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Abstract. In this paper we focus on the intersection of tile assem-

bling systems, edge-matching puzzles, combinatorial games, and knot
constructionandidentity. Asabasis, weutilizethegame Celtic!, which
isa2-Playerboardgamewherethegoalofthegameistoconstructknots
whereoneknotusesmoreofaplayer’spiecesthantheotherplayerover
allknots.Allpiecesmustbuildoffanexistingknotandavalidknotmust
beclosed. Weconsiderthreevariations:a0-playerself-assemblyvariation
thatdeterministicallyplacespiecestoformaclosedknotofsomelength,
al-player puzzle variation where the goal is to form a closed knot of
some length, and the original 2-player game with restricted pieces. We
show these are P-complete, NP-complete (depending on the pieces), and
PSPACE-complete (for a first-player win), respectively. We nearly fully
characterize the hardness of the 1-player puzzle based on the pieces.

1 Introduction

Square edge-matching puzzles generally employ the use of (possibly rotatable)
tiles,witheachsidegivenaspecificlabelthatdictateshowtheymaybeusedin
conjunction with other tiles. Thesetypesof puzzleshave existed for centuries,
and are often deceptively difficult to solve. For instance, the Eternity II puzzle
[19],introducedin2007 offered$2,000,000 forthefirstcompletesolution.While
norestrictions were placed on the methodsused, nocompletesolution hasyd
to be found, with the closest solutions falling short a few pieces. The work of [6]
showsthatedge-matchingpuzzles,including MacMahon Squares [ 12],Scramble
Squares,and TetraVex [ 17],areNP-completeand areequivalenttoothertypes
ofpuzzlessuchasjigsaw and polyomino packing puzzles.
ThepuzzlesoftenremainNP-hardevenfor small instances. In [ 7],theauthors
showthatevenforal-by-npuzzle,unsignededge-matchingwithrotationisstill
NP-hard and fixed parameter tractable in the number of unique labels. This
work was later improved in [3], where it was shown that for both signed and
unsigned edges, 1-by-n puzzles are NP-hard, even to approximate. Naturally,
variationsofthese typesofpuzzleshavebeen considered, such ashavingaddi-
tional inequality constraints between adjacent tiles, triangular edge matchings,
and when no target shape is specified [2].
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Fig. 1. (a)FinalCeltic!boardwhereallknotsareclosedandnovalidmovesexist. (b)

Celtic! board displaying completed knots. The knot score for Red (R) and Blue (B)
playersbasedontheknot.Redknot:R(9) - B(2),Blueknot:R(1) - B(5), Yellowknot:

R(4) - B(1),and Whiteknot: R(0) - B(1). Giventheseknots, he best score for Red

is 9 and 5 points for Blue. (c) Gadgets for 0-player non-planar Bounded Deterministic
CL. (d) Gadgets for Bounded 2-player CL. (Color figure online)
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(a) Piece paths (b) Invalid vs. Valid

Fig. 2. (a)The5typesofpiecesinthegameaswellastheirpathconnections(inthis
orientation). Each player (red and blue) has two copies of each type and there is a
shared set of white-backed ones. (b) Invalid vs. valid placement. (Color figure online)

In general, edge-matching puzzles are undecidable with unlimited pieces
[1]. More abstractly, generalized edge-matching of squares (without rotation)
iscloselyrelated toomputational complexity as exhibited through Wang tiles
[18],andmorerecently,self-assemblymodelssuchastheabstractTile Assembly
Model (aTAM) [20],whicharebothTuringUniversaleen with small tile sets.

Ourworkfocusesonagamewithsimilaredge-matching mechanics: Celtic! | 5].
Celticlisa2-Player(Blue/Red )tileplacementgamewhereeachplayerattemptsto
completeknotsbyalternativelyplacingpiecesontoafixedsizeboard.Eachpiece
canbethoughtofasarotatablesquarewitha‘closed’or‘open’labeloneachside,
similartothatofunsignededge-matchingwithtwolabels. Thegoalofthe game
is alternate playing pieces and completing knots. The player who has the most
number of pieces of their color in a knot (over all knots) wins the game. See Fig. 1
foranexampleofacompletedgame with scoring.

The pieces of Celtic! use crossing paths, which makesit a type of connec-
tion game where the goalis tobuild connecting paths. Path based pieces and
mechanics show up in several games such as Tsuro [14],Squiggle | 13|, Travel| 8§,
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Table 1. SummaryofresultsfordifferentCeltic!variations. AllreductionsuseaO(n) x
O(n) size board.

Version|Player Pieces|Board Pieces| Complexity |[Theorem
0-Player | [&]], [, [@], all P-complete Thm. 8
all O(n?) Thm. 1
all O(n?) Thm. 2
& all O(n?) Thm. 3
1-Player =l ) &l NP-complete Thm. 4
e @], I, &l NP-complete Thm. 5
@ all OPEN -
&, all OPEN -
@, @], I, &l NP-complete Thm. 6
2-Player | [, &, & I | (@), [, [&]), PSPACE-complete| Thm. 7

Kaliko/Psyche-Paths/Cram| 16],andmanyothers. Please see [ 4]foranoverview
ofconnection-based (and edge-matching) games.

Our Contributions. Table 1 overviewsthemainresults. We characterize the
game of Celtic! for 0, 1, and 2 player games based on the types of pieces. We

consider the complexity of three variations of the board game. To start, we
lookatal-playervariationofCeltic!inwhichsomepiecesinitially existonte

board and the goal of the player is to form a single closed knot of some length
in £ moves. We show that for some pieces, this is NP-complete in Sect. 3We
showthatitisPSPACE-completetodetermineifthereisal st_plajer win in a 2-
player game (Sect. 4).In Sect. Sweanalyze)-playerversionwithdeterministic
placementandshowthatmakinga closed knot of some length is P-complete.

2 Preliminaries

Wefirstdetailsomegamemechanicsfromtheoriginalgame,aswellasprovide
formal definitions for the general game and problems afterwards.

2.1 Game Mechanics

Pieces. Thegamepiecesconsistof5distinct typesofpieces, with 5 copiesof
each type (25 pieces in total), with path segments (Fig. 2a)Thd8BluandRed
players each own 10 pieces (2 of each type with their background color), and
they share 5 pieces with a white background.

Initial Configuration and Rules. The % pieceisplaced to begin. Players
taketurnsplacingapieceadjacenttoalreadyexistingpiecestoformknots;each
piecemustle placed within the playing area such that no knot is prevented from
closing (Fig. 2b).Inthestandardgame,itmustremain in a 5 X 5 square.
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2.2 Definitions

Let D(p 1p 2) bethe ¢ 1-norm (Manhattan distance) betweenpointsp  1p s We
say2 cells[z 1y 1]]x 2y 2] are adjacent if D((x1,y1), (x2,y2)) = 1.

Definition 1 (Board and cells). A board Bis a fized wxhlattice surface
composed of cells, with each cell [xy] €B corresponding to a location in row x
and column y, and [00] corresponding to the bottom-leftmost cell.

Definition 2 (Path-segment). A path-segment is a pair of connected edge
points on a piece that represent a continuous path from one point to the other.

Definition 3 (Piece). A piece P € { @, [, & &, B } s a rotatable 4-sided

unit square, where each side is labeled open or close denoting the type of
stde that may or may not attach on this side. Fach open side has at most
two path-segment points (over and under). Label two points on each side
(123456,78) going counterclockwise around the square (Fig. 2a) as all path-
segment points, Celtic! uses pieces (ignoring rotation) with path-segments (21)
@I, (25, 61) [, (27, 81) &l, (27, 41, 83) &, (27, 41, 63, 85) . We use the
convention that each path-segment has the over number followed by the under
number, and we use this rotation as the canonical orientation.

Definition 4 (Matching and Paths). Two pieces p1p 2 are matching if they
are in adjacent cells and the touching sides are both labeled open. A path is made
of a sequence of path-segments from pieces. A path between pi1p o conceptually
connects the internal path-segment i101 from py to path-segment iz0o on ps, and
is defined as P= (i 1019 202,), where o 14 o lie on the touching sides of
p1,p2, and o mod 2 =i, mod 2.

Definition 5 (Valid piece). A piece in cell [x1y 1] is said to be valid if:

1 El[xiy j] for (ZJ) 6{(251)’(12)7(051)’(170)}SU’Ch that [aj 1Y 1]?[1: ivyj} con-
tain matching pieces, and

2. All other adjacent cells [x;y ;] for (ij) €(2,1),1.2),(0,1),(10)} satisfy
(a) [z1y 1],z sy ;] contain matching pieces, (b) the touching sides of the pieces
in [x1y 1] and [zy ;] are both labeled closed, or (c) [z;,y;] is empty.

Definition 6 (Knot). A knot is a continuous path P = (i101§ Ok
through path-segments on valid pieces (p1p k) where each path piece p, iden-
tifies a corresponding input and output path-segment i 0, on a piece such that

1. each p, matches with pgy1 for 1 <a<k—1 and p i matches with p1, and
2. each o, continues through i, for 1 <a<k—1 and o j continues to i;.

Note that multiple path-segments through the same piece may exist. The length
(score) of a knot is not the number of path-segments in pieces it crosses, but
the number of distinct pieces (or grid locations) the total path crosses. This
definition ignores the topological properties of a knot in relation to other knots.
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Fig. 3. Exampleofaninitialgameboardconfigurationforgeneralized 1-PlayerCeltic!
and asequence of valid moves that form a closed knot oflength |[K| = 11 in k = 3

moves given 2 &l pieces and 1 (] piece.

Problem Definitions. Thispaperlooksat3 variationsof Celtic!: a0-Player
simulation (Fig. 13),al-Playerpuzzle (Fig. 3),anda2-Player game (Fig. 1).

Definition 7 (0-Player Celtic!). A 0-player Celtic! simulation is defined as:
INPUT: A wxhboard partially filled with pieces € RN & & }, a
piece as a starter piece and a positive integer L.
OUTPUT: Is it possible to place the starter piece in a cell [07] rotated 180
degrees for some integer 0 <&kwand create a knot of length > L?

Definition 8 (1-Player Celtic!). A 1-Player Celtic! puzzle is defined as:
INPUT: A wxh board partially filled with pieces, a multi-set S of pieces
(with k=|S|) and positive integer Lwhere k<L<k+ L<wh.
OUTPUT: Can kwalid pieces (from S) be placed such that a closed knot of
length > L is formed?

Definition 9 (2-Player Celtic!). A 2-Player Celtic! game is defined as:
INPUT: A w x hboard with a white &2 piece in cell [ij], where 1 <i<wand

1 <j<h, multi-sets S g, Sg, and Sy of red, blue, and white pieces, respectively.
MOVES: Players take turns placing a valid move using one of their colored

pieces or a white piece. Once no valid moves exist, each player chooses a com-

pleted knot and receives a score. The score MrM g for each player is a positive

integer denoting the number of pieces of their color from their chosen knot.
OUTPUT: Whether there is a Blue player win, a Red player win, or a draw

based on max(MpM g).

2.3 Constraint Logic

The0-playerand2-playerreductionsmakeuseof constraint logic (CL) [ 9].Prob-
lemsin CLarebased onaconstraint graph whereeach weighted directed edge
hasvalue2(blue)or1(red),andeveryvertexhasaminimuminflowconstraint

of 2. The gameis based onflipping edges of the graph, where an edge can be
flipped only if the minimum inflow constraints are maintained. In [9],theyshow
thatallgraphsin CLcanbereducedtoafewsimplegadgets,each of degree 3,

that are equivalent for the games.
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The0-player gadgets for Bounded Deterministic Constrait Logic (BDCL),
Fig. 1c,requirethatthegraphisnon-planarandeveryedgemayonlybeflipped
once. Theyconsistof an AND, FANOUT, and OR. BDCL is P-complete.

The Bounded 2-player Constraint Logic (B2CL) gadgets (Fig. 1d) have
assigned edges (whiteis1  ** playerandblackis2 "¢)and may only beflipped
once by the owner. They consist of an AND, FANOUT, OR, CHOICE, and
VARIABLE.B2CLisPSPACE-complete even for planar graphs. Note that the
274 player can only move in the variable gadget.

3 Generalized 1-Player Celtic!

This section looks at generalized 1-Player Celtic! played on an O(n) xO(n)

board, where the goalis to build aclosed knot oflength > Lin k moves. We

start with polynomialtimealgorithmswhenrestricted toplacing , QI‘ &
pieces.Wethenshowageneralframewak for the NP-hardness reductions, which

is used in the final section to show NP-completeness when restricted to either
placing &l or , as well as for other piece combinations.

3.1 Polynomial Cases

Theorem 1. Building a closed knot of length > L with kmoves by placing
pieces in Generalized 1-Player Celtic!, where the initial board configuration can

contain @, [, &, &, and & pieces, is solvable in O(n?) time.

Theorem 2. Building a closed knot of length > L with kmoves by placing
pieces in Generalized 1-Player Celtic!, where the initial board configuration can

contain @, [, &, &, and B pieces, is solvable in O(n?) time.

Theorem 3. Building a closed knot of length > L with kmoves by placing &
pieces in Generalized 1-Player Celtic!, where the initial board configuration can

contain @, 0, &, B, and B pieces, is solvable in O(n?) time.

3.2 General Framework for Hardness Reductions

Weoutlinetheframeworkusedforthehardness reductions in Sect. 3.3Forach
result,wereducefromdirected,planarHamiltonian cycle with max degree 3[  15].
Atahigh-level givenadirected,planargraph,wetransformitintoanguivalent
rectilinearly embedded graph G, [10]. Wespaceout theverticesin G ¢ soeach
edgemaybetransformed to have roughly the same length (Fig. 4).Denotethis
new graph G. Wethen construct the Celtic! board used for thereduction. We
replaceedges with [ and & pieces,leavinga7 X7 emptyregion centered at
eachvertex,whichiswherethevertexgadgetwillbeplaced. Thegadgetconsists

ofa & piecewithotherpiecesplaceddependingontheallowable pieces, and the
main objective being that all incoming edges lie either to the left or right of the
central vertex piece, and all outgoing edges lie on the other side. This forces the
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Fig. 4. The3-stepprocessforcreatingtheinitialboardfortheNP-completereductions.

(a) Exampledirected, planar graph with max degree 3. (b) Thegraphisscaled by a
factorof|V| 2, thentransformedtohaveedgesofroughlyequallengthsusingthefree
spacearound each vertex. Theedgeswithin 3 units of the vertex are left untouched.

(c¢) The initial board created for the graph. The vertex gadget changes per reduction
depending on the pieces used.
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Fig. 5. Vertexgadgetsforthe(a) = pieceselectingthewesternedge, (b) selecting
thesouthernedge,and (c) Q] and & selecting the western edge.

playertoplacepiecesthat chooseexactly oneincomingedge and one outgoing
edgepervertexgadget. Ifthesechoicesareconsistentacrossallvertices,thena
knotoflength L is formed corresponding to a Hamiltonian cycle in the original
graph G, otherwise, the knot is not formed.
Foreachreduction,wegiveavertexgadgetwiththedifferentcombinationsof
inputandoutputondifferentsidesfortheconstructionusingthepiecesforthat
problem.Dependingonthereduction,someadditional piecesareneededtoaid
withmakingachoice between the incoming and outgoing edges at each vertex
piece. Although not all cases are given, a few examples are shown in Fig. 5.

3.3 Hardness Results

Usingthe framework discussedin Sect. 3.2, we now show NP-completeness for
differert piece combinations.

Lemma 1. Generalized 1-Player Celtic! is in NP.
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Fig. 6. (a) VARIABLEGadgetinthe2-playergamerepresentingthe VARIABLEver-
texinaBounded2CL.IfRedplayermovesfirst,theknotisclosedwith a,preventing
Blue player from continuing an edge to other gadgets. If Blue player movesfirst, 2
is placed, which restricts the red player to only continue the knot to other gadgets.
(b)Inthe WINNING Gadget,onlytheBlueplayerisallowedtofinally closetheknot.
Oncetheblueplayer closes the knot, the knot can no longer be extended. (¢) Example
moves in the WINNING gadget. The red player can only continue in the gadget, while
blue player makes the last move. (Color figure online)

Theorem 4. Building a closed knot of length > L with kmoves by placing
pieces in Generalized 1-Player Celtic!, where the initial board configuration can
contain [ and & pieces, is NP-complete.

Theorem 5. Building a closed knot of length > L with kmoves by placing
pieces in Generalized 1-Player Celtic!, where the initial board configuration can

contain , , and & pieces, is NP-complete.

Theorem 6. Building a closed knot of length > L with kmoves by placing
and & pieces in Generalized 1-Player Celtic!, where the initial board configura-

tion can contain , , and K& pieces, is NP-complete.

4 Constraint-Graph Reduction for 2-Player

Wenow analyze generalized 2-player Celtic! played onan O(n) xO(n) board
whereboth Blueand Redplayers have a multi-set of pieces.

Lemma 2. Given an O(n) xO(n) board configuration where both Blue and
Red player have a multi-set of pieces containing pieces [N& &N ] Decid-
ing whether there is a sequence of moves to force a Blue player (player 1) win
starting at a given board position is PSPACE-hard.

Proof. Toshow that determining if Blue player has a forced winis PSPACE-
hard,wereduceBounded 2-player Constraint Logic, whereasequenceofmoves

in the 2-Player Celtic! game represents the flipping of an edge in the Con-

straint Graph whose configuration represents the constraint-satisfaction problem
of 2CL. The problem is defined as: Does the Blue player have a forced win?
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Fig. 7. (a) ORGadgetinthe2-playergamerepresentingthe OR vertexinaBounded
2CL.Fortheplayertocontinuewithavalidknot,theplayercanconnectaknotfrom

the right side using the B or from the left side using the R, The player can then
complete the knot from the opposite side as well. (b) An example of a sequence of
movesinthe OR gadget whentheknotfromtherightsideiscontinued. (¢) CHOICE
Gadgetinthe2-playergamerepresentingthe CHOICE vertexinaBounded 2CL. For

the player to continue a valid knot, the player can use either R o R] Depending on
the piece, the knot continues right or left. No knot can be completed from the opposite
side. (d) Moves in the CHOICE gadget continuing the knot to the right side.

WereduceBounded2CLbydesigningthe VARIABLE,AND,OR,CHOICE
andFANOUTgadgetsforourgamethatarejoinedtocreateaconstraintgraph
representing the sequence of moves. Thereis a Winning gadget that the Blue
player can use to finish the knot. We show that the constraint graph accepts the
configuration when the Blue player wins.

VARIABLE Gadget. (Figure6a) Weneedtoshowthatthisgadgetsatisfies
thesameconstraintsasthatofavariablevertexintheBounded2CLconstraint

graph. Ifthe Red player movesfirst, it closes the knot using the piece = pre-
venting Blue player from continuing an edge to other gadgets. But if the Blue
player moves first, it can place a piece @] that restricts the red player to only
continue the knot to other gadgets.

WIRE Gadget. Awireisawalledpathofwidth 1 that connect gadgets.

WINNING Gadget. (Figure 6b)Thewinninggadgetisusedbytheblueplayer
toclosetheknotoncetheyreachit. Inall other gadgets, the players continue
withtheknot,andtheyfinallyleadintothewinning gadget. Here only the blue
player is able to close the knot using the RJ as shown in Fig. 6¢.

OR Gadget. (Figures7a, 7b)TheconstructionofthisORgadgetinourgame
satisfies thesame constraints asa Bounded 2CL OR vertex. For the player to
continue with a valid knot, the player can connect a knot from the right side

using the [ or from the left side using the Rl. Another knot can later be used
to close the opposite Input side using .
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CHOICE Gadget. (Figure 7c¢) The construction of this gadget satisfies the
sameconstraintsasthatofaCHOICEvertexinaBounded2CLwhereasequence

of moves mark whether the knot can be extended towards left or right. For

the player to continue with a valid knot, the player can use either or Rl.
Depending on the piece used, the knot will then continue right or left. No knot
can be completed from the opposite side.

AND Gadget. (Figure8a)Wenowshowthattheconstructionofthisgadget
satisfies the same constraints as that of the AND vertex in a Bounded 2CL
constraint.Fortheplayertocontinuewithavalidknot,theplayercanuseboth

and & Iftheplayer only connects a knot from one side, the knot will not be
closed. Hence, the pieces in the knot will not count towards the players.

FANOUT Gadget. (Figure8c)Thisgadgetsatisfiesthesameconstraintsas
thatofthe FANOUTvertexinaBounded2CLconstraintgraph. Theconstruc-
tionisquitesimilartothe ANDgadgetwheretheOutputedgeisnowthelnput

edge. If the plaver is able to connect to the Input edge, then the player can
complete the knot by connecting on both sides using [ andg B1.

SincetheRed playeronly has [I]l, theycanuseitinthe Variable gadget to
block,orcontinuewithexistingknotsinallthegadgets. TheBlueplayermakes
movesinthe Variablegadgets.IftheBlueplayerisabletoassignthe Variables
totrue(placeintheVariablegadget ), theycanthensatisfyotherconstraintsby
continuingknotsinother gadgets. Oncethe knot reaches the Winning gadget,
the Blue player can close it, thus ending and winning the game. If both players
make alternate moves and Blue player makes the first move, the winning gadget
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T f 1 t t 1
(a) AND Gadget (b) AND Example (¢) FANOUT (d) FANOUT Ex.
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Fig. 8. (a) AND Gadget in the 2-player game representing the AND vertex in a
Bounded2CL.Fortheplayertocontinuewithavalidknot,theplayercanuseboth [
and & Ifthe playeronly connectsaknot fromoneside, theknot willnot be closed.

Hence, the piecesin the knot will not count towards the players. (b) An example of
movesinthe AND gadget. Tocompletetheknot theplayerhastoconnectfromboth

sides. (c)FANOUT Gadgetinthe 2-player game representing the FANOUT vertex in

a Bounded 2CL. The player can complete the knot by connecting on both sides using
P and B (d) An example of moves in the FANOUT gadget. The player is able to
continue knots on both sides.
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Fig. 9. Valid(left)andinvalid(right)moves.Intheinvalidmoves,thelefthasanempty

cellonthenorthside,sotheplayermustplacea & piece.Intheotherexample,there
isanadjacert piece to the north with a closed side, thus the played piece needs a closed
side on its north.

willensurethat the Blue playeristhelast player tomakeamove. Thus, Blue
hasat least one piece more than Red, making them the winner.
Theconstructionofthesegadgetssatisfiesall constraintsasthatofvertices
in a constraint graph of a Bounded 2CL. We know that finding the variables
assignments for the constraint logic problem for a Bounded 2CL is PSPACE-
complete. Such variable assignments correspond to the Blue and Red player
makingmovesin the variable gadgets, settingthemto true or false. Therefore
deciding if the Blue player can make certain moves in the variable gadgets such
that the Blue player always wins is PSPACE-hard. O
Lemma 3. Given an O(n) xO(n) board configuration where both Blue and
Red player have a multi-set of pieces containing pieces[ N& &N Deciding
whether there is a sequence of moves the Blue player can make that results in a
forced win starting at a given board position is in PSPACE (Fig. 9).

Theorem 7. Given an O(n) xO(n) board configuration where both Blue and

Red player have a multi-set of pieces containing pieces JOATAA O Deciding
if the given board configuration is a 15t player win is PSPACE-complete.

5 Constraint Logic Reduction for 0-Player

This section considers a 0-player variation of Celtic! with rule constraints to
allowforautomation,ad shows that 0-player Celtic! is P-complete.

5.1 O0-Player Decisions
WedefineplacementrulesforanautomatedO-playerto make decisions.

— Structural Pieces - Existing white pieces used as walls or requiring specific
pieces to traverse.

— SignalPieces - Theautomatedbluepiecesthatpropagatethrough the board.

— CloseSouthRule - A piece is always placed to close a southward path
unlessthereis another adjacent cell that requires a different piece (Fig. 10a).

— 3-OpenPieceRule - A pieceisplacedwhen3sides are possible (Fig.  10b).

— 4-OpenPieceRule - A 1% is placed when 4 open sides are possible, which
alsoallows for crossovers in the graph (Fig. 10c)(Fig. 11).
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Fig. 10. (a) AnexampleoftheCloseSouthMovementsrule. Theredarrowsshowthe
direction that the player is placing the pieces. Asit continues north, any movement
southwillresultina piecetoclosethat path. (b) Theconditions needed in order

to continue through a piece. (¢) The conditions necessary to continue through a
piece. (Color figure online)
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Fig. 11. Example0-playersimulationsofaboard,dependingonwherethestarterpiece
isplaced. Here, thelongest knot iscreated by placing it in the middle. Ifthe goalis
togetaknot >5, theplayercanplacethestarter pieceintheleft ormiddlegarting

location. The green arrows show the path the simulation takes and the red X’s are the
directions it can not continue through. (Color figure online)

5.2 0-Player Bounded Deterministic Constraint Logic Gadgets

BoundedDCLis P-complete [ 9]sincewecanuseittosimulatemonotoneboolean
circuits, which only requires us to simulate simple AND, OR and FANOUT
gadgets. WereducefromBounded DCLto0-Player Celtic! simulation. We show
the construction of the AND, OR and FANOUT in Fig. 12.

WIRE Gadget. Awireisawalled (bystructuralpieces)mth of width 1 that
connects gadgets.

OR Gadget. TheORgadgethastwoinputsandoneoutput.Ifasignalpiece
propagatesthroughtheleftinput,bythe4-Open Sided Rule,t will propagate
vertically through the 4 open-sided structural piece (Fig.12). Asitpropagates
north,itsplitsinto2signals:oneofthemcontinuesastheoutputofthegadget,
theothertakesaturnleft.BytheClose South Movement Rule and4-Open
Sided Rule itwillthenconnectwiththe4open-sidedpieceandcontinuehori-
zontallyuntil it closes going southward through the other input path. Similarly,
if the signal piece propagates on the right input, the signal traverses the
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Fig. 12. ExamplesofanOR,AND,andFANOUTgadget,andhowtheyaretraversed.
Thegreenarrowsshowinputspropagatinginward,redarrowsdepictsouthwardpropa-
gationgettingclosed.IntheORgadget,oneinputcausestheotherinputpathtoclose,

and anyothersignal coming in will close. The AND requires both inputs in order to
continue outwards. FANOUT splits into 2. (Color figure online)

structural piece horizontally, continuing north with its output, and eventually
propagatingsouthverticallythroughthe & pieceandclosestheotherinput.If
anothersignaltriestopropagatethroughthe opposite side it will immediately
close, but the signal has already propagated from the first input.

AND Gadget. Bythe3-Open Sided Rule,asignalpiececomingfromeither
inputcannotcontinuethroughtheoutputunlesstheautomatedplayerlas con-
nected signal pieces to both parallel sides of the structural piece (Fig.12).

FANOUT Gadget. Bythe3-Open Sided Rule,asignal piecepropagating
throughtheperpendicularopensideofthe & pieceallowstheautomatedplayer
to split the signal and propagate through both outputs (Fig. 12).

Simulating DCL with Gadgets. Figure 13 demonstrateshowthegadgetson
aboardcansimulatebounded DCL. Thegoalistoattempttoreachtheoutput
fromthetopANDgadget.Noticeitcanonlyreachtheoutputbyplayinginthe
middlestartingpositionwherethesignalsplitsintheFANOUTgadget,through
the2ORgadgets,andthenintothefinal AND gadget. Thegoalofa0-Player
Celtic!simulationistogenerateaknotofsize> I, so you can extend the output

of the last top gadget to be longer than any possible knot before that, and let
L equal to that. Thus, the only knot that can achieve this is the knot that can
output through the last gadget.

Theorem 8. 0-Player Celtic! is P-complete.
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Fig. 13. Exampleofthe0-PlayerCelticlreductionfromDCL.Theredsquareshighlight
thegadgetslocations. Ontopwehavean AND withinputscomingfromtheoutputs
ofthemiddleOR gadgets. Atthebottom, wecanplaceourstarterpieceasinputinto
oneofthe ORs, or we can input it into the FANOUT. Here, only the middle starting
position will reach the opposite side of the board. (Color figure online)

6 Generalized Celtic! with Boards of Odd Dimension

This section considers generalized Celtic! played on boards of odd dimension,

where the count of each , @], , and B white pieces are even and the
set of pieceseach player getsisequal. Thisincludeswhen the white piecesare
excluded altogether, orif thenumber of white pieces are assumed infinite. We
showthatthroughastrategy-stealing argument, whereplayer2takesadvantage
ofthegamessymmetry® prevent player 1 from having a winning strategy, the
game is guaranteed to be a draw. Let Sp, Sg and Sy be multi-sets of blue, red
and white pieces, respectively.

Theorem 9. Celtic! played on an nxnboard, where nis odd, is a guaranteed

draw when S = Sg and the count of each , , @, , R s w 1S even.

Proof. Although no formal proof is provided due to space, the basic idea is
strategy stealing based onboard symmetry. Iftheboardsizeisodd,and there

arean even number of each neutral white piece, the second player can always

mirror the play of the first player on the other side of the board. This would

ensure that all knots end up with an equal number of each color or that there is
an equivalent mirrored knot with the player colors inverted.

7 Conclusion

Thiswork characterizesand analyzesthe complexity of 3 variationsof Celtic!:

The 0, 1, and 2 player variants depending on the pieces allowed. In the 1-

Player version, we show NP-completeness or membership in P depending on
thepiecesallowed. Forthe 2-player variation, deciding if there is a first-player
win is PSPACE-complete. We show that a 0-Player variation with forced play,
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determiningifaclosedknotofsomelengthcanbeformedafteraninitialstarter
pieceisP-complete. Thisworknaturallyleadsto®me open questions, such as
those in the table and below.

Whatisthecomplexity withdifferent piecesforRed or Blue player?
Whatisthecomplexity ofthedifferent gamesgivenaboardoffixed dimen-
sion? Whatestricted board instances are polynomial time solvable?
Whatisthecomplexityofthetwoopen cases in Table 17

Weshowthat forany generalboard ofodd dimensionwithevennumbersof
eachpiece,thegamealwaysendsina draw. Without these restrictions, is the
standard game a first-player win?
Whatifwelookatpatterncomplexitybasedontheknots? Generalpatterns
couldbeansweredsimilartothe PATS (patterned self-assembly tile set syn-
thesis) problem [11],butifweconsiderthetopologyoftheknots,thepattern
isnolongerbasedslely on the tile-type, or even color, at some location.
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