we construct the directed graph H = (V ′, E′) as follows.

First, we run Tarjan’s Strongly Connected Component Algorithm on T , which returns a

partition of T ’s vertices of strongly connected components C = {c1, c2, · · · , cn} [30]. For

each component ci ∈ C, we create the vertex ci. For each directed edge from ci to another

component cj , we create the directed edge (ci, cj).

▶ Observation 16. A vertex in H represents a mandatory vertex if it is not a condensed

component of T and it has an out-degree of 0.

DNA 31

3:12 Reachability in Deletion-Only Chemical Reaction Networks

▶ Observation 17. A vertex in H represents a mandatory cycle if it is a condensed component

of T in which all corresponding species have final counts of 0, and it has an out-degree of 0.

Creating b-matching Instance Graph G

Given a CRN C = (Λ, Γ), configurations
−→
A and

−→
B , and directed graphs T = (V, E) and

H = (V ′, E′), we create an instance of the perfect b-matching problem with the graph

G = (V ′′, E′′) as follows. Let the difference configuration
−→
D =

−→
A −

−→
B .

Creating V ′′ and b(·). For each species λi ∈ Λ, if
−→
D [i] > 0, we create the vertices λi1 and

λi2 and set both b(λi1) and b(λi2) to
−→
D [i]. These vertices represent the number of copies of

λi that must be removed from
−→
A by the void rules. Additionally, if

−→
B [i] > 0, we create the

vertices si1 and si2 and set both b(si1) and b(si2) to
−→
B [i]. These vertices exist just to “set

aside” the final configuration for matchings, hence the bar labels.

We now consider species that can be deleted by catalyst void rules. For each catalytic

rule λi + λj → λj ∈ Γ, if
−→
A [i],

−→
A [j] > 0 and its corresponding edge in T is not part of a

cycle, we create the vertices λi
′
1 and λi

′
2, if not already created, and set both b(v′

i,1) and

b(v′
i,2) to

−→
D [i]. Additionally, given a vertex of H ci ∈ V ′, if ci represents a condensed cycle

{λ1, · · · , λn}, we create the vertices ci
′
1 and ci

′
2. If the cycle is mandatory, we assign b(ci

′
1)

and b(ci
′
2) the value (

∑
λi∈ci

−→
D [i]) − 1; else they are assigned (

∑
λ′′

i
∈ci

−→
D [i]), where λ′′

i is a

non-mandatory vertex of ci. These vertices represent a choice to delete a species λi using a

catalytic species.

Let the vertices with b-values from
−→
D be the sub-graph GD, and the vertices with b-values

from
−→
B be the sub-graph GB .

Creating E′′ and u(·). For each (2, 0) rule λi + λj → ∅ ∈ Γ, if the vertices for both species

were created in G, we create the edges (λi1, λj1) and (λi2, λj2). Performing a matching on

these edges corresponds to deleting λi and λj by a (2, 0) rule.

For each (2, 1) rule λi + λj → λj ∈ Γ, if λi
′
1 and λi

′
1 were created in G and the rule is

not part of a cycle in T , we create the edges (λi1, λi
′
1) and (λi2, λi

′
2). For each vertex of T

that represents a condensed cycle ci = {λ1, · · · , λn}, if the cycle is mandatory, we create

the edges (λk1, ci
′
1) and (λk2, ci

′
2) for all sk ∈ ci. Otherwise, we only create (λk1, ci

′
1) and

(λk2, ci
′
2) for the non-mandatory vertices of ci. Matching the edges represents deleting a

species λi with a catalyst rule.

We finally create the following edges: for all s̄i1 and s̄i2 vertices, create the edge (s̄i1, s̄i2),

for all λi
′
1 and λi

′
2 vertices, create the edge (λi

′
1, λi

′
2), and for all ci

′
1 and ci

′
2 vertices, create

the edge (ci
′
1, ci

′
2). Matching on these edges does not represent a rule application, but rather

ensures a perfect b-matching can be performed on these vertices even if they were not perfectly

matched by other (2,1) edges. For all edges e ∈ E′′, assign u(e) = ∞.

Result

The overall effect is that G has a perfect b-matching exactly when configuration
−→
B is reachable

from configuration
−→
A which yields our main theorem from this section.

▶ Theorem 18. Reachability in void rule systems with (2,0) and (2,1) rules is solvable in

O(|Λ|2 log(|Λ|)(|Γ| + |Λ| log(|Λ|))) time.

Due to space, the full proof can be found in Appendix A.

B. Fu et al. 3:13

6 Larger Void Rules

Our next results involve CRNs with reactions that require more than two reactants. If a

system’s rules have all but one reactant serving as catalysts (i.e., (k, k − 1) void rules), then

reachability remains polynomial-time solvable. In contrast, reachability for systems with any

other form of void rule (with 3 or more reactants) becomes NP-complete.

6.1 Mostly-Catalytic Large Void Rules of Mixed-type: (k, k − 1)+

We provide a polynomial-time dynamic programming algorithm to decide reachability for

CRNs that use mostly-catalytic void rules of the form (k, k − 1). We further argue that

reachability remains in P, even for CRNs that use a combination of various size (k, k − 1).

For simplicity, we refer to void rules of sizes (k1, k1 − 1), . . . , (kb, kb − 1), where all ki ∈ N, as

(k, k − 1)+, meaning there is one or more rule of this type.

▶ Lemma 19. Reachability for basic CRNs with only void rules of size (k, k − 1) requires at

most |Λ| distinct rules.

Proof. For simplicity, let n = |Λ|. Assume there exists a sequence of reactions a1r1, . . . ,

an+1rn+1 for a CRN C with set of species Λ and set of rules Γ that takes some initial

configuration
−→
A to configuration

−→
B , where a1, . . . , an+1 are positive integers (denoting how

many times to apply each rule) and r1, . . . , rn+1 are rules in Γ. There must then exist some

species s that gets consumed by 2 rules ri and rj , where i < j. Let si, sx and sf denote the

initial, intermediate and final counts of species s, where ri reduces s from si to sx and rj

reduces s from sx to sf . Since si > sx, any rule rl, where l > i, that uses s with count sx

can also use s with count si. Thus, rule ri is not needed. ◀

▶ Theorem 20. Reachability for basic CRNs with only void rules of size (k, k − 1) is solvable

in O(|Λ|2|Γ|).

Proof. Let Γ denote the set of rules. We can use a dynamic programming approach to solve

the problem. Construct an |Λ| × (|Λ| + 1) table D(s, j) of boolean entries, where each row

represents a different species. Reduce the count of each species to max(k, sf), where sf

represents the final count of species s, if there exists a rule that can do so. Starting from

the first column j = 0, place a 1 if the respective species is already in its final count. Then,

for each entry D(s, j), place a 1 if D(s, j − 1) is a 1 or if there exists a reaction γ ∈ Γ that

reduces s to its final count, where all the reactants of γ have either reached their final counts

or will not prevent the reaction from occurring once they do. If column |Λ| + 1 contains all

1’s, then reachability is possible. Otherwise, it is not.

By Lemma 19, a solution to the problem requires at most |Λ| unique reactions, where

each reaction directly reduces each species from its initial counts to its final counts. Thus,

finding a solution to the problem takes at most |Λ| steps since we are implicitly selecting

at least one reaction per column. This results in |Λ| + 1 columns, with the first column

representing the initial configuration.

Since every rule is a catalytic void rule, there must exist an ordering of reactions such

that some reactions can occur first without impeding other species from getting reduced to

their final counts. A bottom-up approach can be used to find this ordering, starting with the

reactions that can be put off until later and working up to the reactions that must occur

first. In table D, this ordering is implicitly represented between columns, with the reactions

between the rightmost columns being the ones we do first. Any species with final count

DNA 31

B. Fu et al. 3:15

We create rules that walk the Hamiltonian path with valid connecting species and a “fuel”

species (Pi) so that we can only visit a vertex one time. We create each of the rules Si,j,k

+ Sj,k,l + Pk → Sj,k,l where i, j, k, l ∈ V and i ̸= t, l ̸= s. This rule indicates a walk from

j to k along a valid edge and removes the Pk token to mark the vertex as visited.

Example. For Figure 3, we give the full reduction as follows. The final configuration S⃗t

(just a single copy of St) is only reachable if there is a Hamiltonian path.

The main species are Ss, Ss,a,b, Ss,a,c, Sa,b,c, Sa,b,t, Sa,c,d, Sb,c,d, Sc,d,t, St, Pa, Pb, Pc,

Pd, and Pt. We also create a single copy each of dummy species Da, Db, Dc.

The tournament reactions for each vertex are (d has only one path)

a) Ss,a,b + Ss,a,c + Da → Ss,a,b and Ss,a,b + Ss,a,c + Da → Ss,a,c,

b) Sa,b,c + Sa,b,t + Db → Sa,b,c and Sa,b,c + Sa,b,t + Db → Sa,b,t,

c) Sa,c,d + Sb,c,d + Dc → Sa,c,d and Sa,c,d + Sb,c,d + Dc → Sb,c,d.

The walking reactions for each vertex are

a) Ss + Ss,a,b + Pa → Ss,a,b and Ss + Ss,a,c + Pa → Ss,a,c,

b) Ss,a,b + Sa,b,c + Pb → Sa,b,c and Ss,a,b + Sa,b,t + Pb → Sa,b,t,

c) Ss,a,c + Sa,c,d + Pc → Sa,c,d and Sa,b,c + Sb,c,d + Pc → Sb,c,d,

d) Sa,c,d + Sc,d,t + Pd → Sc,d,t and Sb,c,d + Sc,d,t + Pd → Sc,d,t,

t) Sa,b,t + St + Pt → St and Sc,d,t + St + Pt → St.

▶ Theorem 23. Reachability for CRNs with only void rules of size (3, 1) is NP-complete,

even for unary encoded species counts.

Proof. We reduce from the directed Hamiltonian path problem. Given an instance ⟨G, s, t⟩,

we convert this to an instance of the reachability problem, as outlined above, for CRN C and

target configuration S⃗t. We show that H is true iff the configuration S⃗t is reachable in C.

Forward Direction. Assume there exists a Hamiltonian path in G from s to t. Then it is

possible that the tournament for every vertex correctly produces the species that represents

the Hamiltonian path through the vertex. If this does occur, all species have been removed

from the system except |V | S species for the path and |V | − 1 P species. Then, the walking

reactions can occur successively by destroying the previous path vertex and the “fuel” species,

which will only leave one copy of St.

Reverse Direction. Assume there exists a sequence of applicable rules in CS that reaches
−→
B

from
−→
A . The only way to remove an S species is through the tournament and the walking

reactions. The tournament will always leave at least one S for each vertex, meaning the

walking reactions must be used to delete the other |V | − 1. Along with this, the P vertices

ensure that each vertex can only be visited once. Thus, the walk can not occur before the

tournament and take multiple paths to reach a vertex. Thus, reaching a configuration with

only St ensures that a walk through the graph occurred starting at Ss, ending at St, and

that every vertex was visited.

All void CRN systems are in NP with the certificate being the sequence of rules to apply,

and the number of times to apply them [1]. ◀

▶ Corollary 24. Reachability for CRNs with only void rules of size (k ≥ 3, g ≤ k − 2)

(k, g ∈ N) is NP-complete, even for unary encoded species counts.

Proof. For g ≥ 1, this follows from Theorem 23. For g = 0, this follows from the fact that

reachability for (3, 0) rules is NP-complete [1]. ◀

DNA 31

3:16 Reachability in Deletion-Only Chemical Reaction Networks

7 Primary Results

We restate the primary results formally with the corresponding proofs. Although not

discussed, for completeness, we also include the following lemma.

▶ Lemma 25. Reachability for step CRNs (including basic CRNs) uniformly using size (1, 0)

void rules is in P.

Proof. Simply decrease each species to the desired count. Since each step must become

terminal, all species in rules will be removed before the subsequent step. Thus, there must

exist a step that adds counts greater than or equal to the target counts. Then treat that

step as a basic CRN. If no such step exists, the target configuration is not reachable. ◀

The collection of results presented, as a whole, yields the following main theorems of this

work that characterize void rules within CRNs and step CRNs.

▶ Theorem 26. Reachability for basic CRNs uniformly using size (k ≥ 3, g ≤ k − 2) void

rules is NP-complete, and is in P when uniformly using any other size void rule.

Proof. This follows from [1], Theorems 11, 20, Corollary 24, and Lemma 25. ◀

▶ Theorem 27. Reachability for 2-step CRNs with only void rules that use exactly one

reactant is in P, and is NP-complete otherwise.

Proof. This follows from [1], Theorems 9, 12, Corollaries 22, 24, and Lemma 25. ◀

▶ Theorem 28. Reachability for basic CRNs that use a combination of void rule types is in

P for combinations of (2,0) + (2,1) rules as well as (k, k − 1)+ rules, and is NP-complete

for any combination that uses (k ≥ 3, g ≤ k − 2) rules.

Proof. This follows from [1], Theorems 18, 21, and 24. ◀

8 Conclusion and Future Work

This paper presents a nearly complete classification of the computational complexity of

reachability for CRNs and step CRNs that consist of deletion-only rules. We provide

polynomial-time algorithms for most combinations of void rules in basic CRNs and show

NP-completeness for rules of size greater than (k, g ≤ k −2) for k ≥ 3. Additionally, we prove

that with the addition of a single step, these problems become NP-complete. We include

some natural open directions to explore:

Mixed-size Void Rule Systems. What is the complexity of reachability when you

consider void rules of size (2, 0) and (k, k − 1) together? This combination of void rule

types is the missing piece that would complete the picture for the entire complexity

landscape of void rule reachability.

Staged CRNs. The step CRN model augments the basic CRN model with steps that add

species once reactions are completed. A generalization of this model could have multiple

“stages”, where CRNs are left to react and the results of these stages are combined. How

do stages affect reachability?

Model Variants. What is the complexity of reachability in deletion-only extensions of

CRNs, petri-nets, and vector addition systems?

B. Fu et al. 3:17

References

1 Robert M. Alaniz, Bin Fu, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert

Schweller, and Tim Wylie. Reachability in restricted chemical reaction networks, 2022.

doi:10.48550/arXiv.2211.12603.

2 Rachel Anderson, Alberto Avila, Bin Fu, Timothy Gomez, Elise Grizzell, Aiden Massie, Gourab

Mukhopadhyay, Adrian Salinas, Robert Schweller, Evan Tomai, and Tim Wylie. Computing

threshold circuits with void reactions in step chemical reaction networks. In 10th conference

on Machines, Computations and Universality (MCU 2024), 2024.

3 Rachel Anderson, Bin Fu, Aiden Massie, Gourab Mukhopadhyay, Adrian Salinas, Robert

Schweller, Evan Tomai, and Tim Wylie. Computing threshold circuits with bimolecu-

lar void reactions in step chemical reaction networks. In International Conference on

Unconventional Computation and Natural Computation, pages 253–268. Springer, 2024.

doi:10.1007/978-3-031-63742-1_18.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,

March 2006. doi:10.1007/s00446-005-0138-3.

5 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions. Archive

for Rational Mechanics and Analysis, 19(2):81–99, January 1965. doi:10.1007/BF00282276.

6 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions ii.

some addenda. Archive for Rational Mechanics and Analysis, 27(5):356–364, January 1968.

doi:10.1007/BF00251438.

7 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko

Lazić, Pierre Mckenzie, and Patrick Totzke. The reachability problem for two-dimensional

vector addition systems with states. Journal of the ACM (JACM), 68(5):1–43, 2021. doi:

10.1145/3464794.

8 Adam Case, Jack H Lutz, and Donald M Stull. Reachability problems for continuous chemical re-

action networks. Natural Computing, 17(2):223–230, 2018. doi:10.1007/S11047-017-9641-2.

9 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of

Chemical Reaction Networks, pages 543–584. Springer Berlin Heidelberg, Berlin, Heidelberg,

2009. doi:10.1007/978-3-540-88869-7_27.

10 Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki.

The reachability problem for Petri nets is not elementary. Journal of the ACM (JACM),

68(1):1–28, 2020. doi:10.1145/3422822.

11 Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski. Improved Lower Bounds for

Reachability in Vector Addition Systems. In 48th International Colloquium on Automata,

Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings

in Informatics (LIPIcs), pages 128:1–128:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.128.

12 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition systems is

Ackermann-complete. In 62nd Annual Symposium on Foundations of Computer Science,

FOCS’21, pages 1229–1240. IEEE, 2021.

13 Daniel T Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,

58(1):35–55, 2007.

14 Michel Henri Théodore Hack. Decidability questions for Petri Nets. PhD thesis, Massachusetts

Institute of Technology, 1976.

15 John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional

vector addition systems. Theoretical Computer Science, 8(2):135–159, 1979. doi:10.1016/

0304-3975(79)90041-0.

16 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer

and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

DNA 31

https://doi.org/10.48550/arXiv.2211.12603
https://doi.org/10.1007/978-3-031-63742-1_18
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/BF00282276
https://doi.org/10.1007/BF00251438
https://doi.org/10.1145/3464794
https://doi.org/10.1145/3464794
https://doi.org/10.1007/S11047-017-9641-2
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1145/3422822
https://doi.org/10.4230/LIPIcs.ICALP.2021.128
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/S0022-0000(69)80011-5

3:18 Reachability in Deletion-Only Chemical Reaction Networks

17 Ulla Koppenhagen and Ernst W Mayr. Optimal algorithms for the coverability, the subword,

the containment, and the equivalence problems for commutative semigroups. Information and

Computation, 158(2):98–124, 2000. doi:10.1006/INCO.1999.2812.

18 Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In 62nd

Annual Symposium on Foundations of Computer Science, FOCS’21. IEEE, 2021.

19 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-

recursive in fixed dimension. In 2019 34th Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785796.

20 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,

Yale University, 1976.

21 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. In Proceedings of

the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 238–246,

New York, NY, USA, 1981. Association for Computing Machinery. doi:10.1145/800076.

802477.

22 Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative

semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

23 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen

Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962.

24 Ján Plesník. The np-completeness of the hamiltonian cycle problem in planar diagraphs

with degree bound two. Information Processing Letters, 8(4):199–201, 1979. doi:10.1016/

0020-0190(79)90023-1.

25 George S Sacerdote and Richard L Tenney. The decidability of the reachability problem

for vector addition systems (preliminary version). In Proceedings of the ninth annual ACM

symposium on Theory of computing, pages 61–76, 1977. doi:10.1145/800105.803396.

26 Sylvain Schmitz. The complexity of reachability in vector addition systems. ACM SigLog

News, 2016. doi:10.1145/2893582.2893585.

27 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with

finite stochastic chemical reaction networks. natural computing, 7(4):615–633, 2008. doi:

10.1007/S11047-008-9067-Y.

28 Gergely Szlobodnyik and Gábor Szederkényi. Polynomial time reachability analysis in discrete

state chemical reaction networks obeying conservation laws. MATCH-Communications in

Mathematical and in Computer Chemistry, 89(1):175–196, 2023.

29 Gergely Szlobodnyik, Gábor Szederkényi, and Matthew D Johnston. Reachability analy-

sis of subconservative discrete chemical reaction networks. MATCH-Communications in

Mathematical and in Computer Chemistry, 81(3):705–736, 2019.

30 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,

1(2):146–160, 1972. doi:10.1137/0201010.

31 Chris Thachuk and Anne Condon. Space and energy efficient computation with dna strand

displacement systems. In International Workshop on DNA-Based Computers, 2012.

32 Boya Wang, Chris Thachuk, Andrew D Ellington, Erik Winfree, and David Soloveichik.

Effective design principles for leakless strand displacement systems. Proceedings of the National

Academy of Sciences, 115(52):E12182–E12191, 2018.

A Proof Details for (2,0) and (2,1) Mixed rules

Here we show the full details for the proof of correctness and runtime for the Lemmas and

Theorems from Section 5.

A.1 Proof of Correctness

▶ Lemma 29. A species represented by a mandatory vertex must use (2, 0) void rules to be

completely deleted, and mandatory cycles must have at least one species represented by a

mandatory vertex to completely delete the cycle.

https://doi.org/10.1006/INCO.1999.2812
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800076.802477
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1016/0020-0190(79)90023-1
https://doi.org/10.1145/800105.803396
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/S11047-008-9067-Y
https://doi.org/10.1007/S11047-008-9067-Y
https://doi.org/10.1137/0201010

B. Fu et al. 3:19

Proof. We first consider the case of trying to delete a non-zero amount of a species λi

represented by a mandatory vertex. We thus know that λi cannot be deleted by any catalytic

rules. Thus, it can only be deleted with (2, 0) void rules, which means we must have as many

(2, 0) matchings with λi as the number of deletions required to remove the species.

To show that completely deleting a mandatory cycle requires at least one species to be

represented by a mandatory vertex, recall that the definition of a mandatory cycle is a cycle

of (2, 1) void rules where the only catalytic rules that can delete each vertex is within the

cycle. This means to completely delete the species in the cycle only using the rules of the

cycle will always leave at least one species in the cycle with a non-zero amount of copies.

Since we can always perform catalytic rules in the cycle such that every species in the cycle

has a count of 1, then no matter what order the catalytic rules are applied in the cycle, there

is always at least one species λi with a count of one. Thus, to completely delete all species

of the cycle, a matching from a (2, 0) rule must be performed on λi. ◀

▶ Lemma 30. A perfect b-matching in G implies we have a set of rules that, if applied, can

delete
−→
D and only

−→
D .

Proof. We represent configurations
−→
D and

−→
B in disjoint subgraphs in G as GD and GB,

respectively. If a perfect matching exists, then
∑

e∈δ(v) f(e) = b(v) for all v ∈ V ′′, which

holds for all vertices in GD. Since every edge represents a deletion either from a (2, 0) void

rule or a (2, 1) catalytic void rule, this implies that if all rules are applied that are represented

in δ(v), this would delete at least v because
∑

e∈δ(v) f(e) = b(v), and b(v) is equal to the

count of v in GD. Since this is true for all v ∈ V ′′, we can delete the entirety of GD and

completely remove only D if we have a perfect matching. ◀

▶ Lemma 31. A perfect b-matching in G contains (2,0) void rule matchings for all species

represented by mandatory vertices in GD.

Proof. If a species λi is represented in GD, there exists a non-zero count of λi that must be

deleted to reach
−→
B . By definition, a species represented by a mandatory vertex can only be

completely deleted by a (2, 0) rule. Thus, if we have a perfect matching, we have matched all

of the species represented by mandatory vertices through these (2, 0) void rule edges. ◀

▶ Lemma 32. If there exists a perfect b-matching in G, then there exists a vertex in each

mandatory cycle that is matched to a (2, 0) rule.

Proof. A perfect matching contains the property that for all vertices,
∑

e∈δ(v) f(e) = b(v).

Let cj be a collection of vertices that compose a mandatory cycle. By the construction

of G, for all λi ∈ cj , there exists an edge from λi1 to cj
′
1 or λi2 to cj

′
2, where cj

′
k

is the

node representing catalytic rules among the vertices in the cycle. The vertex cj
′
k

has b-value

b(cj
′
k
) = (

∑
λik∈cj

b(v)) − 1, which means there is at most (
∑

λik∈cj
b(v)) − 1 matchings

with the vertices in the cycle. This implies at least one matching must occur without the

catalytic rules represented by cj
′
k
, and since the matching is perfect, this matching must

exists. Furthermore, since this a mandatory cycle, no species in this cycle can be deleted

through a catalytic rule not represented in the cycle. Thus, there is at least one (2, 0) rule

matching with some vertex in this cycle when we have a perfect matching. ◀

▶ Theorem 33. G has a perfect b-matching if and only if
−→
B is reachable from

−→
A .

DNA 31

3:20 Reachability in Deletion-Only Chemical Reaction Networks

Proof.

Forward Direction. Assume there exists a sequence of applicable rules in C that reaches
−→
B from

−→
A . It thus follows that all species with non-zero counts in

−→
D can be completely

deleted by following this sequence. Then, by the construction of G, a perfect b-matching

can be performed in the graph. Recall that our graph G has two disjoint subgraphs GB and

GD. In our construction, GB will always form a perfect matching since we have two vertices

with equal b-values attached by one edge of infinite capacity. Thus, these vertices can always

match with each other, and we only need to show how to create a perfect matching in GD.

Every vertex in GD must be perfectly matched to create a perfect b-matching, and we can

think of matching as a deletion of the deleted species for (2, 1) void rules and deletion of

both species in (2, 0) void rules. We then make the assignment f((λi1, λj1)) = f((λi2, λj2))

on each edge the number of times we used that respective (2, 0) or (2, 1) rule, which perfectly

matches all vi ∈ V ′′. However, if our catalytic vertices λi
′
1 are not perfectly matched through

its respective (λi1, λi
′
1) edge, this means that we deleted λi1 using more than the catalytic

rule corresponding with λi
′
1, which means we have excess λi

′
1. We thus use the edge (λi

′
1, λi

′
2)

so that any excess matchings can be assigned along that edge, and thus create a perfect

b-matching in G.

Reverse Direction. Assume there exists a perfect b-matching in G. Then
−→
B is reachable

from
−→
A if there exists a valid sequence of (2, 0) and (2, 1) void rules to get from

−→
A to

−→
B .

Recall that a perfect b-matching means that we have an assignment of edges such that
∑

e∈δ(v) f(e) = b(v) for every v ∈ V ′′. Through Lemma 30, this perfect matching implies we

can delete GD and only GD. Now we must show that there exists a valid sequence of rules

that can be applied to delete GD. This is done through Lemmas 31 and 32, where we show

that all mandatory vertices and mandatory cycles have (2, 0) void rules to match with. This

means we can apply all (2, 1) void rules the correct number of times (f(e) times) without

worrying about deleting a catalytic species needed for a later catalytic rule. We can then

execute all (2, 0) void rules their respective f(e) times to successfully delete
−→
D , and thus

reach
−→
B from

−→
A . ◀

A.2 Runtime Analysis

We first construct T , which creates O(|Λ|) vertices and O(|Γ|) edges since it creates a vertex

for each unique species involved in a (2, 1) rule and an edge for each unique (2, 1) rule. Thus,

this step takes O(|V | + |E|) time, where V = O(|Λ|) and E = O(|Γ|). We then run Tarjan’s

Strongly Connected Component Algorithm on T to produce graph H, which has a runtime

of O(|V | + |E|) [30]. Finally, we create the graph G and functions u(·) and b(·). It takes

O(|Λ|) time to create GD, and since we create at most 6 vertices per species when creating

the vertex set for G, this takes O(|Λ|) time. Additionally, since we create one edge for every

valid void rule in our CRN and an edge for every species in our final configuration, we create

O(|Λ| + |Γ|) edges. We then assign a b-value b(·) for each vertex in G, and since assigning a

b-value to a vertex requires a look-up in
−→
D that takes O(1) time, we assign all the b-values

in O(|Λ|) time. Finally, we assign all edge capacities u(·) to infinity, which takes O(1) time

per edge with a runtime of O(|Λ| + |Γ|). This results in an overall runtime of O(|Λ| + |Γ|) for

the construction of G. Finally, the runtime of the maximum b-matching algorithm is proven

to be strictly polynomial with a runtime of O(|V |2 log(|V |)(|E| + |V | log(|V |))). This results

in a total polynomial runtime for the algorithm of O(|V |2 log(|V |)(|E| + |V | log(|V |))).

▶ Theorem 34. The reachability problem in CRNs with only (2, 0) and (2, 1) rules is solvable

in O(|Λ|2 log(|Λ|)(|Γ| + |Λ| log(|Λ|))) time.

	1 Introduction
	2 Preliminaries
	2.1 Chemical Reaction Networks
	2.2 Void Rules
	2.3 Step CRNs
	2.4 Reachability

	3 Membership in NP for void rule systems
	4 Bimolecular Rules of Uniform-type: With or Without Catalysts
	4.1 Bimolecular Void Rules Without a Catalyst: (2,0)
	4.2 Bimolecular Void Rules with Catalyst: (2,1)

	5 Bimolecular Rules of Mixed Type: (2,0) and (2,1)
	6 Larger Void Rules
	6.1 Mostly-Catalytic Large Void Rules of Mixed-type: (k,k-1)^+
	6.2 Large Void Rules of Uniform-type: (k > = 3, g < = k-2)

	7 Primary Results
	8 Conclusion and Future Work
	A Proof Details for (2,0) and (2,1) Mixed rules
	A.1 Proof of Correctness
	A.2 Runtime Analysis

