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Drought legacies delay spring green-up in 
northern ecosystems
 

Ying Liu    1, Yao Zhang    1  , Josep Peñuelas    2,3, Steven A. Kannenberg    4, 
Haibo Gong1, Wenping Yuan    1, Chaoyang Wu    5, Sha Zhou    6 & 
Shilong Piao    1

Global warming has increased the frequency and intensity of droughts, 
causing large impacts on the structure and functioning of terrestrial 
ecosystems. The direct effect of droughts on autumn senescence is 
well-documented, but the extent to which the legacy effects influence 
plant phenology of the following year remains unclear. Using satellite 
greenness data and long-term in situ observations, we demonstrate that 
droughts substantially delay the green-up and leaf unfolding of the next 
spring, particularly following prolonged events with delayed soil moisture 
recovery. These delays cannot be explained by state-of-the-art phenology 
models and are strongly linked to postdrought temperature, local climate, 
drought characteristics and reductions in photosynthesis. Compared to 
the endogenous memory effects within plants themselves, the exogenous 
memory effects through changes in environment are five times stronger in 
drylands and twice as strong in non-drylands. Given projections of increased 
drought frequency and severity, future advances in spring phenology may 
be less pronounced than previously anticipated.

Advances of biological spring, such as leaf unfolding or green-up, have 
been globally recorded based on in situ and remotely sensed observa-
tions over recent decades1–4. An earlier start of the growing season 
(SOS) enhances photosynthesis and spring carbon uptake5–7, warms 
the atmosphere8 and potentially alters plant–animal interactions9. 
Recent insights into ecological memory, the antecedent events with 
downstream consequences, highlight strong legacy impacts of SOS on 
autumn leaf senescence through both endogenous memory effects, 
such as fixed leaf lifespan and carbon sink limitation10–12, and exo
genous memory effects, such as soil moisture stress from enhanced 
early-season transpiration13,14. Given its profound implications, recent 
studies strive for accurate projections of future SOS changes.

It has been widely accepted that preseason warming is the primary 
factor contributing to SOS advancement15. State-of-the-art spring 
phenology models also incorporate winter temperature to quantify 
chilling requirements and radiation for photoperiod regulation16,17, 

partially explaining reduced temperature sensitivity observed in 
spring leaf unfolding over recent decades18,19. Recent studies indicate 
that memory effects from the preceding year may strongly regulate 
SOS. For instance, greater carbon uptake in the previous year can lead  
to advanced spring leaf unfolding20. However, understanding of  
these memory effects remains limited, particularly regarding how 
drought, known for its strong legacy effects on plant growth, influences 
the next spring green-up21,22. As drought frequency and intensity are 
projected to increase with future warming23, which may be further 
exacerbated by increased evapotranspiration alongside vegetation 
greening14,24, the lack of a mechanistic understanding of drought  
legacies may introduce substantial uncertainty into future spring 
phenology projections.

One major challenge hindering the accurate quantification of 
drought legacy effects is their dual nature as both endogenous and 
exogenous. Persistent drought may deplete non-structural carbon 
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the impact of drought events on the green-up of the subsequent year 
across mid- and high-latitudinal Northern Hemisphere.

Legacy effect of drought events on spring 
phenology
To assess the legacy effect of drought on the SOS of the subsequent 
year, we calculated the difference in satellite-derived SOS (∆SOS) for 
the drought year compared to the year following (observation-based 
method). SOS is defined as the date when the normalized difference 
vegetation index (NDVI) first surpasses 20% of its annual amplitude 
(Supplementary Fig. 1). Since droughts mostly happen after SOS, posi-
tive and negative values of ∆SOS (SOSnext − SOScurrent) indicate delayed 
and advanced SOS induced by drought legacies, respectively. As a  
reference, we also calculated ∆SOS for years without drought in a  
similar way. This observation-based method shows that after 
droughts, 58.8% of the pixels experience delayed SOSnext compared to  
SOScurrent, with an average delay of about 1.24 days (Fig. 1a). Con-
versely, for the non-drought years, only 43.0% of vegetated areas  
show delayed SOSnext, with a slight advancement of ~0.14 days (Fig. 1b). 
This advancement aligns with previous reports of spring advancements 
(0.1–0.8 days) due to global warming8,15,29,30.

We also used phenology models to account for the predominant 
environmental determinants influencing spring phenology, thus better 

and impede nutrient recycling, both factors (endogenous) that can 
delay spring leaf unfolding25. If soil moisture (SM) fails to fully recover 
even after spring begins, this carryover water stress (exogenous) may 
also inhibit vegetation green-up26,27. Moreover, these effects may be 
further confounded by warming or cooling effects induced by SM 
deficits through complex land–atmosphere interactions28. However, 
differentiating endogenous and exogenous drought legacy effects 
is challenging at broad spatial and temporal scales. To distinguish 
between the endogenous and exogenous effects, while accounting 
for warming effects, we categorized drought events into three types 
on the basis of whether SM recovered within the same growing season  
as drought occurrence or before or after the onset of the next spring 
(Methods; Extended Data Fig. 1). Drought events were identified  
by considering both the water deficit and its impact on terrestrial 
ecosystems. Specifically, we used SM and deseasonalized vegeta-
tion index and identified droughts when both fell below 0.5 s.d. for at 
least two consecutive months (Methods; Extended Data Fig. 1). Using 
long-term satellite observations (global inventory modelling and  
mapping studies (GIMMS) NDVI 3g, 1982–2015) and ground pheno
logical records (Pan European phenology network (PEP725)  
(1945–2016), Russian ‘chronicles of nature’ network (RCNN) (1901–2017) 
and China phenological observation network (CPON) (1963–2014)), 
together with state-of-the-art phenology models, we investigated  
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Fig. 1 | Effects of drought on the SOS of the next year from GIMMS NDVI 3g dataset. a–d, Spatial distribution of mean changes between SOSnext and SOScurrent after 
drought (a) and non-drought (b) years, and differences between SOSobs and SOSpred after drought (c) and non-drought (d) years. Insets show proportion of area with 
SOS delayed (orange) or advanced (blue) by drought.
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isolating drought legacy effects (model-based method). To do so, we 
optimized five distinct phenology models considering the influence of 
temperature and photoperiod to predict SOS (SOSpred), using pheno
logy records unaffected by drought events (Methods). Subsequently, 
we calculated ∆SOS, by comparing the observed SOS after drought 
(SOSobs) with SOSpred. This allows us to isolate the impact of drought 
on SOS that is not accounted for by the models. As expected, SOSpred 
closely approximates SOSobs for non-drought years (Fig. 1d). In contrast, 
for years following droughts, 57.3% of the area exhibit delayed SOS 
compared to the model predictions, with an average delay of ~0.75 days 
(Fig. 1c). This model-based method shows a smaller difference in ∆SOS 
between drought and non-drought years (0.75 days) compared to the 
observation-based method (1.24 days), probably due to covariation 
of winter and spring temperatures with droughts, partly explaining 
delayed SOSnext. Nonetheless, these findings collectively indicate that 
drought legacy effects can substantially delay SOS, with an effect 
nearly one order of magnitude stronger than advances induced by 
warming. Even when we consider the frequency of the drought events, 
the equivalent annual delay of SOSnext induced by drought legacy is 
still twice as large as warming, particularly in mid-latitude regions 
(Extended Data Fig. 2).

To validate satellite-based analyses, we calculated differences 
in leaf unfolding dates (∆LUD = LUDnext − LUDcurrent) using 573,463 
ground-based phenological records from 1901 to 2017 across three 
phenological networks in Europe, China and Russia (PEP725, CPON 
and RCNN) spanning different Northern Hemisphere climate zones 
(Fig. 2a). We observed an 2.27 days delay in LUDnext during drought 
compared to a slight advance of −0.51 days during non-drought years 
(Fig. 2b). Specifically, among the three ground phenological networks, 
droughts delay LUDnext by 2.36 and 2.20 days for PEP725 and CPON, 
respectively, but only 1.14 days for RCNN (Fig. 2c,e,d). PEP725 and 
CPON also exhibit a higher proportion of delayed SOS (61.1% and 61.7%, 

respectively) compared to RCNN (54.6%). These results are consistent 
across eight major species, with delays averaging from 1.69 to 4.87 days 
(Extended Data Fig. 3).

To better understand the legacy effects of drought on spring phe-
nology, we categorized drought events into three types based on the 
recovery time of SM (Methods; Extended Data Fig. 1 and Fig. 3a–c). SM 
for type 1 droughts did not recover until the start of the next spring, thus 
affecting spring phenology through both endogenous and exogenous 
memory effects. Type 2 and type 3 droughts exhibit mostly endogenous 
memory effects, but differ in whether SM recovered within the growing 
season, which influences the strength of memory effect, due to differ-
ences in drought severity and duration (Supplementary Figs. 2 and 3).

We used the observation-based (SOSnext − SOScurrent) and model- 
based (SOSobs − SOSpred) methods to assess the legacy effects of these 
three drought types on spring phenology. Both approaches consist-
ently show that SOS exhibits a stronger delay for type 1 and type 2 
droughts compared to type 3, with a larger proportion of delayed 
pixels and a greater average delay (Fig. 3). This is expected given that 
type 3 droughts are generally less severe than the other types. More
over, the impact of type 1 drought displays a latitudinal pattern, with 
noticeable delays observed in mid-latitude regions and slight delays 
or even advancement in high latitudes (Fig. 3d,g). Interestingly, type 1  
droughts show a larger discrepancy between observation-based  
and model-based methods compared to the other types (Fig. 3d,g). 
This may be attributed to the exogenous memory effect of drought  
via temperature, partially accounted for by phenology models.

Controlling factors and underlying mechanisms
To explore the underlying mechanisms of drought legacies on SOS,  
we constructed random forest (RF) models using climate variables, 
plant characteristics, soil properties and drought-related variables 
to predict the SOS anomalies of the next year (SOSnext − SOScurrent) for 
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each of the three drought types. These variables can be categorized 
into dynamic variables related to each drought event and static vari-
ables related to the background environmental conditions (Methods; 
Supplementary Table 2). On average, the resulting models explain 
59.5% of variability in ΔSOS (61.4% for type 1, 56.2% for type 2 and 55.4% 
for type 3, respectively). On the basis of these models, we derived the 
relative importance ranking of each variable and partial dependence 
contribution to the SOS anomalies of the next year (Fig. 4).

Across all drought types, climate variables exert the greatest influ-
ence on the SOS changes after drought of the next year, followed by 
drought characteristics, plant characteristics and soil properties. 
Postdrought winter and spring temperatures exhibit the strongest 
influence, aligning with the known importance of winter chilling 
requirement and spring heat accumulation necessary to initiate bio-
logical spring, a mechanism embedded in most phenology models31. 
Background climate conditions are also critical, as drought causes 
greater SOS delays in dry regions. The effect of mean annual tem-
perature varies across drought types: warmer regions experience 

greater delays for type 1 drought, whereas colder regions show stronger 
delays for types 2 and 3 droughts. In warmer regions, preseason water 
availability plays a crucial role in initiating leaf unfolding compared 
to temperature32. This also explains the less optimal performance  
of temperature and photoperiod models in water-limited areas  
(Supplementary Fig. 4).

Among variables related to individual drought event, spring SM 
anomalies notably affect SOS changes, with negative anomalies delay-
ing SOS for type 1 but advancing SOS for type 2 and type 3 droughts. 
Ecosystems experiencing longer drought durations and greater SM 
losses tend to delay SOS, particularly evident for type 1 droughts.  
For type 2 and type 3 droughts, as spring SM have recovered from 
drought, additional SM may reduce oxygen and nutrient availability, 
delaying leaf-out.

Regarding plant responses to each drought event, negative anoma-
lies in gross primary productivity (GPP) were associated with larger 
delays in SOS across all three drought types. Earlier end of season (EOS) 
also leads to slight SOS delays, particularly for type 1 drought occurring 
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between 45° and 55° N (Extended Data Fig. 4f). We also observe consid-
erable impact of ecosystem characteristics on the SOS changes of the 
next year. Ecosystems with longer growing seasons, higher biodiver-
sity and lower isohydricity values (more isohydric behaviour) tend to 
delay SOS after droughts. Although higher biodiversity can enhance 
ecosystem resistance to mild droughts (type 3), but severe droughts 
(types 1 and 2) require longer recovery times33,34. Droughts tend to 
delay SOS more for plants with stricter water status regulation (isohy-
dric plants), probably due to greater reduction in carbon assimilation 
during drought35,36. Other factors, particularly those related to soil 
characteristics, exert a relatively weaker influence on SOS.

We also trained RF models to predict the SOS changes of the 
next year estimated by the model-based method (SOSobs − SOSpred). 
Even after eliminating the influence of temperature and photoper-
iod through phenology models, the resulting RF models can still  
explain 50.2% of the SOS changes of the next year (52.2% for type 1, 
46.0% for type 2 and 43.3% for type 3, respectively), which also show 
similar environmental dependencies (Extended Data Fig. 5).

Exogenous and endogenous memory effect  
of drought
We used path analysis to differentiate the endogenous and exogenous 
memory effects of droughts on SOS. Droughts exhibit stronger legacy 

effects in drylands compared to wet regions (Fig. 5), which peaks in 
semi-arid areas (Extended Data Fig. 6b). Notably, the influence of exog-
enous effects dominates the legacy effect (Fig. 5 and Extended Data 
Figs. 6 and 7), primarily through diminishing spring SM (Ex1). Although 
drought legacies can also delay SOS through reduced spring tempera-
tures (Ex2), this pathway generally exhibits weaker effects compared to 
SM in most biomes, with exceptions observed in temperate coniferous 
forests and temperate grasslands (Extended Data Fig. 7b,f). This exog-
enous effect via spring temperatures (Ex2) may also explain the greater 
disparities between observation-based and model-based methods for 
type 1 droughts (Fig. 3a,d). The legacy effect diminishes in high-latitude 
areas (for example, boreal forests/taiga regions) and even reverses in 
tundra regions (Extended Data Fig. 7c,d), probably due to strong cold 
stress and relatively weaker water limitations. This finding aligns with 
our analysis indicating that RCNN shows less delay in SOS compared 
to PEP725 and CPON (Fig. 2d,c,e). Additionally, endogenous memory 
effects also delay SOS, especially through reduced GPP during the 
drought period (En1). These endogenous effects are generally one-fifth 
to half as strong as the exogenous effects but are relatively more pro-
nounced in temperate broadleaf/mixed forests, temperate coniferous 
forests and Mediterranean forests (Extended Data Fig. 7a,b,g).

Our research underscores the importance of exogenous mem-
ory effects in delaying SOS following droughts. Drought-induced SM 
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deficits may carry over to the next spring and hinder leaf expansion, 
especially in arid and semi-arid regions (Fig. 5 and Extended Data Fig. 6). 
In these regions (montane grasslands and temperate grasslands), 
plants are strongly constrained by water availability37,38, making them 
more susceptible to the exogenous memory effects of drought. As trees 
become dominant with decreasing aridity39, the relative importance  
of exogenous memory effects declines (Extended Data Figs. 6 and 7).  
Soil water deficits are also more likely to recover within a growing 
season in these wet regions (Supplementary Figs. 2 and 3), resulting 
in a weaker exogenous memory effect. Under extreme conditions, 
such as in high-latitude tundra ecosystems, drought-induced spring 
SM decline may advance SOS, possibly due to decreased snow cover, 
reduced inundation and accelerated soil thawing40,41. Additionally, 
drought legacies may delay SOS through reductions in spring or winter 
temperature (Ex2, Ex3 and Ex32 in Fig. 5). However, these pathways are 
generally weaker and may involve large-scale circulation changes and 
complex land–atmosphere feedbacks, thus exhibiting a geographical 
dependence (Extended Data Fig. 7).

The endogenous effect also delays SOS in the Northern Hemi-
sphere, albeit with a relatively weaker effect size than exogenous fac-
tors. Although we primarily used GPP anomalies as the major indicator 
of endogenous regulation, it may also reflect processes related to 
reductions in non-structural carbon storage42,43 and enhanced xylem 
embolism44,45, which are processes hypothesized to play a key role 
in causing drought legacy effects. Accordingly, we found that forest 
ecosystems exhibited stronger endogenous effects than grasslands 
(Extended Data Fig. 7). Evidence from phloem girdling experiments 
also suggest that availability of internal carbon reserves is a decisive 
factor in determining whether trees can initiate the energetically costly 

process of leaf growth46. Reduced carbon storage often delays spring 
leaf-out in temperate trees46, whereas warming-induced increases in 
carbon uptake are associated with earlier spring phenology in temper-
ate and boreal regions. Such mechanism can also explain the legacy 
effect from the carbon sink limitation perspective20. Reductions in 
GPP during drought years can be as large as −12.0 gC m−2 yr−1 for type 1 
drought (Extended Data Fig. 8a), which can be further exacerbated by 
additional carbon costs for future xylem regrowth, both contributing 
to the negative correlation between GPP anomalies and SOS anomalies 
(Figs. 4 and 5). Endogenous memory via the EOS pathway also contrib-
utes to the SOS of the following year (Extended Data Fig. 5), probably 
because nutrient resorption is inhibited due to earlier leaf abscis-
sion47. Our analysis also revealed that the deficiency in soil nutrient 
(Extended Data Fig. 9), particularly soil nitrogen content, exacerbates 
the endogenous memory effects of drought, leading to delayed spring 
phenology for the subsequent year. Adequate soil nitrogen availability 
plays a pivotal role in speeding up the rejuvenation of plant growth and 
metabolic processes during drought recovery48. This finding is consist-
ent with a previous study indicating a stronger nitrogen limitation in 
the Northern Hemisphere compared to phosphorus49.

However, it should be noted that many endogenous factors—such 
as life traits which directly affect the recovery of xylem embolism and 
hormones levels—are not accurately considered at this ecosystem-level 
analysis. These characteristics may in part explain the differences in 
legacy effect at species level. For example, our analysis based on in situ 
observations indicates that Tilia cordata Mill. and Tilia. platyphyllos 
Scop. exhibit the most pronounced delay in LUDnext following drought 
events (Extended Data Fig. 3g,h). This can be attributed to stronger 
drought legacy effects in diffuse-porous species50. Although these 
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Fig. 5 | Path diagrams illustrating the underlying mechanisms of legacy effect 
of drought. a,b, Results from path diagrams for drylands (a) and wet regions (b). 
The numbers represent the mean of standardized path coefficients; asterisks 
denote the significance levels (**P < 0.01; *P < 0.05). The colours and widths of the 

arrows represent the signs (blue for negative, red for positive) and magnitudes 
of the path coefficients, respectively. The significance was based on a two-tailed 
Student’s t-test. En1, En2, Ex1, Ex2, Ex3 and Ex32 indicate the effect of six major 
paths; EnT is the total endogenous effect; and ExT is the total exogenous effect.
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species are generally more drought-resistant51, they rely heavily on the 
xylem produced in previous years for the water transport52, thereby 
delaying the recovery of hydraulic conductivity after embolism50. Con-
versely, ring-porous species can restore their hydraulic conductivity 
by developing fresh xylem before budbreak53, which typically results in 
weaker legacy effects. This mechanism probably explains the smaller  
delay in LUDnext for Aesculus hippocastanum L. and Quercus robur L.  
(Extended Data Fig. 3a,e). However, such recovery often requires  
additional non-structural carbon cost, whose effects may diminish 
when repeated drought happens. Consistent with previous studies50, 
the non-porous species Larix decidua Mill. shows the weakest legacy 
effect (Extended Data Fig. 3d). Additionally, several phytohormones, 
such as cytokinin and abscisic acid, also regulate the enzyme activity 
and leaf rejuvenation and growth54,55, thereby regulating leaf unfold-
ing and plant resilience to drought. However, these factors are not 
considered in this study because of the lack of observations. Thus, the 
reported weak endogenous effect is likely to be underestimated and 
warrant further investigation.

Global warming has led to a continuous advancement of spring 
green-up56. While we are enhancing our understanding of how the SOS 
affects drought responses57, much less is known about how drought 
in turn affects subsequent spring phenology. Using the long-term 
remote sensing observations and ground-based phenological records, 
we found that the legacy effects of droughts considerably delay the 
green-up and leaf unfolding of the next spring, with an effect size almost 
one order of magnitude stronger than the annual warming-induced 
advances. However, the effect of drought on SOS trend also strongly 
depends on the changes of drought severity and frequency. With 
projected increases of drought frequency and intensity induced by 
global warming and vegetation greening3,23, such drought legacies 
are expected to constrain the response of SOS to global warming. 
Together with photoperiod constraints58 and decreases in chilling 
requirements18, the advancement of SOS may diminish and even 
reverse in the future. Given the importance of spring phenology in 
regulating spring carbon uptake5 and its legacy impacts on autumn 
leaf senescence10,12, incorporating the effects of drought legacies in 
phenology models and the interactions between drought legacies and 
spring phenology into Earth system models is crucial for improving 
predictions of ecosystem responses to extreme climate events. Future 
studies based on manipulative experiments may offer more mecha-
nistic understanding, thereby necessitating model improvements.
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acknowledgements, peer review information; details of author contri-
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Methods
Satellite-derived SOS observations
Third generation of GIMMS (3g) from the advanced very high-resolution 
radiometer (AVHRR)59 was applied to extract vegetation phenology in 
northern ecosystems (>30° N) during 1982–2015. We first excluded 
non-vegetated and sparse vegetation coverage (annual mean 
NDVI < 0.1) and cropland on the basis of the MODIS land cover climate  
modelling grid (MCD12C1)60. Second, NDVI was contaminated by 
snow cover in high latitudes during spring and winter, seriously 
affecting the accuracy of phenological extraction. For lack of snow 
information, we used daily temperature data to identify potential 
snow cover, and snow-cover periods were identified as the period 
when the air temperature was <0 °C for at least five consecutive days. 
The snow-contaminated NDVIs were replaced by the mean of 75 to 95 
percentiles of snow-free NDVIs in winter. Third, Savitzky–Golay filter  
was applied to reconstructed NDVI time series to further minimize 
noise from atmospheric contamination61. Fourth, we interpolated 
daily NDVI using six-order polynomial time-series model, and then 
phenology was determined by the dynamic-threshold method62. The 
date when NDVI first surpasses 20% of its annual amplitude was defined 
as SOS63, and the EOS was identified as the date when NDVI decreased 
by 50% of its annual amplitude64 (Supplementary Fig. 1).

Ground SOS observations
The ground-based SOS was obtained from three phenological observa-
tion networks, including PEP725 (ref. 65), CPON66 and RCNN67. Owing 
to different definitions of SOS for these three ground phenological 
network, we screened the phenological observations according to the 
following criteria. In PEP725 network, SOS was represented by the date 
of first visible leaf stalk (phenological phase code (BBCH) = 11)65, and 
ultimately 232,633 LUD records were available for eight species at 1,321 
sites, with at least 30 years of consecutive records during 1951–2015. 
For CPON, we used leaf-out date to represent SOS68 and 19,622 SOS 
records of 513 species at 44 sites with at least 5 years of observations 
between 1963 and 2015. In RCNN, SOS was the leaf-out stage67 and we 
only retained SOS records with Quality = OK, resulting in 15,800 SOS 
records of 189 species at 117 sites for at least 5 years of observations  
during 1927–2015. In total, 280,369 SOS records of 870 species at  
1,913 sites were used in this study.

Drought identification
Since SM better indicates the water stress on plants compared to meteo
rological drought indices69, during the satellite era (1982 to 2015) when 
SM data are available, we used monthly root-zone SM from GLEAM 
v.3.7a (ref. 70) together with monthly NDVI to identify drought events. 
First, we deseasonalized and detrended SM and NDVI by subtracting the 
multi-year monthly average and linear trend to eliminate seasonal influ-
ences as well as the long-term trend. Then, we calculated the standard 
deviation of the detrended SM and NDVI, and defined their negative 
anomaly as <−0.5 s.d. We focus on ‘effective drought events’, which refer 
to droughts that have negative impacts on ecosystems71. Specifically, 
we defined the drought event as a period when SM anomaly lasted 
at least for two consecutive months during the growing season, and 
NDVI anomaly also occurred during this period for at least one month. 
According to the recovery time of SM (SM anomaly returning above 0), 
drought events can be divided into three types: SM has not recovered 
before the next spring (type 1), recovers before the next spring (type 2) 
and SM recovers during the current growing season (type 3) (Extended 
Data Fig. 1). The statistics of three types of drought events are shown 
in Supplementary Figs. 2 and 3.

For long-term ground observation, standardized precipitation 
evapotranspiration index (SPEI) data were used for identifying drought 
events (SPEIbase v.2.7)72, because of the lack of reliable SM records that 
cover the necessary length of time for this analysis. SPEI is a widely 
used indicator to characterize meteorological drought by calculating 

the standardized water balance anomalies at different timescales72. To 
capture the short-term water deficit, 3-month SPEI (SPEI3) was used in 
this study and we defined drought events as two consecutive months 
of SPEI3 <−1.5 during the growing season (March to October), since  
it exhibits a similar spatial distribution to the above method using 
both SM and NDVI (Supplementary Fig. 5 versus Supplementary Fig. 2).

The influence of drought events on spring phenology
We used two methods to evaluate the legacy effect of current year 
drought events on the spring phenology of the next year.

Method 1 (observation-based method). The main basis is that plants 
normally exhibit slightly changes in SOS between adjacent years. We 
first calculated the difference in SOS between all consecutive years 
(equation (1)) and then identified whether a drought event occurred 
or not during those years. Since SOScurrent was set as a baseline unaf-
fected by drought, we removed the sample if drought occurred before 
SOScurrent. For instance, there was no drought in 1982, whereas a drought 
occurred in 1983 and the impact of drought on SOS is defined as the 
difference between SOS1984 and SOS1983. If there were no droughts in 
1982 and 1983, SOS1984 − SOS1983 represents the difference in SOS under 
non-drought conditions.

ΔSOS = SOSnext−SOScurrent (1)

Method 2 (model-based method). Parameter ΔSOS derived from the 
observation-based method may be obscured by the temperature 
anomalies. To eliminate the interference of temperature and photo-
period on the impact of drought on SOS, we calculated the difference 
between the observed and predicted SOS which is affected by drought 
(equation (2)). The SOS observations unaffected by drought events 
were used to parametrize the spring phenology model and predict the 
theoretical SOS for all years. Five phenological models were applied 
to predict SOS, including eco-dormancy release only model (thermal 
time model73 and photothermal time model74) and endo- and 
eco-dormancy releases model (sequential model75, parallel model76 
and unichill model77). Simulated annealing method were used to deter-
mine the optimization parameters of these models78 using MATLAB 
R2022a. Since these models do not include any water stress metrics as 
predictors of SOS, any potential drought legacy effects will change the 
size of ΔSOS. The accuracy of the models was validated using root mean 
square error and significance level (P < 0.05) (Supplementary Fig. 4).

ΔSOS = SOSobs−SOSpred (2)

The thermal time model only considers the forcing process and 
calculates the cumulative temperature above Tbase after 1 January (t0) 
(equation (3)). SOS is defined as the date when forcing (Sf) is greater 
than its critical value (Fcrit).

Sf =
t
∑
t0
{

0, T ≤ Tbase

T − Tbase, T > Tbase
(3)

The photothermal time model considers the influence of both 
forcing and photoperiod, and the forcing is regulated by daylength 
(equation (4)).

Sf =
t
∑
t0
{

0, T ≤ Tbase

Lt
24
(T − Tbase) , T > Tbase

(4)

The sequential model and parallel model use a triangular function 
(characterized by minimum (Tmin), maximum (Tmax) and optimum (Topt) 
temperature) to accumulate chilling state (Sc) (equation (5)). Parameter 
Sc begins to accumulate after 1 September (tc) of the previous year. The 
sequential model assumes that the accumulation of forcing will begin 
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when a chilling threshold (Ccrit) is met (Ksequential, equation (6)). However, 
the parallel model assumes that chilling and forcing can increase  
simultaneously (Kparallel, equation (7)). The forcing begins to accumulate 
when T is greater than Tbase  and is controlled by the status of Ccrit   
(equation (8)).

Sc =
t
∑
tc

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0, T ≤ Tmin,
T−Tmin

Topt−Tmin
, Tmin < T ≤ Topt

T−Tmax

Topt−Tmax
, Topt < T < Tmax

0, T ≥ Tmax

(5)

Ksequential = {
0, Sc< Ccrit

1, Sc ≥ Ccrit
(6)

Kparallel = {
Kmin +

1−Kmin

Ccrit
Sc, Sc< Ccrit

1, Sc ≥ Ccrit

(7)

Sf =
t
∑
tc
{
K Af

1+ealpha(T+beta)
, T > Tbase

0, T ≤ Tbase

(8)

The unichill model accumulate chilling state using equation (9) 
and, similar to the sequential model, forcing cannot begin until  
Ccrit  is exceeded (Kunichill, equation (10)). The forcing process is  
calculated by a logistic function (equation (11)).

Sc =
t
∑
tc

1
1 + eTmin(T−Tmax)

2+Topt(T−Tmax)
(9)

Kunichill = {
0, Sc< Ccrit

1, Sc ≥ Ccrit
(10)

Sf =
t
∑
tc

K 1
1 + ealpha(T−beta)

(11)

Ultimately, we used the average results from the photothermal 
time model and the sequential models as SOSpred, as they provide better 
model performance (Supplementary Fig. 4).

Factors affecting drought-induced SOS change
We used RF algorithms trained on 18 variables to explain the drought- 
induced SOS change, including spatial variables and drought-specific 
variables. The static variables include climate variables, for exam-
ple, mean annual temperature (°C) and mean annual precipitation 
(mm) from CRU_TS v.4.05 (ref. 79); biotic variables, including mean 
length of growing season (LGS = EOS − SOS, days), maximum rooting  
depth (rooting depth, mm) from Plymouth Marine Laboratory80,  
plant biodiversity from Anthroecology Lab81, mean above-ground  
biomass (Mg ha−1) from the Oak Ridge National Laboratory (ORNL) 
DAAC data repository82, biomes types from Terrestrial Ecoregions  
of the World83, and iso/anisohydry data (isohydricity) were pro-
duced on the basis of Ku-Band backscatter from QuikSCAT84; and soil  
texture (clay content and sand content, %)85. The dynamic variables 
include climate variables, for instance, spring temperature (March, 
April and May) anomaly after drought (ST anomaly, °C), winter tem-
perature (December, January and February) anomaly after drought 
(WT anomaly, °C); biotic variables, including the absolute GPP anom-
aly in drought year (GPP anomaly, gC m−2)86 and the EOS anomaly in 
drought year (EOS anomaly, days); and drought-related variables, 
for example, SM loss (the positive difference between −0.5 s.d. and 
detrended SM during drought, m3 m−3), the start month of the drought 

event (timing of drought, month), the length of time the drought event 
lasted (drought duration, months) and the spring SM anomaly after 
drought (SSM anomaly, m3 m−3). Detailed descriptions of all variables 
are given in Supplementary Table 2. It should be noted that we did not 
include spring and winter temperature anomalies as predictors in the 
model-based RF analysis, since their effects are already considered by 
the phenology models used to predict SOSpred.

The RF is a widely used machine learning algorithm, which builds 
multiple regression trees using bootstrap resampling technique and 
recursive binary splitting87. We divided all data into two parts, with 
two-thirds used for a training model and the rest for validation. We finally 
built an RF model consisting of 500 regression trees with a leaf node size 
of 5. Using binary rules, regression tree recursively splits samples into 
two categories to minimize the variance in each category. The variable 
importance metric can be indicated by the number of splits; that is, the 
variable with larger number of splits is more important for predicting 
the response variable. Therefore, we used RF to evaluate the importance 
of variables on the change of the SOS after drought in the next year. In 
addition, partial dependent plot shows the response function of the pre-
dicted target variable (drought-induced SOS changes) to each covariate, 
providing the marginal effect of each covariate on the target variable. 
The analysis was conducted using the sklearn package in Python v.3.10.9.

Path analysis
Path analysis evaluates causal models by examining linear relationships 
between independent and dependent variables88. Unlike conventional 
multiple regression analysis, path analysis not only examines the direct 
influence of independent variables on dependent variables but also 
takes into account the interactions among independent variables 
and their indirect effects on dependent variables through intermedi-
ary variables. This approach enables a more precise estimation and 
examination of various hypothetical causal relationships by breaking 
down correlation coefficients into path coefficients. We used a path  
diagram to distinguish the endogenous and exogenous effects 
of drought on SOS. Endogenous legacy effects were defined as  
those caused by biological factors, whereby drought (indicated by SM 
loss) impacts vegetation physiology (GPP anomaly and EOS anomaly), 
and those physiological carryover effects that impact SOS. Exogenous 
legacy effects were considered as those arising from hydroclimatic  
legacies, whereby the hydroclimatic changes (spring SM anomaly, winter  
temperature anomaly and spring temperature anomaly) induced by 
the drought spilled over into the following year.

We used the lavaan package in R v.4.1.3 (ref. 89) to calculate the 
standardized path coefficients of the preset path diagram and calcu-
lated as the product of the standardized path coefficients along each 
pathway. We compared path effects of endogenous and exogenous 
by summing up the effects of individual response paths. In addition, 
dryland classification90, biomes classification83, soil nitrogen content 
(0–30 cm)91 and soil phosphorous content (0–30 cm)92 were used 
to examine the general characteristics of the path effects. Anoma-
lies of variables (GPP, EOS, SSM, WT and ST) were calculated for each 
drought event in reference to its 34-yr (1982–2015) mean values. All 
variables were standardized before path analyses. We measured the 
adequacy of the fitness of the path diagram using the following criteria: 
goodness-of-fit index ≥ 0.95, comparative fit index ≥ 0.90, root mean 
square error of approximation ≤ 0.10 and standardized root mean 
square residual ≤ 0.05 (ref. 93).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are derived from the 
following resources. The PEP725 dataset can be downloaded from 

http://www.nature.com/natureclimatechange
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www.pep725.eu. The RCNN dataset can be downloaded from https://
doi.org/10.1038/s41597-020-0376-z. The CPON dataset can be down-
loaded from https://data.casearth.cn/dataset/5c19a5650600cf2a3c5
57ab1. The GIMMS NDVI 3g v.1 is available at https://data.tpdc.ac.cn/
zh-hans/data/9775f2b4-7370-4e5e-a537-3482c9a83d88. The SM data 
are available at https://www.gleam.eu/. The SPEI dataset is available at 
https://spei.csic.es/database.html. The CRU climate dataset is available 
at https://crudata.uea.ac.uk/cru/data/hrg/. FLUXCOM GPP dataset 
can be downloaded from https://www.fluxcom.org/. The maximum 
root-depth data are available at https://wci.earth2observe.eu/thredds/
catalog/usc/root-depth/catalog.html. The plant biodiversity data are 
available at http://ecotope.org/anthromes/biodiversity/plants/data/. 
The mean above-ground biomass data are available at https://daac.ornl. 
gov/cgi-bin/dsviewer.pl?ds_id=1763. The iso/anisohydry data are avail
able via figshare at https://doi.org/10.6084/m9.figshare.5323987.v1  
(ref. 94). The biomes data can be downloaded from https://www.
worldwildlife.org/publications/terrestrial-ecoregions-of-the-world.  
The land cover data are available at https://lpdaac.usgs.gov/prod-
ucts/mcd12q1v006/. The soil properties data can be downloaded 
from https://daac.ornl.gov/SOILS/guides/HWSD.html. The soil total 
phosphorus concentration is available via figshare at https://doi.org/ 
10.6084/m9.figshare.14583375 (ref. 95). The soil total nitrogen concen-
tration is available at https://www.isric.org/explore/soilgrids/. Source 
data are provided with this paper.

Code availability
Main codes used for data processing in this study are available via 
figshare at https://doi.org/10.6084/m9.figshare.26130907 (ref. 96).
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Extended Data Fig. 1 | The schematic diagram of growing season drought 
identification using soil moisture (SM) and Normalized Difference 
Vegetation Index (NDVI). A growing season effective drought occurred when 
deseasonalized soil moisture is below 0.5 s.d. for consecutive two months within 
growing season, and deseasonalized NDVI is below −0.5 s.d. east one month 

simultaneously. Type 1 drought: SM has not been recovered before the next 
growing season. Type 2 drought: SM recovered after the current growing season. 
Type 3 drought: SM recovered (SM anomaly higher than 0) within the current 
growing season. The blue background indicates the growing season, and the red 
background represents drought events.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 2 | The long-term effects of drought on the start of growing 
season (SOS) during 1982-2015. Spatial distribution of cumulative changes 
between next year’s SOS (SOSnext) and current year’s SOS (SOScurrent), normalized 

by the average over 34 years, when droughts occurred (a) and not occurred (b). 
Insets show the area fraction of SOS delayed (orange) or advanced (blue) by 
drought.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 3 | Effects of drought on next year’s leaf unfolding date (LUD) using ground-based observations of eight species. Changes in LUDnext − LUDcurrent 
when drought occurred or not for Aesculus hippocastanum L. (a), Betula pendula Roth (b), Fagus sylvatica L. (c), Larix decidua Mill. (d), Quercus robur L. (e),  
Sorbus aucuparia L. (f), Tilia cordata Mill. (g) and Tilia platyphyllos Scop. (h).

http://www.nature.com/natureclimatechange
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Extended Data Fig. 4 | The spatial patterns of the correlation between current year’s EOS and next year’s SOS. The results for non-drought years (a, d, g, j), all years 
(b), Type 1 and non-drought years (e), Type 2 and non-drought years (h), Type 3 and non-drought years (k). The percentage of negative correlation between EOS and 
next year’s SOS along latitudes (c, f, i and l).

http://www.nature.com/natureclimatechange
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Extended Data Fig. 5 | Response functions for start of the growing season 
(SOS) changes (SOSobs−SOSpred) following three types of droughts. Results 
from three random forest models for Type 1 (a), Type 2 (b), and Type 3 (c) 
droughts. Left panels show response functions with lower and upper bounds 
of independent variables. Bars on the right indicate variable importance. Blue 
denotes climatic factors, yellow represents drought characteristics, green shows 

biological variables, and red indicates soil composition variables. Variables with 
black borders are time-varying for each drought event; others are static. Code for 
biome types 1. Temperate Broadleaf and Mixed Forests; 2. Temperate Coniferous 
Forests; 3. Boreal Forests/Taiga; 4. Temperate Grasslands, Savannas, and 
shrublands; 5. Montane Grasslands and shrublands; 6. Tundra; 7. Mediterranean 
Forests; 8. Xeric shrublands.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 6 | The path diagrams and path effects of the underlying 
mechanisms for the relationship between the soil moisture loss (SM loss) and 
the anomaly of the start of the growing season (SOS) for different arid types. 
a-d, The results for arid (a), semi-arid (b), dry sub-humid (c) and humid (d) 
regions. The numbers represent the mean of standardized path coefficients, 
with asterisks denote the significance (**P < 0.01; *P < 0.05). The colors and 

widths of the arrows represent the signs (blue for negative, red for positive) and 
magnitudes of the path coefficients, respectively. The significance was based  
on a two-tailed Student’s t-test. En1, En2, Ex1, Ex2, Ex3, Ex32 indicate the effect 
of six major paths; EnT is the total endogenous effect, and ExT is the total 
exogenous effect.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 7 | The path diagrams and path effects of the underlying 
mechanisms for the relationship between the soil moisture loss (SM loss) 
and the anomaly of the start of the growing season (SOS) for eight biomes. 
a-h, The results for temperate broadleaf and mixed forests (a), temperate 
coniferous forests (b), boreal forests/taiga (c), tundra (d), montane grasslands 
and shrublands (e), temperate grasslands, savannas and shrublands (f), 
Mediterranean forests (g) and xeric shrublands (h). The numbers represent the 

mean of standardized path coefficients, with asterisks denote the significance 
(**P < 0.01; *P < 0.05). The colors and widths of the arrows represent the signs 
(blue for negative, red for positive) and magnitudes of the path coefficients, 
respectively. The significance was based on a two-tailed Student’s t-test. En1, 
En2, Ex1, Ex2, Ex3, Ex32 indicate the effect of six major paths; EnT is the total 
endogenous effect, and ExT is the total exogenous effect.
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Extended Data Fig. 8 | The anomaly of GPP and EOS of drought years across three drought types. The GPP (a) and EOS (b) anomalies of drought years compared to 
the multi-year average. Length of each box indicates the interquartile range, the horizontal line inside each box the median, and the bottom and top of the box the first 
and third quartiles, respectively.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 9 | The legacy effect of drought along soil nutrient gradient. The total endogenous effect and total exogenous effect of drought along soil 
nitrogen content (a) and soil phosphorus content (b) at 0-30 cm depth. Each dot represents the average path effect for regions within each bin along nitrogen content 
or phosphorous content. Shades represent the 95% confidence interval.

http://www.nature.com/natureclimatechange
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection is performed in Matlab R2022a.

Data analysis Data analysis is performed in Matlab R2022a , R 4.1.3 and Python 3.10.9.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data that support the findings of this study are derived from the following resources. The PEP725 dataset can be downloaded from www.pep725.eu, the RCNN 
dataset can be downloaded from https://doi.org/10.1038/s41597-020-0376-z, the CPON dataset can be downloaded from http://www.cpon.ac.cn/. The GIMMS 
NDVI 3g v1 is available at http://poles.tpdc.ac.cn/en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/. The soil moisture data are available at https://
www.gleam.eu/. The SPEI dataset is available at https://spei.csic.es/database.html. The CRU climate dataset is available at https://crudata.uea.ac.uk/cru/data/hrg/. 
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FLUXCOM GPP dataset can be downloaded from https://www.fluxcom.org/. The maximum root depth data is available at https://wci.earth2observe.eu/thredds/
catalog/usc/root-depth/catalog.html, the plant biodiversity data is available at http://ecotope.org/anthromes/biodiversity/plants/data/, mean above-ground 
biomass data is available at https://daac.ornl.gov/cgibin/dsviewer.pl?ds_id=1763, iso/anisohydry data is available at https://figshare.com/projects/
Estimating_global_ecosystem_iso_anisohydry_using_active_an d_passive_microwave_satellite_data/19492, the biomes data can be downloaded from https://
www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world, the land cover data is available at https://lpdaac.usgs.gov/products/mcd12q1v006/, the 
soil properties data can be downloaded from https://daac.ornl.gov/SOILS/guides/HWSD.html.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Global warming has increased the frequency and intensity of droughts, but the extent to which drought legacy effects influence plant 
phenology the following year remains unclear. Using long-term satellite observations and ground phenological records, together with 
state-of-the-art phenology models, we first investigated the impact of drought events on the subsequent year’s green-up in northern 
ecosystems. By utilizing random forest algorithms and path analysis, we further explored the underlying mechanisms of drought 
legacies on the subsequent year’s green-up, and examined both exogenous and endogenous memory effects.

Research sample This study covers both satellite observation samples and long-term in situ phenological observation samples. 

Sampling strategy We used as many ground samples with long-term high quality phenological records as possible.

Data collection Ying Liu collected the data required for this study, and the details of the data availability are provided in the main text.

Timing and spatial scale We used both satellite observations (1982-2015) across mid- and high-latitudinal Northern Hemisphere (30°N), and long-term in situ 
observations (since 1901) from Europe(1945-2016), Russia (1901-2017) and China (1962--2014).

Data exclusions For ground phenology records, we excluded sites with less than 5 years of consecutive records. 

Reproducibility We provide all the detailed methods and data sources, programming code and results in both the manuscript and supplementary 
information files to ensure the reproducibility of this work.

Randomization This is not relevant to our study because our work is not an Experimental study. 

Blinding Blinding is not relevant to this study, because this study only uses published datasets.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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