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Abstract. In this paper we focus on the intersection of tile assem-
bling systems, edge-matching puzzles, combinatorial games, and knot
constructionandidentity.Asabasis,weutilizethegameCeltic!,which
isa2-Playerboardgamewherethegoalofthegameistoconstructknots
whereoneknotusesmoreofaplayer’spiecesthantheotherplayerover
allknots.Allpiecesmustbuildoffanexistingknotandavalidknotmust
beclosed.Weconsiderthreevariations:a0-playerself-assemblyvariation
thatdeterministicallyplacespiecestoformaclosedknotofsomelength,
a 1-player puzzle variation where the goal is to form a closed knot of
some length, and the original 2-player game with restricted pieces. We
show these are P-complete, NP-complete (depending on the pieces), and
PSPACE-complete (for a first-player win), respectively. We nearly fully
characterize the hardness of the 1-player puzzle based on the pieces.

1 Introduction 

Squareedge-matchingpuzzlesgenerallyemploytheuseof(possiblyrotatable)
tiles,witheachsidegivenaspecificlabelthatdictateshowtheymaybeusedin
conjunctionwithothertiles.Thesetypesofpuzzleshave existed for centuries,
and are often deceptively difficult to solve. For instance, the Eternity II puzzle
[19],introducedin2007,offered$2,000,000 forthefirstcompletesolution.While
norestrictionswereplacedonthemethodsused,nocompletesolutionhasyet
to be found, with the closest solutions falling short a few pieces. The work of [6]
showsthatedge-matchingpuzzles,including MacMahon Squares [ 12],Scramble
Squares,andTetraVex [ 17],areNP-completeandareequivalenttoothertypes
ofpuzzlessuchasjigsaw and polyomino packing puzzles.

ThepuzzlesoftenremainNP-hardevenfor small instances. In [ 7],theauthors
showthatevenfora1-by-npuzzle,unsignededge-matchingwithrotationisstill
NP-hard and fixed parameter tractable in the number of unique labels. This
work was later improved in [3],where itwas shownthat forboth signedand
unsigned edges, 1-by-n puzzles are NP-hard, even to approximate. Naturally,
variationsofthesetypesofpuzzleshavebeenconsidered,suchashavingaddi-
tional inequality constraints between adjacent tiles, triangular edge matchings,
and when no target shape is specified [2].
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Fig. 1. (a)FinalCeltic!boardwhereallknotsareclosedandnovalidmovesexist.(b)
Celtic! boarddisplayingcompletedknots.Theknot score forRed(R)andBlue (B)
playersbasedontheknot.Redknot:R(9) - B(2),Blueknot:R(1) - B(5),Yellowknot:
R(4) - B(1),andWhiteknot:R(0) - B(1).Giventheseknots,the best score for Red
is 9 and 5 points for Blue. (c) Gadgets for 0-player non-planar Bounded Deterministic
CL. (d) Gadgets for Bounded 2-player CL. (Color figure online)

Fig. 2. (a)The5typesofpiecesinthegameaswellastheirpathconnections(inthis
orientation). Eachplayer (red andblue) has two copies of each type and there is a
shared set of white-backed ones. (b) Invalid vs. valid placement. (Color figure online)

In general, edge-matching puzzles are undecidable with unlimited pieces
[1]. More abstractly, generalized edge-matching of squares (without rotation)
iscloselyrelatedtocomputational complexity as exhibited through Wang tiles
[18],andmorerecently,self-assemblymodelssuchastheabstractTile Assembly
Model (aTAM) [20],whicharebothTuringUniversaleven with small tile sets.

Ourworkfocusesonagamewithsimilaredge-matching mechanics: Celtic! [ 5].
Celtic!isa2-Player(Blue/Red)tileplacementgamewhereeachplayerattemptsto
completeknotsbyalternativelyplacingpiecesontoafixedsizeboard.Eachpiece
canbethoughtofasarotatablesquarewitha‘closed’or‘open’labeloneachside,
similartothatofunsignededge-matchingwithtwolabels.Thegoalofthe game
is alternate playing pieces and completing knots. The player who has the most
number of pieces of their color in a knot (over all knots) wins the game. See Fig. 1
foranexampleofacompletedgame with scoring.

Thepieces ofCeltic! use crossingpaths,whichmakes it a typeof connec-
tiongamewherethegoal is tobuildconnectingpaths.Pathbasedpieces and
mechanics show up in several games such as Tsuro [14],Squiggle [ 13],Travel[ 8],
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Table 1. SummaryofresultsfordifferentCeltic!variations.AllreductionsuseaO (n)×
O(n) size board.

Kaliko/Psyche-Paths/Cram[ 16],andmanyothers. Please see [ 4]foranoverview
ofconnection-based(and edge-matching) games.

Our Contributions. Table 1 overviewsthemainresults.Wecharacterizethe
gameofCeltic! for0,1,and2playergamesbasedonthetypesofpieces.We
consider the complexity of three variations of the board game. To start, we
lookata1-playervariationofCeltic!inwhichsomepiecesinitiallyexistonthe
board and the goal of the player is to form a single closed knot of some length
in k moves. We show that for some pieces, this is NP-complete in Sect. 3.We
showthatitisPSPACE-completetodetermineifthereisa1 st-player win in a 2-
player game (Sect. 4).In Sect. 5,weanalyzea0-playerversionwithdeterministic
placementandshowthatmakinga closed knot of some length is P-complete.

2 Preliminaries 

Wefirstdetailsomegamemechanicsfromtheoriginalgame,aswellasprovide
formal definitions for the general game and problems afterwards.

2.1 Game Mechanics 

Pieces. Thegamepiecesconsistof5distincttypesofpieces,with5copiesof
each type (25 pieces in total), with path segments (Fig. 2a).TheBlueandRed
players eachown10pieces (2 of each typewith their background color), and
they share 5 pieces with a white background.

Initial Configuration and Rules. The piece isplacedtobegin.Players
taketurnsplacingapieceadjacenttoalreadyexistingpiecestoformknots;each
piecemustbe placed within the playing area such that no knot is prevented from
closing (Fig. 2b).Inthestandardgame,itmustremain in a 5 × 5 square.
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2.2 Definitions 

LetD(p 1,p 2) bethe � 1-norm(Manhattandistance)betweenpointsp 1,p 2.We
say2 cells[x 1,y 1],[x 2,y 2] are adjacent if D((x1, y1), (x2, y2)) = 1.

Definition 1 (Board and cells). A board B is a fixed w×h lattice surface 
composed of cells,  with  each  cell  [x,y] ∈Bcorresponding to a location in row x
and column y,  and  [0,0] corresponding to the bottom-leftmost cell.

Definition 2 (Path-segment). A path-segment is a pair of connected edge 
points on a piece that represent a continuous path from one point to the other. 

Definition 3 (Piece). A piece is a rotatable 4-sided 
unit square, where each side is labeled open or close denoting the type of 
side that may or may not attach on this side. Each open side has at most 
two path-segment points (over and under). Label two points on each side
〈1,2,3,4,5,6,7,8〉 going counterclockwise around the square (Fig. 2a) as all path-
segment points, Celtic! uses pieces (ignoring rotation) with path-segments (21) 

, (25, 61) , (27, 81) , (27, 41, 83) , (27, 41, 63, 85) . We use the 
convention that each path-segment has the over number followed by the under 
number, and we use this rotation as the canonical orientation. 

Definition 4 (Matching and Paths). Two pieces p1,p 2 are matching if they 
are in adjacent cells and the touching sides are both labeled open. A path is made 
of a sequence of path-segments from pieces. A path between p1,p 2 conceptually 
connects the internal path-segment i1o1 from p1 to path-segment i2o2 on p2,  and  
is defined as P = 〈...,i 1o1,i 2o2,... 〉,  where  o 1,i 2 lie o n the touching sides of
p1, p2, and o1 mod 2 = i2 mod 2.

Definition 5 (Valid piece). A piece in cell [x1,y 1] is said to be valid if:

1. ∃[xi,y j ] for (i,j) ∈{(2,1),(1,2),(0,1),(1,0)}such that [x 1,y 1],[ x i, yj ] con-
tain matching pieces, and

2. All other adjacent cells [xi,y j ] for (i,j) ∈{(2,1),(1,2),(0,1),(1,0)}satisfy 
(a) [x1,y 1],[x i,y j ] contain matching pieces, (b) the touching sides of the pieces 
in [x1,y 1] and [xi,y j ] are both labeled closed, or (c) [xi, yj ] is empty.

Definition 6 (Knot). A knot is a continuous path P = 〈i 1o1,...,i kok〉
through path-segments on valid pieces 〈p1,...,p k〉 where each path piece pa iden-
tifies a correspo nding input and output path-segment iaoa on a piece such that

1. each pa matches with pa+1 for 1 ≤a≤k−1 and p k matches with p1, and
2. each oa continues through ia+1 for 1 ≤a≤k−1 and o k continues to i1.

Note that multiple path-segments through the same piece may exist. The length 
(score) of a knot is not the number of path-segments in pieces it crosses, but 
the number of distinct pieces (or grid locations) the total path crosses. This 
definition ignores the topological properties of a knot in relation to other knots.
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Fig. 3. Exampleofaninitialgameboardconfigurationforgeneralized1-PlayerCeltic!
andasequenceofvalidmoves that formaclosedknotof length |K| = 11 in k = 3

moves given 2 pieces and 1 piece.

Problem Definitions. Thispaperlooksat3 variationsofCeltic!:a0 -Player
simulation (Fig. 13),a1-Playerpuzzle (Fig. 3),anda2-Player game (Fig. 1).

Definition 7 (0-Player Celtic!). A 0-player Celtic! simulation is defined as: 

INPUT:A w×hboard partially filled with pieces ,  a  
piece as a starter piece and a po sitive integer L.
OUTPUT:Is it possible to place the starter piece in a cell [0,i] rotated 180 

degrees for some integer 0 <i<wand create a knot of length ≥ L?

Definition 8 (1-Player Celtic!). A 1-Player Celtic! puzzle is defined as: 
INPUT:A w×h board partially filled with pieces, a multi-set S of pieces 

(with k= |S|) and positive integer Lwhere k≤L≤k+ L≤wh. 
OUTPUT:Can kvalid pieces (from S)  be  placed  such  th  at a closed knot of

length ≥ L is formed?

Definition 9 (2-Player Celtic!). A 2-Player Celtic! game is defined as: 

INPUT:A w×hboard with a white piece in cell [i,j],  where  1 ≤i≤wand 
1 ≤j≤h, multi-sets S R, SB,  and  SW of red, blue, and white pieces, respectively.

MOVES:Players take turns placing a valid move using one of their colored 
pieces or a white piece. Once no valid moves exist, each player chooses a com-
pleted knot and receives a score. The score MR,M B for each player is a positive 
integer denoting the number of pieces of their color from their chosen knot.

OUTPUT:Whether there is a Blue player win, a Red player win, or a draw 
based on max(MR,M B).

2.3 Constraint Logic 

The0-playerand2-playerreductionsmakeuseof constraint logic (CL) [ 9].Prob-
lemsinCLarebasedonaconstraintgraphwhereeachweighteddirectededge
hasvalue2(blue)or1(red),andeveryvertexhasaminimuminflowconstraint
of2.Thegameisbasedonflipping edges of the graph, where an edge can be
flipped only if the minimum inflow constraints are maintained. In [9],theyshow
thatallgraphsinCLcanbereducedtoafewsimplegadgets,each of degree 3,
that are equivalent for the games.



Tile-Based Knot Assembly with Celtic! 321

The0-playergadgetsforBoundedDeterministicConstraint Logic (BDCL),
Fig. 1c,requirethatthegraphisnon-planarandeveryedgemayonlybeflipped
once.Theyconsistof an AND, FANOUT, and OR. BDCL is P-complete.

The Bounded 2-player Constraint Logic (B2CL) gadgets (Fig. 1d) have
assignededges (white is1 st playerandblack is2 nd)andmayonlybeflipped
once by the owner. They consist of an AND, FANOUT, OR, CHOICE, and
VARIABLE.B2CLisPSPACE-complete even for planar graphs. Note that the
2nd player can only move in the variable gadget.

3 Generalized 1-Player Celtic! 

This section looks at generalized 1-Player Celtic! played on an O(n) ×O(n) 
board,wherethegoal is tobuildaclosedknotof length≥L inkmoves.We
startwithpolynomialtimealgorithmswhenrestrictedtoplacing , ,or
pieces.Wethenshowageneralframework for the NP-hardness reductions, which
is used in the final section to show NP-completeness when restricted to either
placing or , as well as for other piece combinations.

3.1 Polynomial Cases 

Theorem 1. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
pieces in Generalized 1-Player Celtic!, where the initial board configuration can 
contain , , , ,  and pieces, is solvable in O(n2) time.

Theorem 2. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
pieces in Generalized 1-Player Celtic!, where the initial board configuration can 
contain , , , ,  and pieces, is solvable in O(n2) time.

Theorem 3. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
pieces in Generalized 1-Player Celtic!, where the initial board configuration can 
contain , , , ,  and pieces, is solvable in O(n2) time.

3.2 General Framework for Hardness Reductions 

Weoutlinetheframeworkusedforthehardness reductions in Sect. 3.3.Foreach
result,wereducefromdirected,planarHamiltonian cycle with max degree 3 [ 15].
Atahigh-level,givenadirected,planargraph,wetransformitintoanequivalent
rectilinearly embedded graph Ge [10].WespaceouttheverticesinG e soeach
edgemaybetransformed to have roughly the same length (Fig. 4).Denotethis
newgraphG.WethenconstructtheCeltic!boardusedforthereduction.We
replaceedgeswith and pieces, leavinga7 ×7 emptyregioncenteredat
eachvertex,whichiswherethevertexgadgetwillbeplaced.Thegadgetconsists

ofa piecewithotherpiecesplaceddependingontheallowable pieces, and the
main objective being that all incoming edges lie either to the left or right of the
central vertex piece, and all outgoing edges lie on the other side. This forces the
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Fig. 4. The3-stepprocessforcreatingtheinitialboardfortheNP-completereductions.
(a)Exampledirected,planargraphwithmaxdegree3.(b)Thegraphisscaledbya
factorof|V | 2 ,thentransformedtohaveedgesofroughlyequallengthsusingthefree
spacearoundeachvertex.Theedgeswithin 3 units of the vertex are left untouched.
(c) The initial board created for the graph. The vertex gadget changes per reduction
depending on the pieces used.

Fig. 5. Vertexgadgetsforthe(a) pieceselectingthewesternedge,(b) selecting

thesouthernedge,and (c) and selecting the western edge.

playertoplacepiecesthatchooseexactlyoneincomingedgeandoneoutgoing
edgepervertexgadget.Ifthesechoicesareconsistentacrossallvertices,thena
knotoflength L is formed corresponding to a Hamiltonian cycle in the original
graph Ge, otherwise, the knot is not formed.

Foreachreduction,wegiveavertexgadgetwiththedifferentcombinationsof
inputandoutputondifferentsidesfortheconstructionusingthepiecesforthat
problem.Dependingonthereduction,someadditionalpiecesareneededtoaid
withmakingachoice between the incoming and outgoing edges at each vertex
piece. Although not all cases are given, a few examples are shown in Fig. 5.

3.3 Hardness Results 

Usingtheframeworkdiscussedin Sect. 3.2,wenowshowNP-completeness for
different piece combinations.

Lemma 1. Generalized 1-Player Celtic! is in NP.
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Fig. 6. (a)VARIABLEGadgetinthe2-playergamerepresentingtheVARIABLEver-

texinaBounded2CL.IfRedplayermovesfirst,theknotisclosedwith ,preventing

Blueplayer fromcontinuinganedgetoothergadgets. IfBlueplayermovesfirst,
is placed,which restricts the redplayer to only continue theknot to other gadgets.
(b)IntheWINNINGGadget,onlytheBlueplayerisallowedtofinallyclosetheknot.
Oncetheblueplayer closes the knot, the knot can no longer be extended. (c) Example
moves in the WINNING gadget. The red player can only continue in the gadget, while
blue player makes the last move. (Color figure online)

Theorem 4. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
pieces in Generalized 1-Player Celtic!, where the initial board configuration can 
contain and pie ces, is NP-complete.

Theorem 5. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
pieces in Generalized 1-Player Celtic!, where the initial board configuration can 
contain , ,  and  pieces, is NP-complete.

Theorem 6. Building  a  closed  knot  of  length  ≥Lwith kmoves by placing 
and pieces in Generalized 1-Player Celtic!, where the initial board configura-
tion can contain , ,  and  pieces, is NP-complete.

4 Constraint-Graph Reduction for 2-Player 

Wenowanalyzegeneralized2-playerCeltic!playedonanO(n) ×O(n) board
wherebothBlueandRedplayers have a multi-set of pieces.

Lemma 2. Given an O(n) ×O(n) board configuration where both Blue and 

Red player have a multi-set of pieces containing pieces .  Decid-
ing whether there is a sequence of moves to force a Blue player (player 1) win 
starting at a given board position is PSPAC E-hard.

Proof. Toshowthatdetermining ifBlueplayerhasa forcedwin isPSPACE-
hard,wereduceBounded2-playerConstraintLogic,whereasequenceofmoves
in the 2-Player Celtic! game represents the flipping of an edge in the Con-
straint Graph whose configuration represents the constraint-satisfaction problem
of 2CL. The problem is defined as: Does the Blue player have a forced win?
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Fig. 7. (a)ORGadgetinthe2-playergamerepresentingtheORvertexinaBounded
2CL.Fortheplayertocontinuewithavalidknot,theplayercanconnectaknotfrom

the right side using the or from the left side using the .The player can then
complete the knot from the opposite side aswell. (b)An example of a sequence of
movesintheORgadgetwhentheknotfromtherightsideiscontinued.(c)CHOICE
Gadgetinthe2-playergamerepresentingtheCHOICEvertexinaBounded2CL.For

the player to continue a valid knot, the player can use either or . Depending on
the piece, the knot continues right or left. No knot can be completed from the opposite
side. (d) Moves in the CHOICE gadget continuing the knot to the right side.

WereduceBounded2CLbydesigningtheVARIABLE,AND,OR,CHOICE
andFANOUTgadgetsforourgamethatarejoinedtocreateaconstraintgraph
representing thesequenceofmoves.There isaWinninggadget that theBlue
player can use to finish the knot. We show that the constraint graph accepts the
configuration when the Blue player wins.

VARIABLE Gadget. (Figure 6a)Weneedtoshowthatthisgadgetsatisfies
thesameconstraintsasthatofavariablevertexintheBounded2CLconstraint
graph.IftheRedplayermovesfirst, itclosestheknotusingthepiece pre-
ventingBlueplayerfromcontinuinganedgetoothergadgets.But if the Blue
player moves first, it can place a piece that restricts the red player to only
continue the knot to other gadgets.

WIRE Gadget. Awireisawalledpathofwidth 1 that connect gadgets.

WINNING Gadget. (Figure 6b)Thewinninggadgetisusedbytheblueplayer
toclosetheknotoncetheyreachit. Inallothergadgets,theplayerscontinue
withtheknot,andtheyfinallyleadintothewinning gadget. Here only the blue
player is able to close the knot using the as shown in Fig. 6c.

OR Gadget. (Figures 7a, 7b)TheconstructionofthisORgadgetinourgame
satisfiesthesameconstraintsasaBounded2CLORvertex.Fortheplayerto
continuewithavalidknot, theplayer canconnectaknot fromthe right side
using the or from the left side using the . Another knot can later be used
to close the opposite Input side using .
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CHOICE Gadget. (Figure 7c)The construction of this gadget satisfies the
sameconstraintsasthatofaCHOICEvertexinaBounded2CLwhereasequence
of moves mark whether the knot can be extended towards left or right. For
the player to continue with a valid knot, the player can use either or .
Depending on the piece used, the knot will then continue right or left. No knot
can be completed from the opposite side.

AND Gadget. (Figure 8a)Wenowshowthattheconstructionofthisgadget
satisfies the same constraints as that of the AND vertex in a Bounded 2CL
constraint.Fortheplayertocontinuewithavalidknot,theplayercanuseboth

and .Iftheplayer only connects a knot from one side, the knot will not be
closed. Hence, the pieces in the knot will not count towards the players.

FANOUT Gadget. (Figure 8c)Thisgadgetsatisfiesthesameconstraintsas
thatoftheFANOUTvertexinaBounded2CLconstraintgraph.Theconstruc-
tionisquitesimilartotheANDgadgetwheretheOutputedgeisnowtheInput
edge. If the player is able to connect to the Input edge, then the player can
complete the knot by connecting on both sides using and .

SincetheRedplayeronlyhas ,theycanuseitintheVariablegadgetto
block,orcontinuewithexistingknotsinallthegadgets.TheBlueplayermakes
movesintheVariablegadgets.IftheBlueplayerisabletoassigntheVariables
totrue(placeintheVariablegadget),theycanthensatisfyotherconstraintsby
continuingknotsinothergadgets.Oncethe knot reaches the Winning gadget,
the Blue player can close it, thus ending and winning the game. If both players
make alternate moves and Blue player makes the first move, the winning gadget

Fig. 8. (a) AND Gadget in the 2-player game representing the AND vertex in a

Bounded2CL.Fortheplayertocontinuewithavalidknot,theplayercanuseboth

and .Iftheplayeronlyconnectsaknotfromoneside,theknotwillnotbeclosed.
Hence, thepieces intheknotwillnotcounttowardstheplayers. (b)Anexampleof
movesintheANDgadget.Tocompletetheknottheplayerhastoconnectfromboth
sides.(c)FANOUTGadgetinthe 2-player game representing the FANOUT vertex in
a Bounded 2CL. The player can complete the knot by connecting on both sides using

and . (d) An example of moves in the FANOUT gadget. The player is able to
continue knots on both sides.
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Fig. 9. Valid(left)andinvalid(right)moves.Intheinvalidmoves,thelefthasanempty

cellonthenorthside,sotheplayermustplacea piece.Intheotherexample,there
isanadjacent piece to the north with a closed side, thus the played piece needs a closed
side on its north.

willensurethattheBlueplayeristhelastplayertomakeamove.Thus,Blue
hasat least one piece more than Red, making them the winner.

Theconstructionofthesegadgetssatisfiesallconstraintsasthatofvertices
in a constraint graphof aBounded2CL.Weknowthatfinding thevariables
assignments for the constraint logicproblem for aBounded2CL isPSPACE-
complete. Such variable assignments correspond to the Blue and Red player
makingmovesinthevariablegadgets,settingthemto true or false. Therefore
deciding if the Blue player can make certain moves in the variable gadgets such
that the Blue player always wins is PSPACE-hard. �

Lemma 3. Given an O(n) ×O(n) board configuration where both Blue and 

Red player have a multi-set of pieces containing pieces . Deciding 
whether there is a sequence of moves the Blue player can make that results in a 
forced win starting at a given board position is in PSPACE (Fig. 9). 

Theorem 7. Given an O(n) ×O(n) board configuration where both Blue and 

Red player have a multi-set of pieces containing pieces . Deciding 
if the given board configuration is a 1st player win is PSPACE-c omplete.

5 Constraint Logic Reduction for 0-Player 

This section considers a 0-player variation of Celtic! with rule constraints to
allowforautomation,and shows that 0-player Celtic! is P-complete.

5.1 0-Player Decisions 

Wedefineplacementrulesforanautomated0-playerto make decisions.

– StructuralPieces - Existingwhitepiecesusedaswallsor requiringspecific
pieces to traverse.

– SignalPieces - Theautomatedbluepiecesthatpropagatethrough the board.
– Close SouthRule - A piece is alwaysplaced to close a southwardpath

unlessthereis another adjacent cell that requires a different piece (Fig. 10a).

– 3-OpenPieceRule - A pieceisplacedwhen3sides are possible (Fig. 10b).

– 4-OpenPieceRule - A isplacedwhen4opensidesarepossible,which
alsoallows for crossovers in the graph (Fig. 10c)(Fig. 11).
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Fig. 10. (a)AnexampleoftheCloseSouthMovementsrule.Theredarrowsshowthe
direction that theplayer isplacing thepieces.As it continuesnorth, anymovement

southwillresultina piecetoclosethatpath.(b)Theconditions needed in order

to continue through a piece. (c) The conditions necessary to continue through a
piece. (Color figure online)

Fig. 11. Example0-playersimulationsofaboard,dependingonwherethestarterpiece
isplaced.Here,thelongestknot iscreatedbyplacingit inthemiddle. If thegoal is
togetaknot≥5,theplayercanplacethestarterpieceintheleftormiddlestarting
location. The green arrows show the path the simulation takes and the red X’s are the
directions it can not continue through. (Color figure online)

5.2 0-Player Bounded Deterministic Constraint Logic Gadgets 

BoundedDCLis P-complete [ 9]sincewecanuseittosimulatemonotoneboolean
circuits, which only requires us to simulate simple AND, OR and FANOUT
gadgets.WereducefromBoundedDCLto0-Player Celtic! simulation. We show
the construction of the AND, OR and FANOUT in Fig. 12.

WIRE Gadget. Awireisawalled(bystructuralpieces)path of width 1 that
connects gadgets.

OR Gadget. TheORgadgethastwoinputsandoneoutput.Ifasignalpiece
propagatesthroughtheleftinput,bythe4-Open Sided Rule,it will propagate
vertically through the 4 open-sided structural piece (Fig. 12).Asitpropagates
north,itsplitsinto2signals:oneofthemcontinuesastheoutputofthegadget,
theothertakesaturnleft.BytheClose South Movement Rule and4-Open 
Sided Rule itwillthenconnectwiththe4open-sidedpieceandcontinuehori-
zontallyuntil it closes going southward through the other input path. Similarly,
if the signal piece propagates on the right input, the signal traverses the
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Fig. 12. ExamplesofanOR,AND,andFANOUTgadget,andhowtheyaretraversed.
Thegreenarrowsshowinputspropagatinginward,redarrowsdepictsouthwardpropa-
gationgettingclosed.IntheORgadget,oneinputcausestheotherinputpathtoclose,
andanyothersignal coming in will close. The AND requires both inputs in order to
continue outwards. FANOUT splits into 2. (Color figure online)

structuralpiecehorizontally, continuingnorthwith itsoutput, andeventually
propagatingsouthverticallythroughthe pieceandclosestheotherinput.If
anothersignaltriestopropagatethroughthe opposite side it will immediately
close, but the signal has already propagated from the first input.

AND Gadget. Bythe3-Open Sided Rule,asignalpiececomingfromeither
inputcannotcontinuethroughtheoutputunlesstheautomatedplayerhas con-
nected signal pieces to both parallel sides of the structural piece (Fig. 12).

FANOUT Gadget. Bythe3-Open Sided Rule,asignalpiecepropagating
throughtheperpendicularopensideofthe pieceallowstheautomatedplayer
to split the signal and propagate through both outputs (Fig. 12).

Simulating DCL with Gadgets. Figure 13 demonstrateshowthegadgetson
aboardcansimulateboundedDCL.Thegoalistoattempttoreachtheoutput
fromthetopANDgadget.Noticeitcanonlyreachtheoutputbyplayinginthe
middlestartingpositionwherethesignalsplitsintheFANOUTgadget,through
the2ORgadgets,andthenintothefinalANDgadget.Thegoalofa0-Player
Celtic!simulationistogenerateaknotofsize≥L, so you can extend the output
of the last top gadget to be longer than any possible knot before that, and let
L equal to that. Thus, the only knot that can achieve this is the knot that can
output through the last gadget.

Theorem 8. 0-Player Celtic! is P-complete.
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Fig. 13. Exampleofthe0-PlayerCeltic!reductionfromDCL.Theredsquareshighlight
thegadgetslocations.OntopwehaveanANDwithinputscomingfromtheoutputs
ofthemiddleORgadgets.Atthebottom,wecanplaceourstarterpieceasinputinto
oneofthe ORs, or we can input it into the FANOUT. Here, only the middle starting
position will reach the opposite side of the board. (Color figure online)

6 Generalized Celtic! with Boards of Odd Dimension 

This section considers generalizedCeltic! playedonboards of odddimension,
where the countof each , , , and whitepiecesare evenandthe
setofpieceseachplayergetsisequal.Thisincludeswhenthewhitepiecesare
excludedaltogether,or ifthenumberofwhitepiecesareassumedinfinite.We
showthatthroughastrategy-stealing argument,whereplayer2takesadvantage
ofthegamessymmetryto prevent player 1 from having a winning strategy, the
game is guaranteed to be a draw. Let SB , SR and SW be multi-sets of blue, red
and white pieces, respectively.

Theorem 9. Celtic! played on an n×nboard, where nis odd, is a guaranteed 
draw when SB = SR and the count of each , , , , ∈S W is even.

Proof. Although no formal proof is provided due to space, the basic idea is
strategystealingbasedonboardsymmetry.Iftheboardsizeisodd,andthere
areanevennumberofeachneutralwhitepiece, thesecondplayercanalways
mirror theplayof thefirstplayeron theother sideof theboard.This would
ensure that all knots end up with an equal number of each color or that there is
an equivalent mirrored knot with the player colors inverted.

7 Conclusion 

Thisworkcharacterizesandanalyzesthecomplexityof3 variationsofCeltic!:
The 0, 1, and 2 player variants depending on the pieces allowed. In the 1-
Player version, we show NP-completeness or membership in P depending on
thepiecesallowed.Forthe2-player variation, deciding if there is a first-player
win is PSPACE-complete. We show that a 0-Player variation with forced play,
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determiningifaclosedknotofsomelengthcanbeformedafteraninitialstarter
pieceisP-complete.Thisworknaturallyleadstosome open questions, such as
those in the table and below.

– WhatisthecomplexitywithdifferentpiecesforRed or Blue player?
– Whatisthecomplexityofthedifferentgamesgivenaboardoffixeddimen-

sion?Whatrestricted board instances are polynomial time solvable?
– Whatisthecomplexityofthetwoopen cases in Table 1?
– Weshowthatforanygeneralboardofodddimensionwithevennumbersof

eachpiece,thegamealwaysendsina draw. Without these restrictions, is the
standard game a first-player win?

– Whatifwelookatpatterncomplexitybasedontheknots?Generalpatterns
couldbeansweredsimilartothe PATS (patterned self-assembly tile set syn-
thesis) problem [11],butifweconsiderthetopologyoftheknots,thepattern
isnolongerbasedsolely on the tile-type, or even color, at some location.
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