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We address path planning for a mobile agent to navigate in an unknown environment with minimum exposure to
a spatially and temporally varying threat field. The threat field is estimated using pointwise noisy measurements
from a mobile sensor network. For this problem, we present a new information gain measure for optimal sensor
placement that quantifies reduction in uncertainty in the path cost rather than the environment state. This measure,
which we call the context-relevant mutual information (CRMI), couples the sensor placement and path-planning
problem. We propose an iterative coupled sensor configuration and path-planning (CSCP) algorithm. At each
iteration, this algorithm places sensors to maximize CRMI, updates the threat estimate using new measurements,
and recalculates the path with minimum expected exposure to the threat. The iterations converge when the path cost
variance, which is an indicator of risk, reduces below a desired threshold. We show that CRMI is submodular, and
therefore greedy optimization provides near-optimal sensor placements while maintaining computational efficiency
of the CSCP algorithm. Distance-based sensor reconfiguration costs are introduced in a modified CRMI measure,
which we also show to be submodular. Through numerical simulations, we demonstrate that the principal
advantage of this algorithm is that near-optimal low-variance paths are achieved using far fewer sensor
measurements as compared to a standard sensor placement method.

Nomenclature
C = measurement model
c!x; t" = threat intensity
H = entropy
Imod!q" = modified context-relevant mutual informa-

tion
I!J; z!q"" = context-relevant mutual information
I!Θ;z!q"" = standard mutual information
J!v"; Ĵ!v" = true and estimated path cost
K = path-relevant set
NP = threat state dimension
NS = number of sensors
NG = number of grid points
PΘΘ; PΘz; Pzz;
PJJ; PJz

= various estimation error covariances and
cross-covariances

q = sensor configuration
Rsup

n = region of significant support
v = path in grid topological graph
W = compact 2D workspace
x = Cartesian position coordinates
!x; an = constants used in spatial basis functions
z = measurement
δ = grid spacing
ε = coupled sensor configuration and path-

planning termination threshold
η; R = measurement noise and error covariance
Θ!t"; Θ̂!t" = true and estimated threat states
Φ!x" = spatial basis function
ω; Q = process noise and error covariance

I. Introduction

W E CONSIDER scenarios where a mobile agent navigating in
an unknown environment can leverage measurements col-

lected by a network of spatially distributed sensors. The unknown
environment may include various adverse attributes, which we
abstractly represent by a spatiotemporally varying scalar field and
refer to as the threat field. The threat field represents unfavorable
areas such as those associated with various natural or artificial
phenomena, such as wildfires, harmful gases in the atmosphere,
or the perceived risk of adversarial attack.
Figure 1 provides a motivating example of a time-varying flood

map based on data collected during Hurricane Harvey at spatially
distributed gauge stations over 15-min time intervals [1]. Initially,
there is low water discharge with no signs of flooding in Fig. 1a.
Significant flooding is visible in Fig. 1c at t # 1500 min, which
subsequently recedes. The changing flood levels may be considered
as a spatiotemporally varying “threat” to which exposure of, say, an
emergency first-response vehicle, should be minimized.
We address the problem of path planning with minimum threat

exposure in such an environment. Because the environment is
unknown, an important task is to place the sensors in appropriate
locations, which is called the sensor placement problem, or more
generally, the sensor configuration problem. If we had at our
disposal an abundance of sensors and computational resources
to process large amounts of sensor data, then the placement/
configuration problem would be trivial. We would simply place
sensors to ensure maximum area coverage.
In practical applications, however, sensor networks may be con-

strained by size as well as energy usage. In the flood evolution
example, a sensor network of unmanned aerial vehicles (UAVs) may
be deployed for real-time surveillance of flooding. Due to cost and
battery limitations, it may not be possible to achieve full area
coverage quickly enough to inform the actions of a ground robot
to safely navigate the environment. This situation exemplifies the
broader problem of path planning with a minimal number of sensor
measurements and, in turn, highlights the need for optimal sensor
configuration in the context of path planning. This problem lies at
the intersection of several research areas, including estimation, path
planning, and sensor placement, which we briefly review next. We
note that the problem of interest here is quite different from the
simultaneous localization and mapping (SLAM) problem, where the
path planning and sensing are coupled due to the assumption of fully
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onboard sensing. By contrast, we consider a distributed sensor
network separate from the mobile agent.
Of these areas, perhaps estimation is the most mature [2]. The

literature on estimation involves different techniques, including the
Kalman filter, the maximum likelihood estimator [2], and the Baye-
sian filter [3]. Application of the extended Kalman filter (EKF), the
unscented Kalman filter (UKF) [4], or the particle filter [5] is
common for nonlinear dynamic systems. Several data-driven esti-
mation techniques have been employed for spatiotemporal model-
ing of hazardous regions, particularly in robotics, environmental
monitoring, and surveillance. These include a supervised learning
approach using Gaussian process regression for threat field estima-
tion [6], a statistical generalized additive model for landslide hazard
estimation [7], and a combined approach using Bayesian inference
and random forest for the spatial prediction of wildfires [8].
Path planning and motion planning are similarly mature areas of

research. Generally, path planning under uncertainty involves find-
ing paths that minimize the expected cost. Classical approaches to
path planning include cell decomposition, probabilistic roadmaps,
and artificial potential field techniques [9,10]. Dijkstra’s algorithm,
A$, and its variants are branch-and-bound optimization algorithms
that leverage heuristics to effectively steer the path search toward the
goal. While classical path-planning methods are powerful, they are
inherently limited by the accuracy of the environment’s available
information. An accurate representation of the environment is diffi-
cult if the environment’s states or dynamics are unknown. Modern
approaches to path planning leverage advanced methodologies such
as adaptive informative path planning [11], coverage path planning
[12], and informed sampling-based path planning [13]. More
recently, learning-based techniques, particularly deep reinforcement
learning [14–17] and fuzzy logic [18], are reported for addressing
environmental uncertainty. In risk-aware path planning, the objec-
tive is not only to find a feasible or optimal path but also to minimize
exposure to uncertain or hazardous regions [19]. Recent risk-aware
path-planning techniques integrate reinforcement learning with fail-
ure mode and effect analysis to ensure safe and complete coverage
in hazardous environments [20].

Different sensor placement approaches have been employed
depending on the type of application and parameters that need to
be measured. Greedy approaches based on information-based met-
rics are presented in [21–23]. Machine-learning-based sensor place-
ment techniques are reported for efficient sensing with a minimal
number of sensors and measurements as possible [24,25]. Informa-
tion-theory-based sensor placement techniques utilize performance
metrics such as the Fisher information matrix (FIM) [26], entropy
[27], Kullback–Leibler (KL) divergence [28], mutual information
[29], and frame potential [21] to maximize the amount of valuable
information gathered from the surrounding environment. Similarly,
in [30], the authors utilize two information measures: one associated
with mutual information based on object detection and another with
mutual information based on classification of the detected objects.
With all these performance metrics, the intention is to maximally
reduce some quantification of the uncertainty. More recently, a
sensing and path-planning method based on reinforcement learning
has been reported, which evaluates performance using a technique
called proximal policy optimization (PPO) [31]. In robotics and
aerospace applications, active sensing plays a crucial role in linking
perception and action, enabling systems to gather meaningful infor-
mation that supports intelligent decision-making. Some examples of
active sensing include information-driven or cooperative active
sensing [32–34], uncertainty-aware active sensing [35], and active
sensing using machine learning [36,37].
The problem of minimizing sensor reconfiguration costs, such as

the distance traveled by mobile sensors, is commonly studied in the
mobile sensor network literature, but less so in the context of sensor
placement. Reconfiguration becomes an important issue when
multiple iterations of sensor configuration and estimation are con-
ducted, which in turn may be necessary when the number of sensors
is small. Some examples include consideration of the reconfigura-
tion cost of the sensor network topology [38] or the total energy
consumption of the sensor network [39,40].
In this paper we consider the problem of optimal sensor place-

ment coupled with path planning in an unknown dynamic environ-
ment. Specifically, we are interested in sensor placement to collect
information of most relevance to the path-planning problem. The

Fig. 1 Visualization of the flood map at different times (minutes).
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objective is to find a near-optimal path with high confidence, i.e.,
low variance in the path cost, with a minimal number of sensor
measurements. We aim to compare such a coupled sensor configu-
ration and path-planning (CSCP) method against decoupled meth-
ods, where sensor configuration is achieved by optimizing a metric
that does not consider the path-planning problem in any way. This is
a relatively new research problem. Prior works by the second author
and coworkers address this problem for static (i.e., time-invariant)
environments. A heuristic task-driven sensor placement approach
called the interactive planning and sensing (IPAS) for static envi-
ronments is reported in [41]. The IPAS method outperforms several
decoupled sensor placement methods in terms of the total number of
measurements needed to achieve near-optimal paths. Sensor con-
figuration for location and field-of-view is reported in [6], also for
static fields. Sensor placement for multi-agent path planning based
on entropy reduction is presented in [42].
The novelty of this work is that we consider a time-varying threat

field and provide a new sensor placement method. Specifically, we
develop the so-called context-relevant mutual information (CRMI),
which quantifies the amount of information in configuration-
dependent sensor measurements in the context of reducing uncer-
tainty in path cost, rather than the environment state estimation error
(as a decoupled method typically does). We develop an iterative
algorithm for CSCP. At each iteration, a threat estimate is first
computed using sensor measurements. Next, a path-planning algo-
rithm finds a path of minimum expected threat. Next, optimal sensor
placements are computed to maximize the path-dependent CRMI,
and the iterations repeat. We compare this CSCP-CRMI method to a
decoupled method that finds optimal sensor placement by maximiz-
ing the “standard” mutual information (SMI). The metric of com-
parison is based on the number of measurements needed to achieve a
path cost with variance no greater than a user-specified threshold.
The results of this comparison show that the CSCP-CRMI method
significantly outperforms the decoupled method. We further extend
the CSCP method to incorporate sensor reconfiguration costs into
the cost function. The objective is to collectively maximize the path-
dependent CRMI and minimize sensor movement. A comparison is
performed between the results of the CSCP methods, one ignoring
and the other incorporating the sensor reconfiguration cost.
Preliminary results from this work were recently discussed in

conference papers [43,44]. In this paper we further extend the
conference paper works by introducing an approximation algorithm
based on the greedy placement of sensors. Additionally, we show
the submodularity property of both the CRMI and the modified
CRMI and demonstrate that the greedy placement of sensors guar-
antees a near-optimal solution. A proof of convergence of the CSCP
algorithm is also discussed.
The rest of the paper is organized as follows: In Sec. II, we

introduce the elements of the problem. In Sec. III, we present and
analyze the new CRMI measure and the CSCP-CRMI algorithm,
followed by a discussion on reconfiguration costs and greedy opti-
mization for near-optimal sensor placement. We present numerical
simulation results in Sec. IV and conclude the paper in Sec. V.

II. Problem Formulation
Let R;N denote the sets of real and natural numbers, respectively.

We denote by fNg the set f1; 2; : : : ; Ng and by IN the identity matrix
of size N, for any N ∈ N:
Consider a closed square region denoted byW ⊂ R2 and referred

to as the workspace, within which the mobile agent (called the
actor) and a network of mobile sensors operate. In this workspace,
consider a grid consisting of NG uniformly spaced points. The
coordinates of these points in a prespecified Cartesian coordinate
axis system are denoted by xi # !xi; yi", for each i ∈ NG. The
distance between the adjacent grid points is denoted by δ. The
mobile agent traverses grid points according to the “4-way adja-
cency rule,” such that the adjacent points are top, down, left, and
right. Furthermore, we assume a constant speed such that the actor’s
transitions to adjacent grid points occur in a constant time step Δt.

We formulate the path-planning problem for the actor as a graph
search problem on a graph, G # !V; E", with V # fNGg such that
each vertex in V is uniquely associated with a grid point. The set of
edges E in this graph consists of pairs of grid points that are
geometrically adjacent to each other.
A threat field, denoted as c∶W × R⩾0 → R>0, is a time-varying

scalar field that takes strictly positive values, indicating regions with
higher intensity that are potentially hazardous and unfavorable. A
path between two prespecified initial and goal vertices, is; ig ∈ V, is
defined as a finite sequence v # fv0; v1; : : : ; vLg of successively
adjacent vertices. This sequence starts at the initial vertex v0 # is
and ends at the goal vertex vL # ig, where L ∈ N represents the
number of vertices in the sequence. The edge transition costs, which
account for the expenses incurred when an actor moves between
vertices in a graph, are determined by a scalar function g∶E → R>0.
This function assigns a value to each edge in the graph, representing
the associated cost or effort required for traversal, and is defined as

g!!i; j"; t" # c!xj; t"; for i; j ∈ fNGg; !i; j" ∈ E (1)

The cost J!v" ∈ R>0 indicates the total threat exposure for an actor
on its traversal along a path v and is defined as the sum of edge
transition costs, J!v" # δ L

l#1 g!!vl−1; vl";lΔt". The main prob-
lem of interest is to find a path v$ with minimum cost. Because the
threat field is unknown and time-varying, its estimation is essential.
A network of NS sensors, where NS ≪ NG, can be used to measure
the intensity of threat. These sensor measurements are denoted
z!x; t;q" # fz1!x; t;q1"; z2!x; t;q2";: : : ; zNs

!x; t;qNs
"g. Sensors are

placed at distinct grid points, and the set of these grid points is
called the sensor configuration, q # fq1; q2; : : : ; qNs

g ⊂ fNGg.
The threat field is considered to be a stochastic quantity with

a predictive model involving uncertainty. Specifically, we consider
a finite parameterization c!x; t" ≔ 1% NP

n#1 θn!t"ϕn!x" # 1%
Φ⊤!x"Θ!t", with Φ!x" ≔ &ϕ1!x" : : :ϕNP

!x"'⊤, and ϕn!x" ≔
exp!−!x − !xn"⊤!x − !xn"∕2an" representing the basis functions for
each n ∈ fNPg. Here,NP denotes the number of parameters (or bases),
representing the threat state, and an and !xn are constants. The locations
of the basis functions Φ are fixed and remain unchanged throughout
the entire sensing and path-planning process. Although the actor has
prior knowledge of the functional forms of these functions, the threat
parameter Θ!t" ≔ &θ1!t" : : : θNP

!t"'⊤ is unknown and must be esti-
mated. The values of the constants an ∈ R>0 and !xn ∈ W are pre-
specified and chosen in such a manner that the combined interiors of
the significant support regions coverW. The parameter an is chosen to
minimize the overlap between the basis functions, ensuring better
distinction and independence among them [41]. In general, the basis
functions should be chosen to approximate threat field data, e.g.,
the flood map data in Fig. 1.
The temporal evolution of the threat is modeled by _Θ!t" #

AcΘ!t" % ω!t", where ω!t" ∼N !0; Qc" is white process noise
with Qc ≔ σ2PINP

. Such a model may be available either from
an underlying physical model of the threat, or it may be
derived from data, or a combination of both. As an illustrative
example, the solution to a heat diffusion equation, !∂c∕∂t" #
α&!∂2c∕∂x2" % !∂2c∕∂y2"' can be approximated by c!x; t" # 1%
Φ⊤!x"Θ!t" such that Θ!t" satisfies _Θ!t" # α!Φ⊤∕jΦj2"∇2ΦΘ!t",
where Ac ≔ α!Φ⊤∕jΦj2"∇2Φ.
We restrict the scope of this paper to linear threat field dynamics

for the purpose of establishing a proof of convergence of the
proposed method. However, the method itself is not limited to linear
dynamics. We implement the unscented Kalman filter in our current
threat field estimator in anticipation of this future extension. Our
current CSCP implementation will work as-is for nonlinear threat
dynamics, but the CRMI calculations will be approximations. Other
works in the literature, e.g., [45], have studied MI calculations for
nonlinear systems, which we can easily adapt to CRMI in the future.
Discretization in time of this model is easily accomplished by

the series expansion A ≔ INP
% AcΔt% &!Ac"2!Δt"2∕2!' % : : :

and Q ≔ QcΔt% &!AcQc %QcA
⊤
c "!Δt"2∕2!' % : : : terminated at

a desired order [2]. The discretized system dynamics are

Article in Advance / POUDEL AND COWLAGI 3

D
ow

nl
oa

de
d 

by
 R

ag
hv

en
dr

a 
C

ow
la

gi
 o

n 
Ja

nu
ar

y 
2,

 2
02

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
90

81
 



Θk # AΘk−1 % ωk−1 (2)

where ωk−1 ∼N !0; Q" for each k ∈ N.
The measurements obtained from each sensor are modeled as

zk ≔ c!xqk ; t" % ηk # Ck!q"Θk % ηk (3)

where Ck!q" ≔ &Φ!xqk;1" Φ!xqk;2" : : : Φ!xqk;NS
"'⊤ (4)

and ηk ∼N !0; R" is zero-mean measurement noise with covari-
ance R ≻ 0.
We generate stochastic estimates of the threat state with mean

value Θ̂k and estimation error covariance P. For any path, v #
fv0; v1; : : : ; vLg in G, the cost of the path is

J!v" ≔ δ
L

l#1

c!xvl ; t" # δ L%
L

l#1

Φ⊤!xvl"Θl (5)

Here, Θl represent the threats at different iterations (or time steps)
equivalent to the iterations required for an actor to follow the path v.
The cost J becomes a random variable with distribution dependent
on Θ. If Θ is Gaussian, then J is also Gaussian because it is linearly
dependent on Θ. Let V ⊂ W be the set of grid point locations in the
workspace associated with each vl in the path v. Note that while
θn!t" and ϕn represent the total number of threat parameters and the
basis functions involved in the threat field generation, θm!t" and ϕm
denote the subset of threat parameters and associated basis functions
that lie within the path and are relevant for computing the path cost
J!v". The set K ≔ fm ∈ fNPg∶V ∩ Rsup

m ≠ ∅g is defined as the
path-relevant set of threat states for any path v. In other words,
K consists of the set of indices m, representing the threat param-
eters θm or their corresponding basis functions ϕm, such that
the path lies within the total region of significant support Rsup

m

defined by ϕm.
An important characteristic associated with the convergence of

the path-planning algorithm is the risk of the path denoted by ρ!v".
For a Gaussian J, the risk of the path v is defined as ρ!v" ≔ Ĵ!v" %
Var&J!v"' [46]. Since NS ≪ NG, it is not possible to obtain good

estimates with only one set of measurements, and it is required to
take measurements repeatedly over a finite number of iterations.
Problem 1: For a prespecified termination threshold ε > 0 and

some finite iterations k # 0; 1; : : : ;M, find a sequence of sensor
configurations q$k and a path v$ with minimum expected cost Ĵ!v$"
and such that Var&J!v$"' ⩽ ε.
Alternatively, one may consider a requirement that the path risk

ρ!v$" be lower than a prespecified threshold.

III. Coupled Sensing and Planning
Coupled sensor configuration and path planning (CSCP) is our

proposed iterative approach to solve Problem 1. At each iteration, a
sensor configuration is determined, and measurements of the threat
field are collected. The optimal sensor configuration is found by
maximizing an information measure that we call context-relevant
mutual information (CRMI). These sensor measurements are used
to update the threat field estimates in an estimator. For future
compatibility with nonlinear threat dynamics, an unscented Kalman
filter (UKF) is used for estimating the parameter Θ. The interested
reader is referred to Appendix B for a brief description of the UKF.
Next, the path plan is modified based on the new threat field
estimate, and this process continues until the path cost variance is
reduced below a prespecified threshold ε.
In this paper, we assume that the actor is a planning agent that

does not move before the CSCP algorithm is complete. In other
words, we may think of this implementation of CSCP as occurring
in a virtual world for planning the future movements of the actor and
sensors. The reason for this restriction in scope is to be able to
provide a proof of convergence of the CSCP method as a baseline
for future applications. In our recent work [47], we implement a

version of CSCP where the actor moves simultaneously with the
CSCP iterations, and the sensors need a finite nonzero duration to
relocate. The simulations in [47] demonstrate a successful imple-
mentation and provide sensor resource benefits similar to those
described in the present manuscript, pending a formal proof of
convergence.
In what follows, we provide details of this iterative process,

analysis, and an illustrative example.

A. Context-Relevant Mutual Information (CRMI)

For any time step k, the mutual information (MI) between the
state Θk and measurement zk random variables is defined as [48]

I!Θk; zk" ≔ p!Θk; zk" log
p!Θk; zk"
p!Θk"p!zk"

dΘk dzk

where p!Θk", p!zk", and p!Θk; zk" represent the probability
density functions (PDFs) of state, measurement, and a joint PDF
of state and measurement, respectively. The joint PDF p!Θk; zk" is
a multivariate normal distribution with mean !Θ̂kjk−1; ẑk" and
covariance

PΘΘkjk−1 PΘzkjk−1

P⊤
Θzkjk−1

Pzzkjk−1

Here, PΘΘkjk−1 is obtained from the UKF algorithm. The covariance
of the measurement random vector Pzzkjk−1 and cross covariance
between the state and measurement random vectors PΘzkjk−1 depend
on the sensor configuration q. At each grid point, these covariances
are determined as

Pzzkjk−1 ≔E zk− ẑk zk− ẑk
⊤

#E Ck q Θk− Θ̂kjk−1 % ηk− η̂k Ck q Θk− Θ̂kjk−1

% ηk− η̂k ⊤

#Ck q E Θk− Θ̂kjk−1 Θk− Θ̂kjk−1
⊤ C⊤

k q

%E ηk− η̂k ηk− η̂k ⊤

#Ck q PΘΘkjk−1C
⊤
k q %Rk !6"

PΘzkjk−1 ≔ E Θk − Θ̂kjk−1 zk − ẑk
⊤

≔ E Θk − Θ̂kjk−1 Ck q Θk − Θ̂kjk−1 % ηk − η̂k
⊤

# E Θk − Θ̂kjk−1 Θk − Θ̂kjk−1
⊤ C⊤

k q

% E Θk − Θ̂kjk−1 ηk − η̂k ⊤

# PΘΘkjk−1C
⊤
k q !7"

The mutual information between the state Θk and measurement
zk!q" is then written as [45]:

I!Θk; zk!q"" #
1

2
log

jPΘΘkjk−1 j
jPΘΘkjk−1 − PΘzkjk−1P

−1
zzkjk−1P

⊤
Θzkjk−1

j
(8)

The MI I!Θk; zk!q"" depends on the sensor configuration q, and
in that sense it quantifies “informativeness” of a configuration q.
A canonical method of finding the optimal sensor configuration is
to maximize the MI (I) over q. Note, however, that this MI
I!Θk; zk!q"" is entirely decoupled from the path-planning prob-
lem, in that it is in no way contextualized by the optimal path to be
found. We introduce a new information measure called the
context-relevant mutual information (CRMI), which couples the
sensor configuration (placement) and path-planning problems.
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We define CRMI as the mutual information between the path
cost and the measurements. CRMI may be thought of as a formali-
zation of the vague notion “sensors ‘near’ the planned path are more
informative than those farther away.” To this end, consider that,
for any path v, the expected (mean) cost is Ĵ!v" ≔ δ!L%

L
l#1 Φ⊤!xvl"Θ̂l". The joint PDF p!Jk; zk" between the path cost

and measurement variables is

p!Jk; zk" # N
Jk
zk

∶ Ĵkjk−1
ẑk

;
PJJkjk−1 PJzkjk−1

P⊤
Jzkjk−1

Pzzkjk−1

The variance of the path cost is

PJJkjk−1 ≔ E !J!v" − Ĵ!v""2 # E δ
L

l#1

Φ⊤!xvl"!Θl − Θ̂l"
2

Using the formula for square of sums, iai
2 # ia

2
i %

2 i<jaiaj,

PJJkjk−1 # δ2 E
L

l#1

!Φ⊤!xvl"!Θl − Θ̂l""
2

% 2
L

l<m
l;m∈fLg

!Φ⊤!xvl"!Θl − Θ̂l"Φ⊤!xvm"!Θm − Θ̂m""

# δ2 E
L

l#1

!Φ⊤!xvl"!Θl − Θ̂l""
2

% 2
L

l<m
l;m∈fLg

!Φ⊤!xvl"!Θl − Θ̂l"!Θm − Θ̂m"
⊤Φ!xvm""

The first term E L
l#1 !Φ⊤!xvl"!Θl − Θ̂l""

2 can be further
expressed as

PJJkjk−1 #
L

l#1

E Φ⊤!xvl"!Θl − Θ̂l"!Θl − Θ̂l"
⊤Φ!xvl"

#
L

l#1

Φ⊤!xvl"E !Θl − Θ̂l"!Θl − Θ̂l"
⊤ Φ!xvl"

#
L

l#1

Φ⊤!xvl"PklΦ!xvl"

Therefore,

PJJkjk−1 # δ2
L

l#1

!Φ⊤!xvl"PklΦ!xvl""

% 2δ2
L

l<m
l;m∈fLg

!Φ⊤!xvl"PklmΦ!xvm"" (9)

The calculation of PJJkjk−1 requires the determination ofΦ and the
error covariance P for every grid point vl lying on the path. Pkl and
Pklm are determined by propagating the UKF prediction steps for
iterations equivalent to the path length. The covariance of the
measurement and the cross covariance between the path cost and
the measurement random vector are formulated as

PJzkjk−1 # E&!J!v" − Ĵ!v""!zk − ẑk"⊤'

# E δ
L

l#1

Φ⊤!xvl"!Θl − Θ̂l" !Ck!q"!Θk − Θ̂k"

% !ηk − η̂k""⊤

# δE
L

l#1

Φ⊤!xvl"!Θl − Θ̂l"!Θk − Θ̂k"
⊤C⊤

k !q"

# δ
L

l#1

!Φ⊤!xvl"Pkl"C
⊤
k !q" !10"

Pzzkjk−1 #E&!zk − ẑk"!zk − ẑk"⊤' #Ck!q"PΘΘkjk−1C
⊤
k !q"%Rk (11)

Finally, the CRMI is calculated as

I!Jk; zk!q"" #
1

2
log

jPJJkjk−1 j
jPJJkjk−1 − PJzkjk−1P

−1
zzkjk−1P

⊤
Jzkjk−1

j
(12)

This definition of the CRMI is the critical step in the proposed
coupled sensor placement and path planning (CSCP) algorithm,
described next. Similar to MI, CRMI is the difference between
entropy and conditional entropy given sensor measurements, namely

I!J; z!q"" # H!J" −H!Jjz!q"" (13)

where H!J" and H!Jjz!q"" denote the entropy of J and its entropy
conditional given sensor measurements z!q".

B. CSCP Algorithm

The CSCP algorithm described in Algorithm 1 initializes with
Θ̂0 # 0 and P0 # χINP

, where χ is a large arbitrary number. The
initial sensor placement q0 is arbitrary. At the initial iteration, an
optimal path v$0 of minimum expected cost E&J!v$0"' is calculated.
This threat estimate initialization implies that until a measurement is
taken, the algorithm assumes all threat states to be zero. As a result,
the CSCP planner is “optimistic” in that it plans paths through
regions associated with threat states that were not previously mea-
sured or estimated. The CRMI-based sensor placement then ensures
sensors are placed close to this path, thereby ensuring that the
sensors explore the entire workspace.
The description in Algorithm 1 is quite general, and its various

steps can be implemented using different methods of the user’s
choice. At each iteration k, the algorithm calculates the variance
Var&J!v$k "' of the cost of the path v$k per Eq. (9). The algorithm
terminates whenever the variance of the path cost reduces below a
prespecified threshold ε > 0. The method of computation of the
optimal path v$k is the user’s choice: for most practical applications,
Dijkstra’s algorithm (our choice for implementation) or the A$

algorithm will suffice.
The optimal sensor configuration in line 6 can be calculated by

optimizing some measure of information gain. In a decoupled
approach, we may optimize the standard MI in Eq. (8). In the
proposed CSCP method, we optimize the CRMI in Eq. (12). The
method of optimization is left to the user, and it is not the focus of
this paper. For a small number of grid points, we can determine q$k
by mere enumeration. In prior works, e.g., [6], we have found
success in implementing evolutionary global optimization methods
for sensor configuration, albeit using a different reward function. It
is possible to apply such methods for CRMI maximization as well.
With an optimal sensor placement, a new set of measurements is

recorded, which is then used to update the state estimate for Θ. Yet
again, the specific method of estimation is the user’s choice. We
choose the linearization-free UKF method for future applications to
nonlinear threat dynamics, briefly described in the Appendix. This
iterative process continues until the termination criteria Var&!Ĵ!v"' ⩽
ε is satisfied.
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C. CRMI Optimization

Finding the optimal sensor configuration by maximizing
CRMI is challenging because the number of feasible sensor
configurations suffers combinatorial explosion with an increas-
ing number of sensors NS. To resolve this issue, we execute
greedy optimization of one sensor at a time, which enormously
reduces the computation time. When the objective function is
submodular, the suboptimality due to greedy optimization
remains bounded. Therefore, we consider submodularity of the
proposed CRMI.
A brief definition of submodularity is as follows: Consider a

finite set Ω and a real-valued function f∶2Ω → R. For any two
subsets X ;Y ⊆ Ω such that X ⊆ Y, the function f is said to be
submodular if

f!X ∪ fxg" − f!X" ⩾ f!Y ∪ x" − f!Y" (14)

for each x ∈ Ω \ Y. The inequality (14) expresses the property of
diminishing returns, i.e., the increase in f due to the introduction of
a new element in a set diminishes with the size of that set. In the
context of sensor placement, this means that if an information gain
measure is submodular, then the information gain due to the place-
ment of a new sensor diminishes with the number of sensors already
placed.
Proposition 1: The CRMI I!J; z!q"" is submodular.
Proof: Refer to Appendix A. □

D. Greedy Sensor Placement

We implement a greedy sensor placement algorithm, as shown in
Algorithm 2, in which the sensor locations are chosen in sequence
such that the choice of the next sensor maximizes the CRMI. This
approach aims to select a set of sensors that collectively provides the
maximum information relevant to the path planning. As described in
Algorithm 2, greedy optimization initializes the empty configura-
tion qgr # ∅ and iterations are carried out until NS sensors are
selected. At each iteration, the greedy optimal configuration is
the scalar q$ ∈ fNGg \ qgr that maximizes CRMI I!J;z!q"". The
configuration qgr is then updated to include q$:
Theorem 1: [49] The greedy placement algorithm for any mono-

tone submodular function provides a performance guarantee of
&1 − !1∕e"' times the optimal value.
We denote the maximum I!J; z!q$"" as an optimal value, and

I!J; z!qgr"" as the approximate mutual information value. For any

k # NS sensor elements chosen by the greedy algorithm, it follows
from Theorem 1 that

I!J; z!qgr"" ⩾ 1 − 1 −
1

k

k

I!J;z!q$"" ⩾ 1 −
1

e
I!J; z!q$""

E. Sensor Reconfiguration Cost

Sensor reconfiguration cost refers to the cost of moving sensors
from one location to another in the grid space. We consider a sensor
reconfiguration cost based on the Euclidean distance between
the new and previous sensor locations, as illustrated in Fig. 2. Here,
dji is the Euclidean distance between the ith grid point and the
location of the jth sensor.
Informally, at the kth iteration of the CSCP algorithm, the objec-

tive is to find new sensor locations q$k%1 that maximize the CRMI
while minimizing the cost of sensor reconfiguration from the current
configuration q$k # fqk$1 ; : : : ; qk

$
NS
g. To this end we define

Imod!q" ≔ I!Jk;zk!q"" % α1 − α2 min
j;l∈fNSg×fNSg

kql − qk
$
j k (15)

where α1; α2 are constants. We choose α1 to be a relatively large
value, e.g., proportional to the size of the overall workspace,
whereas α2 is chosen based on the user’s preference for reducing
the reconfiguration cost.
Proposition 2: The modified CRMI Imod!q" is submodular.
Proof: Refer to Appendix A. □

F. Convergence of the Proposed CSCP Algorithm

In this section, we show that the proposed CSCP algorithm
converges in a finite number of iterations. To this end, first consider
the following result.
Proposition 3: If A is Schur, then the CSCP algorithm terminates

in a finite number of iterations.
Proof: If all modes of A are stable, then the pair !A;Ck!q"" is

uniformly detectable for any q. Furthermore, because Q # σ2PINP
,

the pair !A;Q" is controllable. By [50], it follows that the estimation
error is exponentially stable. Consequently, for any ε > 0 there is a
finite iteration number M ∈ N such that tr!Pk" ⩽ ε, after which the
CSCP algorithm terminates. □

Remark 1:Whereas Proposition 3 is sufficient, it is not necessary
for the convergence of the CSCP algorithm. A less restrictive
criterion for convergence, which does not assume A to be Schur,
is discussed below.
At the kth iteration of the CSCP method, the predicted error

covariance is defined as Pkjk−1 ≔ APk−1jk−1A
⊤ %Qk−1. Here, the

term APk−1jk−1A
⊤ grows the uncertainty from the previous step’s

posterior covariance based on the A, and Qk−1 accounts for the
uncertainty introduced due to process noise. The measurement update
is defined as Pkjk ≔ Pkjk−1 − LkCkPkjk−1. The uncertainty growth in
the system is fPkjk−1−Pk−1jk−1#APk−1jk−1A

⊤−Pk−1jk−1%Qk−1g.

Algorithm 2: Greedy CRMI optimization

1: Set qgr # ∅;
2: for i # 1 to NS do
3: Set q ≔ fNGg \ qgr;
4: Calculate q$i ≔ argmaxq∈qI!J; z!q"";
5: qgr # qgr ∪ q$i .

Fig. 2 Illustration of sensor reconfiguration cost.

Algorithm 1: Coupled sensor configuration and planning
(CSCP)

1: Set k # 0; Θ̂0 # 0, and P0 # χINP
;

2: Initialize sensor placement q0 ⊂ fNGg;
3: Find v$0 # argmin!Ĵ0!v"";
4: while Var&J!v$k "' > ε do
5: Determine I!Jk; zk!q"" per Eq. (12);
6: Find optimal sensor configuration q$k ≔ argmaxqI!Jk;zk!q"";
7: Obtain new sensor measurements zk!q$k ";
8: Update Θ̂k; Pk;
9: Find v$k ≔ argmin!Ĵk!v"";
10: Increment iteration counter k # k% 1.

6 Article in Advance / POUDEL AND COWLAGI

D
ow

nl
oa

de
d 

by
 R

ag
hv

en
dr

a 
C

ow
la

gi
 o

n 
Ja

nu
ar

y 
2,

 2
02

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
90

81
 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.G009081&iName=master.img-001.jpg&w=151&h=146


Similarly, the reduction in the uncertainty of the system after
the measurement update is fPkjk−1 − Pkjk # LkCkPkjk−1g. The
convergence of the CSCP method is guaranteed if the following
criterion is satisfied for every time steps.

tr!LkCkPkjk−1" ⩾ tr!APk−1jk−1A
⊤ − Pk−1jk−1 %Qk−1"

Note that this criterion cannot be verified a priori, as it depends on
the estimation error covariances computed during the algorithm’s
execution.

IV. Results and Discussion
In this section, we first provide an illustrative example of the

proposed CSCP-CRMI method. Second, we compare the proposed
method against a decoupled method that finds optimal sensor
placement using the standard (path-independent) MI; for brevity
we call this decoupled method CSCP-SMI. Third, we study the
effects of varying numbers of sensors, threat parameters, and grid
points on the CSCP-CRMI method. Fourth, we perform a compar-
ative study between the CSCP-CRMI and greedy sensor placements
and observe the equivalency as well as differences between the two
approaches. Finally, we conduct a comparative study between the
CSCP method with and without the sensor reconfiguration cost. All
simulations are performed within a square workspaceW # &−1;1' ×
&−1;1' using nondimensional units in a Cartesian coordinate axes
system.
A MATLAB®-based implementation of the CSCP method used

for producing these results is available at this repository: https://
github.com/prakashpoudel2014/CSCP_time_varying.

A. Illustrative Example

The implementation of the CSCP-CRMI algorithm on an illus-
trative example is shown in Fig. 3. The number of threat parameters,
grid points, and sensors are NP # 25, NG # 49, and NS # 2,

respectively. The threat parameters NP, indicated by the black dots
and numbered from 1 to 25, are uniformly spaced in the workspace.
The white dots represent the grid points. The initial and the goal
points are represented by the bottom left and the top right grid points
in the map. The evolution of the threat field estimate ĉ for different
time steps, namely k # 1; 5; 11, and 15 is shown by a color map.
The path v$k of minimum estimated cost is indicated by red circles,
and the sensor placement qk is shown by white circles, as illustrated
in Figs. 3a–3d. For a specified threshold ε # 0.1, the algorithm
terminates at k # 15 iterations, and the optimal path v$ is achieved.
Figures 4a–4d show the absolute error between the true threat field c
and the estimated field ĉ, computed as jc − ĉj, for the respective
iterations k # 1; 5; 11;15. These plots illustrate how the estimation
accuracy improves as the algorithm progresses.
The comparison between the true and estimated path cost is

illustrated in Fig. 5a. Upon termination, the true and estimated path
costs are nearly identical, with J!v$k " # 16.46 and Ĵ!v$k " # 16.77,
respectively. Figure 5b shows the convergence of the proposed
CSCP-CRMI algorithm. The path cost variance Var&!Ĵ!v$k "'
decreases with time, and the algorithm terminates in 15 iterations
as the path cost variance decreases below 0.1.

B. Comparison of CSCP-CRMI and CSCP-SMI

For comparison, now consider the execution of CSCP-SMI on the
same example as discussed above.
Figure 6 shows the estimation error covariance P at the final

iteration, mapped to the spatial regions of the environment using the
centers of spatial basis functions Φ. In a slight departure from
convention, Fig. 6 shows the logarithms of the diagonal values of
P, which explains the negative values despite P being a symmetric
positive definite matrix. The reason for this choice of logarithmic
values is to clearly show the orders of magnitude difference in the
estimation error covariance in different regions of the environment.
The white regions in Fig. 6a with high error covariance repre-

sent areas where few, if any, sensors are placed throughout the

Fig. 3 Visualization of CSCP-CRMI process for NP ! 25 and NG ! 49.
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execution of CSCP-CRMI. The darker regions represent areas
where sensors were placed to reduce the estimation error covari-
ance values orders of magnitude below those of the white-colored
regions. Compare Fig. 6 to the optimal path found in Fig. 3d, and
we find that the CSCP-CRMI sensor placement is such that areas
around the optimal path generally have lower estimation error
covariance. Note that the path does not exclusively follow regions
of minimal covariance. The planning objective is to minimize

cumulative threat exposure; the optimal trajectory occasionally
favors areas with slightly higher estimation uncertainty if the
expected threat intensity in those areas is substantially lower. Note,
crucially, the novelty of this approach: the optimal path is at first
unknown, and the sensor placement and path planning are per-
formed iteratively to arrive at these results.
Figure 6b shows the estimation error covariance P of the CSCP-

SMI method. By contrast to Fig. 6a for CSCP-CRMI, we note here

Fig. 5 Convergence of CSCP-CRMI algorithm.

Fig. 4 Error between the mean estimate and ground truth during CSCP-CRMI, for NP ! 25 and NG ! 49.

Fig. 6 Diagonal log values of error covariance at final iteration.
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spatially uniform covariance values. This means that in CSCP-SMI,
the sensors are placed in such a way that the error covariances in all
regions of the environment are low compared to CSCP-CRMI.
Whereas this would be of benefit if we were merely trying to map
the threat in the environment, this uniformly low error covariance is
indicative of wasteful sensor placement in the context of path
planning. In the case of CSCP-CRMI, although there are some
regions that are not explored, the outcome of the path-planning
algorithm is still near-optimal.
An intensity map showing the mutual information values for each

grid point from an illustrative example is shown in Fig. 7. Notably,
these values are derived with consideration for only a single sensor.
The brown regions represent the areas with higher CRMI values. It
can be observed in Fig. 7a that the CRMI regions are more visible
around the vicinity of the path obtained in Fig. 3d. The optimal path,
indicated by blue circles, is overlaid on the CRMI intensity map for
clarity. The sensor is placed at the grid point, here number 49, with a

maximum CRMI value. Similarly, Fig. 7b shows the SMI map
representing the mutual information values between the state and
measurement variables. The higher CRMI regions are observed
around the location of the threat parameter, and for this example,
the sensor is placed at the 7 numbered grid point.
Figure 8 shows a comparison between the path cost variance

Var&J!v$k "' of the two methods. Note that, for ε # 0.1, the CSCP-
SMI algorithm requires 39 iterations to converge, whereas the
CSCP-CRMI algorithm requires only 15 iterations. This indicates
that the number of iterations for the SMI-based method is 160%
larger than CSCP. Figure 9 shows similarly large differences in
convergence rate for different numbers of sensors.
Figure 10a shows the variation of path cost variance with varying

the number of sensors. For a specified number of threat parameters,
NP # 49 and the grid points NG # 49, better convergence is
achieved with more number of sensors. Using a single sensor will
require a relatively large number of iterations for convergence.
The convergence of the CSCP-CRMI algorithm for different

numbers of threat parameters NP is shown in Fig. 10b. For
NS # 2 andNG # 81, CSCP converges faster for fewer threat states
(e.g., NP # 9 or 16) compared to, say, NP # 64 or 81.
We also performed comparative analysis for a specific number of

sensors and parameters with varying numbers of grid points. It is
observed that the path cost and the path cost variance remain
unchanged for different numbers of grid points. This result is a
consequence of proper scaling in the path cost formulation, namely,
the scaling of the cost by the grid spacing δ:

C. Analysis of Greedy Optimization

A comparative example of sensor placements for NP # 25,
NG # 25, and NS # 4 using greedy and nongreedy (true optimal)
is shown in Fig. 11a. Red circles in the figure indicate sensor
positions with greedy placement, whereas the black circles indicate
true optimal. Note that the two sensor locations in the grid space are

Fig. 7 Mutual information intensity map.

Fig. 8 Comparison of path cost variance between CSCP-CRMI and
CSCP-SMI with NS ! 2.

Fig. 9 Additional comparison of path cost variance between CSCP-CRMI and CSCP-SMI.

Article in Advance / POUDEL AND COWLAGI 9

D
ow

nl
oa

de
d 

by
 R

ag
hv

en
dr

a 
C

ow
la

gi
 o

n 
Ja

nu
ar

y 
2,

 2
02

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
90

81
 

https://arc.aiaa.org/action/showImage?doi=10.2514/1.G009081&iName=master.img-006.jpg&w=349&h=158
https://arc.aiaa.org/action/showImage?doi=10.2514/1.G009081&iName=master.img-007.jpg&w=174&h=138
https://arc.aiaa.org/action/showImage?doi=10.2514/1.G009081&iName=master.img-008.jpg&w=350&h=151


common for both criteria. This is a specific example where greedy
optimization results in the true optimal sensor configuration. For a
submodular function, greedy optimization results in near-optimal
configurations.
Figure 11b compares the time required to compute the optimal

sensor configuration using the greedy and nongreedy approaches.
The relative computing time is plotted for different combinations of
grid points and number of sensors. As the number of sensors
increases, the relative computation time rapidly decreases, indicat-
ing the computational advantages of the greedy method. A sharp
decrease in the relative computation time is observed, especially as
the number of grid points increases.
A comparison between the CRMI values for greedy and nongreedy

methods is shown in Fig. 11c. The suboptimality bounds described in
Theorem 1 are also shown. As expected, Fig. 11c indicates that the
greedy optimization-based CRMI values lie within these bounds.
Finally, a comparison of the path cost variance is shown in Fig. 11d.
For this specific example and ε # 0.1, the nongreedy (true optimal)
method results in 12 CSCP iterations for convergence, whereas the
greedy method requires 16 CSCP iterations.

D. Analysis of Sensor Reconfiguration Cost

The number of threat parameters, sensors, and grid points used
for the analysis are NP # 49, NS # 3, and NG # 121, respectively.
Figure 12a shows the comparison between the true and estimated
mean path costs. Initially, both estimated mean path costs are much
lower than the true path cost. This is because there is not much
information about the environment, and the estimator relies heavily
on the “optimistic” prior, which results in threat estimates with small
values. The estimated path costs for both with and without sensor
reconfiguration costs are similar. The CSCP method with a sensor
reconfiguration cost converges in 21 iterations, whereas the method
without considering the sensor reconfiguration cost converges in 20
iterations. The convergence of both CSCP methods is shown by a
path cost variance plot in Fig. 12b. As the iterative process contin-
ues, the path cost variance Var&!Ĵ!v$k "' decreases, and the algorithm
terminates when Var&!Ĵ!v$k "' falls below ε # 0.1. Figure 12c shows
the sensor reconfiguration cost values at different time steps. For the
computation of sensor reconfiguration cost, we choose α1 # 8

p

(diagonal distance across the workspace) and α2 # 0.01. For

Fig. 10 Convergence of CSCP-CRMI algorithm for different number of sensors and parameters.

Fig. 11 Comparison between greedy and nongreedy CSCP-CRMI.
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NS # 3, the sensor cost is the cumulative sum of the distance
traveled by the three sensors at each iteration.
A comparative example of sensor placements for NP # 49,

NG # 121, andNS # 4 using CSCP with and without consideration

of the sensor configuration cost is shown in Figs. 13a and 13b. Red
circles in the figure indicate sensor positions based on maximizing
CRMI, whereas the black circles indicate sensor locations based on
maximizing the modified CRMI. At k # 19, it can be observed that

Fig. 12 Path cost mean, variance over CSCP iterations with and without sensor reconfiguration cost.

Fig. 13 Comparison between the CSCP method with and without sensor reconfiguration cost.
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the two sensor locations in the grid space are common for methods.
As expected, when sensor reconfiguration cost is considered, the
new sensor locations (black circles) at k # 20 are relatively closer to
the previous locations at k # 19 as compared to sensor positions
denoted by the red circles across the two iterations. Figure 13c
shows the values of the CRMI and the modified CRMI for different
numbers of sensors.
Finally, although the basis functions used in the previous results

had uniformly spaced centers and nonsignificant intersections in
regions of support, the proposed CSCP method is not restricted by
these assumptions. For instance, Fig. 14 shows different CSCP
iterations in a threat field constructed using overlapping basis
functions and nonuniformly spaced centers.

E. Computational Complexity
The computational complexity of Algorithm 1 depends on the

complexity of CRMI optimization in line 5 and the number of calls
performed in Dijkstra’s algorithm in line 9. CRMI calculation and
maximization involves determinant and inverse computations, thus
has a time complexity of O!N3

S". By comparison, the CRMI calcu-
lation for the greedy optimization method has a complexity of
O!NS". The worst-case time complexity of Dijkstra’s algorithm
implemented with a Fibonacci heap is O!NG % NG log!NG""
[41]. The complexity of CRMI optimization depends on the specific
algorithm chosen. CSCP addresses scenarios where sensor resour-
ces are limited. Scaling up should then be considered in the context
of the grid size, which may be achieved by relaxation to a continu-
ous workspace and a suitable optimization method, e.g., evolu-
tionary global optimization methods, as previously mentioned.
Further computational efficiency may be achieved via decentralized
estimation, as we had reported earlier in [51], albeit with a naïve
sensor placement method.

V. Conclusions
In this paper, we discussed a new measure of information gain for

optimal sensor placement to capture the coupling of the sensor

placement problem with a path-planning problem. This measure,
which we call the context-relevant mutual information (CRMI),
addresses the reduction in uncertainty in the path cost, rather than
the environment state. We presented a coupled sensor placement and
path-planning algorithm that iteratively places sensors based on
CRMI maximization, updates the environment threat estimate, and
then plans paths with minimum expected cost. Crucially, we showed
CRMI to be a submodular function, due to which we can apply
greedy optimization to arrive at near-optimal results while main-
taining computational efficiency. We performed a comparative study
between CSCP-CRMI and a decoupled CSCP-SMI method. The
CSCP-SMI method places sensors by maximizing the standard
(path-independent) mutual information of the measurements and
threat state. We showed via numerical simulation examples that
the CSCP-CRMI algorithm converges in less than half as many
iterations compared to the CSCP-SMI algorithm, which indicates a
significant reduction in the number of sensor observations needed to
find near-optimal paths. We also introduced and analyzed a modi-
fied cost function that addresses costs associated with distances
traveled by sensors (i.e., sensor reconfiguration cost) after each
iteration of placement. For future work, we will consider other
real-world sensor constraints such as communication limitations,
energy consumption, and sensor reliability issues.

Appendix A: Technical Proofs
Proof of Proposition 1: By the definition of path-relevant set K,

for the path v$k # fv0; v1; : : : ; vLg, the values of ϕm!xvl" ≈ 0 for
each l # !0; 1; : : : ; L" andm ∈= K. Therefore, for all basis functions
m ∈= K, Φ!xvl" # 0, and by Eq. (10), PJzkjk−1 ≈ 0. By Eq. (12),
I!Jk;zk!q"" ≈ 0 at locations in the workspace where the basis
functions ϕm do not overlap with the path v.
Per the proposed sensor reconfiguration policy, q$k # maxqI!Jk;

zk!q"", sensors are necessarily placed at locations within the regions
of significant support Rsup

m defined by ϕm, for each m ∈ K, i.e.,
within the basis support regions of the basis functions contained
within a path-relevant set. Given the path cost J!v" is known, the

Fig. 14 CSCP iterations for nonuniformly spaced basis functions, with NP ! 49, NG ! 121, and NS ! 2.
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sensor measurements z!q" within the path-relevant set K fully
capture the information about the J!v". This shows that the sensor
measurements are conditionally independent given the path cost.
i.e., p!z1; z2; : : : zNs

jJ" # p!z1jJ"p!z2jJ" : : : p!zNs
jJ". Next, we

show that this conditional independence implies submodularity.
Consider two subsets of the sensor configurations,A and B, such

that A ⊆ B ⊆ q, where q ⊂ fNGg. By Eq. (13), we write I!J;A" #
H!A" −H!AjJ" and I!J;B" # H!B" −H!BjJ". For any x ∈ q \ B,
the marginal CRMI gain due to a sensor placed at x to in addition to
those in sets A and B is

ΔA!x" # I!J;A ∪ x" − I!J;A"

# H!A ∪ x" −H!A ∪ xjJ" −H!A" %H!AjJ"

ΔB!x" # I!J;B ∪ x" − I!J;B"

# H!B ∪ x" −H!B ∪ xjJ" −H!B" %H!BjJ"

By the chain rule of conditional entropy, H!A ∪ xjJ" #
H!AjJ" %H!xjA; J", and H!B ∪ xjJ" # H!BjJ" %H!xjB; J".
Also, the conditional independence of z!q" given J implies
H!xjA; J" # H!xjB; J" # H!xjJ". It follows that

ΔA!x" # H!A ∪ x" −H!xjJ" −H!A";

ΔB!x" # H!B ∪ x" −H!xjJ" −H!B"

By the chain rule again, H!A ∪ x" # H!A" %H!xjA" and H!B ∪
x" # H!B" %H!xjB" from the previous expressions, we obtain
ΔA!x" # H!xjA" −H!xjJ", and ΔB!x" # H!xjB" −H!xjJ".
Therefore, the difference in marginal gains is ΔA!x" − ΔB!x" #
H!xjA" −H!xjB", which must be nonnegative because A ⊆ B.
Consequently, I!J;A ∪ x"− I!J;A" ⩾ I!J;B ∪ x"− I!J;B", which
satisfies the submodularity criterion. □

Proof of Proposition 2: The sensor reconfiguration cost function
can be represented as a set function:

f!S" ≔ α1 − α2 min
j∈fNSg;l∈S

fkql − qk
$
j kg

where S ⊆ fNSg is a subset of sensor indices. Consider two subsets
A and B such that A ⊆ B ⊆ fNSg and x ∈ fNSg \ B. In the rest of
this proof, the symbol j is an index over fNSg, i.e., j ∈ fNSg, which
we avoid writing explicitly for notational convenience. Without loss
of generality, we assume α2 # 1.
To calculate the marginal costs due to the inclusion of the index x

in either A or B, we note

f!A ∪ x" # α1 − min
l∈fA∪xg

kql − qk
$
j k

f!B ∪ x" # α1 − min
l∈fB∪xg

kql − qk
$
j k

⇒ f!A ∪ x" − f!A" # − min
l∈fA∪xg

kql − qk
$

j k%min
l∈A

kql − qk
$

j k

⇒ f!B ∪ x" − f!B" # − min
l∈fB∪xg

kql − qk
$

j k%min
l∈B

kql − qk
$

j k

Since A ⊆ B, minl∈Akql − qk
$

j k ⩾ minl∈Bkql − qk
$

j k. It fol-
lows that, for sufficiently large α1, f!A" ⩽ f!B". Then we consider
the following three cases:

kqx − qk
$

j k ⩽ min
l∈B

kql − qk
$

j k ⩽ min
l∈A

kql − qk
$

j k !i"

min
l∈B

kql − qk
$
j k ⩽ kqx − qk

$
j k ⩽ min

l∈A
kql − qk

$
j k !ii"

min
l∈B

kql − qk
$
j k ⩽ min

l∈A
kql − qk

$
j k ⩽ kqx − qk

$
j k !iii"

For case (i) we note

f!A ∪ x" − f!A" # min
l∈A

kql − qk
$
j k − kqx − qk

$
j k;

f!B ∪ x" − f!B" # min
l∈B

kql − qk
$

j k − kqx − qk
$

j k

It follows that f!A ∪ x" − f!A" > f!B ∪ x" − f!B". For case (ii)
we note

f!A ∪ x" − f!A" # min
l∈A

kql − qk
$
j k − kqx − qk

$
j k;

f!B ∪ x" − f!B" # min
l∈B

kql − qk
$

j k −min
l∈B

kql − qk
$

j k # 0

Again, it follows that f!A ∪ x" − f!A" > f!B ∪ x" − f!B".
Finally, for case (iii) we note

f!A ∪ x" − f!A" # f!B ∪ x" − f!B" # 0

Therefore, the inequality f!A ∪ x" − f!A" ⩾ f!B ∪ x" − f!B"
is always true and f is submodular. By Proposition 1 and
the additive property of submodular functions [49], Imod!q" is
submodular. □

Appendix B: Unscented Kalman Filter for Threat
Estimation

The estimated state parameters and the error covariance of the
system are calculated by an unscented Kalman filter (UKF) [4].
Although the scope of this paper is limited to linear threat field
dynamics, we would like to ensure generality for nonlinear threat
models to be considered in the future. For the reader’s convenience
we provide a brief overview of the UKF here and refer to [4] for
further details.
An augmented state variable Θa

k−1 ∈ RNΘ%Nω%Nη is defined as
Θa

k−1 # &ΘT
k−1 ωT

k−1 ηTk−1'T and 2N % 1 sigma vectors are ini-
tialized using augmented estimated states Θ̂a

k−1 and error covariance
Pa
k−1 as

σak−1 ≔ &Θ̂a
k−1 · · · Θ̂a

k−1' % 0 !N% λ"Pa
k−1 − !N% λ"Pa

k−1

The generated sigma vectors are propagated through the process
model as σΘkjk−1 # AσΘk−1 % σωk−1, where σΘk−1 and σωk−1 are the
components of σa that correspond to the state variables and process
noise, respectively. At time instants where measurements are not
available, the estimated state and error covariance are predicted as

Θ̂−
k #

2N

i

W!m"
i σΘi;kjk−1;

P−
k #

2N

i

W!c"
i !σΘi;kjk−1 − Θ̂−

k "!σΘi;kjk−1 − Θ̂−
k "

⊤

where W!m"
i and W!c"

i are weights associated with sigma vectors.
After the sensor measurements are taken, the measurement model is
propagated using γkjk−1 # Ck!q"σΘkjk−1 % σηk−1. Next, the mean and
covariance of the measurement and the cross-covariance of the state
and measurement are calculated as

ẑ−k #
2N

i

W!m"
i γi;kjk−1;

Pzzk #
2N

i

W!c"
i !γi;kjk−1 − ẑ−k "!γi;kjk−1 − ẑ−k "⊤;

PΘzk #
2N

i

W!c"
i !σΘi;kjk−1 − Θ̂−

k "!γi;kjk−1 − ẑ−k "⊤
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Finally, the filter gain is calculated as Lk # PΘzkP
−1
zzk and the

estimated states Θ̂k and covariance Pk are updated as Θ̂k # Θ̂−
k %

Lk!zk − ẑ−k " and Pk # P−
k − LkPzzkL

⊤
k .

Acknowledgment
This work is funded in part by the NSF Dynamics, Control, and

Systems Diagnostics program grant #2126818.

References
[1] Arctur, D., “U.S. Geological Survey (USGS)—Harvey Gaged Stream-

flow Timeseries,” HydroShare, 2023.
https://doi.org/10.4211/hs.4f439754503c4ff4959c7e3703121940

[2] Lewis, F. L., Xie, L., and Popa, D., Optimal and Robust Estimation:
With an Introduction to Stochastic Control, CRC Press, Boca Raton,
FL, 2017, pp. 19–22.

[3] Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics, MIT
Press, Cambridge, MA, 2006.

[4] Julier, S., and Uhlmann, J., “Unscented Filtering and Nonlinear Esti-
mation,” Proceedings of the IEEE, Vol. 92, No. 3, 2004, pp. 401–422.
https://doi.org/10.1109/JPROC.2003.823141

[5] Doucet, A., and Johansen, A. M., “ATutorial on Particle Filtering and
Smoothing : Fiteen Years Later,” The Oxford Handbook of Nonlinear
Filtering, edited by D. Crisan, and B. Rozovskii, Oxford Univ. Press,
Oxford, NY, 2011, pp. 656–705, http://webcat.warwick.ac.uk/
record=b2490036.

[6] St. Laurent, C., and Cowlagi, R. V., “Near-Optimal Task-Driven Sensor
Network Configuration,” Automatica, Vol. 152, June 2023, Paper
110966.
https://doi.org/10.1016/j.automatica.2023.110966

[7] Fang, Z., Wang, Y., van Westen, C., and Lombardo, L., “Landslide
Hazard Spatiotemporal Prediction Based on Data-Driven Models:
Estimating Where, When and How Large Landslide May Be,”
International Journal of Applied Earth Observation and Geoinforma-
tion, Vol. 126, Feb. 2024, Paper 103631.
https://doi.org/10.1016/j.jag.2023.103631

[8] Cisneros, D., Gong, Y., Yadav, R., Hazra, A., and Huser, R., “A
Combined Statistical and Machine Learning Approach for Spatial
Prediction of Extreme Wildfire Frequencies and Sizes,” Extremes,
Vol. 26, No. 2, 2023, pp. 301–330.
https://doi.org/10.1007/s10687-022-00460-8

[9] LaValle, S. M., Planning Algorithms, Cambridge Univ. Press, Cam-
bridge, MA, 2006.

[10] Patle, B., Pandey, A., Parhi, D., and Jagadeesh, A., “AReview: On Path
Planning Strategies for Navigation of Mobile Robot,” Defence Tech-
nology, Vol. 15, No. 4, 2019, pp. 582–606.
https://doi.org/10.1016/j.dt.2019.04.011

[11] Popović, M., Ott, J., Rückin, J., and Kochenderfer, M. J., “Learning-
Based Methods for Adaptive Informative Path Planning,” Robotics and
Autonomous Systems, Vol. 179, Sep. 2024, Paper 104727.
https://doi.org/10.1016/j.robot.2024.104727

[12] Chen, J., Du, C., Zhang, Y., Han, P., and Wei, W., “AClustering-Based
Coverage Path Planning Method for Autonomous Heterogeneous
UAVs,” IEEE Transactions on Intelligent Transportation Systems,
Vol. 23, No. 12, 2022, pp. 25,546–25,556.
https://doi.org/10.1109/TITS.2021.3066240

[13] Chintam, P., Lei, T., Osmanoglu, B., Wang, Y., and Luo, C., “Informed
Sampling Space Driven Robot Informative Path Planning,” Robotics
and Autonomous Systems, Vol. 175, May 2024, Paper 104656.
https://doi.org/10.1016/j.robot.2024.104656

[14] Rückin, J., Jin, L., and Popović, M., “Adaptive Informative Path
Planning Using Deep Reinforcement Learning for UAV-Based Active
Sensing,” International Conference on Robotics and Automation
(ICRA), Inst. of Electrical and Electronics Engineers, New York,
2022, pp. 4473–4479.
https://doi.org/10.1109/ICRA46639.2022.9812025

[15] Qin, Y., Zhang, Z., Li, X., Huangfu, W., and Zhang, H., “Deep
Reinforcement Learning Based Resource Allocation and Trajectory
Planning in Integrated Sensing and Communications UAV Network,”
IEEE Transactions on Wireless Communications, Vol. 22, No. 11,
2023, pp. 8158–8169.
https://doi.org/10.1109/TWC.2023.3260304

[16] Wen, T., Wang, X., Zheng, Z., and Sun, Z., “A DRL-Based Path
Planning Method for Wheeled Mobile Robots in Unknown Environ-
ments,” Computers and Electrical Engineering, Vol. 118, Sept. 2024,
Paper 109425.
https://doi.org/10.1016/j.compeleceng.2024.109425

[17] Xue, J., Zhang, S., Lu, Y., Yan, X., and Zheng, Y., “Bidirectional
Obstacle Avoidance Enhancement-Deep Deterministic Policy
Gradient: A Novel Algorithm for Mobile-Robot Path Planning in
Unknown Dynamic Environments,” Advanced Intelligent Systems,
Vol. 6, No. 4, 2024, Paper 2300444.
https://doi.org/10.1002/aisy.202300444

[18] Kamil, F., and and, M. Y. M., “Multilayer Decision-Based Fuzzy Logic
Model to Navigate Mobile Robot in Unknown Dynamic Environ-
ments,” Fuzzy Information and Engineering, Vol. 14, No. 1, 2022,
pp. 51–73.
https://doi.org/10.1080/16168658.2021.2019432

[19] Cai, X., Ancha, S., Sharma, L., Osteen, P. R., Bucher, B., Phillips, S.,
Wang, J., Everett, M., Roy, N., and How, J. P., “EVORA: Deep
Evidential Traversability Learning for Risk-Aware Off-Road
Autonomy,” IEEE Transactions on Robotics, Vol. 40, July 2024,
pp. 3756–3777.
https://doi.org/10.1109/TRO.2024.3431828

[20] Wijegunawardana, I. D., Samarakoon, S. M. B. P., Muthugala, M. A. V.
J., and Elara, M. R., “Risk-Aware Complete Coverage Path Planning
Using Reinforcement Learning,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, Vol. 55, No. 4, 2025, pp. 2476–2488.
https://doi.org/10.1109/TSMC.2024.3524158

[21] Ranieri, J., Chebira, A., and Vetterli, M., “Near-Optimal Sensor Place-
ment for Linear Inverse Problems,” IEEE Transactions on Signal
Processing, Vol. 62, No. 5, 2014, pp. 1135–1146.
https://doi.org/10.1109/TSP.2014.2299518

[22] Kreucher, C., Kastella, K., and Hero, A., III., “Information-Based
Sensor Management for Multitarget Tracking,” Signal and Data
Processing of Small Targets 2003, Vol. 5204, 2003, pp. 480–489.
https://doi.org/10.1117/12.502699

[23] Soderlund, A. A., and Kumar, M., “Optimization of Multitarget
Tracking Within a Sensor Network via Information-Guided Cluster-
ing,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 2,
2019, pp. 317–334.
https://doi.org/10.2514/1.G003656

[24] Kasper, K., Mathelin, L., and Abou-Kandil, H., “A Machine Learning
Approach for Constrained Sensor Placement,” American Control
Conference (ACC), Inst. of Electrical and Electronics Engineers,
New York, 2015, pp. 4479–4484.
https://doi.org/10.1109/ACC.2015.7172034

[25] Wang, Z., Li, H.-X., and Chen, C., “Reinforcement Learning-Based
Optimal Sensor Placement for Spatiotemporal Modeling,” IEEE Trans-
actions on Cybernetics, Vol. 50, No. 6, 2020, pp. 2861–2871.
https://doi.org/10.1109/TCYB.2019.2901897

[26] Tian, K., and Zhu, G., “Sensor Management Based on Fisher Informa-
tion Gain,” Journal of Systems Engineering and Electronics, Vol. 17,
No. 3, 2006, pp. 531–534.
https://doi.org/10.1016/S1004-4132(06)60091-1

[27] Wang, H., Yao, K., Pottie, G., and Estrin, D., “Entropy-Based Sensor
Selection Heuristic for Target Localization,” 3rd International Sympo-
sium on Information Processing in Sensor Networks, Assoc. for Com-
puting Machinery, New York, 2004, pp. 36–45.
https://doi.org/10.1145/984622.984628

[28] Blasch, E. P., Maupin, P., and Jousselme, A.-L., “Sensor-Based Alloca-
tion for Path Planning and Area Coverage Using UGSs,” Proceedings of
the IEEE. 2010 National Aerospace & Electronics Conference, Inst. of
Electrical and Electronics Engineers, New York, 2010, pp. 361–368.
https://doi.org/10.1109/NAECON.2010.5712978

[29] Krause, A., Singh, A., and Guestrin, C., “Near-Optimal Sensor Place-
ments in Gaussian Processes: Theory, Efficient Algorithms and Empir-
ical Studies,” Journal of Machine Learning Research, Vol. 9, No. 2,
2008, pp. 235–284.

[30] Robbiano, C., Azimi-Sadjadi, M. R., and Chong, E. K. P., “Informa-
tion-Theoretic Interactive Sensing and Inference for Autonomous Sys-
tems,” IEEE Transactions on Signal Processing, Vol. 69, March 2021,
pp. 5627–5637.
https://doi.org/10.1109/TSP.2021.3067476

[31] Hoffmann, F., Charlish, A., Ritchie, M., and Griffiths, H., “Sensor Path
Planning Using Reinforcement Learning,” IEEE 23rd International
Conference on Information Fusion (FUSION), Inst. of Electrical and
Electronics Engineers, New York, 2020, pp. 1–8.
https://doi.org/10.23919/FUSION45008.2020.9190242

[32] Jang, D., Yoo, J., Son, C. Y., Kim, D., and Kim, H. J., “Multi-Robot
Active Sensing and Environmental Model Learning With Distributed
Gaussian Process,” IEEE Robotics and Automation Letters, Vol. 5,
No. 4, 2020, pp. 5905–5912.
https://doi.org/10.1109/LRA.2020.3010456

[33] Park, M., and Oh, H., “Cooperative Information-Driven Source Search
and Estimation for Multiple Agents,” Information Fusion, Vol. 54,

14 Article in Advance / POUDEL AND COWLAGI

D
ow

nl
oa

de
d 

by
 R

ag
hv

en
dr

a 
C

ow
la

gi
 o

n 
Ja

nu
ar

y 
2,

 2
02

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
90

81
 

https://doi.org/10.4211/hs.4f439754503c4ff4959c7e3703121940
https://doi.org/10.1109/JPROC.2003.823141
http://webcat.warwick.ac.uk/record%3Db2490036
http://webcat.warwick.ac.uk/record%3Db2490036
https://doi.org/10.1016/j.automatica.2023.110966
https://doi.org/10.1016/j.jag.2023.103631
https://doi.org/10.1007/s10687-022-00460-8
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.robot.2024.104727
https://doi.org/10.1109/TITS.2021.3066240
https://doi.org/10.1016/j.robot.2024.104656
https://doi.org/10.1109/ICRA46639.2022.9812025
https://doi.org/10.1109/TWC.2023.3260304
https://doi.org/10.1016/j.compeleceng.2024.109425
https://doi.org/10.1002/aisy.202300444
https://doi.org/10.1080/16168658.2021.2019432
https://doi.org/10.1109/TRO.2024.3431828
https://doi.org/10.1109/TSMC.2024.3524158
https://doi.org/10.1109/TSP.2014.2299518
https://doi.org/10.1117/12.502699
https://doi.org/10.2514/1.G003656
https://doi.org/10.1109/ACC.2015.7172034
https://doi.org/10.1109/TCYB.2019.2901897
https://doi.org/10.1016/S1004-4132(06)60091-1
https://doi.org/10.1145/984622.984628
https://doi.org/10.1109/NAECON.2010.5712978
https://doi.org/10.1109/TSP.2021.3067476
https://doi.org/10.23919/FUSION45008.2020.9190242
https://doi.org/10.1109/LRA.2020.3010456


Feb. 2020, pp. 72–84.
https://doi.org/10.1016/j.inffus.2019.07.007

[34] La, H. M., Sheng, W., and Chen, J., “Cooperative and Active Sensing
in Mobile Sensor Networks for Scalar Field Mapping,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, Vol. 45, No. 1,
2015, pp. 1–12.
https://doi.org/10.1109/TSMC.2014.2318282

[35] MacDonald, R. A., and Smith, S. L., “Active Sensing for Motion
Planning in Uncertain Environments via Mutual Information Policies,”
The International Journal of Robotics Research, Vol. 38, Nos. 2–3,
2019, pp. 146–161.
https://doi.org/10.1177/0278364918772024

[36] Li, T., Wang, C., Meng, M. Q.-H., and de Silva, C. W., “Attention-
Driven Active Sensing With Hybrid Neural Network for Environmen-
tal Field Mapping,” IEEE Transactions on Automation Science and
Engineering, Vol. 19, No. 3, 2022, pp. 2135–2152.
https://doi.org/10.1109/TASE.2021.3077689

[37] Wu, K., Wang, H., Esfahani, M. A., and Yuan, S., “Achieving Real-
Time Path Planning in Unknown Environments Through Deep Neural
Networks,” IEEE Transactions on Intelligent Transportation Systems,
Vol. 23, No. 3, 2022, pp. 2093–2102.
https://doi.org/10.1109/TITS.2020.3031962

[38] Leong, A. S., Quevedo, D. E., Ahlén, A., and Johansson, K. H.,
“Network Topology Reconfiguration for State Estimation over Sensor
Networks with Correlated Packet Drops,” IFAC Proceedings, Vol. 47,
No. 3, 2014, pp. 5532–5537.
https://doi.org/10.3182/20140824-6-ZA-1003.01846

[39] Ramachandran, G. S., Daniels, W., Matthys, N., Huygens, C., Mich-
iels, S., Joosen, W., Meneghello, J., Lee, K., Cañete, E., Rodriguez, M.
D., and Hughes, D., “Measuring and Modeling the Energy Cost of
Reconfiguration in Sensor Networks,” IEEE Sensors Journal, Vol. 15,
No. 6, 2015, pp. 3381–3389.
https://doi.org/10.1109/JSEN.2015.2388857

[40] Grichi, H., Mosbahi, O., Khalgui, M., and Li, Z., “New Power-
Oriented Methodology for Dynamic Resizing and Mobility of Recon-
figurable Wireless Sensor Networks,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, Vol. 48, No. 7, 2018, pp. 1120–1130.
https://doi.org/10.1109/TSMC.2016.2645401

[41] Cooper, B. S., and Cowlagi, R. V., “Interactive Planning and Sensing in
Unknown Static Environments with Task-Driven Sensor Placement,”
Automatica, Vol. 105, July 2019, pp. 391–398.
https://doi.org/10.1016/j.automatica.2019.04.014

[42] Fang, J., Zhang, H., and Cowlagi, R. V., “Interactive Route-
Planning and Mobile Sensing with a Team of Robotic Vehicles in

an Unknown Environment,” AIAA Scitech 2021 Forum, AIAA Paper
2021-0865, 2021.
https://doi.org/10.2514/6.2021-0865

[43] Poudel, P., and Cowlagi, R. V., “Coupled Sensor Configuration and
Planning in Unknown Dynamic Environments with Context-
Relevant Mutual Information-Based Sensor Placement,” 2024
American Control Conference (ACC), IEEE Publ., Piscataway, NJ,
2024, pp. 306–311.
https://doi.org/10.23919/ACC60939.2024.10644304

[44] Poudel, P., and Cowlagi, R. V., “Reconfiguration Costs in Coupled
Sensor Configuration and Path-Planning for Dynamic Environments,”
AIAA SCITECH 2025 Forum, AIAA Paper 2025-2069, 2025.
https://doi.org/10.2514/6.2025-2069

[45] Adurthi, N., Singla, P., and Majji, M., “Mutual Information Based
Sensor Tasking with Applications to Space Situational Awareness,”
Journal of Guidance, Control, and Dynamics, Vol. 43, No. 4, 2020,
pp. 767–789.
https://doi.org/10.2514/1.G004399

[46] Rockafellar, R. T., and Uryasev, S., “Optimization of Conditional
Value-at-Risk,” Journal of Risk, Vol. 2, No. 3, 2000, pp. 21–42.
https://doi.org/10.21314/JOR.2000.038

[47] Poudel, P., DesRoches, J., and Cowlagi, R. V., “Actively Coupled
Sensor Configuration and Planning in Unknown Dynamic Environ-
ments,” 2025 American Control Conference (ACC), Inst. of Electrical
and Electronics Engineers, New York, 2025, pp. 3067–3072.
https://doi.org/10.23919/ACC63710.2025.11107730

[48] Cover, T., and Thomas, J., Elements of Information Theory, Wiley-
Interscience, Hoboken, NJ, 1991, p. 231.

[49] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L., “An Analysis of
Approximations for Maximizing Submodular Set Functions—I,”
Mathematical Programming, Vol. 14, No. 1, 1978, pp. 265–294.
https://doi.org/10.1007/BF01588971

[50] Anderson, B. D. O., and Moore, J. B., “Detectability and Stabilizability
of Time-Varying Discrete-Time Linear Systems,” SIAM Journal on
Control and Optimization, Vol. 19, No. 1, 1981, pp. 20–32.
https://doi.org/10.1137/0319002

[51] Cooper, B., and Cowlagi, R. V., “Decentralized Interactive Planning
and Sensing in an Unknown Spatiotemporal Threat Field,” 2019 Sixth
Indian Control Conference (ICC), Inst. of Electrical and Electronics
Engineers, New York, 2019, pp. 110–115.
https://doi.org/10.1109/ICC47138.2019.9123221

V. Cichella
Associate Editor

Article in Advance / POUDEL AND COWLAGI 15

D
ow

nl
oa

de
d 

by
 R

ag
hv

en
dr

a 
C

ow
la

gi
 o

n 
Ja

nu
ar

y 
2,

 2
02

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
G

00
90

81
 

https://doi.org/10.1016/j.inffus.2019.07.007
https://doi.org/10.1109/TSMC.2014.2318282
https://doi.org/10.1177/0278364918772024
https://doi.org/10.1109/TASE.2021.3077689
https://doi.org/10.1109/TITS.2020.3031962
https://doi.org/10.3182/20140824-6-ZA-1003.01846
https://doi.org/10.1109/JSEN.2015.2388857
https://doi.org/10.1109/TSMC.2016.2645401
https://doi.org/10.1016/j.automatica.2019.04.014
https://doi.org/10.2514/6.2021-0865
https://doi.org/10.23919/ACC60939.2024.10644304
https://doi.org/10.2514/6.2025-2069
https://doi.org/10.2514/1.G004399
https://doi.org/10.21314/JOR.2000.038
https://doi.org/10.23919/ACC63710.2025.11107730
https://doi.org/10.1007/BF01588971
https://doi.org/10.1137/0319002
https://doi.org/10.1109/ICC47138.2019.9123221

