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This paper addresses the problem of sensor placement to assist a mobile vehicle that navigates

in an unknown environment. We refer this spatially and temporally varying environment as

a threat field. The vehicle is required to navigate with a minimum exposure to this field. We

consider a sensor network separate from the mobile vehicle that provides a pointwise noisy

measurements of the threat field. We propose an iterative method, referred as coupled sensor

configuration and path-planning (CSCP) to solve this problem. At each iteration, the optimal

sensor configuration is determined by maximizing a metric that includes uncertainty reduction

in a path cost and minimization of sensor movement. A context-relevant mutual information

(CRMI) metric enables sensor placement in locations that reduce uncertainty in the path cost,

rather than in the environment state. Sensor reconfiguration cost is computed based on the

distance traveled by the sensors from a current set of locations to new locations. To address the

problem of combinatorial growth in the feasible sensor configurations with increasing number

of sensors, we execute greedy optimization of placing one sensor at a time. Once the new sensor

locations are identified, the algorithm updates the threat estimate with new measurements, and

recalculates the path with minimum expected exposure to the threat. We perform numerical

simulations to show the e!ectiveness of the proposed method, and conduct comparative study

between the CSCP method with and without incorporating the sensor reconfiguration cost.

I. Introduction

Path-planning and trajectory optimization methods for uncrewed aerial vehicles (UAVs) is an area with a rich
literature, summarized in the handbook [1], for a large variety of applications. Methods for waypoint navigation,
obstacle avoidance in various kinds of environments (known, partially known, unknown, GPS-denied, indoors, etc.),
minimum-time travel, multi-UAV formation flight, and cooperative planning for surveillance coverage are widely
reported. Regardless of the application, path-planning methods typically use geometric methods based on discretization
of the environment, whereas trajectory optimization methods may use indirect variational necessary conditions of
optimality or direct transcription based on appropriate parametrization.

We are interested in the problem of path-planning with minimum exposure to a spatially and temporally varying
scalar field, which we refer to as the threat field. The threat field may signify unfavorable attributes of the environment,
such as hazards, or the negative / inverse of favorable attributes. For example, the threat field may indicate the risk of
attack by an adversary, which we would like to minimize during the entirety flight of the UAV. For brevity, we will refer
to this problem as the minimum-threat path-planning problem for the ego vehicle.

Modern architectures of networked and distributed autonomy leverage heterogeneous agents acting in cooperation.
In the context of the minimum-threat problem, we may envision a distributed sensor network that collects and process
data about the threat field. The ego vehicle can access this knowledge of the threat field to inform its path-planning.
More importantly, consider an architecture where the sensor agents are mobile (e.g., surveillance UAVs) and move as
commanded. Such a networked autonomy architecture naturally leads to the problem of sensor placement or, more
generally, sensor configuration.

The placement problem becomes somewhat trivial if there a very large number of mobile sensor agents. In this case,
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a simple uniform spatial distribution of the agents would su!ce. However, in practice the sensor network is constrained
in the number of agents available and their energy usage. Consider, for example, a sensor network of unmanned aerial
vehicles (UAVs) for surveillance of a threat field like wildfire in a large area. Due to cost and battery limitations, it may
not be possible to achieve full area coverage quickly enough to inform the actions of a ground robot to safely navigate
the environment. This situation exemplifies the broader problem of path-planning with a minimal number of sensor
measurements, and in turn, highlights the need for optimal sensor configuration in the context of, i.e., coupled with
path-planning. In this paper, we focus on the problem of optimally placing and moving the mobile sensor agents to
collect threat data of the most relevance to the minimum-threat path-planning.

Related Work: The proposed approach naturally draws on the wealth of knowledge in optimal estimation theory [2–4]
based on the Kalman filter and its many variants. For systems with nonlinear dynamics and/or non-Gaussian noise
characteristics, commonly-used approaches include the extended Kalman filter [4], the linearization-free unscented
Kalman filter [5], the ensemble Kalman filter [6] and the particle filter [7, 8].

Path- and motion-planning are similarly mature areas of research. Generally, path-planning under uncertainty
involves finding paths that minimize the expected cost. Classical approaches to path-planning include cell decomposition,
probabilistic roadmaps, and artificial potential field techniques [9], [10]. Dijkstra’s algorithm, A→, and their variants are
branch-and-bound optimization algorithms that leverage heuristics to e"ectively steer the path search towards the goal.
Modern approaches to path planning leverage advanced methodologies such as adaptive informative path-planning [15],
coverage path-planning [16] and informed sampling-based path planning [17]. More recently, techniques based on
reinforcement learning [11–13] and fuzzy logic [14] are reported.

Sensor configuration techniques including placement, tasking, and scheduling are reported in recent years. Among
these, information theoretic techniques achieve configure sensors by maximizing metrics such as the determinant or
largest eignevalue of the Fisher information matrix (FIM) [18, 19], entropy [20], Kullback-Leibler (KL) divergence [21],
mutual information [22–24], and frame potential [25]. Broadly speaking, these metrics quantify the reduction in
uncertainty in the knowledge of the environment state. Most of these information-maximizing sensor configuration
approaches employ greedy optimization techniques for mitigating the curse of dimensionality [25–27].

Another example of information-theoretic metric [28] utilizes two metrics, one associated with mutual information
based on objection detection, and another with mutual information based on classification of the detected objects.
More recently, a reinforcement learning-based method for coupled sensor placement and path-planning [29] learns a
so-called proximal policy. A bilevel optimization technique to optimally place sensors for estimating the emission rates
of multiple sources using is reported in [30]. Sensor placement in a continuous spatial domain for nonlinear distributed
parameter systems using Lagrange polynomials and the orthogonal collocation method is reported [31].

Other data-driven sensor placement methods for various applications, namely signal reconstruction [32], and target
tracking are also reported [33]. Machine learning-based sensor placement techniques are reported for e!cient estimation
with a minimal number of measurements [34, 35].

These sensor configuration works largely ignore the context, i.e., focus on optimally estimating the state of the
environment without context to a specific objective such as path-planning. Prior works by the second author and
co-workers address the coupling between sensor placement and path-planningfor static environments. A heuristic
task-driven sensor placement approach called the interactive planning and sensing (IPAS) for static environments is
reported in [36]. The IPAS method is shown to outperform several decoupled sensor placement methods in terms
of the total number of measurements needed to achieve near-optimal paths. Sensor configuration for location and
field-of-view is reported in [37], also for static fields. Sensor placement for multi-agent path-planning based on entropy
reduction is reported in [38]. Recent work by the authors presents a coupled method based on maximizing a metric
called context-relevant mutual information (CRMI) [39]. CRMI is the mutual information of the measurement and the
path cost, rather than the measurement and the environment state (which is typically used).

Although it is commonly studied in the mobile sensor network literature, the problem of accounting for sensor
reconfiguration costs is relatively less studied for sensor placement. Reconfiguration becomes an important especially
when multiple iterations of sensor configuration and estimation are conducted, which in turn may be necessary when
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the number of sensors is small. Some examples include consideration of reconfiguration cost of the sensor network
topology [40], or the total energy consumption of the sensor network [41, 42].

Contributions: The contribution of this work to the literature is that we present a coupled sensor configuration and
path-planning (CSCP) method that includes a sensor reconfiguration cost. We develop an iterative algorithm for CSCP.
At each iteration, a threat estimate is first computed using sensor measurements. Next, a path-planning algorithm finds a
path of minimum expected threat. Next, optimal sensor placements are computed to maximize a metric that collectively
maximize the path-dependent CRMI and minimize the sensor movement, and the iterations repeat. We compare the
proposed CSCP method with our previous CSCP method that ignores the sensor reconfiguration cost.

II. Problem Formulation

For the sake of consistency across our di"erent publications, we reproduce the problem formulation from our most
recent work [39].

Let R represent the set of real numbers, and N the set of natural numbers. For any 𝐿 ↑ N, we denote by [𝐿] the set
{1, 2, . . . , 𝐿}, and by 𝜴 (𝐿 ) the identity matrix of size 𝐿 .

Consider a closed square region denoted by W ↓ R2 and referred as the workspace, within which the mobile agent
and sensors operate. In this workspace, consider a grid consisting of 𝐿g uniformly spaced points. The coordinates of
these points in a prespecified Cartesian coordinate axis system are denoted by 𝜶𝑀 , for each 𝑀 ↑ 𝐿g. The distance between
the adjacent grid points is denoted by 𝑁. The mobile agent traverses grid points according to the “4-way adjacency rule",
such that the adjacent points are top, down, left, and right. We formulate the path planning problem for a actor as a
graph search problem on a graph, G = (𝑂 , 𝑃) with 𝑂 = [𝐿g] such that each vertex in 𝑂 is uniquely associated with a
grid point. The set of edges 𝑃 in this graph consists of pairs of grid points that are geometrically adjacent to each other.

A threat field, denoted as 𝑄 : W ↔ R⊋0 ↗ R
>0, is a time-varying scalar field that takes strictly positive values,

indicating regions with higher intensity that are potentially hazardous and unfavorable. A path between two prespecified
initial and goal vertices, 𝑀𝑁 , 𝑀𝑂 ↑ 𝑂 , is defined as a finite sequence 𝜷 = {𝑅0, 𝑅1, . . . , 𝑅𝑃} of successively adjacent vertices.
This sequence starts at the initial vertex 𝑅0 = 𝑀𝑁 and ends at the goal vertex 𝑅𝑃 = 𝑀𝑂, where 𝑆 ↑ N represents the number
of vertices in the sequence. The edge transition costs, which account for the expenses incurred when an actor moves
between vertices in a graph, are determined by a scalar function 𝑇 : 𝑃 ↗ R

>0. This function assigns a value to each
edge in the graph, representing the associated cost or e"ort required for traversal and is defined as,

𝑇((𝑀, 𝑈), 𝑉) = 𝑄(𝜶 𝑄 , 𝑉), for 𝑀, 𝑈 ↑ [𝐿g], (𝑀, 𝑈) ↑ 𝑃 (1)

The cost 𝑊 (𝜷) ↑ R
>0 indicates the total threat exposure for an actor on its traversal along a path 𝜷 and is defined as the

sum of edge transition costs, 𝑊 (𝜷) =
∑

𝑃

𝑅=1 𝑇((𝑅𝑅↘1, 𝑅𝑅), 𝑋ω𝑉𝑁 , 𝑁). The main problem of interest is to find a path with a
minimum cost, 𝜷→. Since the threat field is unknown and is changing dynamically, estimation of the threat field in the
environment is essential. A network of 𝐿s sensors, where 𝐿s ≃ 𝐿g, can be used to measure the intensity of threat.
These sensor measurements are denoted 𝜸(𝜶, 𝑉; 𝜹) = {𝑌1 (𝜶, 𝑉; 𝜹), 𝑌2 (𝜶, 𝑉; 𝜹), . . . , 𝑌𝐿𝐿 (𝜶, 𝑉; 𝜹)} will be used to define the
filter required for estimating the state of the dynamic system. Sensors are placed at distinct grid points, and the set of
this grid points is called the sensor configuration, 𝜹 = {𝑍1, 𝑍2, . . . , 𝑍𝐿𝐿 } ↓ [𝐿g].

The threat field is modeled in parametric form as 𝑄(𝜶, 𝑉) := 1 +
∑

𝐿𝑀
𝑆=1 𝑎𝑆 (𝑉)𝑏𝑆 (𝜶) = 1 + 𝛚(𝜶)

⫅̸𝛆(𝑉), with
𝛚(𝜶) := [𝑏1 (𝜶) . . . 𝑏𝐿𝑀 (𝜶)]

⫅̸ , and 𝑏𝑆 (𝜶) := exp(↘(𝜶 ↘ 𝜶𝑆)
⫅̸
(𝜶 ↘ 𝜶𝑆)/2𝑐𝑆) representing the basis functions for each

𝑑 ↑ [𝐿𝑇]. Here, 𝐿𝑇 represents the number of threat parameters involved to define the threat field. The values of
the constants 𝑐𝑆 ↑ R

>0 and 𝜶𝑆 ↑ W are prespecified and chosen in such a manner that the combined interiors of
the significant support regions cover the entire workspace [36]. The parameter 𝛆(𝑉) := [𝑎1 (𝑉) . . . 𝑎𝐿𝑀 (𝑉)]

⫅̸ is to be
estimated. The temporal evolution of the threat is modeled by

⇐𝛆(𝑉) = 𝑒𝑈𝛆(𝑉) + 𝝐(𝑉), (2)
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where 𝝐(𝑉) ⇒ N(0,𝑓𝑈) is white process noise with 𝑓𝑈 := 𝑔𝑇 𝜴 (𝐿𝑀 ) . We restrict our attention to linear threat evolution
models for now, but it will become clear that the proposed method can be easily extended to nonlinear models as well.

The matrix 𝑒𝑈 represents the evolution of threat parameters 𝛆(𝑉). This evolution model may potentially - but not
necessarily - be derived from an underlying physical model of the threat. For example, the solution to a heat di"usion
equation, 𝑉𝑈

𝑉𝑊
= 𝑕( 𝑉

2
𝑈

𝑉𝑋
2 +

𝑉
2
𝑈

𝑉𝑌
2 ) can be approximated by 𝑄(𝜶, 𝑉) = 1 +𝛚(𝜶)

⫅̸𝛆(𝑉). It can be shown that the parameters
𝛆(𝑉) satisfy ⇐𝛆(𝑉) = 𝑕 𝛚⫅̸

|𝛚 |2
⇑

2𝛚𝛆(𝑉), such that 𝑒𝑈 = 𝑕 𝛚⫅̸

|𝛚 |2
⇑

2𝛚.

The model (2) can be easily discretized to form a di"erence equation of the form

𝛆𝑍 = 𝑒𝛆𝑍↘1 + 𝝐𝑍↘1, (3)

where 𝑒 := 𝜴 (𝐿𝑀 ) + 𝑒𝑈ω𝑉 +
(𝑎𝑁 )

2
(ω𝑊 )2

2! The process noise is zero-mean, white, and Gaussian, i.e., 𝑖(𝑗) ⇒ N(0,𝑓),

where 𝑓 := 𝑓𝑈ω𝑉 +
(𝑎𝑁𝑏𝑁+𝑏𝑁𝑎

⫅̸
𝑁 ) (ω𝑊 )2

2! [4]. In our implementation, we ignore higher-order terms of ω𝑉 beyond the linear
term.

The measurements obtained from each sensor are modeled by 𝜸𝑍 := 𝑄(𝜶𝑐𝑂 , 𝑉) + 𝜻
𝑍
= 𝑘𝑍 (𝜹)𝛆𝑍 + 𝜻

𝑍
, where

𝑘𝑍 (𝜹) =
[
𝛚(𝜶𝜴𝑂,1 ) 𝛚(𝜶𝜴𝑂,2 ) . . . 𝛚(𝜶𝜴𝑂,𝑃s

)

]⫅̸
,

and 𝜻
𝑍
⇒ N(0, 𝑙) is zero mean measurement noise with covariance 𝑙 ⇓ 0.

The threat parameters 𝛆(𝑉) are unknown quantities, and therefore we generate stochastic estimates with mean value
𝛆̂(𝑉) and estimation error covariance 𝑚. For any path, 𝜷 = {𝑅0, 𝑅1, . . . , 𝑅𝑃} in G, the cost of the path is

𝑊 (𝜷) := 𝑆 + 𝑁
∑

𝑃

𝑑=1𝛚(𝜶𝑑)
⫅̸𝛆𝑑 .

The cost 𝑊 becomes a random variable with distribution dependent on the estimate of 𝛆. The main problem of interest is
then formulated as follows.

Problem 1 For a prespecified termination threshold, 𝑛 > 0 and some finite iterations 𝑗 = 0, 1, . . . ,𝑜 , find a sequence
of sensor configurations 𝜹→

𝑍
and a path 𝜷

→ with minimum expected cost 𝑊 (𝜷→) and such that Var[𝑊 (𝜷→)] ⫆̸ 𝑛 .

III. Coupled Sensing and Planning

Coupled sensor configuration and path-planning (CSCP) is an iterative approach to solve Problem 1. An illustration
of the various components of the CSCP method and their interactions is shown in Fig. 1. Based on the threat field
model and a sensor network, we have a discrete predictive and measurement model as discussed in Sec. II. At each
iteration, a sensor configuration is determined, and measurements of the threat field are collected. The optimal sensor
configuration is found by maximizing an objective function based on a context-relevant mutual information (CRMI)
and a sensor reconfiguration cost. Next, these sensor measurements are used to update the threat field estimates in an
estimator. To easily quantify the uncertainty in path cost, we prefer an estimator that maintains the mean and covariance
of the threat parameter estimate. To this end, the Unscented Kalman Filter (UKF) is chosen for its ease of use with
nonlinear systems, although the examples currently discussed in this paper are limited to linear threat evolution models.
Next, the path is planned based on the new threat field estimate, and this process continues until the path cost variance is
reduced below a prespecified threshold 𝑛 . We implement Dijkastra’s algorithm to plan the path.

A. Mutual Information between Path Cost and Measurement (CRMI)

The context-relevant mutual information (CRMI) measures the information shared between the path cost and the
measurements in a path-planning problem. It focuses on the spatial locations that are relevant to the path planning,
neglecting those that are distant from the planned path. In essence, it captures the most pertinent information for the
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Fig. 1 Schematic illustration of the proposed CSCP method.

concurrent path-planning task by considering the proximity of locations to the planned path.

For any path 𝜷, the expected cost is 𝑊 (𝜷) := 𝑆 + 𝑁
∑

𝑃

𝑑=1 𝛚(𝜶𝑑)
⫅̸𝛆̂𝑑 . Considering the Gaussian PDFs, the joint PDF

p(𝑊𝑍 , 𝜸𝑍) of the path cost and measurement variables is

p(𝑊𝑍 , 𝜸𝑍) = N

([
𝑊𝑍

𝜸𝑍

]
:

[
𝑊
𝑍 |𝑍↘1

𝜸̂𝑍

]
,

[
𝑚𝑒𝑒𝑂 |𝑂↘1 𝑚𝑒𝜶𝑂 |𝑂↘1

𝑚⫅̸
𝑒𝜶𝑂 |𝑂↘1

𝑚𝜶𝜶𝑂 |𝑂↘1

])
.

The variance of the path cost is

𝑚𝑒𝑒𝑂 |𝑂↘1 := E
[(
𝑊 (𝜷) ↘ 𝑊 (𝜷)

)2
]
= E



(
𝑁

𝑃
𝑑=1

𝛚⫅̸
(𝜶𝜷𝑄 )

(
𝛆𝑑 ↘ 𝛆̂𝑑

))2
,

= 𝑁2
𝑃
𝑑=1


𝛚(𝜶𝜷𝑄 )

⫅̸𝑚𝑍𝑄𝛚(𝜶𝜷𝑄 )

+ 2𝑁2

𝑃
𝑑<𝑓, 𝑑,𝑓↑ [𝑃 ]


𝛚(𝜶𝜷𝑄 )

⫅̸𝑚𝑍𝑄𝑅𝛚(𝜶𝜷𝑅 )

.

To compute 𝑚𝑒𝑒𝑂 |𝑂↘1 , we need to find 𝛚 and the error covariance 𝑚 for each grid point 𝜷𝑑 along the path. This involves
propagating the parameter uncertainty over time intervals required to traverse between grid points, determining 𝑚𝑍𝑄 and
𝑚𝑍𝑄𝑅 . The covariance of the measurement and the cross covariance between the path cost and the measurement random
vector are formulated as:

𝑚𝑒𝜶𝑂 |𝑂↘1 = E
[
(𝜸 ↘ 𝜸̂)

(
𝑊 (𝜷) ↘ 𝑊 (𝜷)

)]
= 𝑁

𝑃
𝑑=1


𝛚(𝜶𝜷𝑄 )

⫅̸𝑚𝑍𝑄


𝑘⫅̸

𝑍
(𝜹), (4)

𝑚𝜶𝜶𝑂 |𝑂↘1 = 𝑘𝑍 (𝜹)𝑚𝛆𝛆𝑂 |𝑂↘1𝑘
⫅̸
𝑍
(𝜹) + 𝑙𝑍 . (5)
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Fig. 2 Illustration of sensor reconfiguration cost.

Here, 𝑚𝛆𝛆𝑂 |𝑂↘1 is the priori state covariance that is obtained from the UKF algorithm. Finally, the CRMI is calculated as

𝑝 (𝑊𝑍 ; 𝜸𝑍 (𝜹)) =
1
2

log

(
|𝑚𝑒𝑒𝑂 |𝑂↘1 |

|𝑚𝑒𝑒𝑂 |𝑂↘1 ↘ 𝑚𝑒𝜶𝑂 |𝑂↘1𝑚
↘1
𝜶𝜶𝑂 |𝑂↘1𝑚

⫅̸
𝑒𝜶𝑂 |𝑂↘1

|

)
. (6)

B. Sensor Reconfiguration Cost

Sensor reconfiguration cost refers to the cost of moving sensors from one location to another in the grid space. We
consider a sensor reconfiguration cost based on the Euclidean distance between the new and previous sensor locations,
as illustrated in Fig. 2. Here, 𝑞 𝑄

𝑀
is the Euclidean distance between the 𝑀th grid point and the location of the 𝑈 th sensor.

Informally, at the 𝑋th iteration of the CSCP algorithm, the objective is to find new sensor locations 𝜹→
𝑅+1 that maximize

the CRMI while minimizing the cost of sensor reconfiguration from the current configuration 𝜹
→

𝑅
= {𝑍𝑅→1 , . . . , 𝑍𝑅→

𝐿s
}. To

avoid a computationally challenging min-max problem, we modify the CRMI to find the next sensor configuration as

𝜹
→

𝑅+1 = max
𝜴


𝑝mod

(𝜹) := 𝑝 (𝑊𝑅 ; 𝜸𝑅 (𝜹)) + 𝑕1 ↘ 𝑕2 min
𝑄↑ [𝐿s ]

⇔𝑍 ↘ 𝑍𝑅→
𝑄
⇔


, (7)

where 𝑕1, 𝑕2 are constants. We choose 𝑕1 to be a relatively large value, e.g., proportional to the size of the overall
workspace, whereas 𝑕2 is chosen based on the user’s preference for reducing the reconfiguration cost.

C. CSCP Algorithm

Algorithm 1 provides a detailed description of the proposed coupled sensing and planning method. The algorithm
sets the initial values to 𝛆̂0 = 0 and 𝑚0 = 𝑟𝜴 (𝐿𝑀 ) , with 𝑟 being a large arbitrary number. It is important to set the
parameter estimate prior mean 𝛆̂0 to zero. Due to this “optimistic” prior, the path-planning assumes zero mean threat
exposure in areas where sensors have not been placed, and tends to find paths through these areas. In turn, this leads to
sensor placement in those unexplored areas.

Intially, an arbitary sensor configuration is chosen, and an optimal path 𝜷
→

0 of minimum expected cost E

𝑊 (𝜷→0)


is

determined. Here, we consider the Dijkstra’s algorithm for finding the optimal path 𝜷
→

𝑍
, however the choice of the path

planning method is user dependent. At each iteration 𝑗 , the algorithm computes the path cost variance Var[𝑊 (𝜷→
𝑍
)] of

the path 𝜷
→

𝑍
. The algorithm terminates once the variance of the path cost falls below a specified threshold 𝑛 > 0.

We employ the greedy optimization, in which the sensors are placed sequentially such that the choice of next sensor
maximizes the metric 𝑝mod

(𝜹). For this, we initialize the empty configuration 𝜹gr = ↖ and perform iterations until 𝐿s
sensors are placed. For each sensor in sequence, the CRMI per (6) and the sensor reconfiguration cost at all possible
locations 𝜹 are calculated. We implement a greedy approach to account for the sensor reconfiguration cost, considering
the minimum travel distance among each of the 𝐿s sensors from their current location to a new location of interest.
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(a) 𝑍 = 1 (b) 𝑍 = 7 (c) 𝑍 = 14 (d) 𝑍 = 21

Fig. 3 Visualization of CSCP process for 𝐿𝑇 = 49, 𝐿g = 121, and 𝐿s = 3.

The modified metric 𝑝mod
(𝜹) as per (7) is calculated for all possible locations 𝜹. At each iteration, the greedy optimal

configuration is the scalar 𝑍→ that maximizes 𝑝mod
(𝜹). The configuration 𝜹gr is then updated to include 𝑍→.

Once the sensors are optimally placed, new measurements are taken, which are then used to update the state
estimate 𝛆̂. This iterative process continues until the variance of the estimated path cost Var[(𝑊 (𝜷)] falls below the
predefined threshold 𝑛 . Since we implement the greedy optimization of the sensors, the proposed CSCP method has a
computational complexity of O(𝐿s).

Algorithm 1: CSCP Algorithm

Set 𝑗 = 0, 𝛆̂0 = 0, and 𝑚0 = 𝑟𝜴 (𝐿𝑀 ) ;
Initialize sensor placement 𝜹0 ↓ [𝐿g];
Find 𝜷

→

0 = arg min(𝑊0 (𝜷));
while Var[(𝑊 (𝜷→

𝑍
)] > 𝑛 do

Set 𝜹gr = 𝑏;
for 𝑈 = 1 to 𝐿s do

Set 𝜹 := [𝐿g]\𝜹gr;
Calculate 𝑝 (𝑊𝑍 ; 𝜸𝑍 (𝜹)) per (6) and 𝑝mod

(𝜹) per (7);
Determine 𝑍→ := arg max

𝑐↑𝜴 (𝑝
mod

(𝜹));
𝜹gr = 𝜹gr ↙ 𝑍→;

end

Obtain new sensor measurements 𝜸𝑍 (𝜹gr);
Update 𝛆̂𝑍 , 𝑚𝑍 ;
Find 𝜷

→

𝑍
:= arg min(𝑊𝑍 (𝜷));

Increment iteration counter 𝑗 = 𝑗 + 1;
end

IV. Results and Discussion

In this section, we first present an illustrative example of the proposed CSCP method. Additionally, we conduct
a comparative study between the CSCP method with and without the inclusion of sensor reconfiguration cost. All
numerical simulations are conducted within a square workspace W = [↘1, 1] ↔ [↘1, 1] using non-dimensional units.

A. Illustrative Example

Figure 3 shows the visualization of the CSCP method implemented on an illustrative example across di"erent time
steps. The number of threat parameters, sensors, and the grid points used for the analysis are 𝐿𝑇 = 49, 𝐿s = 3, and
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(a) Path cost mean. (b) Path cost variance.

(c) Sum of distances traveled by sensors.

Fig. 4 Evolution of path cost mean and variance over CSCP iterations.

𝐿g = 121, respectively. The initial and goal points are represented by the grid points at the bottom-left and top-right
corners of the map, respectively. The white dots in the Fig. 3 represent the grid points, while the threat parameters,
represented by the black dots are uniformly spaced within the workspace. The red circles indicate the path 𝜷

→

𝑍
with the

minimum estimated cost, while the white circles represent the location of sensors. For 𝑗 = 1, as shown in Fig. 3(a),
there is uncertainty in the environment, thus the obtained path is the shortest path between the initial and goal points.
As the CSCP process proceeds, the threat parameter estimation uncertainty is reduced. Figures 3(b) and (c) show the
evolution of 𝑄̂, optimal sensor placement and the local optimal path obtained for intermediate time steps, 𝑗 = 7 and 11.
At 𝑗 = 21 iterations, the specified threshold criteria Var[𝑊 (𝜷→)] ⫆̸ 0.1 is satisfied, and the obtained path represents the
optimal path.

Figure 4(a) shows the comparison between the true and estimated mean path cost. Initially, the estimated mean path
cost is much lower than the true path cost. This is because there is not much information about the environment, and the
estimator relies heavily on the “optimistic” prior, which results in threat estimates with small values. Upon termination
at 𝑗 = 21, the true path cost 𝑊 (𝜷→

𝑍
) = 22.91 closely aligns with the estimated path cost 𝑊 (𝜷→

𝑍
) = 22.89. The convergence

of the CSCP method is shown by a path cost variance plot in Fig. 4(b). As the iterative process continues, the path cost
variance Var[(𝑊 (𝜷→

𝑍
)] decreases, and the algorithm terminates when Var[(𝑊 (𝜷→

𝑍
)] falls below 𝑛 = 0.1. Figure 4(c) shows

the sensor reconfiguration cost values at di"erent time steps. For the computation of sensor reconfiguration cost, we
choose 𝑕1 =

∝
8 (diagonal distance across the workspace) and 𝑕2 = 0.01. For 𝐿s = 3, the sensor cost is the cumulative
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(a) (b)

Fig. 5 log diagonal values of error covariance at the final iteration of the greedy CSCP with sensor reconfiguration

cost (a) and without sensor reconfiguration cost (b).

sum of the distance traveled by the three sensors at each iterations.

Figure 5(a) shows the estimation error covariance 𝑚 at the final iteration, mapped to the spatial regions of the
environment using the centers of spatial basis functions ε. In a slight departure from convention, Fig. 5 shows the
logarithms of the diagonal values of 𝑚, which explains the negative values despite 𝑚 being symmetric positive definite.
The white regions are those with high estimation error covariance, where no or few sensors are placed throughout the
execution of the CSCP process. The black regions indicate areas where sensors are frequently placed, resulting in low
uncertainty within those regions.

B. Comparative Study

We performed a comparison by implementing the greedy CSCP algorithm without including the sensor reconfiguration
cost in the same example as discussed earlier. Figures 5(a) and (b) show the estimation error covariance 𝑚 (diagonal
values) at the final CSCP iteration with and without sensor reconfiguration cost. In the earlier case, the sensor placement
is performed such that the regions with low threat estimation error are close to optimal path found in Fig. 3(d), which is
not the case when the sensor reconfiguration cost is not considered.

Figure 6 shows the intensity map of the mutual information values at each grid point for the illustrative example.
Note that the CRMI 𝑝 (𝑊; 𝜸(𝑍)) and the modified metric 𝑝mod

(𝜸(𝑍)) values are computed for 𝑗 = 21 with a single sensor.
In Fig. 6(a), the sensor is placed at the grid point numbering 30, which has the maximum CRMI value. Figure 6(b)
shows the intensity map of the CRMI metric, in which a sensor is placed at grid point 85. It can be observed that the
𝑝 (𝑊; 𝜸(𝑍)) values are concentrated in a narrow region that would resemble the vicinity of the path rather than uniformly
distributed within the environment.

A comparative example of sensor placements for 𝐿𝑇 = 49, 𝐿g = 121, and 𝐿s = 4 using CSCP with and without
consideration of the sensor configuration cost is shown in Fig. 7(a) and (b). Red circles in the figure indicate sensor
positions based on maximizing the CRMI metric, whereas the black circles indicate sensor locations based on maximizing
the modified metric. At 𝑗 = 20, it can be observed that the two sensor locations in the grid space are common for
methods. As expected, when sensor reconfiguration cost is considered, the new sensor locations (black circles) at 𝑗 = 21
are relatively closer to the previous locations at 𝑗 = 20 as compared to sensor positions denoted by the red circles across
the two iterations. Figure 7(c) shows the values of the CRMI and the modified CRMI for di"erent numbers of sensors.
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(a) Modified metric with sensor cost 𝑔mod
(𝑒 ; 𝜶 (𝑐) ) . (b) CRMI without sensor cost 𝑔 (𝑒 ; 𝜶 (𝑐) ) .

Fig. 6 CRMI and modified CRMI at the final iteration of the illustrative example.

V. Conclusions

In this paper, we discussed an iterative method for simultaneous and coupled sensor placement and path-planning
for a mobile agent to navigate in a threat field. Optimal sensor locations are identified by maximizing a metric that
collectively takes into account a context-relevant mutual information (CRMI) metric and the sensor reconfiguration cost.
The CRMI addresses uncertainty reduction in the path cost, while the sensor reconfiguration cost addresses distance
traveled by the sensor during reconfiguration. The proposed CSCP algorithm iteratively places the sensors at an optimal
set of location, updates the environment threat estimate, and plans path with minimum expected cost. We conducted
numerical situations with an example to show the visualization of the CSCP process. A comparative study between the
CSCP method with and without sensor reconfiguration cost is carried out.
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