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Abstract

The ability to detect whether a species (or dimension) is zero in Chemical Reaction Networks

(CRN), Vector Addition Systems, or Petri Nets is known to increase the power of these models

– making them capable of universal computation. While this ability may appear in many forms,

such as extending the models to allow transitions to be inhibited, prioritized, or synchronized, we

present an extension that directly performs this zero checking. We introduce a new void genesis

CRN variant with a simple design that merely increments the count of a specific species when any

other species’ count goes to zero. As with previous extensions, we show that the model is Turing

Universal. We then analyze several other studied CRN variants and show that they are all equivalent

through a polynomial simulation with the void genesis model, which does not merely follow from

Turing-universality. Thus, inhibitor species, reactions that occur at different rates, being allowed to

run reactions in parallel, or even being allowed to continually add more volume to the CRN, does

not add additional simulation power beyond simply detecting if a species count becomes zero.
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1 Introduction

Background. Chemical Reaction Networks [5], Vector Addition Systems [18], and Petri

nets [23] are three formalisms that arose in different disciplines to study distributed/concurrent

systems. Despite their distinct origins, these models are mathematically equivalent in

expressive power [8, 15]. While these models are capable of very complex behavior – e.g.,

deciding if one configuration is reachable from another via a sequence of transitions was

recently shown to be Ackermann-complete [9, 19] – they fall short of Turing-universality.
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Even though these base models are not capable of universal computation, they are each

right on the cusp of doing so. It is well known that extending the models in any way that

allows “checking for zero” immediately results in Turing-universality [1, 16, 22]. This has

been shown for model extensions allowing transition inhibition [1, 7, 11, 16], transition

prioritization [16, 24, 25], synchronous (parallel) transitions [6, 28], or even continual volume

increase [2, 3]. These results are typically established by showing how each extended model

can simulate a register (counter) machine [22].

However, Turing equivalence alone is a blunt instrument. It tells us that models can

emulate one another, but not how efficiently this can be done. We often care not just that

two models are Turing-complete, but if they can be easily transformed into one another. For

instance, Hack gave one such transformation between Inhibitory and Priority Petri nets [16],

but discussed their equivalence in terms of languages. For this paper, we focus on the concept

of simulation to draw comparisons between models.

In the literature, several notions of simulation have been proposed to capture structural

or behavioral equivalence between systems. While concepts like strong/weak bisimulation

[4, 10, 12, 17, 21] and pathway decomposition [26, 27] have been used to compare the

expressiveness of different systems, there is typically a tradeoff between reasonably preserving

dynamics and maintaining structural correspondence. Furthermore, efficiency of simulation

is often either implicitly included or sometimes omitted altogether. Part of our work aims to

introduce a more wieldy definition of simulation that explicitly accounts for efficiency. We

give a more detailed discussion on simulation later in the paper.

Our Contributions. In this work, we make two main contributions:

1. We define a general-purpose notion of polynomial efficient simulation that is intended to

capture a broader notion of simulation while still remaining reasonable. Our definition

ensures that the simulation respects a polynomial correspondence in both time (dynamics)

and space (structure). This allows us to formally compare the simulation efficiency of

different CRN variants.

2. We introduce a new model, which we call Void Genesis (VG), that makes zero-testing

explicit: it creates a designated species whenever a tracked species reaches zero. We use

this model as a unifying model that captures the essence of zero-testing in a clean and

modular way. We show that the Void Genesis model is polynomially equivalent to other

known Turing-universal extensions of CRNs.

Since all of these extended models can be simulated by VG (and vice versa) with only

polynomial overhead, our results establish a hub of polynomial simulation equivalence among

them. This yields a stronger and more precise understanding of the relationships between

these CRN variants and highlights VG simulation as a useful proof technique for adding

models to this hub. Figure 1 summarizes the simulation relationships we establish here.

Organization. Given the number of models and results, we have arranged the paper in a

way that systematically builds up understanding and techniques. Section 2 covers the formal

definitions of the models and a simulation of one model with another. Section 3 provides

minimum working examples in the models. The polynomial equivalence between models is

proven through a series of simulations in Section 4. In Section 5, we discuss our results and

some open problems.

2 Preliminaries

In Section 2.1, we define the extended chemical reaction network models considered in this

paper with examples, and in Section 2.2 we define the concept of inter-model simulation.
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its starting configuration. A CRN System T is then defined as a pair of a CRN model and

its initial configuration. The following sections define extensions of the basic CRN model by

way of defining modified dynamics.

2.1.2 Void Genesis CRNs

A Void Genesis CRN CVG = ((Λ, Γ), z) is a basic CRN with a zero species z ∈ Λ whose count

is incremented whenever the count of any species other than z goes to zero. See Figure 2d

for an example.

▶ Definition 3 (Void-Genesis Dynamics). For a Void-Genesis CRN ((Λ, Γ), z ∈ Λ) and

configurations
−→
A ,

−→
Bt and

−→
B , we say that

−→
A →

(Λ,Γ)
CVG

−→
B if there exists a rule (

−→
R,

−→
P ) ∈ Γ such

that
−→
R ≤

−→
A ,

−→
A −

−→
R +

−→
P =

−→
Bt, and

−→
B =

−→
Bt + n · z⃗ where n is the cardinality of {λ ∈ Λ \ {z}

|
−→
A [λ] ̸= 0 and

−→
Bt[λ] = 0}.

It is straightforward to show that the Void Genesis model is Turing-universal via simulating

a register machine, and we do so in Section 4.7.

2.1.3 Inhibitory CRNs

A reaction γ is said to be inhibited by a species λ when the reaction γ may only be applied if

λ is absent in the system. We define an inhibitor mapping I : Γ → P(Λ) that maps a reaction

to a subset of species that inhibit the reaction. An Inhibitory CRN CIC = ((Λ, Γ), I) as

defined by [7] is then a basic CRN along with the mapping I. See Figure 2c for an example.

▶ Definition 4 (Inhibitory Dynamics). For a Inhibitory CRN ((Λ, Γ), I) and configurations
−→
A and

−→
B , we say that

−→
A →

(Λ,Γ)
CIC

−→
B if there exists a rule γ = (

−→
R,

−→
P ) ∈ Γ such that

−→
R ≤

−→
A ,

−→
A −

−→
R +

−→
P =

−→
B , and A[λ] = 0, ∀λ ∈ I(γ).

2.1.4 Coarse-Rate CRNs

A Coarse-Rate CRN CCR = ((Λ, Γ), rank) as introduced by [25] is a basic CRN along

with a function rank : Γ → N. We define a set of reactions Γl as the set of all reactions

γ where rank(γ) = l. The set of reactions Γ is then defined as an ordered partition set

given by {Γ1, Γ2, . . . , Γn}. Any applicable reaction γℓ
i may only be applied if no reaction

γk
j ∈ Γk, ∀k ∈ [ℓ + 1, n] is applicable. We use (

−→
R,

−→
P )ℓ to denote a reaction γℓ ∈ Γℓ. In the

context of this paper we focus on models with rank at most 2. For clarity, we will refer to

reactions with rank 2 as fast reactions, and the ones with rank 1 as slow reactions. See

Figure 2b for an example.

▶ Definition 5 (Coarse-Rate Dynamics). For a Coarse-Rate CRN ((Λ, Γ), rank) and config-

urations
−→
A and

−→
B , we say that

−→
A →

(Λ,Γ)
CCR

−→
B if there exists a rule (

−→
R,

−→
P )ℓ ∈ Γ such that

−→
R ≤

−→
A ,

−→
A −

−→
R +

−→
P =

−→
B , and ̸ ∃ an applicable reaction γk>ℓ.

2.1.5 Step-Cycle CRNs

A step-cycle CRN is a step CRN [2] that infinitely repeats steps 0 through k −1: that is, once
−→
S k−1 is added to the terminal configuration in the (k − 1)

th
step, the resulting configuration

is treated as the new initial configuration for the step CRN. More formally, a step-cycle

CRN of k steps is an ordered pair ((Λ, Γ), (
−→
S 0,

−→
S 1, . . . ,

−→
S k−1)), where the first element is

a normal CRN (Λ, Γ) and the second is a sequence of length-|Λ| vectors of non-negative
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integers denoting how many copies of each species type to add after each step. We define a

step-configuration
−→
C i for a step-cycle CRN as a valid configuration

−→
C over (Λ, Γ) along with

an integer i ∈ {0, . . . , k − 1} that denotes the configuration’s step.

▶ Definition 6 (Step-Cycle Dynamics). For a step-cycle CRN ((Λ, Γ), (
−→
S 0,

−→
S 1, . . . ,

−→
S k−1))

and step-configurations
−→
A i and

−→
B j, we say that

−→
A i →

(Λ,Γ)
CSC

−→
B j if either

1. i = j, there exists a rule (
−→
R,

−→
P ) ∈ Γ s.t.

−→
R ≤

−→
A i, and

−→
A i −

−→
R +

−→
P =

−→
B j, or

2. (i + 1) mod k = j,
−→
A i is terminal, and

−→
A i +

−→
S i =

−→
B j.

2.1.6 Unique Instruction Parallel CRNs

The Unique Instruction Parallel model modifies the dynamics of a normal CRN (Λ, Γ) by

applying a maximal set of compatible rules as a single transition. In this paper, we restrict

this maximal set to contain only one application of any given rule, leaving the study of more

relaxed parallel models for future work.

▶ Definition 7 (Plausibly Parallel Rules). A multiset of n (not necessarily distinct) rules

{(
−→
R 1,

−→
P 1), . . . , (

−→
R n,

−→
P n)} are plausibly parallel for a configuration

−→
C over Λ if the vector

−→
R =

∑n

i=1

−→
R i is such that

−→
R ≤

−→
C .

▶ Definition 8 (Unique-Instruction Plausibly Parallel). A plausibly parallel multiset is said

to be Unique-Instruction if it contains at most one copy of any given rule (i.e., it is a

set). It is considered unique-instruction maximal if it is not a proper subset of any other

unique-instruction plausibly parallel set.

▶ Definition 9 (Unique-Instruction Parallel Dynamics). For a CRN (Λ, Γ) and configurations
−→
A and

−→
B , we say that

−→
A →

(Λ,Γ)
CUI

−→
B if there exists a unique-instruction maximal plausibly

parallel set {(
−→
R 1,

−→
P 1), . . . , (

−→
R k,

−→
P k)} for configuration

−→
A and rule set Γ such that

−→
B =

−→
A −

∑k

i=1

−→
R i +

∑k

i=1

−→
P i.

2.2 Simulation

By way of Petri nets, discrete CRNs have seen various model extensions. To meaningfully

compare the computational capabilities of these variants, we turn to the notion of simulation,

which serves as a tool to compare the relative expressive power of each model. However,

existing definitions in the literature vary in scope and applicability. Some emphasize strict

structural correspondence while others focus purely on dynamic behavior. Thus, it is

worthwhile to discuss why we formulate our own definition of simulation and equivalence.

Borrowed from classical process theory, (strong) bisimulation [21, 12, 4] is perhaps the

most stringent form of equivalence. It requires that for every state and transition in one

system, there exists a matching state and transition in the other, and vice versa. This strong

bidirectional constraint means bisimulation ensures both behavioral and structural fidelity,

and notably also implicitly guarantees efficiency.

Weak bisimulation [10, 17], on the other hand, relaxes the strict step-by-step matching

of bisimulation. Instead, a transition in one system may correspond to a macrotransition

in the other: a sequence of transitions possibly allowing “hidden” or “silent” intermediate

steps. This makes bisimulation more flexible and applicable to realistic implementations,

but it is not without its own limitations. Pathway decomposition, as presented in [26, 27],

takes a different approach. Rather than comparing reactions directly, they identify a CRN’s

ISAAC 2025
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polynomial transition sequences. For all B such that A →T B, the expected number of

transitions taken to perform a macro transition from M(A) ⇒T ′ M(B), conditioned that

M(A) does macro transition to M(B), has expected number of transitions polynomial in

the number of rules and species of the simulated system based on a uniform sampling of

applicable rules.

polynomial volume. Each
−→
C ′ ∈ [[

−→
C ]] has a volume that is polynomially bounded by the

volume of C, and for any macro transition A′ ⇒T ′ B′, any intermediate configuration

within this macrotransition has volume polynomially bounded in the volume of M(A′)

and M(B′).

▶ Theorem 13 (Transitivity). Given three CRN systems T1, T2 and T3 such that T2 simulates

T1 under polynomial simulation, and T3 simulates T2 under polynomial simulation, then T3

simulates T1 under polynomial simulation.

Proof. Given three CRN systems T1, T2 and T3 such that T2 simulates T1 under polynomial

simulation, and T3 simulates T2 under polynomial simulation. Let M21 : configsT2
→ configsT1

and M32 : configsT3
→ configsT2

be the polynomial-time computable configuration mappings.

We define a configuration mapping function M31 : configsT3
→ configsT1

by composing

functions M21 and M32 as follows.

M31(
−→
C3) =

{

(M21 ◦ M32)(
−→
C3) if M32(

−→
C3) ̸= ⊥ ∧ M21(M32(

−→
C3)) ̸= ⊥

⊥ otherwise

And the set of representative configurations for a configuration
−→
C1 ∈ configsT1

as [[
−→
C1 ]] =

{
−→
C3 |

−→
C1 = M31(

−→
C3)}. If the configuration

−→
C1 has a non-empty set of representative

configurations in T2, and each of those configurations have representative configurations in

T3, then this set will contain all such configurations. Therefore, if both M21 and subsequently

M32 are defined, this set will be non-empty.

We now show that T3 simulates T1 by proving that T1 follows T3 and T3 models T1 for

the configuration mapping and representative configurations defined above. We then show

that the simulation is polynomial efficient.

T1 follows T3. T1 follows T3 if for any two configurations
−→
A3 and

−→
B3 in T3 where M31(

−→
A3)

and M31(
−→
B3) are defined, such that

−→
A3 ⇒T3

−→
B3, and M31(

−→
A3) ̸= M31(

−→
B3), then M31(

−→
A3) →T1

M31(
−→
B3). For these configurations if M32(

−→
A3) ̸= M32(

−→
B3) then M32(

−→
A3) →T2

M32(
−→
B3). This

is true because T2 follows T3.

Because T1 follows T2, for any two configurations
−→
A2 and

−→
B2 in T2, if

−→
A2 ⇒T2

−→
B2, and

M21(
−→
A2) ̸= M21(

−→
B2), then M21(

−→
A2) →T1

M21(
−→
B2). A single-step transition is simply

a macro-transition with one step. Therefore, if M21(M32(
−→
A3)) ̸= M21(M32(

−→
B3)), then

M21(M32(
−→
A3)) →T1

M21(M32(
−→
B2)). When M31 is defined we can infer based on the definition

of M31 that, if M31(
−→
A3) ̸= M31(

−→
B3) then M31(

−→
A3) →T1

M31(
−→
B3). Therefore, T1 follows T3.

T3 models T1. T3 models T1 if for any two configurations
−→
A1 and

−→
B1 in T1 such that

−→
A1 →T1

−→
B1, ∀

−→
A3 ∈ [[

−→
A1 ]], ∃

−→
B3 ∈ [[

−→
B1 ]] under M31 such that

−→
A3 ⇒T3

−→
B3. For all such

configurations
−→
A1 and

−→
B1 in T1, ∀

−→
A2 ∈ [[

−→
A1 ]], ∃

−→
B2 ∈ [[

−→
B1 ]] under M21 such that

−→
A2 ⇒T2

−→
B2

because T2 models T1. This macro transition
−→
A2 ⇒T2

−→
B2 is represented as a sequence of

single-step transitions
−→
X2

i →T2

−→
X2

i+1 where M21(
−→
X2

i), M21(
−→
X2

i+1) ∈ {
−→
A1, ⊥} for 0 ≤ i < k

as shown in Figure 4. Furthermore, ∀
−→
X

j
3 ∈ [[

−→
X2

i ]], ∃
−→
X3

ℓ ∈ [[
−→
X2

i+1 ]] under M32 such that
−→
X3

j ⇒T3

−→
X3

ℓ because T3 models T2.
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3 Detecting Zero: Examples in Each Model

The power each extended CRN model has over the basic CRN model stems from the ability

to detect when a species has reached a count of zero. Thus, the focus of this section is

twofold: to detail how each model is capable of detecting zero and to provide minimum

working examples (MWEs) for ease of comprehension. For all examples, we want to check if

species s is in the system. The idea is that there is a species cs that turns to ns if there are

no s’s and ys if there are s’s in the system while nothing else in the system changes.

Void Genesis. Detecting zero is explicitly done by the model. For the simplest version of

the model, we assume we have no z species. To check whether s is zero, simply use either as

a catalyst (examples on the left side). For this to work, you must maintain a single z. Thus,

when producing any species s, continue to check with s as a catalyst and z as a reactant. As

an example, the rule x → s would be modified to be implemented with the two rules on the

right side.
cs + s → ys + s x + s → 2s

ss + z → ns + z x + z → s

Inhibitory CRNs. We can use an inhibited rule and a catalyst to detect whether a species s

exists or not.
cs

s
−→ ns runs when s does not exist

cs + s → ys + s runs when s does exist

Course-Rate CRNs. Detecting a species s only requires that there is a fast rule that uses it

and a slow rule that does not.
Fast Reaction cs + s → ys + s (will always execute first)

Slow Reaction cs → ns (will only execute if no s exists in the system)

Step-Cycle CRNs. Detecting zero is simple by using s in a reaction and then going to

another step. Since each step reaches a terminal configuration, it must not exist if the

reaction did not occur.

Step Description Add Rules

1 Add something that only reacts with s a single cs s + cs → y

2 Check if it reacted a single w w + y → ys + s (s exists)

w + cs → ns (s not exists)

Unique-Instruction Parallel CRNs. The parallel model UI takes advantage of how rules

are applied to force reactions to run in a specific order depending on whether the count of a

certain species is zero or not. Since we are limiting the possible rules that can run by our

species selection, detecting zero can be done in this manner. The intuition is to run two

independent rules, followed by a rule that uses the output of both. The “Round” indicates

that all rules in this round would execute before the next round due to the maximal selection.

Round Description Rules

1 Create a timing/clock species (ti)

and a species to use s with.

cs → rc + t1

2 Try to use s and use the timer t in

another rule.

rc + s → rs (can only run if s exists)

t1 → t2 (runs even if the other rule can

not)

3 Now we use the timer to see if the

other rule ran

t2 +rs → ys +s (there is an s in the system)

t2+rc → ns (there are no s’s in the system)
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4 Equivalence

This section shows equivalence between the CRN models, represented as the purple bi-

directional arrows in Figure 1. We first introduce a more general Void Genesis model, along

with some useful notation and techniques, before presenting our equivalence results. A full

version of the paper, including construction details and formal proofs, is available on arXiv.

4.1 Equivalence Preliminaries

4.1.1 k-Void Genesis

Due to the complexity of some of the simulations, we first provide a more general version of

the VG model that makes simulation easier. We will prove that the standard Void Genesis

model can still simulate the more general model with at most a polynomial blow-up in rules,

species, and expected rule applications. Essentially, the only difference is that rather than a

single zero species z, there can be a different zero species for every species.

Formally, a k-Void Genesis CRN CKVG = ((Λ, Γ), Z∅) is a CRN with a partial mapping

function Z∅ : Λ1 → Λ2, such that Λ1 ∪ Λ2 = Λ and Λ1 ∩ Λ2 = ∅, that indicates which species

is created whenever another species count goes to zero (if mapped). The partition creates a

distinction between normal species and the special zero-counting species, which eliminates

chaining effects that could arise with zero-species being created from the elimination of other

zero-species. For convenience, we use the notation Z∅(λ) → zλ to indicate that if the count

of species λ in the system goes to zero, a zλ species is created.

▶ Definition 14 (k-Void-Genesis Dynamics). For a k-Void-Genesis CRN ((Λ, Γ), Z∅) and

configurations
−→
A ,

−→
Bt and

−→
B , we say that

−→
A →

(Λ,Γ)
CKVG

−→
B if there exists a rule (

−→
R,

−→
P ) ∈ Γ

such that
−→
R ≤

−→
A ,

−→
A −

−→
R +

−→
P =

−→
Bt, and

−→
B =

−→
Bt +

−→
Z where

−→
Z =

∑

λ∈C z⃗λ, and

C = {λ ∈ Λ|
−→
A [λ] ̸= 0 and

−→
Bt[λ] = 0}.

4.1.2 Notation and Techniques

Notation. To simplify the proofs and for consistency, we use the following notation for

rules. For rule i, we have Gi = (
−→
Ri,

−→
Pi). We make use of the {R} and |R| notation defined in

the preliminaries, as well the difference between a configuration with many species
−→
X versus

a configuration with only a single species X⃗ by the over arrow used.

One technique that is used in our simulations is to maintain a single global leader species

G that selects which rule Gi to execute, and then a sequence of rules to either sequentially

consume the reactants or sequentially break down the product of the other models’ rules to

execute zero-checking before managing zero species.

Sequential Reactants. Some of the results also benefit from processing the reactants of

a rule one at a time as well. This is needed when consuming a species might result in its

count as zero and some action needs to be taken. In order to verify that all reactants exists

(and thus the rule could be executed), we use all reactants as a catalyst with a global leader

species G. Table 1a describes the necessary rules for consuming reactants sequentially. For

rule i, this creates R1
i that will begin the chain of consuming one species at a time. We

create a C
j
i species in order to check whether rj is now zero or not. This step can be skipped

if no check is needed. We create the species R
j
i sequentially, which is then consumed if rj

is in the system. Systems that use this technique will have one copy of G in the initial

configuration and no R or C species. For shorthand, we will represent this series of rules as

G⃗ +
−→
Ri 99K G⃗ +

−→
Pi.

ISAAC 2025
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Table 1 An overview of two techniques. (a) A procedure to consume the reactants of some rule

sequentially in order to test whether a rule can be applied and whether zero species are (or need

to be) created. This is abbreviated for rule i as
−→
Ri 99K

−→
Pi. (b) Creating products sequentially by

consuming all reactants and then using counter species to create each product with a different rule

until all have been created. This may be needed to decrease the number of rule combinations while

handling zero species. Note that the zero species zpj
is consumed when pj is created. If pj still

exists, then it is used as a catalyst. This process is denoted for some rule i as
−→
Ri

−→
Pi.

G⃗ +
−→
Ri → R⃗1

i +
−→
Ri

R⃗
j
i + r⃗j → C⃗

j
i (check for zero)

∀rj ∈ Ri :
C⃗

j
i + z⃗rj

→ R⃗
j+1

i + z⃗rj
(rj is zero)

C⃗
j
i + r⃗j → R⃗

j+1

i + r⃗j (rj is not zero)

R⃗
|Ri|+1

i → G⃗ +
−→
Pi

(a) Using reactants sequentially
−→
Ri 99K

−→
Pi.

G⃗ +
−→
Ri → P⃗ 1

i

∀pj ∈ Pi :
z⃗pj

+ P⃗
j

i → p⃗j + P⃗
j+1

i (remove zero)

p⃗j + P⃗
j

i → p⃗j + p⃗j + P⃗
j+1

i (no zero)

P⃗
|Pi|+1

i → G⃗

(b) Creating products sequentially
−→
Ri

−→
Pi.

Sequential Products. This technique only allows a single G species to exist in the system

at a time. Table 1b describes the necessary rules where a rule Gi = (
−→
Ri,

−→
Pi) is chosen if the

reactants exist in the system. If this is the case, then each product is created sequentially

by having the species P 1
i , . . . , P

|Pi|
i in the system (one at a time, starting from P 1

i ), then

consuming each species P
j
i to create the product pj and the next P

j+1
i until all products

have been produced. If species P
j
i exists in the system, it means that for rule Gi, the first

j − 1 products have been created, and either the next pj will be created or the process will

end (return G) if there are no more products.

In a simulating system, this requires an additional number of rules and species on the

order of the largest number of products in any rule. The final rule returns the single leader

species. Note that we make use of a zero species zpj
for every product species pj , i.e.,

Z∅(pj) = zpj
. For shorthand, we will represent this set of rules for rule i as

−→
Ri

−→
Pi. Thus,

the entire set of rules and species from Table 1b, that initiate with a global leader G, would

be given in shorthand as G⃗ +
−→
Ri G⃗ +

−→
Pi.

4.2 k-Void Genesis equivalence with Void Genesis

▶ Lemma 15. The k-Void Genesis model can simulate the Void Genesis model.

Construction. Given a Void Genesis model CVG = ((Λ, Γ), z), let Z∅(λ) = z, ∀λ ∈ Λ \ {z}.

Then the k-Void Genesis model CKVG = ((Λ, Γ), Z∅) is equivalent.

▶ Lemma 16. The Void Genesis model can simulate the k-Void Genesis model.

Construction. This result is straightforward using the methods to sequentially consume

reactants as previously defined. We slightly modify them with specifics as shown in Table 2.

Whenever we consume a reactant rj , we check if the single z species exists and if it does,

create the specific zrj
species if rj is mapped in Z∅.

Given a k-Void Genesis model CKVG = ((Λ, Γ), Z∅), we create a VG CRN CVG =

((Λ′, Γ′), z). We let Λ′ = Λ ∪ {G} ∪ {zλ : λ ∈ Λ \ {z}} ∪ SR where SR = {R
j
i : 1 ≤

i ≤ |Γ|, 1 ≤ j ≤ |Ri| + 1}. We can simulate having specific zj species for all j species by

keeping the z species count at 0, and checking whether we consumed the last j.
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Table 2 (a) The rules for the simulation of k-Void Genesis by Void Genesis. For each applicable

rule, we create a set of rules that sequentially consume each reactant rj , and if its count is now zero,

it creates the zrj
species (unless it is unmapped, then z is simply consumed). Only one of the zero

check rules is added based on the mapping, which is why they are grouped. (b) The reactions that

simulate the rule a⃗ + 2⃗b → 2a⃗ + c⃗ from the k-VG model within the VG model.

G⃗ +
−→
Ri → R⃗1

i +
−→
Ri G⃗ + a⃗ + 2⃗b → R⃗1

1 + a⃗ + 2⃗b

∀rj ∈ Ri :

R⃗
j
i + r⃗j → C⃗

j
i (check for zero) R⃗1

1 + a⃗ → C⃗1
1 C⃗2

1 + b⃗ → R⃗3
1 + b⃗

{

C⃗
j
i + z⃗ → R⃗

j+1

i (unmapped species)

C⃗
j
i + z⃗ → R⃗

j+1

i + z⃗rj
(zero species)

C⃗1
1 + z⃗ → R⃗2

1 + z⃗a R⃗3
1 + b⃗ → C⃗3

1

C⃗1
1 + a⃗ → R⃗2

1 + a⃗ C⃗3
1 + z⃗ → R⃗4

1 + z⃗b

C⃗
j
i + r⃗j → R⃗

j+1

i + r⃗j (count not zero) R⃗2
1 + b⃗ → C⃗2

1 C⃗3
1 + b⃗ → R⃗4

1 + b⃗

R⃗
|Ri|+1

i → G⃗ +
−→
Pi C⃗2

1 + z⃗ → R⃗3
1 + z⃗b R⃗4

1 → G⃗ + 2a⃗ + c⃗

(a) Zero checking reactants
−→
Ri 99K

−→
Pi. (b) Example reaction set.

Table 3 (a) Reactions for an Inhibitory CRN to simulate any given k-VG CRN. (b) Reactions

for a k-VG CRN to simulate any given Inhibitory CRN.

∀γi ∈ Γ : 1.
−→
Ri

I
−→ −→e {Ri}+

−→
P i+|{Ri}|·I⃗

∀γi ∈ Γ :
1. G⃗+

−→
Ri +

−→
Zi → G⃗i +

−→
Ri +

−→
Zi

∀λi ∈ Λ1 :
2. e⃗λi

+ I⃗ + λ⃗i → λ⃗i 2. G⃗i +
−→
Ri G⃗ +

−→
Pi

3. e⃗λi
+ I⃗

λi−→ z⃗λi

(a) iCRN simulating k-VG. (b) k-VG simulating iCRN.

▶ Theorem 17. The Void Genesis model is equivalent under polynomial simulation to the

k-Void Genesis model.

4.3 Inhibitory CRNs

▶ Lemma 18. Inhibitory CRNs can simulate any given k-VG CRN under polynomial

simulation.

Construction. Given a k-VG CRN CKVG = ((Λ, Γ), Z∅), we construct an Inhibitory CRN

CIC = ((Λ′, Γ′), I). We let Λ′ = Λ ∪ {I, eλ1
, · · · , eλ|Λ1|

} where I and eλ1
, . . . , eλ|Λ1|

check if

any species of Λ1 used in a simulated reaction have a resulting count of zero. Recall that Λ1

is the set of non-zero species in Λ. Each reaction in Γ γi is simulated using Reaction 1 from

Table 3a. Reactions 2 and 3 check if any reactants of γi reached a count of zero following

γi’s simulation. If so, then a corresponding zero species is produced. Figure 5a shows an

example of an Inhibitory CRN simulating a k-VG CRN with Λ = {a, b} and a reaction that

consumes the species a.

▶ Lemma 19. k-VG CRNs can simulate any Inhibitory CRN under polynomial simulation.

Construction. Given an Inhibitory CRN CIC = ((Λ, Γ), I), we construct a k-VG CRN

CKVG = ((Λ′, Γ′), Z∅). We let Λ′ = Λ ∪ {G, G1, . . . , G|Γ|, P 1
i , . . . , P

|P|Γ||+1

|Γ| , zλ1
, . . . , zλ|Λ|

}

where the global species G is consumed to produce Gi when selecting a reaction γi ∈ Γ.

The z species are the zero-species, and the species P 1
i . . . P

|Pi|+1
i are produced for the

sequential product generation as described in Table 1b. Let Zi represent the set of z species

corresponding to inhibitors of γi. Each reaction γi in Γ is represented by the two reactions

given in Table 3b, where Reaction 1 checks if γi is applicable (indicated by the presence of

reactants of γi and Zi) and Reaction 2 applies the reaction by generating products sequentially.
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Table 5 (a) Reactions for a Step-Cycle CRN to simulate any given k-VG CRN. (b) Reactions for

a k-VG CRN to simulate any given Step-Cycle CRN.

1.G⃗ + g⃗i 99K r⃗1 +
−→
Pi

∀γi ∈ Γ, zk ∈ {Ri}:2.r⃗j + g⃗j → r⃗j+1 + g⃗j

∀γi ∈ Γ : 1.G⃗ +
−→
Ri → −→e {Ri} +

−→
Pi 3.r⃗j + z⃗gj

→ r⃗j+1 + g⃗j

∀λi ∈ Λ1 :
2.λ⃗i + e⃗λi

→ λ⃗i 4.r⃗|Γ|+1 → G⃗

3.y⃗ + e⃗λi
→ y⃗ + z⃗λi

5.G⃗ + z⃗g1
+ . . . + z⃗g|Γ|

→ s⃗

4.y⃗ + y⃗ → G⃗ 6.⃗t → G⃗ + g⃗1 + . . . + g⃗|Γ|

5.G⃗ + y⃗ ↔ G⃗ + w⃗ ∀Si ∈ S \ {Sk−1} : 7.s⃗ + s⃗i t⃗ + s⃗i+1 +
−→
S i

6.w⃗ ↔ x 8.s⃗ + s⃗k−1 t⃗ + s⃗0 +
−→
S k−1

(a) Step-Cycle CRN sim. k-VG CRN. (b) k-VG CRN simulating a Step-Cycle CRN.

Table 6 (a) Checking reactants sequentially
−→
Ri 99K

−→
Pi (b) Undoing reaction selection if not

enough reactants exist for rule i.

R⃗k
i + z⃗λj

→ R⃗k−

i + z⃗λj

G⃗ + g⃗i → R⃗1
1 + z⃗gi ∀λj ∈ Ri :

R⃗k−

i + z⃗λj
→ R⃗k−1

−

i + λ⃗j

∀λj ∈ Ri :
R⃗k

i + λ⃗j → R⃗k+1

i + λ⃗′
j R⃗k−

i + λ⃗′
j → R⃗k−

i + λ⃗j

R⃗
|Ri|+1

i +
−→
Ri

′ r⃗1 +
−→
P i R⃗1

−

1 → G⃗

(a) Check reactants. (b) Undo reactants.

▶ Lemma 25. k-VG CRNs can simulate any given Step-Cycle CRN under polynomial

simulation.

Construction. Given a Step-Cycle CRN CSC = ((Λ, Γ), (
−→
S 0,

−→
S 1, . . . ,

−→
S k−1),

we construct a k-VG CRN CKVG = ((Λ′, Γ′), Z∅). We let Λ′ = Λ ∪

{G, λ′
1, . . . , λ′

|Λ|, zλ1
, . . . , zλ|Λ|

, r1, . . . , r|Γ|+1, s, s0, . . . , sk−1, t} ∪ {gi, zgi
, R

j
i , R

j−

i , P l
i :

1 ≤ i ≤ |Γ|, 1 ≤ j ≤ |Ri| + 1, 1 ≤ l ≤ |Pi| + 1}. The G species is used to select a reaction

represented by gi. The reactants are checked sequentially, converting each reactant into

λ′
i. Species ri reintroduce each consumed gi into the system. Species si represent step i,

with species s and t used to transition between steps. Reaction 1 in Table 5b attempts to

apply γi by checking if enough of each reactant exists, as shown in Table 6. If it is successful,

then it simulates the reaction and begins the process of adding g1, . . . , g|Γ| back into the

system (which is carried out in reactions 2, 3, and 4). If a species in γi does not exist in the

system, then the reactants are reintroduced into the system as shown in Table 6, which

also removes gi from the system, producing zgi
. If there are no executable reactions, then

reaction 5 is executed to produce an s species. This s species then reacts with the current

“step” of the system, denoted by species si. Reaction 7 or 8 then runs, introducing the

species corresponding to the step. These reactions also introduce the species t, which then

reintroduces G along with each gi through reaction 6. Figure 9 shows an example of a k-VG

CRN simulating a Step-Cycle CRN with Λ = {a, b} and reaction a + b → b.

▶ Theorem 26. The Void Genesis model is equivalent under polynomial simulation to the

Step-Cycle model.

Extension to deletion-only rules. Given the recent result in [20], these results extend to

give the following corollary.

▶ Corollary 27. Even when restricted to at most (3, 1) void rules, the Step-Cycle model is

equivalent under polynomial simulation to the Void Genesis model.
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Table 8 Rules for a Void Genesis CRN to simulate a given Register Machine.

Instruction Relevant Rules Instruction Relevant Rules

sj : inc(ri, sk)

s⃗j + r⃗i → s⃗k + r⃗i + r⃗i

sj : dec(ri, sk, sl)

s⃗j + r⃗i → s⃗k

s⃗j + z⃗ri
→ s⃗k + r⃗i s⃗j + z⃗ri

→ s⃗l + z⃗ri

Z∅(ri) = zri

5 Conclusion

In this paper, we demonstrate equivalence through polynomial simulation between 5 natural

extensions to the CRN model. We centralize these simulations around the Void Genesis

CRN model, as this model’s ability to detect zero is one of the simplest augmentations to a

regular CRN. We then show that Void Genesis CRNs are Turing Universal, implying that

Step-Cycle CRNs, Inhibitory CRNs, Parallel CRNs, and Coarse-Rate CRNs are also Turing

Universal. While this work is complete in proving equivalence between these models, there

are still several interesting open problems to consider (some of which are shown in Figure 1):

We aim to explore constrained versions of our simulation definition that recover existing

notions as special cases. Does restricting the configuration map to be consistent with an

underlying species-species mapping immediately results in weak bisimulation? If that

underlying map is a total bijective function, does that yield strong bisimulation?

For iCRNs, a rule is inhibited by the existence of one or more species. Our definition

effectively uses a logical OR (inhibition is only false when all inhibitor counts are zero).

A natural extension is to consider inhibition functions using other logic (e.g., AND – a

reaction is inhibited only when all of its inhibitors are present).

Coarse-Rate CRNs are limited to 2 ranks for reactions. A natural generalization of this

model is to allow for k different ranks (k-rate CRNs). What is the relationship between

Coarse-Rate CRNs and k-rate CRNs?

Even when limited to only void reactions (rules where no species are created), step CRNs

are able to compute threshold circuits [2, 3]. Does this suggest that Step-Cycle CRNs,

even when limited to only void reactions (void Step-Cycle), are still Turing Universal?

Are there more efficient ways to simulate these augmented CRNs using VG CRNs?

What is the complexity of reachability in restricted instances of each model, such as

[13, 14]? As mentioned, we know the complexity with step-cycles [20], but deletion-only

rules have not been explored in detail in the other models.
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