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ABSTRACT

We give a decomposition of the predictive variance based on the law of total variance by making the response variable depen-

dent on a finite dimensional discrete random variable representing our modeling assumptions. Then, we test which terms in this

decomposition are small enough to ignore. This allows us to identify which of the discrete random variables, that is, aspects of

modeling, are most important to prediction variance. The terms in the decomposition admit interpretations based on conditional

means and variances and are analogous to the terms in a Cochran’s theorem decomposition of squared error often used in analysis

of variance. Thus, the modeling features are treated as factors in completely randomized design.

MSC2020 Classification: Primary 62F15, Secondary 62710

1 | Introduction

The goal of this paper is to present an additive decomposition for
Var(Y,,,:D,), the variance of a future outcome Y, as a func-
tion of the data available, D,, before the next outcome Y, is
revealed. The data set D, contains y, fori = 1, ...,n and may also
contain values of explanatory variables X ;. We assume the y,’s are
independent, but not necessarily identically distributed. We write
the density used to define Var(Y,,,:D, ), as p(Y,,,: D, ) to indi-
cate dependence on the data. The dependence is not in general
through conditioning.

An additive decomposition is important because Var(Y,,,:D, )
controls the length of prediction intervals (PI's) for ¥,,,,. The idea
is that by examining the terms we can tell which ones contribute
most to the width of PI's and which ones can be neglected. That
is, we can identify which features of modeling are most important

for controlling variance and which aspects can be neglected so as
to simplify models.

Our desired additive decomposition has three key properties: (i)
The terms are individually interpretable as a sort of variability
intrinsic to Y,.,; (ii) Each term can be tested to see if it is small
enough relative to the other terms that it can be neglected, and
(iii) The terms in the decomposition of Var(Y,,,: D, ) are analo-
gous to the terms in Cochran’s theorem including allowing flex-
ibility as to how many terms are included. These components of
the predictive variance can be examined to determine what they
say about the various ingredients used to formulate the model.
That is, for a given modeling scheme with multiple components
we can test to see which are most important. Essentially, we put
an ANOVA-like structure on the model features rather than on
the data because, eventually, we want to use multiple decompo-
sitions for the same problem to assess a modeling strategy.
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Our decomposition is based on iterating an empirical version of
the law of total variance for future outcomes given D,. Recall that
in the posterior distribution, the law of total variance (LTV) for a
single random variable V is

VN(YHIID"} o E(VSF(YMI v, Dn)) + Var(E (Yn+l v. Dn)) (€Y

Suppose V assumes finitely many values. The variance in the
first term on the right is conditioned on V = v (as well as the
data) which is then integrated out with respect to the posterior
as indicated by the expectation. So, from a Bayes standpoint we
can regard the values of V' as aspects of the model for the data.
For instance, V' = v might indicate the inclusion of a prescribed
subset of explanatory variables and the posterior for V = vwould
indicate the post-data probability of that. An analogous interpre-
tation applies to the inner expectation on the right.

Since our goal is to decompose the predictive variance into terms
that represent various features of modeling, we would like to
determine if any of the terms in (1) are small enough to omit.
In the context of model averaging, this means that the smaller
ensemble (decomposition with omitted terms) explains nearly
the same amount of predictive variability as the larger ensemble
(including all the terms). Thus, we want to design hypothesis tests
to make this determination. Unfortunately, we cannot propose
Bayesian hypothesis tests because we do not have a likelihood
given the value of either of the terms. However, we can design
frequentist bootstrap tests for whether a term can realistically be
taken as zero. To be consistent, we therefore study a frequentist
analog of (1).

With some hindsight, we rewrite the LTV as
Var(Y,,;:D,) = E(Var(Y,,;:V.D,)) +Var(E(Y,,,;V.D,))  (2)

Each of the three terms in (2) is an approximation of the corre-
sponding term in (1). The central feature of the approximation is
the consistent replacement of the posterior distributions by the
corresponding stacking distributions, whence the semicolon in
(2) in place of the conditioning symbol in (1), cf. [1]. The replace-
ment is done in all three terms separately so that equality results.
Now, the LHS is the stacking variance of Y, , using all the models
indexed by V and it is philosophically consistent to use frequen-
tist bootstrap tests on the terms of (2).

The first term on the right in either (1) or (2) is the average loca-
tion of the variance taking into account the variability of V. If
it is small, the variance as a function of the modeling features
is small, perhaps indicating they make little difference predic-
tively. The second term on the right is the variability contributed
by V to the location of the predictive distribution. If it is small,
then we know that E(Y,,,;:V,D,) is not affected much by the
variability of V' so it may make sense to ignore this term. The
conceptual difference between these two terms is in how much V
affects the variability in variance versus the variability in location.
A caveat to this interpretation is that Y, ,, and V can be depen-
dent even when the second term is zero. Indeed, suppose Y|V
is normally distributed and V has a distribution with positive
support. Then, Var, [E(Y|V)] = 0 = E(Y|V) = Constant. So, we
can choose Y;|V ~ Normal(Constant, V). Now, Corr(Y,V) =0,
but obviously Y £V . Loosely, if dependence amongst the first m

moments is ruled out, it is possible that dependence remains in
moments at or above the m + 1 moment.

To extend this variance decomposition, note we can apply (1)
to itself in either term of (2). For instance, if we write V = 1,
introduce a second random variable ¥, also taking finitely many
values, and apply (1) to the “E-Var” term we get,

Var(YHl an) = Evl.Vzva’(YHlIVl» Vz»Dn)
+Ey\Vary E(Y,41%.V,,D,) +Var, E(Y,4,1%.D,)  (3)

Using the stacked densities, now over the values of both ¥; and
V,, we can rewrite (3) as
Var(Y,

17 Dn) = Evl.nva’(YnH? .V, Dn)

+ EV]VaerE(YHI; V.V, D,) + Var,,\E(Y aVaDy) @

n

Again, “;” in (4) means we are replacing the posterior distribution
in (3) by the stacking distribution in all four terms.

It is easy to extend this variance decomposition by including a
random variable V5. Indeed, in general, we can consider a mul-
tidimensional random variable V =V = (V. .... V. ... V),
apply (1) toitself K — 1 times, and obtain stacking-based approxi-
mations analogous to (2) or (4) generating one new term for each
V, at each iteration. That is, for ¥, we get a K + 1 term decom-
position that can be interpreted in terms of means and variances,
see Proposition 1. For K = 2, there are multiple versions of (4).
The left hand side is a fixed number given K, V. and the data
but it is easy to see that even with those quantities fixed there are
several version of the terms on the right, that is, several versions
of the variance decomposition. This means that our decomposi-
tions reflect a conservation of variance law. The number of pos-
sible decompositions increases with K and we regard the K > 2
cases as an important aspect of our proposed methodology since
multi-level variances are not well understood.

The values of V' can be used to represent features of the mod-
eling strategy for D, = {(x131). -...(x,¥,) } where the x;’s are
p-dimensional explanatory variables giving response y, under
some error structure. For instance, trivially, knowing the true
model would correspond to K =1 and ¥; equal a constant
and the second term in (2) would be zero. As a first nontriv-
ial example, we use our variance decomposition for K =1 in
Section 2 to quantify the effect of penalty selection in shrinkage
methods on predictive variance. We find, via simulations, that if
the penalty varies over a class of penalties the variability cannot
be ignored. That is, not knowing the correct penalty to use and
representing penalty selection as a hyperparameter substantially
affects the predictive variance. This finding is counterintuitive.

‘When K = 2 an early variant of our technique was used for uncer-
tainty quantification. Roughly [2] called ¥; a “scenario” and V;
may be a “model.” This was done in a Bayesian context and our
methods can be used to extend Draper’s example, see [3].

Here, we will focus on using the LTV in the “E-Var” terms so
that there will be a single “Var-E” term (on the right) depend-
ing explicitly only on V;. The idea is that this term—and perhaps
V1 —can be omitted if it doesn’t affect the predictive variance very
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much. So, consider the last term in (2) or (4). Regardless of the dis-
tribution used to take the variance, there are two basic ways we
can getVar(E(Y,,,:V.D,)) = 0. First, the distribution of V' = ¥;
concentrates at a single value ¥ = v,. Second, the models, that is,
values of V' that get non-zero weights, have the same predictions
given D'. That is,

E(YH+I;V = UI’D) — E(Y"+1;V = Uz,D)

at least approximately, for any v; and v, getting positive weight.
Solving for a set like
I,,(D,c)= {U | E(Y;H—l; V= U,D) = c}

amounts to inverting an integral operator which is an intractable
problem. However, by carefully selecting the models ¥ = v to
ensure they are meaningfully different, (e.g., the models are
parameterized so that the posterior means are unique), and hav-
ing a large enough , the chance of I, ,, being both nonvoid and
larger than a singleton set will be vanishingly small. Thus, on
pragmatic grounds, if the last terms that explicitly depend only
on a single component of ¥ are small, we can simply set V] to be
a constant meaning that the level of modeling it represents drops
out. In the case of (4) we would be left with only the first two
terms on the right hand side that depend on ¥, in which ¥V} was
a constant. The resulting expression reduces to (2).

If we write Vary, (Y413 D, ) to mean the predictive variance using
a specific choice of Vy, it is easy to see, in general, that for
another choice, say, Vy,, we will usually find Vary, (Y,,;; D,) #
Vary: (Y,.1;D,). On the other hand, the relative sizes of terms in
deccfmpositions of the form (2) depend delicately on the choice
of K and V; and the order in which each successive ¥, is intro-
duced. Consequently, while the most important test is the fraction
of the total predictive variance represented by the last term, that
is, for some preselected r > 0

s E(Var"'(E(Y"“;D"’ Vl)}) >t

Var(YM}; Dn)

our bootstrap testing procedure applies to any ratio of terms.
Indeed, there is a parallel between our variance decompositions
using a ¥ and Cochran’s theorem in ANOVA using K factors.
Therefore, our bootstrap tests can be seen as a variation the stan-
dard F-tests, see Section 3.2, in that they are ratios of terms that
look like squared errors, even though the hypotheses are quite
different. On the other hand, our tests include ratios of “between
group variance” and “total variance” which are not independent
and don'’t have an explicit degrees of freedom whereas F-tests are
a ratio of “between group variance” and “within group variance”
that are independent and do have an explicit degrees of freedom.

The structure of this paper is as follows. We begin in Section 2
with a K =1 example to show how our methodology assesses
the contribution to predictive variance from penalty selection in
shrinkage methods. Penalty selection is mathematically equiv-
alent to prior selection so our example amounts to assessing
the predictive effect of a discrete uniform hyperprior. Section 3
presents our full method with justifications. One subsection
explains our predictive variance decomposition in the context of

Cochran’s theorem and another subsection gives our testing pro-
cedure for the terms in our variance decomposition. In Section 4,
we give details on two implementations of stacking in the context
of a real data example. The first, used in Section 2, is a stabilized
“full” stacking method that we advocate for small sample sizes.
The second, “iterative” stacking, is a block coordinate descent
method that does not require a stabilization step and can be
directly applied in a K > 2 decomposition. We use the stabilized
“full” stacking method for a K =1 decomposition where ¥}
represents model choice and but then only iterative stacking
with a K = 2 decomposition where ¥, represents variable choice.
Our examples here are limited to K = 2 problems where V; is
binary. This is only due to the complexity of coding not anything
conceptual. In Section 5, we discuss the implications of our
overall contribution.

2 | A Simulated Example

An example will show the importance of including the last term
in (2).

There has been much discussion about when different shrinkage
methods are appropriate, see [5] for instance. The consensus from
simulations and applications seems to be that for easy, general
use LASSO or Elastic Net (EN, a generalization of LASSO) are
usually best when there is enough sparsity in the data and mul-
ticollinearity is not a problem; see [6]. Otherwise, when sparsity
is low or multicollinearity is a problem, ridge regression is often
preferable. In this section, we show that our variance decompo-
sition provides a more formal basis for this intuition.

The question is whether we should choose a single shrinkage
method for predictive purposes or use several shrinkage methods
and combine their results. Combining multiple shrinkage meth-
ods effectively retains model variability, which may be desirable
to ensure the nominal coverage from a prediction scheme equals
the actual coverage. Otherwise put, is retaining the extra variabil-
ity from using multiple shrinkage techniques predictively useful
compared to selecting a single one?

Let’s generate data as follows. Set n = 50 and p = 100 and write
the linear model

Y, =X"f+e¢ (3)

fori =1, ...,nwhere X, is a vector of explanatory variables with
dim(X,) = dim(f) = p < n and £, ~ N(0,1) IID. Take 95 of the
B, coefficients to be zero and five to be generated independently
from a N (5,(1.5)%). Next, let ¥ be a uniform random variable
taking values m, ...,ms corresponding to five penalized meth-
ods, namely LASSO, Ridge Regression (RR), Adaptive LASSO
(ALASSO), EN, and Adaptive EN (AEN), respectively.

Let us apply the two term variance decomposition in (2) and con-
sider the following reasoning. For the sparse data we generated,
Var, E(Y,,,:D,.V) should be small relative to Var(Y,,,:D,)
because P(V = EN,; D) should be near one and the probabili-
ties of other values of V' should be near zero. The reason is
that (i) adaptive methods have so many parameters they often
perform poorly, (ii) RR is usually only good for non-sparse prob-
lems whereas here we have sparsity, and (iii) EN has only one
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more parameter than LASSO and includes an extra sense of error,
L2, and so EN should be preferred —the cost of one parameter is
small so EN should give results better than (or at least no worse
than) LASSO. Pre-data, therefore, our intuition is that testing

Var, E(Y,,:D,.V
H,: B[ = (oo ) > 0.05
Var{Y +1;Dn)

n

VETSUS

Var, E(Y,,:D,.V
o, 8 - (Yoo ) <0.05
Var(Y,,,:D,)

will reject the null, meaning we can drop the second term in (2)
at the 0.05 level and simply use EN.

As will be described in Section 3.3, this test can be performed
by bootstrapping the argument of the expectation in the null
hypothesis. We are effectively forced to this sort of test because
we do not have a likelihood for expectation in H;, given the data.
Heuristically, for normal error, the distributions of the numer-
ator and the denominator can be regarded as, approximately,
convex combinations of y2? distributions, see Deriving a y?
distribution for K = 2. So, their ratio is expected to behave like an
F distribution. However, even though the convex combinations
can be precisely defined they are generally numerically inacces-
sible. Nevertheless, our testing procedure can be regarded as a
pragmatic nonparametric alternative to standard normal theory.

Let’s use the first 49 data points to form a predictive distribu-
tion for the 50th data point for each of the five methods and for
the stacking average of the five methods. To obtain the stack-
ing weights i@, ..., {05 under the non-negativity and sum-to-one
constraint, we use the methodology described in pp. 283-284
of [7]. Briefly, [7] obtains stacking weights by minimizing the

cross-validation error. Hence, for i = 1, ..., n, we internally pre-
dict Y, using
M
Y, = E w;Y
=1

where w; is the stacking weight corresponding to the j-th model,
¥ ;4 is the prediction generated from the j-th model for the i-th
test data point, j = 1,2, ..., M. Following [7] write

8(1;" = (efi}r=1 =¥-Y,),,

as the vector of cross-validation errors produced by the j-th
model and ™M = (e, €, - ... €nn ) as the collection of cross
validation errors from all M models. Then, denoting w =
(w1, ws, ..., wyy), the optimization problem becomes

argmin ] i
w -w'e'ew
n

subject to w;>0.j=1.2,....M
wil=1 (6)

In theory, the positive-semidefiniteness of e’ e guarantees the
convexity of the loss function in (6). However, to achieve numer-
ical stability, particularly when e” e becomes ill-conditioned, we
have to project this Gram matrix to the nearest positive definite

matrix [8]. We refer to this optimization as “stabilized full” stack-
ing as against the “iterated stacking” procedure that we intro-
duce in Section 4.2 which uses component-wise gradient descent
algorithm and does not require projection of the analog of e” e to
its nearest PD matrix.

Since the glmnet package is easy to use and computationally
fast, obtaining the stacking coefficients in this example is straight-
forward. Generically, write the stacking model average as

5

Z‘?";(D‘tg)ﬁ(ym;xm*m;) )
=1

where the iD;'s are the stacking weights and the dependence of
the f};'s in the linear model is indicated by p. More explicitly,

#(Ys0; Xsoom,) = N (xmﬁmj 82+ @r(xmﬁ,,j )) (8)

The use of normality in (8) comes from the normality in the errors
in (5). As can be seen, we are neglecting the variability in the
parameter estimators. We think we have enough data that assum-
ing the predictive distribution is normal will not be too far wrong,
for example, if it is a ¢-distribution the degrees of freedom will be
large enough that it is close enough to normal that the difference
can be neglected, at least when compared with other sources of
error. In (8), apart from RR, (about which shortly) the f’s are the

“usual” shrinkage estimators where the estimation of the decay
parameters A; is suppressed in the m;’s. Thus, to find \Er( X SOij )
we use the bootstrapped variance estimator from the boot pack-
agein R:
i -~ 1 ~ 2
Var(Xsobn, ) = £ 2 (V= Y)

i=1

More generally, bootstrapping can be used even when normal-
ity is violated. Also, in (8), again except for RR, the 83:_'5 used
are from the standard OLS estimator of o> based on the vari-
ables selected by m;. We justify this by citing [9] who showed that
doing this would be consistent for LASSO and we also observe
that the proof can be extended to EN and, we think, to any shrink-
age method with the oracle property (e.g., AEN and ALASSO).
Returning to RR, which is not a sparsity criterion, we used 3RR
and ‘&fm from regressing on the variables selected by EN on the
grounds that EN uses a combination of the L' and L? penalties
and we simply think it will be close enough that the results won't
be too far wrong.

The first two rows of Table 1 give the stacking weights and predic-
tive variances for the five penalized regression models. In addi-
tion, the first entry in the second row is the predictive variance
of the stacking average computed from the stacking weights and
predictive variances for the models in the following way:

3.0l = \?;r{ YSU! D4g) = :T\?;r{ Y50, V, D4g))

- V;:;TE(YSO; V.Dy):D,) =243+058  (9)

where the first term on the RHS (EVW; .))) is given by
ELIQ j\ﬁr(X 503\”} ), and the second term on RHS (Var?{EE; )
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TABLE1 | Stacking shrinkage methods: This table gives the stack-
ing weights and the variances of the predictive distributions for the five
shrinkage methods and their stacking average.

STK
avg LASSO RR ALASSO EN AEN

Stacking weights 0.74 0.00 0.00 0.25 0.00
Pred. variance 3.01 1.02 6.71 0.99 6.73  6.70

X P
is given by Z?=1 ;| X 50Pm, — Z?=1 ;X5 B, ) - In effect, we are
treating Var(E(--); -) and E(Var(--);-) as single operations. Hence
we see the ratio of the between-models variance to total vari-
ance is

Vary E(Ys;V.D,) 058

= — =0.19
Var(YSD: D") 3.01

Informally, the ratio is high enough that it suggests there is too
much between-models variance to ignore when making predic-
tions. More formally, we can use the foregoing test of hypotheses
to arrive at a decision rule. We resort to a bootstrap procedure to
generate the null distribution of

Var,, E(Ym; V.D,)
Var{Y50; D" )

the details on enforcing the null hypothesis are in Section 3.3.
Once samples from the null distribution are obtained, we com-
pute a bootstrapped p-value, commonly called the achieved sig-
nificance level (ASL). The null hypothesis is rejected when the
ASL is smaller than the specified level of significance.

Using our bootstrap-based test, we obtain an ASL = 0.99 meaning
we cannot reject the null at any reasonable level. This leads us to
conclude that the second term on the LHS of (2) contributes more
than 5% of the total predictive variance. Consequently, we should
account for penalty uncertainty when making predictions. This
confirms our initial intuition.

Going beyond the information provided by a single use of our
test we ask if we allowed ourselves to ignore a larger proportion
of variance—that is, increase the threshold r in H,—at what
threshold could we reject H,? We observe that, if we change
the RHS of H, and H, to 0.09 instead of 0.05, our test gives
an ASL = 0.0095. Hence, we would conclude that 9% is roughly
the smallest percentage at which we could ignore the contribu-
tion of the between-models variance to the overall variance. We
emphasize that when we calculate the components in (9), that is,
computing stacking weights and prediction variances, we use the
entire training data set. However, when we perform the test, we
use bootstrapping and we recompute stacking weights and pre-
dictive variances for each bootstrap replicate.

3 | Decomposing the Predictive Variance

In this section, we give our general variance decomposition,
indicate how to choose amongst different candidate variance
decompositions, and explain our testing procedure for the rela-
tive size of their terms. We will see that our decomposition of the

predictive variance parallels Cochran’s theorem decomposition
of the squared error into quadratic forms.

3.1 | The Effect of the Model List on Overall
Variance

Consider a model list M and suppose we don’t believe it ade-
quately captures the uncertainty (including mis-specification) of
the predictive problem. This may lead us to expand M and this
can be done by adding more models to it or by embedding the
models on the list in various “scenarios” as is done in [2]. Expand-
ing the list simply by including more plausible models may lead
to problems such as dilution; see [4]. So, we are led preferentially
to Draper’s approach. Moreover, we want to assess the effect of a
model list on the variance of predictions.

In the simplest case, expanding M to M’ where M c M’, where
M’ has models with positive probability that are not in M the
predictive distribution p(Y,,;:D,) using M’ will be different
from the predictive distribution using M. Recalling that we are
using the stacking model average we denote dependence on a
model list M, when we need it, by

p{Yn-f—]; Dn) = p(Yn-o-l; Dn)(M)

In this notation, we think of M = {m, ...,m,}, each model
having a positive weight w,, so that the sumoverm=1, ..., M
gives one. In this case, we have dim(V) =1 and treating the
model list as one factor with M levels is fine. However, if we want
to expand a given M by including more scenarios, we are led to
choosing a V with dim(V') > 2 and regarding M as having a cor-
responding multivariate structure. In either case, in our variance
decomposition below, V' encapsulates dependence on the model
list. Ideally, this dependence is by conditioning (and so we should
use | to indicate it). However, we continue to use ; because we are
taking expectations in the stacking distribution for ¥,,, ;.

3.1.1 | Predictive Variance Decomposition
“P-ANOVA”

To quantify the uncertainty of our chosen features, treat V as
multivariate and recall V = [VI, ....Vk), where V, represents
the values of the k-th potential feature that must be made to
specify a predictor. Analogous to terminology in ANOVA, we call
V. a factor in the prediction scheme, and we call the oy ..., Uy,
the levels of V. That is, v, is a specific value that a specific
V, may assume. Thus, V is discrete and has probability mass
function W (v) = W (V; = v;.... Vg = vk ). The ¥;’s are not in
general independent and W corresponds to a prior on V here
given by the stacking weights.

Perhaps the most natural way to represent M is to replace it by

vK:{Ull,...,U}_!}X "'X{UKI'!""UKI} (10)

where it is understood that a model is uniquely identified by
a vector in VX. There are now M = IK distinct models in VX
and they have a hierarchical structure along with a joint prior.
This representation of our model list makes it easy to interpret
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expansions and contractions of M in terms of the features of the
modeling.

Our first result gives a decomposition of the predictive variance
by conditioning on V.

Proposition 1. We have the following two expressions for the
stacking predictive variance.

Clause (i): For K = 1, the stacking predictive variance for Y, , is

Var( Yn-l—l; Dn) (vk’) = EVI (VEF(YHH; Vl'! Dn)

+Va"V,E{Yn+1 iVi-D,))
and for K > 2, the stacking predictive variance for Y, ., as function
of the K factors defining our predictive scheme is given by

Var(Y,

n+l>

D,)(¥¥)
=Egy, .. yoVar (Y Ve, . V. D,)

K
+ ZE{V,.__,,V,_,}VarVkE(YnH; V- Vi Dy)

k=2
+ Vary, E(Y,,1: V1, D,) (11)

where the distribution of V = (V. ..
ing weights.

.. V) is defined by the stack-

Clause (ii): For any K, the stacking predictive variance
Var(Y,;1:D,)(VX) can be condensed into a two term decom-
position:

Var(Y,.,1:D,) (V) = E(V,,...__Vx)var{yml;Vl‘ sV Dy)

VK)E(YJ'H'l;VI’ ons ,VK,D,,) (12)

......

Proof. Clause (i) follows by induction: The case K =1 is (2)
The case K = 2 results from one iteration with the law of total
variance as in (4). Then for any given value of K repeat this K — 2
times and replace the posterior weights with stacking weights.
Obviously, the corresponding result holds if the posterior weights
are kept. For Clause (ii), simply use the law of total variance on

Moreover, we may use the entire V. in the left hand side but leave
some of the V,’s as “latent,” that is, not explicitly appearing, on
the right side.

‘We summarize the decomposition in (11) using what we call
“P-ANOVA,” or predictive analysis of variance. In Table 2, each
row corresponds to a different source of variability associated
with the factors in V. Note that the interpretation “Expected
between V; across V,_;, ..., ¥;” for the term

Ey, ...Ey Var, E(Y, .;;V.V;, ...V,

! )

means we have averaged the variance due to V; across all the
values

Vary E(Y,,;;Vy =0,V =0y, ...V = v;1.V;.D,)
Using the Bayes model average—or any other model averaging

procedure—in place of stacking leads to a P-ANOVA table anal-
ogous to Table 2.

3.2 | Analogyto Cochran’s Theorem

Cochran’s theorem is used in standard ANOVA problems to iden-
tify hypothesis tests that determine whether a factor or its levels
should be dropped as having little effect on the observed vari-
ability. Informally, the theorem states that, under various regu-
larity conditions, the corrected sum of squares from an ANOVA
problem can be written as a sum of independent quadratic forms
each of which is distributed as a »? random variable with a
degrees of freedom specified by the statement of the problem.
Equivalently, the sum of squares “Y7Y” can be written as a sum
of scaled 7 random variables, where the scaling constants are
eigenvalues from the corresponding quadratic form. More for-
mally, we have the following distilled from [10] appendix VI.

Theorem 1 (Cochran’s Theorem). Let Y, ~ N(u,1) for
i=1,...,n be independent. Suppose Q,, ...,Q, are quadratic
forms of rank n,, ..., n, respectively in variables Yy, ....Y, and
Y v=01+...+0,. Then, ny+ ... +n,=n if and only
if Q1+ ... +Q, are independent y} (A;) where the noncen-

the whole range of the vector V. O trality parameters in the y*’s are A7 =Q,;(EY,,...,EY,) for
j=1,....s.Then,if Z ~ y? isindependent of Q,,

In this result, we have only used the LTV in one sequence of K

iterations. In fact, the LTV can be used in any term (provided a v O

V, exists for it) and the ¥,’s can be introduced in any sequence. B = ;7 ~ Foy

TABLE2 | Sources of predictive variation for K > 3. We have listed the generic terms in our decomposition of the predictive variance together with

their interpretations. Following the conventions of ANOVA, we have also listed the source of the variability. The Source labeled Predictions is analogous

to the correction term in the corrected sum of squares. All terms are dependent on D,, but not necessarily in a conditional sense.

Source Interpretation

Variance

V;, my levels Between ¥V, variance

Vary, E(Y,,,;D,, V1)

n

V,, m, levels Expected between V, across V, Ey\Vary E(Y,,,:D,.V1,V3)
Vi, my levels Expected between V. across Vy_; ... V) Ey, ... Ey,_Vary E(Y,.1;D,,V},V,, ..., V)
Predictions Expected variance across V; ...V, Ey, ...Ey Var(Y,.;:D,, V1, Vy, ... Vi)
Total Posterior predictive variance Var(Y,,,:D,)
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Next, we argue that our decomposition, see (11), is a predictive
analog to Cochran’s Theorem. In our analog, we expand the pre-
dictive variance into a sum of quadratic forms that have y? dis-
tributions, as shown in Appendix A. However, we do not obtain
the analogous statements about degrees of freedom or indepen-
dence. Nor do we obtain F-tests. However, in Section 3.3, we
describe a bootstrap based testing procedure for the individual
terms in our expansions so as to determine if they contribute
substantially to the overall predictive variance. Our results are
fundamentally different from [11] who gave an “ANOVA” like
decomposition of the posterior variance for estimation because
we have used the ANOVA framework in a predictive setting and
proposed hypothesis tests.

As an illustration of how our variance decomposition resembles
Cochran’s Theorem, we explicitly convert the terms in a three
term decomposition to a convex combination of quadratic forms.
Consistent with the notation of [2], we write s; to represent “sce-
narios”i=1,...,I and my; to represent models within scenarios,
j=1,...,J.Now, the s,’s correspond to the values of V/; and the
m;;’s correspond to values of ¥, nested within ¥;. Our strategy is

ij
to express each term in Var(Y,,,: D, ) in vector notation so we can

n+l
recognize analogous quadratic forms. Now, Proposition 1 gives

Var(Y,.1;D,) = Ey, Ey Var(Y,.15 D, V1, V3)
+ EVXVEI'V E(Yn-t-l; Dm VI' V?-)
+ VarV, { n+l’D )

I

— 2 p(s‘-; D")Z]‘p{mu; D .s

i=1

X Var(Y,,:D,, .»mxj}

!
+ Zp(s Dn}Zp(mU;D",S‘,)

=1 =i

[E Youi1; Dy, 5;) = E(Y13 ms)]
+ EP{S.-:D,,)

p

X [E(Yp1: D) — EQpysD)° (13)

For ease of notation, let
» p(s5D,)=¢
y P(mg;Dm 5) = Wy
* E(Y,1:D,) =7
* E(Y:D,5) =5,

. E( +1‘D mijys.f)

Now we can restate (13) as

I J
Var(Y,,1; D, Zrif Zm,}\far Y, 13 D,my, s 5;) (14)
+E§;ng(5’};—?:-}2 (15)
=1 j=1
. 2
+24(5.-7) (16)
i=1

The quadratic forms in (14-16) can be shown to have distri-
butions that parallel the distributional statements in Cochran’s
Theorem. This is given in detail in Deriving a y? distribution for
K =2 and General K.

3.3 | Testing

In the ANOVA context, it is common to test the equality of lev-
els of a factor. Here, the corresponding null hypothesis would be
the equality of expectations of the predictive distributions within
a factor or the model weight being close to one for a single level
within a factor. So, we rephrase these tests as a way to determine
the relative importance of terms in our decomposition. Specifi-
cally, we want to test whether a term in the variance decomposi-
tion is a substantial fraction of the overall variance.

Consider the case K = 1 that gives a two-term decomposition for
Var(Y,,;: D, ). Now, we want to test hypotheses of the form

. VarV (E( n+1*D ))
H"'E( Var(¥,,1:D,) )27

H, :E(Vary( (Y13 D, Vl)}){r

Var(}:l-l-l" D )

for some pre-selected value of r > 0. Since we do not have a like-
lihood for the argument of the expectation in Hj;, we are led to
a nonparametric test based on bootstrapping. Our bootstrapping
procedure to enforce the null is as follows.

First, we generate bootstrap replicates of the argument of the
expectation in H. This results in a set of Z, given by

we1: D V1)

Var(Y,,: D?)

T (7, - 5 )

= 7

Va.rVIE(Y

=

Zul— A (yfr] u_lyzl) +Z azl(b)
for b=1, ..., B. Each Z; can be regarded as a random variable
representing M . We note that none of the quantities in

Var(¥,,,1D,)
this formula rely on a specific distribution. The estimates i? are
numerically obtained as a solution to (6), 3" takes the form of the
predictor from the specific j-th model, and ﬁf(b) is the estimated
predictive variance from the j-th model. These quantities do not
have specific formulas because they depend on the model being
used. Writing Z and SE(Z) for the mean and its standard error for
the Z,’s we form

Z—1

~ SE@) (18)

Note that Z is (mild) abuse of notation. In fact, we should write
the Z,’s with “hats” over the variances and expectations since we
are bootstrapping. This is an important point but we do not wish
to clutter the notation.

Next, we must generate samples from the null distribution of the
random variable T taking values  in (18). Hence, for the second
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layer of bootstrapping, draw C samples of size B, with C > B,
from the set of realizations z,, ..., zp, with replacement. Denote
these by z}, ..., z;, where each 2/ has B entries. To get a distri-
bution for the random variable T under the null, we generate

vectors B
i 1
7=z~ (Ezzb—f)ls
b=1

where 1, = (1, ...,1) is the usual B-dimensional vector of 1’s.
Now, we have C different samples of the vector z/ with mean r.
Since these realizations of ! are corrected by their means and ,
so they satisfy the null. Hence, realizations from the null distri-
bution of the test statistic described in (18) are obtained as

—_

i Z—=
= =
SE(z )
(4
for j =1, ...,J and we calculate the estimated achieved signifi-

cance level .
ASL = % Y I(i<1)

When the ASL is small, we reject H, and this tells us that
Var, E(Y,,;:D,, V) ® 0 suggesting that E(Y,,;;D,.V;) is
constant in ¥;. Here, when we do this testing, we default to a
threshold of a« = 0.05 for the ASL for convenience. Note that
this threshold a for testing is compared with the usual p-value
and so is different from the threshold r for the expected ratio
of variances. As a generality, both a« and r should be chosen
pre-experimentally.

Below we have used normality in some of our computational
work because it was justified by auxiliary reasoning. However,
when the normal assumption fails, we would use parameter esti-
mators based on the actual family if it were known, defaulting
to standard estimators for variance, for instance, in the hope they
would be effective. Otherwise, our bootstrapping approach allows
us to move beyond the assumption that the predictions follow
a normal distribution as used in the discussion at the end of
Section 3.2 and in Proposition 3 in General K because we can
generate the bootstrap sampling distribution for any parameter
estimator.

As a final point about the testing, we comment on multiple com-
parison issues. Here we have shown the K = 1 case for simplicity,
but the testing procedure can be used for general K to test if each
term in the variance is important. Hence, we may be interested in
K + 1 tests. For small K, a Bonferroni correction or other simple
“fix” may be practical. However, for large K, we may have to use
some sort of Westfall-Young correction, see [12], since our test-
ing procedure is in the same spirit as permutation tests. On the
other hand, because we interpret the components of V' as com-
ponents of modeling, large K’s will be uncommon with small
sample sizes.

4 | A Real Data Example

In this section, we analyze the Superconductivity data
presented in [13]. This data set has 81 regressors of a phys-
ical or chemical nature to explain a response Y representing
temperature measurements (in “K) for when a compound begins

to exhibit superconductivity. The full data set has n = 21263, and
we assume the relationship between ¥ and the regressors (X)
follows a signal plus noise structure, that is,

Yi:f(xi}+5i

fori=1,...,n and where £, ~ N (0,c”). Hamidieh [13] used a
linear model (LM) as a “benchmark model” and then improved
on it by developing an XGBoosting model—a boosted, penalized
tree model. The goal in their paper was to minimize predictive
error on a hold out set. So, they did not consider the variance of
predictive distributions.

Our analysis of the predictive variance rests on computing vari-
ance decompositions for specific choices of Vi for K =1 and
K = 2 using Proposition 1. For a two term decomposition, that
is, K = 1, we use the optimization (6) as discussed in Section 2 to
estimate the stacking weights along with the test procedure out-
lined in Section 3.3. It is important to note that with K = 1, we
are estimating a singly indexed set of stacking weights 1w, so that
solving (6) is possible and will give the optimal solution.

By contrast, for a three term decomposition, that is, K = 2, (6)
cannot be immediately used as written because the optimization
problem is to find two sets of stacking weights—the &’s and the
wy’s in (14-16). To obtain the estimates of £, and on directly, we
introduce “iterative” stacking, as an extension of (6), to obtain
test results in three term or higher cases. This is in contrast to the
“stabilized full” method stacking (6) used in Section 2.

41 | Two Term Decompositions, K =1

Here, we choose a single random variable V' and generate a
two-term decomposition of predictive variance. So, let V' take one
of five values with equal probability, namely five common pre-
dictive models: (a) linear model (LM) denoted by m,, (b) neural
nets (NN) denoted by m,, (c) projection pursuit regression (PPR),
denoted by m,, (d) support vector machine with a radial kernel
(SVM), denoted by m,, and (e) XGBoosting (XGB), denoted by ms.
Upon examining the residuals from the individual fitted models,
we confirmed that the residuals were normally distributed. So, for
convenience, we use a normal density to form predictive distribu-
tions for each of the models. Moreover, to form the predictive dis-
tribution for each model, we fit the model using n data points and
used the n + 1 value if the explanatory variables to predict ¥, ;.

Denote the predictor from model k by f,, k=1, ...,5. Then,
under the signal plus noise model, the next outcome is normally
distributed, centered at the point predictor f (X,,,) with esti-
mated variance

Gar (Yo = i) ) = V(e (Xp) ) + (@) - 19)

We calculated Var ﬁ(X .:1) ) by bootstrapping. That is, we
obtained a bootstrap distribution for it and then computed its
variance. For Var(£, ), we simply calculated the variance of the
residuals from the fitted model. Now, formally, the predictive dis-
tribution for a model m,_ is

P(Ypasmy) = N(ﬁ (XH+1),Er(ﬁ (Xn+l)) +\?;r(€k))

8of15

Statistical Analysis and Data Mining: An ASA Data Science Journal, 2025

1'% 'STOT "WTLRITEA]

sdp wog

Ao Ay

LAop

Aq 6T00L

o e out [uoy ) SEOLIPUR) pute sWLID | 34 398 (9202 10/10] U0 ARIGET 1O K14 * SO

ST SO A1) S|l o 4] PAWaA0S 1% SIPLIE V() 1951 J0 SO 10y AL N[ AL



Since these models are implemented in a frequentist sense and
we used full stacking (as described in (6), see [7]) to average over
the models based on the cross-validated predictive performance,
the stacked predictive distribution for ¥, is

5
Zﬂ'\ A n+l’mk}

Next, we present two cases, one where we randomly sample 500
data points from the Superconductivity dataset and test
whether the between-models variance is important, and another
where we use the whole Superconductivity dataset to per-
form the same test. We will see that with the smaller sample size,
the between-models variance term in the decomposition using
V contributes about two-thirds of the total predictive variance.
However, when the full data set is used, the estimated contribu-
tion from the between-models term drops to about 4%.

41.1 | Testing Terms When n = 500

First, we drew a random sample of 500 observations from the
whole data set. Then, we followed the procedure from Section 3.3
using B = 200 samples for the inner bootstrap and C = 10,000
samples for the outer bootstrap. The results are in Table 3.

Using only n = 499, the stacking predictive variance decomposi-
tions is
397.64 = Var(Yspo: Dags) = EyVar(¥sen; V', Dygo)
+ Vary E((Ys00; V', Dagg ): Dagg)
= 135.41 + 262.23
The terms on the RHS of the above expression are computed
using the same technique as described in Section 2. Now, to test

whether the between-models variance term matters (the second
term in the RHS) we have the hypotheses

# ; E(Var,,(E(ng: Vv, D499);D499)) -

Var{ Y_;m = D4gg )

VErsus

Vary (E(Y500: V. Dag ); D,
H}:E( v (E(Yso0 199) 499)){1_
Var(¥sp0: Dygg)
and the test statistic 7 = 222 = 0.66. To find a p-value, we use
the empirical distribution %rom the set of bootstrapped values z,

TABLE3 | Smallsample results for Superconductivity: The top
row of numbers are the stacking weights that solve (6). The second row
shows the predictive variances from each model/column individually.
The overall predictive error for the stacking average is larger than the pre-
dictive variances for the individual models. We interpret this to mean that
the point predictions from the five models have a large spread in addition
to their individual variances.

forb=1, ..., B. In this case, for 7 = 0.05 we obtain ASL = 1and
cannot reject the null. Indeed, in this case, we cannot reject the
null for any reasonable value of . This confirms what Table 3
showed: ¥V must be included, that is, the between-models vari-
ance is too large to ignore.

41.2 | Testing Terms When n Large

For contrast we redo the analysis using all the available data.
Although we recommend using larger values for B and C, we
only used B = 50 inner bootstrap samples and C = 5000 due to
computational burden. The results are given in Table 4.

Now the variance decomposition is

173.37 = Var(Y3; 263: Do 262) = EyVar(Yay263: V. D21 262)
+ Vary (E (erl,_zﬁsl Vs, Dm,zaz) ; Dszsz)
=166.21+7.16 (20)

Again, we wish to test if the between models term is a substantial
portion of the total predictive variance. The hypotheses are

H, : E(VarV(E(Yszraﬁ v, DZI,?.&Z); Dzu&z)) wip
Var(Y 21,263 D21‘262)

VErsus

H, - E(Var,, {E(Y21,263; v, D21,262); Dzl,?.ﬁz) ) S
Var (Y 263: D1.262)

and the test statisticisZ = 755 = 0.04. To investigate the depen-
dence of the conclusions on r, we used several values and gen-
erated Table 5. For z = 0.05 there is not enough evidence to say
the expected ratio is statistically less than 7, but for = > 0.06
the test rejects the null. That is, the relative contribution of the
between-models variance to the total stacking predictive variance
is roughly between 5% and 6%. We suggest that if a larger value
of B were used, the threshold for rejecting the null would likely
decrease to around 7 = 0.05.

Overall, with n = 500, we could not reject the null at any reason-
able value of r however with the full data set we could reject the

TABLE4 | Re-analyzing Superconductivity with all available
data: The predictive variances for individual models are larger than in
Table 3 but the overall stacking variance is less than half of the earlier
value. This suggests that including the factor ¥, that is, the between mod-
els variance, is less important than with »n = 500. We interpret this to
mean that the spread of the point predictions from individual models
using all the data is much less than their spread when n = 500 data points
are used. As n increases, it seems that even as the individual models have
a larger uncertainty, the variability shift from between models to within
models enabling us to reject.

STKavg LM NN PPR SVM XGB STKavg LM NN PPR SVM XGB
Stacking weights 010 026 012 001 051 Stacking weights 001 026 021 001 0.52
Pred. variance 397.64 23733 26046 57.06 17211 69.39 Pred. variance 173.37 308.60 315.28 184.14 155.32 78.71
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TABLES5 | ASL for different choices of 7: For the usual cutoff of 0.05,
we can start to reject when 7 2 0.055. The reliability of the entries is poten-
tially limited because B is low. This is simply to demonstrate that the test
will reject H, for relatively large value of 7 indicating all the model com-
ponents should be retained if we want to capture significant portion of
predictive variance of the stacked model. As is customary in hypothesis
testing problems 7 should be pre-selected (see Section 1) and should not
be altered post hoc.

T 0.05 0.06 0.07 0.08 0.09 0.10

ASL (B-strap) 0.16 003 0.003 00003 0 0

null with = around 6%. In this latter case, we are left with only
the first term on the right side in (20) when we want to form PT’s.
If model identification were our goal, we might be able to argue
further that only one value of V is important and collapse our
predictive modeling down to a single model. Alternatively, if we
take 6% as our threshold and invoke the conclusion from our test,
we can reason further from examining the entries in Table 4. That
is, we may be led to choose the method with the smallest predic-
tive variance taking into consideration the results for the stacking
average. Doing this, we confirm that the preferred method XGB
of [13] is well-justified and we would only need the first term in
our decomposition. Moreover, XGB received the highest stacking
weight, presumably because it had the smallest cross-validated
error. Alternatively, if retaining the variability over methods is
important, which it might well be because XGB only got weight
0.52, we must choose a threshold below 6% and then the table
leads us to use at most XGB, NN, and PPR when we use both terms
in the decomposition.

42 | Three Term Decomposition; K = 2

Next, to show the generality of our approach we study a
three-term decomposition of predictive variance, that is, we take
K = 2. We do this by extending our analysis from Section 4.1.
So, let the factor ¥, be uniformly distributed over the same five
models, that is, levels as for K = 1. We set the other factor, V7,
to be the binary variable taking values p} and pj where these
denote two choices for the number of pre-selected regressors.
The motivation for this choice of V| is that in filter feature
selection protocols (for example: the Relief algorithm [14]; and
its extensions [15, 16]; use the principles of instance-based learn-
ing to generate a score for each regressor. This score attempts
to capture the relevance of the corresponding regressor to the
response variable), the decision to use the top-r regressors, for
somer € {1, ..., p} say, for downstream prediction, is subjective.
That is, there is no proper inferential technique to ascertain the
adequacy of the top-r pre-selected regressors.

Thus, in context, our procedure provides a test for the adequacy
of a set of pre-selected variables. Let p} and p; be the objects
that identify the top-p, and top-p, regressors in, for instance, the
RReliefF algorithm [16] with p; < p,. Then the variables in p;

are a proper subset of the variables in p. So, if we fail to reject the
null hypothesis H,, : E( Vary (E(ty D)) ) > r,we can infer that
il oy Va(r,.:D) ) ="

the between-models variance in V;, averaged over the elements
of V3, contributes significantly to the total predictive variance of

Y,.;- Thus, we need to retain both the elements of ¥;. On the
other hand, if we can reject H,, it implies that between-models
variance in ¥}, averaged over the elements of V;, contributes
insignificantly to the total predictive variance of ¥, . ;. Thus, here,
we may infer that the levels of V] can be collapsed and additional
criteria could be introduced to identify which level of ¥; should
be retained. We emphasize that rejection of the null hypothesis
does not offer any information regarding which element of ¥
should be retained.

As indicated in Section 3.2, see (14-16), we must estimate the
marginal stacking weights, the &’s, associated with the elements
in V; and the conditional stacking weights, the ;. 's, associated
with the elements in ¥, for each element in ¥;. Here, i=1,2
and k = 1,2,3,4,5. Therefore, we propose the following “iterative
stacking” procedure. Minimize

n 1 K A
Loss(¢. @) = %Z (Y; = Z 5] (Z wik?—!,fk))
= =1 \k=1

i=1
subject to : 2&;:1, andZwik: 1 for each i=1,2,...,7T and
i J

£ >0,05 >0,for i=1,2,.,1,;k=1,2,....K (21)

with respect to & = (£, &,. ..
o, = (@, ....0g)-

&) ande = (@, ...@, ), where

To see the equivalence of (6) and (21) relabel the w,,’s as a;; s with
i=1,....Jandk =1, ...,K where M = IK, i is the level of V],
and k is level of V. Write & = ¥, ay and ay; = ay/ X, ay. Now,
the transformation

T((“:k):{_::f) = (‘51v N E (akll);r::'h[)

is a homeomorphism from the interior of its domain to its range.
So, optimizing in (6) over the w, s is equivalent to iteratively opti-
mizing over the £s and the @;,'s in (21). Essentially, optimizing
(6) will produce estimates of the product of the marginal and con-
ditional stacking weights.

In the present setting we use a block coordinate descent
algorithm to solve (21) and directly obtain estimates of the
marginal and conditional stacking weights. Observe that if @
is fixed then the optimization of (21) becomes a standard con-
strained least square optimization problem in &. Similarly, if
we fix £ and (@, ....®_,.@,, ....®,) then (21) becomes
constrained least square optimization problem in ®;. Thus,
in each block a component-wise gradient descent algorithm
could be used to update the target optimization variable in that
block. Choosing the step size in an adaptive fashion ensures
non-negativity of the optimization target. Chen et al. [17] pro-
vide the updating equations for such simplex constrained least
squares optimization along with the conditions for choosing the
step-size. This algorithm does not require stabilization via pro-
jection to the nearest PD matrix as required by the (6) algorithm.
The adaptive step size selection stabilizes the algorithm. The
algorithm proceeds as follows:

« Initialize &% > 0, 0" > 0, ..., &)ff} > 0 such that ||.§‘°)”1 =

1, and ”mf‘””l —1fori=1,2,....1.
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» At tth iteration update:
« £Y = argmin Loss(g,mfl’_n, ...,&1{’_1}), subject to £>0

; I
and [|€]l, =1

- o = argmin Loss(g(’},mll,mg_“...,&)f,'__”), subject to
e
o, >0and ||@ |, =1

. (1) -1 ‘
- o} = argmin Loss(g(’},ml'_ o s ]). subject to®, >
@

0and |}, ||, = 1.

. mf,') = argmin Loss(.ﬁ(’),m(l{’,mg’ i ,m,l), subjectto®; >0
@

'
and ||, ||, = 1.

» Repeat until convergence

In principle, this algorithm can be used for ¥,’s with any num-
ber of values. Here, for ease of exposition, we have designed an
example with I = 2and K = 5.

To illustrate the application of our iterated stacking algorithm
and inferential framework, we choose n = 500 samples from
Superconductivity dataset and use the RreliefF
algorithm to rank the 81 regressors in decreasing order of
importance. We consider two cases. In the first case both ele-
ments of ¥, correspond to very sparse model. In the second
case both elements of V; correspond to relatively rich models.
We show below that in the first case our test does not reject H,
indicating that factor ¥; must be retained, that is, both levels
of ¥, must be retained to capture at least z proportion of the
total predictive variance produced by the stacked model. In the
second case, our test rejects H, indicating ¥; can be collapsed to
a singleton set, that is, it disappears. This is in accord with our
intuition but now we can formally verify it.

Casel. The two values of ¥, are p, which denotes the top-5
regressor model and p, which denotes the top-10 regressor model.
The hypothesis test enables us to ask whether marginally collaps-
ing V7, that is, using only the top-5 regressor model, is adequate

for predictive purposes, or if we should use a richer set of regres-
sors. Our computed results are in Table 6.

Recall the three term decomposition for K = 2 given by (13) and
its expression as the sum of (14-16). From Table 6, we see that
&, = 050 the contributions of the five models with five predictors
to the total variance is zero. Also, the E‘\”z,k‘” areOfork = 1,2,3,4. So,
only the (i, k) = (2. 5) term is nonzero. Now, the variance decom-
position is degenerate and gives

Var(Ysp0; Dagg ) = 13.72

Thus, the observed value of test statistic is 0 and ASL=1. We
cannot reject the null hypothesis for any reasonable value of .
This implies that the between-model variances in V; completely
capture the total predictive variance because all the variabil-
ity is coming from one model. From a practical standpoint, the
non-rejection of H, implies that a 5-regressor model is too reduc-
tive for this dataset and the predictive capacity of 10-regressor
model is overwhelmingly large as compared to its 5-regressor
counterpart.

CaseII. We now start with a rich set of explanatory variables
and ask whether adding more regressors substantially decreases
total prediction variance. So, let ¥, = p} denote the top-45 regres-
sor model and ¥, = p’, denote the top-50 regressor model. The
sample size, n, remains the same at 500. This generates Table 7
which is analogous to Table 6, but now for the top 45- and top
50-regressor models.

When we plug the estimates of the stacking weights and predic-
tive variances from Table 7 into expression (13), we get:

Vaf(}%m, D4gg) = EVlEVIVar(Ysm, D@g, lfl, Vz)
+ Ey, Vary, E (Ysp0: Dygo, V1, V2)
+Var, E (Y5003 Dago» V1)
16.41 = 16,154+ 0+ 0.26

The observed value of the test statistic is 0.26/16.41 = 0.016. We
reject the null hypothesis for £ = 0.05 with ASL < 0.0001. This

TABLE 6 | Marginal and conditional stacking weights for a K = 2 model with V] representing the top-5 and top-10 regressors and ¥, representing

the model class. The third and fifth rows give the predictive variances for V; = v,.¥; = v,.

Marginal stacking
Values for V, | weights Values for V;,— LM NN PPR SVM XGB
Top-5 regressor 21 =0 Dy 0.24 0.19 0 0.25 0.32
Pred. variance 633.40 538.86 581.40 480.25 67.00
Top-10 =1 By 0 0 0 0 1
regressor Pred. variance 556.23 403.76 455.50 299.60 13.72

TABLE7 | Marginal and conditional stacking weight for K = 2 model with ¥; representing the top-45 and top-50 regressors and ¥, representing

the model class. The third and fifth rows give the predictive variances for V; = v,.V; = v,.

Marginal stacking
Values for V, | weights Values for V,,— LM NN PPR SVM XGB
Top-45 regressor £,=0.122 Wy 0 0 0 0 1
Pred. variance 366.85 158.11 242.17 219.23 20.05
Top-50 regressor £,=0.878 Wy 0 0 0 0 1
Pred. variance 379.42 178.91 223.75 222.53 15.61
11 0f 15
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implies that the factor between-V,, that is, the within models
variance, fails to capture even 5% of the total predictive variance.
In other words, ¥; can be collapsed to a single level or element.
From a practical standpoint, the rejection of H;, implies that the
predictive capacity of 45-regressor model is comparable to that of
50-regressor model. This implies that the smaller model is just as
good as the larger one.

Our results here can be interpreted via the notion of the marginal
collapse of a factor in a model. By this we mean a factor that
nominally has multiple values but can in fact be reduced or col-
lapsed into one—irrespective of the behavior of other factors. In
the context of Table 6, our test implies that we cannot marginally
collapse V; to one value. That is, we have to retain both the
top-5 and top-10 regressor models in the stacking average. If
we look at the values of the a’s, we can in fact drop the top-5
regressor model. In the context of Table 7, the test implies that
we can marginally collapse ¥ to one value. It is important to
note that the test does not by itself tell us what value of ¥
should be retained and which others are to be discarded. To
make that decision, we need additional criteria. For example, if
we wish to use the marginal stacking weights £ to determine
the value of ¥}, we will end up with Top-50 regressor model in
this case, simply because larger models are usually better than
smaller models.

5 | Discussion

Here we have used successive iterations of the law of total
variance applied to itself to generate decompositions for the
predictive variance. The predictive variance is important because
it controls the width of prediction intervals. We have chosen
our conditioning variables to be both the accumulated data and
aspects of statistical modeling. In this way, we can assess the
contributions of various aspects of modeling to the width of
prediction intervals. The main way we assess the terms in our
variance decompositions is by a bootstrap testing procedure for
whether a given source of variability, that is, a factor, is small
enough relative to the overall variability that it can be omitted,
that is, collapsed to one level.

We approximate the conditional expectations and variances in
our decompositions using weights from a stacking model average.
These weights give a distribution over the features of modeling
that looks a lot like a posterior because they depend on the data,
are positive, and sum to one. We use these frequentist weights to
be consistent with our frequentist bootstrap tests. We are forced
to use bootstrap tests because, in general, we do not have a like-
lihood for the expected variance ratios that we use to assess con-
tributions to the overall predictive variance.

The essence of the method is to write a predictive model in
the usual way as p(y|v) where v is a K-dimensional discrete
multivariate parameter that indexes a modeling strategy V.
Then the stacking predictive variance is Var(Y,,H; D) where Vg
only “appears” as a latent variable that is integrated it out with
respect to its stacking weights. Now, the law of total variance
(LTV) gives

Var(Y,,1:D) = E(Var(Y,,;; V. D)) + Var(E(Y,.: V. D))

Writing V. = (3, ..., V) and applying the LTV to one dimen-
sion at a time in the “E-Var” terms gives an expansion of the
predictive variance into K + 1 terms, the last one of which can
be taken as Var(Y,,,|D, ¥, ) for any k that we want. Now, for each
Vi, we get a collection of decompositions depending on the order
in which the individual ¥,’s are introduced.

Next, we convert all the conditional expectations to expectations
in the stacking distribution formed from the ¥, ’s. Denoting this
by “;” rather than “|,” we can use bootstrap testing to assess any
term, in particular the last term of the form, say Var(Y,,,: D.V; ),
that depends on only one component of V.. If we decide we can
drop ¥, then the decomposition for Var(Y,,,: D) changes and
has one less term. We can then test its last term and continue
until there are as few terms as possible. When the test deter-
mines we can drop a term in the decomposition, it means that
a smaller ensemble of models is able to explain the same (or sim-
ilar) amount of variability in the predictive distribution as a larger
ensemble. A series of examples shows that our method gives intu-
itively plausible results for multiple choices of V.

Our analysis is analogous to the classical Cochran’s Theorem
decomposition of total squared error into a sum of quadratic
forms with independent y? distributions. We do not find as
neat a distributional form, however, we show that the terms in
our decomposition of the total predictive variance correspond
to sums of weighted y? random variables. The dependence on
ordering of the V,’s here parallels the same problem in Cochran’s
theorem when the data is unbalanced. There is a correction for
this in the classical ANOVA setting; see [18] chap. 6.3 for some
details. However, we have not developed this here.

A drawback of our method is that a wicked Statistician could
make a variance misleadingly small by choosing models very
close together or having super-precise parameter estimates and
thereby generate high bias and high mean squared predictive
error. In practice, we would counter this by ensuring that the
models represented by Vy, taken together, span a large enough
volume in model space that some will have nontrivial coverage
probabilities for future values. One way to do this would be to
form a model list of representatives of the model space that are
as far apart as possible from each other while ensuring that any
model in the space is close enough to at least one of them that
other sources of error contribute more to the variability.

Another topic that bears further work is the relationship between
testing for the importance of a term in the decomposition and col-
lapsing one of the levels ¥ to a single value. In standard ANOVA,
terms correspond to factors. Here, there is a correspondence but
it is weaker and we do not have a formal argument relating drop-
ping terms in a variance decomposition to dropping factors in a
modeling strategy.
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Endnotes

A slight variant on this is dilution, see [4], where there is a small region
of models that are roughly equally good and split the probabilities so
finely that all the predictions are zero. We assume that ¥ has been cho-
sen to avoid this.
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Appendix A
Cochran’s Theorem

Here we continue the derivation from Section 3.2 showing how the
decomposition in Clause (i) of Proposition 1 is analogous to Cochran’s
Theorem.

Deriving a x? Distribution for K=2

First, we see that (14) is an expected quadratic form, that is,

Zgzw Var Ml,Dn,my )
i=1

= Zf E"’JE({

=l j=1

~54) Doy s, ) (A1)

For (15), write W; for the column vector W, = (

\f_) and

write ¥, for the column vector ¥, = (5, = V. ... 5y — ),-_) .Now (15) is

I
Z‘: Zm‘:’{y'f ) = X ew T TW,
i=1 =
I
=DV, WW, ¥, (A2)
i=1

Similarly, for term (16), write § for the column vector §=

(\/g_,.. \/T) and ¥ = __—?,...5,‘—?)'. Then we have that

(16) is

I
Y65 -5.) =STTs

i=1

=Y S5'Y (A3)
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So, using (A1-A3), we can rewrite (13) as

ar(Y,,1;D,) = Zé Zcu.jE({ %)% m,-j.s,-) (A4)
=l =1
'
+ DV WWY, (a3)
=1
+Y 587 (A6)

Now we see each term in the predictive variance is a quadratic form, that
is, a homogeneous polynomial of order two, even if the terms in (A4) are
(trivial) quadratic forms of dimension one.

To see how the distributional aspects of (A4-A6) parallel the distribu-
tional statements in Cochran’s Theorem, we proceed as follows. Note that
regarding D, as a random variable rather than as observed data means
that all terms in the decomposition can also be regarded as random vari-
ables. Next, assume all data are normal. Now,

Var(Y,,,; D 2:45 Zw E(( 5y5)":D S*‘)
! §
= Y e WiW ¥, +Y SST (a7)
i=1

in which each term has a distribution. We begin with the two terms on
the right.

To begin, we recall Theorem 2.1 in [19] that generalizes Cochran’s
theorem for the distribution for quadratic forms. Namely, if X ~ N (0,'¥),
with ¥ a p X pcovariance matrix. Then if @ = X" MX is any real quadratic
form of rank r < p, Q is distributed like a quantity

PR (a8)
i=1

with r < p and 4, the i-th eigenvalue of ¥ M.

Now, look at the first term on the right, and let 4, = W, W,. We know 4, is
aJ x J, symmetric, and semi-positive definite because (A5) is a variance
between values ¥; within ¥; and by definition variances are positive.

Next, consider the second term on the right and let B = S8 whichis I x
I, symmetric and semi-positive definite by definition of variance. Further
suppose ¥ ~ N(0,Z*) and \/&Y, ~ N(0,%;).

Now, since both terms on the right in (A8) are quadratic forms in a normal
random vector, we can apply Theorem 2.1 in [19] to each of them. So, (A8)
gives

Var( ne1t D J_Z‘;Zm E( a1 — '..f) :D, mu,s)

I I I
~ V&Y Agxt+ Y, Ak (A9)
i=l j=1 =1

where 4; is the i-th eigenvalue of BZ" and 4; is the j-th eigenvalues of
A.X,. That is, the two terms on the right of (A8) are convex and weighted
sums, respectively, of 112 random variables.

The second term on the left is the expectation of a 4} random variable. To

see this, suppose (YHI - ?Ij; D,.my, s,) (0 02) and observe

E( (Y1 = 5y) s Dymyss; ) = Var(¥,.,y = 9 Doy s,)
+E(Y,,, - Vs Dy my, 3;‘}2
= Var(Y,,, — Vs Do i, 5i)
= o;} (A10)

‘We recognize this as equivalent to the expectation of a ¥ random variable
scaled by oilj—that is, E (oﬁ 2'12) = oﬁ. Itis difficult to determine the distri-
bution of (A10) explicitly but because we are taking a convex combination
of terms like it, computations suggest it is approximately normal.

Since all three terms in (13) are variances and hence corrected for their
means, (A4) is a new term that arises from trying to derive a Cochran’s
theorem style representation of Var(Y,,,:D,) using factors and factor
level weights from stacking, Bayes model averaging, or other assessments
of model uncertainty. To complete our analogy, recall Cochran’s Theorem
gives as many terms as there are factors plus a residual term. We get
dim(¥) terms, that is, the number of factors, plus an extra term, (A4),
the predictive analog of the residual term.

If desired, we can approximate distributions of the right hand terms in
(A9) more compactly by using other results from [19]. For instance, his
Theorem 2.2 gives the formula for the i-th cumulant of (A8) as

Q,=2"Yi- 1)12,1j
=1

Using this, we can approximate (A8) by gy%(h) where

_10f X4

20, Yvi

and 5
_200 (X4)

Q, 2,1!%

Box gives this approximation in part because it has the same first two
moments as (A8). Box also notes that when all 4; are equal, the degrees
of freedom, h, is smaller than appropriate.

Using this we can approximate YBY =Y 58'Y by

gxi= L4 ((Z“ ) (A11)

X4 4

Also, we can approximate

VEYANEY, = EY . WW!\EY,

2 (EJ ""ij}z

Bikp = X
! Ei A’E Z;‘ ‘15

Hence, we have the approximate distribution
R 5
L E'f'z yE ((}’:H_l - ?q) 1D, my;, S,-)
=1 =1

approx
Z grl,t, + g).’h

Var{ n+l D,

‘We emphasize that the analogy is conceptually incomplete as noted at the
end of Section 3.2. In addition, we do not have a definite distribution for
the second term on the left in (A8).

General K

Deriving quadratic forms and distributional expressions for Var(Y,,,: D,)
for general K is similar to the derivation of (A8) and (A9), respectively,
seen in Section 3.2. For the sake of completeness, we state these two

results below.

Our first result in this subsection gives the general expression for the pre-
dictive variance in terms of quadratic forms. For brevity, let

fu,l o, _E(Y+1’Dn'ui“""uik)
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‘We have the following:

Proposition 2. For a K-factor predictive scheme, the predictive variance
can be written as a sum of weighted quadratic forms as follows:

Var(%,,1:D,) = 3p(0,:0,) . X p(04 3Dt )

I Iy,

+ ZP(UH‘D") _EP(U,—R J’D" U’l - 'x-z)
n= ig=

x ir;__ Ax ¥k
I Tgy

+ Ep(ufi’D") E p(u":—r. D"’Uil Uiy )
i=1 ig_a=1

I
+ 21:1 0, iD, )V, A5,¥ 5,
=
+ VAT, (A12)
where
Apa=We (W 1)
Wi 1= (\/p(v,Fl:D,. LT ), ““\/P("'fﬁfx;Dm”h' sy ))
(A13)
and ¥, _, is the column vector of mean adjusted predictions for factor V;

conditional on factors Vi, ...V,_;. That is, we write

1= (o = BB Dus 09 s

r
(.~ . n)))

Wherej’l.l,l,...,ﬂk_ E{ +1‘Dn'ui'1 Wi= )

i=j

Our second result gives the distributions for K of the terms in our expan-

sion for the predictive variance. As before, we get sums of y7 random

variables.

Proposition 3. Let (Y ~ Ty ) & N(O,(ri .r), 7, ~ N(0.5)
ety Bppeaey 1

_____ 1~ N(0.Z; ;). Then the sum of quadratic forms in (A12) are
distributed like a sum of weighted y-squared random variable as follows

Ig

Var(Yy,1:D,) ~ Z (,1, )Z (,K,D "’m""”ix-l)

=1 ig=1

+ E ( 11!Dn)i:]’1’2,12’12

11_

+ Z e (A14)

fl_

where A,

Note that there are no explicit assumpﬁons on the joint pmf for V. Our
results are not asymptotic, so our results hold as long as a proper distri-
bution is specified for V.
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