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Abstract
Deep neural network (DNN) services have been widely deployed

for efficient and accurate inferences in many different domains.

In practice, a client may send its private data (e.g., images, text

messages and videos) to the service to get the inferences with the

proprietary DNN models. Significant privacy and security con-

cerns would emerge in such scenarios. Cryptographic inference

systems have been proposed to address such privacy and secu-

rity concerns. However, existing systems are tailored for DNNs

on image inferences, but not directly applicable to video inference

tasks that operate on the spatio-temporal (3D) features. To address

such critical deficiencies, we design and implement the first crypto-

graphic inference system, Crypto3D, which privately and efficiently

infers videos with compressed 3D DNNs while ensuring rigorous

privacy guarantees. We also update most cryptographic inference

systems (designed for images) to support video understanding on

3D features with non-trivial extensions, treating them as baselines.

We evaluate Crypt3D and benchmark with baselines utilizing the

widely adopted C3D and I3D models on the UCF-101 and HMDB-

51 datasets. Our results demonstrate that Crypto3D significantly

outperforms existing systems on execution time: 554.68× vs. Cryp-

toDL (3D), 189.21× vs. HEANN (3D) , 182.61× vs. MP-SPDZ (3D),

133.56× vs. E2DM (3D), 11.09× vs. Intel SGX (3D), 8.90× vs. Gazelle

(3D), 3.71 × vs. Delphi (3D), 12.97 × vs. CryptFlow2 (3D), 1.49× vs.

Cheetah (3D); accuracy: 82.4% vs. < 80% for all of them.
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(c) 3D DNN (C3D) Network

Figure 1: Crypto3D for private inferences based on spatial-
temporal (3D) features. Figure 1a shows the Cryptographic
inference for video classification between a client C and a
serverS. The client C holds the input video (Figure 1b), while
the server S holds the pre-trained 3D DNNmodel (Figure 1c).
Private inference is achieved through the two-party interac-
tions via Crypto3D, ensuring that neither party can learn any
private information from each other.

1 Introduction
Deep neural networks (DNNs) have seen a rising deployment in

practice encompassing object detection, image and action classifi-

cation, anomaly detection, among others. Within the framework of

a client-server model for DNNs, such as deep learning as a service,

the client typically transmits its data to a server. The server then

furnishes inference services, including classification and prediction,

utilizing its pre-trained DNN models. However, the data supplied

by clients often contain substantial private information, such as

human faces, activities, and workspace details. Directly disclos-

ing them to the cloud would compromise users’ privacy. On the

contrary, the pre-trained DNN model should also be considered

as proprietary information for the server and cannot be directly

shared to clients for local inference.

https://github.com/datasec-lab/crypto3D
https://doi.org/10.1145/3714393.3726505
https://doi.org/10.1145/3714393.3726505
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To mitigate such privacy risks, cryptographic inference systems

[4, 29, 56] are designed for secure inferences (see Table 1). A cryp-

tographic inference protocol allows the client to input its private

data in the encrypted form, and privately obtain the learning result

from the provider. In this process, the server cannot learn anything

about the inputs, while the client cannot obtain any information

about the model weights, thus reducing privacy and security risks.

Several cryptographic primitives can be used to construct se-

cure inference systems. Fully Homomorphic Encryption (FHE) [4]

can provide strong privacy guarantees, but it is computationally

expensive. Moreover, some non-polynomial functionalities (e.g.,

non-linear activation functions ReLU) cannot be directly supported

by FHE. Garbled Circuit (GC) [56] and Secret Sharing (SS) [2, 9, 55]

support arbitrary functionality, but GC results in significant com-

munication overheads, while SS requires high round complexity.

Thus, directly using such primitives is not ideal for secure DNN

inferences.

Many existing works use one or more cryptographic primitives

to construct secure inference systems, with specified optimizations

for DNNmodel inferences. As shown in Table 1, most recent crypto-

graphic inference systems are proposed to improve the performance

(e.g., efficiency and accuracy) on inferring images with 2D features.

Unfortunately, securely inferring images based on 2D features by
state-of-the-art (SOTA) systems are far from enough for video-

based applications. Such task poses new significant challenges from

cryptographic systems, more complex model architecture, and their

integration. Compared with the 2D ConvNets, most 3D ConvNets

have to infuse the temporal information of the videos after each

convolution/pooling operations. Performing 3D convolution and

pooling operations is expected to deliver temporal information

across all the neural network layers to the end. Integrated with

both spatial and temporal information in each feature, 3D ConvNets

(e.g., the recent C3D [48] and I3D [5] networks) have been demon-

strated to be more accurate on video inferences than 2D ConvNets

[5, 48]. However, to our best knowledge, cryptographic inferences

based on 3D features for video DNNs have not been studied yet.

To address this critical deficiency, we design and implement the

first cryptographic inference system Crypto3D for private infer-

ences based on 3D spatial-temporal features (both C3D [48] and I3D

[5]). Crypto3D enables to privately perform inferences for video

classification, action recognition and prediction, as well as visual

anomaly detection. We boost the efficiency of Crypto3D for a hy-
brid design (with cryptographic primitives of FHE, GC and SS) by

adapting three new methods: (1) optimizing the matrix operations
for 3D DNN, (2) ciphertext packing technique, and (3) surrogate La-
grangian relaxation (SLR)-based network pruning [13] for the 3D
DNNs. Specifically, we make the following major contributions:

• To our best knowledge, we design and implement the first

cryptographic inference system Crypto3D for private and

accurate video inferences based on 3D DNNs.

• Given the high complexity of the 3D video models and the

naturally incurred computational overheads, to boost the

efficiency of Crypto3D, we also take the first step towards the
co-design for harmonizing the cryptographic primitives (e.g.,

ciphertext packing), matrix operations optimization, and

model compression (e.g., weight-pruning optimization) for

3D video models. We prove that the co-design in Crypto3D
(for boosting efficiency) does not leak private information.

• We conduct substantial experiments while benchmarking

with all non-trivially extended 3D cryptographic inference

systems. To do so, we redesign and re-implement a wide

variety of cryptographic systems for image inferences to

support the video inferences. Such non-trivial extensions

involve the complex tasks of tailoring their dimensions and

formats to match different cryptographic primitives. We

demonstrate that Crypto3D achieves superior performance

over all the baselines.

2 Related Work
Homomorphic Encryption-based Protocols. Homomorphic en-

cryption enables mathematical operations on ciphertext without

requiring knowledge of the unencrypted data. One notable proto-

col, CryptoNets [12], proposes an HE-based secure neural network

inference framework. Other applications of DNNs leverage faster

homomorphic encryption schemes [4, 60], but these schemes have

limitations in terms of the supported depth of encryption and the

ability to perform multiplication operations without bootstrap-

ping [60]. In CryptoDL, polynomials are employed to approximate

complex nonlinear activation functions, such as Sigmoid and tanh.

However, it is important to note that homomorphic encryption

is not ideal and practical in terms of efficiency due to significant

computational overhead.

MPC-based Protocols. MPC enables multiple parties to jointly

evaluate a function without revealing their individual inputs to

each other, except for the final results. Existing works include Gar-

bled Circuit (GC) [1, 41, 43], Secret Sharing [2, 9, 55], and Mixed

Protocol approaches [23, 34, 42]. For instance, [41] and [1] pro-

pose optimizations for neural network activation functions using

garbled circuits. In [1], practical data aggregation protocols are

designed based on Shamir’s t-out-of-n secret sharing protocol [15].

However, secret sharing and garbled circuits have limitations that

can introduce computational overhead. To address this, Mixed Pro-

tocols [23, 34, 42] have been proposed, which combine additive

secret sharing or homomorphic encryption for linear operations

and garbled circuits for non-linear computations. Delphi [33] builds

upon Gazelle and improves it by incorporating garbled circuits and

quadratic polynomials for activation functions. CrypTFlow2 [40]

designs new two-party computation (2PC) protocols for secure

comparison and division, aiming to balance round and communica-

tion complexity for secure inference tasks. Cheetah [19] presents

a highly optimized architecture based on HE and communication-

efficient primitives to handle the large overhead of the current

2PC-NN. However, these prior works are primarily focused on 2D

ConvNets, and the inference results do not retain temporal infor-

mation for video data. In Crypto3D, we employ the C3D model for

performing cryptographic inference in video classification, thereby

preserving the temporal features in the prediction.

TEE-based Protocols. Trusted Execution Environments (TEE)

[6, 16, 25, 46, 47] provide a secure enclave where the model/data

owner can isolate sensitive computations for DNN models from

an untrusted software stack. TEEs ensure both data privacy and
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Table 1: Comparison of cryptographic inference systems. Visor [38] provides confidentiality for video analysis via TEE. However,
it still privately infers data (e.g., object detection and tracking) based on 2D features. PPVC [36] preserves privacy for video
classification based on cryptographic protocols, but it still utilizes the 2D ConvNets without fully preserving temporal info.

Cryptographic Inference Systems Design Security Video Spatial Temporal
CryptoNets [12] HE Cryptographic ✗ ✓ ✗

CryptoDL [17] HE Cryptographic ✗ ✓ ✗

XONN [41], MiniONN [29] GC Cryptographic ✗ ✓ ✗

DeepSecure [43] GC Cryptographic ✗ ✓ ✗

PSA [2], SPDZ [29] SS Cryptographic ✗ ✓ ✗

MLCapsule [16], Privado [46], Slalom [47] TEE Hardware-based ✗ ✓ ✗

Visor [38] TEE Hardware-based ✓ ✓ ✗

ABY3 [34], Crypten [26], CrypTFlow2 [40] Mixed Cryptographic ✗ ✓ ✗

GALA [58] Chameleon [42] Mixed Cryptographic ✗ ✓ ✗

Delphi [33], Cheetah [19] Mixed Cryptographic ✗ ✓ ✗

PPVC [36] Mixed Cryptographic ✓ ✓ ✗

Crypto3D (Ours) Mixed Cryptographic ✓ ✓ ✓

integrity. In[38], Visor is a proposed system that enables privacy-

preserving video analytics services using a hybrid TEE architecture.

It ensures strong confidentiality and integrity for video streams.

TEE-based secure cryptographic inference often outperforms MPC

protocols. However, it requires trust in the hardware, has a weaker

threat model, and necessitates implementation within the enclave.

Additionally, the vulnerability to side-channel attacks is a signifi-

cant concern that needs to be addressed.

Differential Privacy-based Solutions. Differential privacy-based
techniques for DNNs aim to reduce the amount of sensitive informa-

tion carried by the data and mitigate the errors of noise addition on

training. Shokri et al. [44] utilize differential privacy in deep learn-

ing models to ensure that data privacy is not compromised when

sharing local parameters with the server. Other works [37, 50] pro-

pose different approaches to handle the trade-off between privacy

and accuracy (i.e., adding noise to the weights [37] or dynamically

setting the privacy budget [57]).

3 Preliminaries
3DCNNNeural Network. Given a videoV , we possess the follow-

ing steps for the inference. First, the video is divided into multiple

segments. Then, several frames from each part are selected to com-

pose a clip. Then, these clips, representing the entire video, are

fed into the 3D-CNNs respectively. The 3D-CNN, extending the

2D-CNN into the temporal dimension, is more adept at capturing

the three-dimensional data features of videos. For C3D, it consists

of 3 × 3 × 3 convolutional kernels followed by 2 × 2 × 2 pooling
at each layer (as shown in Fig 2). The C3D model is trained on a

large scale video dataset such as UCF101 [45] and Sports 1M [24].

For the generic feature extraction, the 3D convolutions are able to

extract both spatial and temporal components information in the

videos, e.g., the motion of objects, human action and human-object

interactions. It directly encodes the temporal structure with a 3D

convolutional network instead of 2D. The involved 3D kernel is

able to extract information from both spatial and temporal dimen-

sions and fuse them into the same feature [48]. Compared with

a 2D ConvNet, a 3D ConvNet provides better modeled temporal

information with 3D convolution and 3D pooling operations for

more accurate video recognition. I3D [5] is a new Two-Stream In-

flated 3D ConvNet based on the 2D ConvNet inflation. It enables

the seamless spatio-temporal features extractors from video.
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Figure 2: Illustration of the spatio-temporal convolution Net-
work Architecture of C3D. 3D ConvNet is designed to have
8 convolution layers, 5 pooling layers, followed by 2 fully
connected layers, and a softmax output layer.

Secure 3D Inference. We assume the generic two-party secure

inference setting, involving a client C and a server S. The pre-

trained 3D neural network model is held by the server S while

the input video to be classified is held by the client C. The DNN
architecture (i.e., dimensions and type of each layer in the neural

networks) are known to the public. We consider the privacy of

input video and the security of model weights during the inference

process.We assume that the pre-trained DNNmodel from the server

will not be changed and updated. This can be naturally extended to

the updated variant with necessary parameters synchronization.

3.1 Cryptographic Primitives
Homomorphic Encryption. A homomorphic encryption of 𝑥

enables the computing encryption of 𝑓 (𝑥) without any knowl-

edge of the decryption key. A Linearly homomorphic public-key
encryption [11, 35] with a finite ring R as the message space in-

cludes a set of probabilistic polynomial-time algorithms 𝜋HE =

(KGen, Enc,Dec, Eval):
• (pk, sk) ← HE.KGen. The key generation algorithm is used

to generate a public/private key pair (pk, sk).
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• 𝑐 ← HE.Enc(pk,𝑚). The ciphertext 𝑐 is generated by the

encryption algorithmwith the public key pk and themessage

𝑚.

• 𝑚 ← HE.Dec(sk, 𝑐). The message 𝑚 can be obtained by

running the decryption algorithm with the secret key sk and
the ciphertext 𝑐 .

• 𝑐𝑙 ← HE.Eval(pk, 𝑐1, 𝑐2,L). The new ciphertext 𝑐𝑙 is gen-

erated by the evaluation algorithm with pk, two encrypted

messages 𝑐1, 𝑐2, and the linear function L, where L maps

(𝑚1,𝑚2) to 𝑘𝑚1 +𝑚2 for 𝑘 ∈ R.
This work involves several different HE libraries for implemen-

tations. More details are deferred to the Table 3.

Oblivious Transfer. Oblivious Transfer (OT) [39] is a fundamental

cryptographic building block in MPC. OT is executed between

a sender and a receiver. The sender has two inputs 𝑥0, 𝑥1 while

the receiver wants to receive the 𝑥𝑏 (a selection bit 𝑏) without

revealing 𝑏 or learning anything from the server. In this work, we

use (⊥;𝑥𝑏 ) ← OT(𝑥0, 𝑥1;𝑏) to represent this functionality.

Garbled Circuits. Garbled Circuits (GC), proposed by Yao [56], is

the first secure two-party computation protocols support compu-

tations on arbitrary functions. The garbled circuit generator (one

party) prepares the encrypted circuit computing 𝑓 while the garbled

circuit evaluator (the other party) computes the output of the circuit

without learning any intermediate values. Denoting the Boolean

circuit as C, for the input x, a Garbling scheme includes a group of

algorithms 𝐺𝑆 = (Garble, Eval), as follows:
• (C̃, {lab𝑖,0, lab𝑖,1}𝑖∈[𝑛] ) ← GS.Garble(C). Given the input

of a boolean circuit C, the Garble algorithm outputs a garbled

circuit C̃ and a set of labels {lab𝑖,0, lab𝑖,1}𝑖∈[𝑛] , where lab𝑖,𝑏
is the assigned value 𝑏 ∈ {0, 1} to the 𝑖-th input label.

• 𝑦 ← GS.Eval(C̃, {lab𝑖,𝑥𝑖 }). The evaluation algorithm out-

puts 𝑦 = C(𝑥) with the input garbled circuit C̃ and the given

labels {lab𝑖,𝑥𝑖 } corresponding to the input 𝑥𝑖 ∈ {0, 1} for
𝑖 ∈ [𝑛].

4 Cryptographic Inference Protocol Co-Design
We define the DNNs model owned by server privately as P =

(P1,P2, ...,P|𝑁 | ) with𝑘 layers.P𝑖 represents the layer of the model.

Given a video V = {𝑓𝑖 }𝑖=𝑁𝑖=1
consisting of 𝑁 frames. Video-level

takes a sequence consisting of multiple frames as input, we have

V = {𝑓𝑡1 , 𝑓𝑡2 , ..., 𝑓𝑡𝑛 }, where 𝑡1 ≤ 𝑡2 ≤ 𝑡3, ..., ≤ 𝑡𝑛<𝑁 .

In this section, we first define the threat model and the security

guarantees for our secure inference system Crypto3D, and then

illustrate the protocol design.

4.1 Threat Model
We consider the security of Crypto3D under the semi-honest model.

A protocol is secure against semi-honest adversaries if the corrupted

parties in the real world have views that are indistinguishable from

their views in the ideal world. We refer to the ideal-world adversary

as simulator 𝜋𝑆𝑖𝑚 , since it generates a real-world view while in the

ideal world. Showing that such simulator exists proves that there is

nothing an adversary can accomplish in the real world that could

not also be done in the ideal world. More specifically, we denote the

protocol 𝜋SecureINF, the polynomial-time functionality F , views of
partyView𝑆 , final output of party y and the corrupted parties 𝑃 . Sim
denotes a simulator algorithm. Then we have 𝜋SecureINF (𝑃𝑖 ; x)Real,
which represents each party runs the protocol honestly with given

private input x. In this case, the output is {View𝜋SecureINF
𝑆

|𝑖 ∈ 𝑃𝑖 }, (y).
Similarly, we denote SimF (𝑃𝑖 ; x)Ideal to compute the F (x), the
output would be Sim(𝑃𝑖 , {(x, y) |𝑖 ∈ 𝑃𝑖 }, (y).

Definition 4.1. (Security w.r.t semi-honest behavior): A crypto-

graphic inference protocol 𝜋SecureINF between the two parties C
and S with input feature vector x and the pre-trained model pa-

rameters P = (P1,P2, ...P|𝑁 | ) securely computes the probabilistic

polynomial-time functionality F , and satisfies the Correctness and

Security.

• Correctness: For all set of model parameters P and all feature

input vectors x, the output at the end of protocol is the

correct prediction y in the cryptographic inference.

• Security:
– Semi-Honest Server Security. There exists a simulator

Sim𝑆 such that {View𝜋SecureINF
𝑆

(P, x)}, (y)
≈𝑐 {Sim𝑆 (P, F (P, x))}, (y), where View𝜋SecureINF

𝑆
denotes

the view of the server in the protocol 𝜋SecureINF. Sim𝑆 is

able to simulate a view of the semi-honest server without

learning any private input vector x of client in polynomial

time.

– Semi-Honest Client Security: There exists a simulator

Sim𝐶 such that View𝜋SecureINF
𝐶

(P, x) ≈𝑐 Sim𝐶 (x, F (P, x)),
where View𝜋SecureINF

𝐶
denotes the view of the client in the

protocol 𝜋 and output represents the results of inference.
Sim𝐶 is able to simulate a view of the semi-honest client

without learning any pre-trained model parameters P in

polynomial time.

4.2 Protocol Design
Without loss of generality, we present the design of Crypto3D based
on C3D [48]. This design can be extended, as demonstrated in the

extended evaluations for another 3D DNN model I3D, in Section 6.

The design of Crypto3D is formally shown in Figure 3. It contains

two sub-protocols 𝜋SecureLIN and 𝜋SecureNonLIN, details of both are

shown in Figure 4 and Figure 5.

Protocol (𝜋SecureLIN). Crypto3D provides secure computation for

linear layers. First, (pk, sk) can be fetched via the KGen algorithm

for the client. We denote ⟨𝑟𝑖 ⟩ ← R𝑛, 𝑖 ∈ [1, .., 𝑁 ] and ⟨𝑠𝑖 ⟩ ← R𝑛, 𝑖 ∈
[1, .., 𝑁 ] as the random masking vectors for the 𝑖-th layer. In the

linear layer, the encrypted ciphertext CT
S
𝑖
← Enc(pk, ⟨𝑟𝑖 ⟩) is sent

to the server by the client. With the Eval procedure, the server

computes the OLIN
𝑖

and send its ciphertext back to the client. Then,

the client decrypts and learns ⟨P𝑖𝑟𝑖 ⟩. Thus, the additive secret

sharing of P𝑖 · ⟦𝑟𝑖⟧ is held by both the client and the server before

the online phase execution. Given the input x (x ∈ Z𝐶×𝐷×𝐻×𝑊 ←
Process(V)), the server receives x − ⟨𝑟1⟩. At this time, the additive

secret shares of x are held by the client and server, respectively.

At the beginning of the 𝑖-th layer evaluation, x𝑖 can be fetched

from the first (𝑖 − 1) layers of the neural network. The client holds
⟨𝑟𝑖 ⟩ while server holds ⟨𝑥𝑖 ⟩−⟨𝑟𝑖 ⟩. For the evaluation of the linear
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Protocol 𝜋SecureINF (P𝑖 , x, 𝑟 , 𝑠):

Input: DNNs model P = (P1, P2, ..., P|𝑁 | ) and Video V
Output: Inference results O
1 : { 𝑓1, 𝑓2, 𝑓3, ..., 𝑓k} ← V
2 : V = { 𝑓𝑡1 , 𝑓𝑡2 , ..., 𝑓𝑡𝑛 }, where 𝑡1 ≤ 𝑡2 ≤ 𝑡3, ..., ≤ 𝑡𝑛<𝑁

3 : x ∈ Z𝐶×𝐷×𝐻×𝑊 ← Process(V)
4 : foreach 𝑖 ∈ [1, |𝑁 | ] do
5 : switch P𝑖 do
6 : case Linear :

7 : OLIN

𝑖 ← 𝜋SecureLin ( )
8 : case Non-Linear :

9 : ONonLIN

𝑖 𝜋SecureNonLIN ( )
10 : return O ← x𝑁 − ⟨𝑟𝑁 ⟩

Figure 3: Protocol 𝜋SecureINF

Protocol 𝜋SecureNonLIN ():

Input: DNNs model P = (P1, P2, ..., P|𝑁 | ) and Video V
Output: ONonLIN

𝑠 and ONonLIN

𝑐

1 : S computes ⟨𝑥𝑖 − ⟨𝑟𝑖 ⟩⟩
2 : // set the 𝑥𝑖 to be the result of evaluation for the first (i-1)-th layers on x

3 : 𝑥𝑖 ← EVAL𝑖−1 (x)
4 : foreach 𝑖 ∈ [1, 𝑁 ] do
5 : switch P𝑖 do
6 : case Garbled circuits :

// Construct Garbled Circuit

7 : {𝐶, 𝑙𝑎𝑏𝑖,0, 𝑙𝑎𝑏𝑖,1}𝑖∈ [𝑛] ← GS.Garble(1𝑘 , C)
8 : Invoke OT(⟨ri+1 ⟩, ⟨Pi · ri − si ⟩)
9 : ONonLIN

𝑠 ← Compute ⟨x𝑖+1 − ⟨𝑟𝑖+1 ⟩⟩𝑠
10 : case Polynomial approximation :

// Compute Beavers triples

11 : ⟨x𝑖+1 ⟩1, ⟨x𝑖+1 ⟩2 ← Beaverstriples( )
12 : ONonLIN

𝑐 ← Computes⟨𝑥𝑖+1 ⟩1 − ⟨𝑟𝑖+1 ⟩
13 : ONonLIN

𝑠 ← Computes ONonLIN

𝑐 + ⟨𝑥𝑖+1 ⟩2

Figure 4: Protocol 𝜋SecureNonLIN

layer(s), the server computes P𝑖 · (x𝑖 − ⟨𝑟𝑖 ⟩) via the Permu(·) (via
Equation 2), which ensures that the additive shared secrets of P𝑖 ·x𝑖
are held by the client and server.

Protocol (𝜋SecureNonLIN). Regarding the non-linear layer execution,
the execution of activation function depends on what type of func-

tion. The garbled circuit 𝐶 is constructed via GC schemes. It helps

to solve the ReLU function by exchanging the labels for input wires

with ⟨𝑟𝑖+1⟩ and P𝑖 · ⟨𝑟𝑖 ⟩ − ⟨𝑠𝑖 ⟩.
On the other hand, the Beaver’s multiplication procedure is

executed for the polynomial approximation evaluation. The client

and sever will hold the ⟨𝑥𝑖+1⟩1 and ⟨𝑥𝑖+1⟩2, separately after the

Beaver’s multiplication procedure. At this time, the client sends the

results of the ⟨𝑥𝑖+1⟩1 − ⟨𝑟𝑖+1⟩ to the server. The ⟨𝑥𝑖+1⟩ − ⟨𝑟𝑖+1⟩ will

Protocol 𝜋SecureLIN ():

Input: DNNs model P = (P1, P2, ..., P|𝑁 | ) and Video V
Output: Encode(⟨Permu(P𝑖 ) ) · ⟨𝑟𝑖 ⟩), ⟨𝑟𝑖 ⟩
Encode(⟨Permu(P𝑖 ) ⟩ · ⟨𝑟𝑖 ⟩𝑆
1 : (pk, sk) ← KGen(1𝜆 )
2 : ⟨𝑟𝑖 ⟩, ⟨𝑠𝑖 ⟩ ← R𝑛 (∀𝑖 ∈ [1, .., |𝑁 | ] )
3 : foreach 𝑖 ∈ [ |𝑁 | − 1],

4 : CT
S
𝑖 ← Enc(pk, ⟨𝑟𝑖 ⟩)

5 : OLIN

𝑖 ← EvalS ( (pk, Encode⟨Permu(P𝑖 ) ) · ⟨𝑟𝑖 ⟩ − ⟨𝑠𝑖 ⟩
6 : S : learns ⟨𝑠𝑖 ⟩, ⟨P𝑖𝑟𝑖 ⟩
7 : C : learns ⟨P𝑖𝑟𝑖 ⟩

Figure 5: Protocol 𝜋SecureLIN

be obtained by adding the ⟨𝑥𝑖+1⟩2. Finally, the client learns the 𝑥𝑁
from the received 𝑥𝑁 - ⟨𝑟𝑁 ⟩.
Matrix-Vector Multiplication. We assume that the input matrix

P has the size 𝑛0 × 𝑛𝑖 , where 𝑛𝑖 is smaller than the number of

plaintext slots𝑛𝑠 .We denote the sub-matricesP𝑖 𝑗 (where 0 ≤ 𝑖 < 𝑛0
and 0 ≤ 𝑗 < 𝑙) with the size of 1 × (𝑛𝑖/𝑙), which is splited from

the P. Next we pack the different matrics (𝑙 · 𝑛𝑠 )/𝑛𝑖 into a single
ciphertext, and the 𝑛𝑐 = (𝑛𝑠/𝑛𝑖 ) copies of the input vector 𝑟 into a

single cipertext. With the encoding 𝑛𝑐 , the first diagonal vectors of

the matrix into a plaintext vector as below:

((P0,0 |P1,1 |...|P𝑙−1,𝑙−1) | (P𝑙,0 |P𝑙+1,1 |...|P2𝑙−1,𝑙−1) |...
(P𝑙 · (𝑛𝑐−1),0 |P𝑙 · (𝑛𝑐−1)+1,1 ...|P𝑙 · (𝑛𝑐−1)+𝑙−1,𝑙−1) ) ∈ R

𝑛𝑠

Each extended diagonal vector is encrypted in a single cipher-

text and these ciphertexts are multiplied with 𝑙 rotations of the

encrypted vector 𝑟 . Next we add together and the output (cipher-

text) represents (𝑛𝑖/𝑙)- sized (𝑙 · 𝑛𝑐 ) chunks. With the log(𝑛𝑖/𝑙)
rotations, we get the ciphertext with the first (𝑙 · 𝑛𝑐 ) entries of
P · 𝑟 ∈ R𝑛0

. Finally, we get the 𝑛0/(𝑙 · 𝑛𝑐 ) ciphertexts after repeat-
ing the procedures 𝑛0/(𝑙 · 𝑛𝑐 ).
Optimized Matrix Multiplication. Arithmetic operations of the

encryptedmatrices can lead to inefficiency in high-dimensional data

tensors computation. To mitigate this issue, our Crypto3D utilizes

the optimized matrix permutation [22] to efficiently perform the

operation of matrix computations with ciphertext packing and

parallelism [7]. The operation of the matrix multiplication can be

considered as the sum of component-wise products with the specific

permutations of the matrices themselves. We assume that there

are two square matrices with size 𝑛 × 𝑛, the 𝑛 permutations of the

matrix 𝐴 via the followings symmetric permutations:

𝜎 (𝐴)𝑖, 𝑗 = 𝐴𝑖,𝑖+𝑗 , 𝜏 (𝐴) = 𝐴𝑖+𝑗, 𝑗
𝜙 (𝐴) 𝑗, 𝑗 = 𝐴𝑖, 𝑗+1,𝜓 (𝐴) = 𝐴𝑖+1, 𝑗

(1)

where 𝜙 and𝜓 are denoted as the shifting functions for column

and row, respectively. Then, the multiplication of two matrices (we

denote 𝐴 and 𝐵) with the order 𝑑 can be computed as below:

𝐴 · 𝐵 =

𝑑−1∑︁
𝑘=1

(𝜙𝑘 ⊙ 𝜎 (𝐴) ) × (𝜓𝑘 ⊙ 𝜏 (𝐵) ) (2)
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where ⊙ refers to the component-wise product and 𝑘 represents

the number of times for perturbation. As such, we can efficiently

compute the two matrix multiplications. In Crypto3D, we utilize
the function Permu(·) to represent the computation of the 𝑛 per-

mutation operations. To boost the efficiency, we also utilize the

vectorable HE “Ciphetext packing”. We use the Encode(·) to refer

to the matrix transformations, which transforms a matrix into a

plaintext vector with encoding map functions. Similarly, Decode(·)
is used for the plaintext vector transformations to the matrix. Equa-

tion 2 can be securely computed with the multiplicative property

of HE. Our Crypto3D uses the optimized matrix multiplication and

ciphertext packing [22] for the efficiency improvement. Since we

can pack all the inputs into a single ciphertext and perform layer

computation (e.g., convolutions) in parallel, we can enable the SIMD

parallelism with the ciphertext packing.

Network Pruning. SOTA DNNs often suffer from challenges due

to their large model sizes, which encompass millions of parameters.

This characteristic results in extended inference times, substantial

memory requirements, and poses significant difficulties in meeting

critical requirements during the inference phase, such as real-time

processing and low power consumption. The objective of deep

model compression is to optimize the model in a more efficient

format by alleviating the cost of the large model size and leave

minimal impact on the performance of the model. Recently, there

have been many orthogonal network optimization methods, such

as ReLU optimizations [8, 20, 21, 28]. In our work, we consider the

weight pruning (Irregular Pruning) [13] as the main optimization

technique. In the future, we may continue our research work on

ReLU optimizations.

In Crypto3D, we use DNN weight pruning [13], which aims to

reduce the number of non-zero elements in the weight matrix [61].

Specifically, we consider the model compression technique Surro-
gate Lagrangian Relaxation (SLR) for weight pruning. For an𝑁 -layer

DNN, where 𝑖 ∈ {1, 2, ..., 𝑁 }, we denote the weights at each con-

volutional layer asW𝑖 . The objective of irregular weight pruning

is to minimize the DNN loss function while satisfy the constraints

that the number of nonzero weights in eachW𝑖 should be less than

the predefined percentage 𝑙𝑖 :minW𝑖
𝑓 (W𝑖 ) 𝑠 .𝑡 . card(W𝑖 ) < 𝑙𝑖 . The

unconstrained forms can be written as below:

min

W𝑖

𝑓 (W𝑖 ) +
𝑁∑︁
𝑖=1

𝑔𝑖 (W𝑖 ) where 𝑔𝑖 (W𝑖 ) =
{
0 if card (W𝑖 ) ≤ 𝑙𝑖

+∞ otherwise

(3)

In the equation, 𝑓 (·) represents the nonlinear loss function, 𝑔𝑖 (·)
represents the non-differentiable “cardinality” penalty term for

each layer, which is the indicator function [59]. In the equation,

𝑓 (·) represents the nonlinear loss function,𝑔𝑖 (·) represents the non-
differentiable “cardinality” penalty term for each layer, which is the

indicator function [59]. In the SLR-based weight pruning, duplicate

variables Z𝑖 are introduced to decompose the loss function [3], and

the problem is equivalently asminW𝑖
𝑓 (W𝑖 )+

∑𝑁
𝑖=1 𝑔𝑖 (Z𝑖 ), 𝑠 .𝑡 .W𝑖 =

Z𝑖 . Lagrangian multipliers Λ𝑖 are leveraged to relax the constraints,
and quadratic penalties are used to penalize their violations. The

result Augmented Lagrangian function can be written as Eq. 4,

where ∥ · ∥𝐹 denotes the Frobenius norm and tr(·) denotes the trace.

This relaxed problem can be decomposed into two sub-problems

and solved iteratively until convergence.

𝐿𝜌 (W𝑖 ,Z𝑖 ,Λ𝑖 ) = 𝑓 (W𝑖 ) +
𝑁∑︁
𝑖=1

𝑔𝑖 (Z𝑖 ) +
𝑁∑︁
𝑖=1

tr

[
Λ𝑇𝑖 (W𝑖 − Z𝑖 )

]
+

𝑁∑︁
𝑖=1

𝜌

2

∥W𝑖 − Z𝑖 ∥2𝐹

(4)

At iteration 𝑡 , the first sub-problem is using SGD to minimize

𝐿𝜌

(
W𝑖 ,Z𝑡−1𝑖

,Λ𝑡
𝑖

)
for W𝑖 , while keeping Z𝑖 = Z𝑡−1

𝑖
for given val-

ues of multipliers Λ𝑡
𝑖
under the surrogate optimality condition

𝐿𝜌

(
W𝑡

𝑖
,Z𝑡−1

𝑖
,Λ𝑡

𝑖

)
< 𝐿𝜌

(
W𝑡−1

𝑖
,Z𝑡−1

𝑖
,Λ𝑡

𝑖

)
. The second sub-problem

is minimizing 𝐿𝜌

(
W𝑡

𝑖
,Z,

𝑖
Λ𝑡+1
𝑖

)
for Z𝑖 by using projections onto dis-

crete subspace. This step fixes W𝑖 and analytically obtain the Z𝑖 .
The surrogate optimality condition that need to be satisfied in this

step is 𝐿𝜌

(
W𝑡

𝑖
,Z𝑡

𝑖
,Λ𝑡+1

𝑖

)
< 𝐿𝜌

(
W𝑡

𝑖
,Z𝑡−1

𝑖
,Λ𝑡+1

𝑖

)
.

We note that SLR also brings helps for engineering. The 3D

video sequence is significantly more data-intensive than 2D images

since the dimension of data is increased. This means that more data

needs to be stored and processed during the training phase. In our

implementation, we use a GPU-accelerated library for convolution

evaluations to speedup the performance. Using GPU requires copy-

ing the layer weights and input into GPU RAM and then copying

the output back into the CPU RAM. Thanks to SLR, the model size

is reduced so that the 3D model can be fully loaded and copied

during the entire training phase.

5 Security Analysis
We conduct the security analysis for the two cases where one of

the parties is corrupted.

Theorem 5.1. The secure two-party inference protocol 𝜋SecureINF
for Crypto3D (including 𝜋SecureLIN and 𝜋SecureNonLIN as shown in
Figure 5 and 4) is secure against semi-honest adversaries.

Proof. Our security proof follows the ideal-world/real-world

paradigm. Our goal is to show that the adversary’s view in real-

world is indistinguishable to that in the ideal-world. Therefore, we

prove this theorem by considering two cases separately: (1) Security

against a semi-honest client, and (2) Security against a semi-honest

server. Then, we build polynomial simulators Sim to simulate the

views of all the participants of the protocol, detailed as below.

Case I: Client C is corrupted (C ∈ 𝑃𝑖 ). In this case, we provide

the security against the semi-honest client by constructing an ideal-

world simulator Sim. We begin by describing the simulator S̃ as:

(1) Upon input, S̃ uniformly choose the random-tape 𝑟𝑖 for

the client C. During the offline 𝜋SecureOFL phase, we have

simulator S̃ receives pk and ciphertext C(𝑟𝑖 ) ← Enc(pk, 𝑟𝑖 ).
(2) Then, simulator S̃ sends ciphertext C(𝑠𝑖 )

′ ← Enc(pk,−𝑠 ′
𝑖
)

with random 𝑠
′
𝑖
∈ R𝑛

to the server. Simulator S̃ invokes the

S̃𝐺𝑆 for garble circuits and runs on 1
𝜆
and 1

|𝐶 |
and sets the

random value for the circuit S̃𝐺𝑆 output (𝐶 , {𝐿𝑖,𝑥𝑖 }𝑖∈[𝑛] ).
For the 𝑖-th OT execution, S̃ sends the input ({𝐿𝑖,𝑥𝑖 }𝑖∈[𝑛] },
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HYBRID Experiments 𝐻𝑐
𝑖
(.)

HYBRID0
: It corresponds to real world distribution with the actual input matrices P = (P1, P2, ...P|𝑁 | ) from the server.

HYBRID1
: The simulator S̃ sends y − ⟨𝑟𝑁 ⟩. With the knowledge of the client’s random tape, the simulator S̃ begins the evaluation of the

i-th layer with x − ⟨𝑟𝑖 ⟩.The distribution on the view of the A for above is identical with this syntactic change.

HYBRID2
: The server provides {𝐿𝑖,𝑥𝑖 }𝑖∈ [𝑛] }to replace the labels corresponding to 0 and 1 in each OT execution, where 𝑥𝑖 is inputted from

from the client in that OT execution. 𝑏 is a result of setting the random tape and learning the input of corrupted client.

Hybrid2 is indistinguishable from Hybrid1 with the sender security of OT execution.

HYBRID3
: We generate𝐶 using the S̃𝐺𝑆 on input 1

𝜆, 1|𝐶 | and𝐶 (𝑧 ), where 𝑧 is the input corresponding to the circuits evaluation.

𝐶 (𝑧 )is an one-time pad (OTP) encryption, which is distributed identically to a random string.

HYBRID3 is indistinguishable from Hybrid2 with the followed security of the garbled circuits.

HYBRID4
: The multiplication triples in the offline phase is generated with the corresponding simulator S̃ for Beaver’s protocol

This follows from the simulation security that Hybrid4 is indistinguishable from Hybrid3.

HYBRID5
: We use simulator S̃ for the Beaver’s multiplication procedure for every quadratic approximation layer.

Note that in this hybrid, 𝑥𝑖 − ⟨𝑟𝑖 ⟩, ⟨𝑠𝑖 ⟩ and matrix P𝑖 are no longer used for i-th layer evaluation.

Similarly, this follows from the simulation security that Hybrid5 is indistinguishable from Hybrid4.

HYBRID6
: The simulator S̃ is used for the function privacy with respect to each homomorphic evaluation in the offline phase.

Also, S̃ only requires the P𝑖 · ⟨𝑟𝑖 ⟩ − ⟨𝑠𝑖 ⟩for the homomorphically evaluated ciphertext generation.

This follows the function privacy of HE in which Hybrid6 is computationally indistinguishable from Hybrid5.

HYBRID7
: We set input −

〈
𝑠
′
𝑖

〉
instead of the true value (P𝑖 · ⟨𝑟𝑖 ⟩ − ⟨𝑠𝑖 ⟩) . It is given to the S̃ with randomly sampled

〈
𝑠
′
𝑖

〉
from R𝑛 .

The 𝑠𝑖 is chosen uniformly at random, this indicates that the Hybrid7 is identically distributed to Hybrid6.

Eventually, we note that Hybrid7 is identically distributed to the simulator S̃′𝑠output.

Figure 6: Random experiments 𝐻𝑖 (.) for corrupted client C :

HYBRID Experiments 𝐻𝑠
𝑖
(.)

HYBRID0
: The simulator S̃ corresponds to the real world distribution with the actual input x from client.

HYBRID1
: Same as Hybrid0, except for a syntactic change. With respect to the layer evaluation by the garbled circuits,

we send the one-time pad encryption OTP(𝑥𝑖+1 − ⟦𝑟𝑖+1⟧)by the knowledge of x, P𝑖 and random tape of the server,

instead of the circuits evaluation. Similarly, a share is sent in final round. Thus, when the server adds it with its own share,

it gets 𝑥𝑖+1 − ⟨𝑟𝑖 ⟩. Hybrid1 is identical to the Hybrid0 with this syntactic change.

HYBRID2
: The inputs that client provides to each OT execution are changed, in which it acts as the sender.

We provide the fake input with ’0’ to replace the real inputs. This follows the receiver security of obvious transfer protocol,

and Hybrid2 is computationally indistinguishable from Hybrid1.

HYBRID3
: We generate the multiplication triples with the simulator for Beaver’s multiplication protocol.

With the followed simulation security, the Hybrid3 is computationally indistinguishable from Hybrid2.

HYBRID4
: We use simulator S̃ for the procedure of Beaver’s multiplication,

with respect to each quadratic approximation layer of the neural network. With the followed simulation security, Hybrid4 is

computationally indistinguishable from Hybrid3.

HYBRID5
: We update the ciphertexts sent by the client in the offline phase. The client sends Enc(pk, 0) instead of Enc(pk, 𝑟𝑖 ) .
The Hybrid5 is computationally indistinguishable from Hybrid4 since this follows the semantic security of the encryption scheme.

HYBRID6
: We make some changes. With respect to the layer evaluation by the garbled circuits, we send (encryption OTP⟦𝑟𝑖+1⟧)
with randomly chosen⟦𝑟𝑖+1⟧ to the server. Similarly, in terms of the each quadratic approximation layer, a share, which is chosen

uniformly at random is sent at the final round. Furthermore, a uniformly chosen value⟨𝑟1 ⟩in the offline phase will be sent.

Eventually, we note that Hybrid6 is identically distributed to the simulator’s S̃ output.

Figure 7: Random experiments 𝐻𝑖 (.) for corrupted Server S :
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C̃ ) to the client. S̃ runs the corresponding simulator with

the Beaver’s triples procedure under 𝜋SecureINF.

(3) Similarly, during the online phase: Simulator S̃ receives x −
⟨𝑟1⟩ from the offline phase, sends x to the ideal functionality

F and obtains the output 𝑦. The simulator S̃ performs the

corresponding evaluation as:

• Simulator S̃ sends the simulated labels for GC layers.

• Simulator S̃ evaluates the polynomial approximation layer

for Beaver’s multiplication procedure. For the output layer,

Simulator S̃ sends output y − ⟦𝑟𝑙⟧ to the client.

In this case, a simulator S̃ that is given (C, x) can simulate the com-

plete view of C. In Figure 6, we now present that the distribution

of real world is computationally indistinguishable to the simulator

S̃ in the ideal world. We prove this by a sequence of random ex-

periments 𝐻𝑖 (.) as shown in Figure 6. It shows that the successive

random experiments are computationally indistinguishable. The

server’s model weights will not be used in the simulator S̃ for the

final simulated distribution, thus nothing except the prediction re-

sults and model architecture will be learned by the corrupted client.

This completes the proofs for the case of adversarial client.

Case II: Server S : is corrupted (S ∈ 𝑃𝑠 ). In this case, we assume

that the simulator S̃ exists as below, once given the inputs P =

(P1,P2, ...P|𝑁 | ) from the server:

(1) The simulator S̃ generates uniform random tape from Servers.

(2) During the offline phase, Simulator S̃ sends Enc(pk, 0) to
the server with chosen pk and receives the ciphertext from

the server. And simulator S̃ and works as the receiver from

server and uses the fake input with “0” as receiver’s choice bit.

Simulator runs the corresponding simulator S̃ for Beaver’s

triples generating.

(3) On the Online phase, simulator S̃ sends ⟨𝑟1⟩ from the of-

fline phase with an uniformly chosen ⟨𝑟1⟩. The simulator S̃
performs the corresponding evaluation as below:

• Simulator S̃ sends the random value back to sever for GC

layers.

• S̃ uses simulator for Beaver’s multiplication to evaluate

the polynomial approximation. The random value is sent

back to the server at the final round.

We present that the distribution of real world is computationally

indistinguishable to the simulated distribution by the following

hybrid arguments in the Figure 7. Since the user’s input is not used

by the simulator in the final simulated distribution, a corrupted

server will not know anything in the real world.

Thus, this completes the proof. □

6 Experimental Evaluations
Experimental Environment. Our Crypto3D is implemented in

Rust, Python, and C++. All the experiments are evaluated on a

Ubuntu 20.04.2 LTS server with the NVIDIA RTX A6000.

Datasets and 3D DNN Models. UCF-101 and HMDB-51 human

action recognition datasets are utilized to evaluate Crypto3D, as
shown in Table 2. The UCF-101 dataset consists of 13,320 videos

Table 2: Characteristics of video datasets.

UCF-101 HMDB-51

Average Resolution 360 × 288 360 × 240

Pretrained Sports-1M Sports-1M

Clips 13320 6766

Category/Class 101 51

Background Dynamic Dynamic

Release Year 2012 2011

Resource YouTube Movies, YouTube

from YouTube, with over 101 categories of human actions. HMDB-

51 contains 6,849 video from 51 distinct action classes. The C3D

weight model is generated from Sports-1M, which contains more

than 1 million YouTube videos annotated with 487 sports classes.

The I3D ConvNet model [5] is trained for action recognition with

Kinetics-400, which includes 400 different actions. The C3D network

helps the temporal information preservation in the first layer and

then builds higher level representation of the temporal information

with the subsequent layers. The I3D model can further improve

C3D via inflating 2D models.

Benchmark Systems.2 We compare the cryptographic inference

results and performance of Crypto3D with several other systems:

Gazelle, Intel SGX (hardware-based protection), 3D secure infer-

ence with the MPC protocol (e.g., MP-SPDZ), optimized HE-based

privacy-preserving ML frameworks (e.g., CryptoDL, HEANN and

E2DM). More details for HE libraries are deferred to the Table 3.

Note that almost all systems only implement and focus on im-

age classification datasets with 2D CNN, which does not directly

support the video understanding models. The PPVC [36] proposes

a privacy-preserving framework for video classification, but it still

utilizes a 2D CNN instead of a 3D ConvNets for the prediction. To

fairly compare our Crypto3Dwith them on videos, we redesign and

re-implement these systems with non-trivial extensions to enable

cryptographic inferences on the 3D models.

Table 3: The detailed description for the benchmarks.

Methods Description
Gazelle BFV & lattice encryption library

Intel SGX Graphene with SGX support

MP-SPDZ MPC

CryptoDL SIMD operations

Division of ciphertexts is not supported

Limited number of computations

HEANN Scheme with native support for fixed-point approx. arithm.

ED2M C++ implementation of matrix computation using HEANN

Libraries for FHE. Many existing works use the privacy preserv-

ing computation based on the homomorphic encryption (HE). HE

enables the computation on the encrypted data without decryption.

However, it consists of many restrictions. Therefore, we bench-

marks the different state-of-the-art secure two party inference frame-

works for valuations by integrating different HE libraries. As shown

in Table 3, we discuss the details of the provided benchmark. For the

2
In this work, we focus on comparing the computational costs since the communication

overheads of our Crypto3D are explicitly lower than existing systems due to the

compressed neural networks.
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benchmark of Gazelle 3D, we still use Brakerski-Fan-Vercauteren

(BFV) scheme from the 2D CNN inference [23]. That supports the

integer operations with the Lattice encryption library. And PAL-

ISADE is a framework that provides a general API for multiple FHE

schemes including BFV, BGV, and CKK.

Microsoft SEAL is a HE library that enable additions and multi-

plications to be performed on encrypted integers or real numbers.

Also, it comes with two different FHE schemes with different prop-

erties: BFV and CKK. The modular arithmetic can be performed

on encrypted integers by the BFV scheme. And CKKS scheme al-

lows additions and multiplications on encrypted real or complex

numbers, however, the approximate results can be generated. The

CKKS scheme would be the one of best options for the application

such as calculating the total encrypted real numbers or evaluating

machine learning models on encrypted data. The BFV scheme is

the only option for the application, which requires the exact value.

With respect to the hardware-based protection TEE, the strong

privacy and integrity can be guaranteed. In our evaluation, we use

the Graphene [49] (a lightweight guest OS) as Intel SGX for the C3D

inference execution. It can replaces the Intel SDK for the enclave
and host process. Furthermore, the MP-SPDZ library is designed

for the Secure Multiparty Computation (MPC) implementation. In

[36], it uses the MP-SPDZ library for the private video classification

based on the Secure MPC. The privacy preserving technique can

be achieved and executed for the video classificiation in [36], it still

utilizes single frame method for inference with 2D ConvNet instead

of the 3D CNN model.

CryptoDL uses the HElib library, it supports the SIMD operations,

however there are limitations. Firstly, the division of ciphertexts is

not supported. Also, it may causes the incorrect decryption with the

exceeded noise, since the additional noise will be added for every

computation performed on the ciphertext. Thus, an arbitrary num-

ber of computations (i.e., activation functions) can not be supported.

In this case, we use the polynomials as activation functions. The

fixed point arithmetics can be supported by HEAAN library. This

library supports approximate operations between rational numbers.

The approximate error depends on some parameters and almost

same with floating point operation errors. Cheon et al. [7] used

the scheme in this library. And the HEMat is a extension from the

HEANN schemes, where it designed for performing a optimized

matrix computation with homomorphic encryption.

In summary, we benchmark the following systems based on the

C3D model: Gazelle (3D), Intel SGX (3D), MP-SPDZ (3D), CryptoDL

(3D), HEANN (3D), E2DM (3D), CryptFlow2(3D), and Cheetah(3D).

However, GALA cannot be extended due to its end-to-end 2D struc-

ture or lack of source code.

6.1 The Performance of Crypto3D
Comparison on UCF-101 and HMDB-51 with C3D and I3D.
For the generic human action recognition setting, we work on the

two most representative datasets (UCF-101 and HMDB-51). The

pre-trained weight models we used are extracted from Sports-1M

for C3D and kinetics-400 for I3D, respectively.

Figure 8 shows faster amortized execution time for the HMDB-51

than UCF-101 in both C3D and I3D compared with benchmarks.

C3D performs better than I3D on both UCF-101 and HMDB-51 as

well. Compared to the pre-trained model and DNNs architecture,

we find that the dataset would not be the main factor for the perfor-

mance impact under this case. Note that a further comparison will

be conducted after the network pruning process on C3D. Further

information can be found in the Table 4.

Weight-pruning Optimization on SLR Approach. In order to

reduce the computation cost and model size, we use SLR [14] based

weight-pruning for C3D pre-trained model. We have three pruning

models which are presented with different pruning parameters

(0.95, 0.9, and 0.5) in Table 5. The best performance model (Model

0.5) is used for further comparison with SOTA secure systems.

6.2 Further Comparison with SOTA Systems
Runtime Comparison with the SOTA Systems. Table 4 sum-

marizes the methodology, library, total execution time, speedup,

and amortized time of secure inference for an input video from

the UCF-101 dataset among the state-of-the-art secure systems.

Crypto3D outperforms all other 3D frameworks significantly. Fig-

ure 9a presents the times of speedup with prior secure systems.

The execution time of Crypto3D is over 554.68×, 189.21×, 182.61×,
133.56×, 11.09×, 8.90×, 3.71×, 12.97×, and 1.49× faster than Cryp-

toDL (3D), HEANN (3D), MP-SPDZ (3D), E2DM (3D), Intel SGX

(3D), Gazelle (3D), Delphi (3D), CryptFlow2 (3D), and Cheetah (3D),

respectively. These results show that Crypto3D (optimized) is much

more efficient in 3D privacy-preserving video input inference. Ad-

ditionally, Crypto3D only takes an average of 0.28 sec (before 0.83

sec) to process the secure inference for each frame, while other

HE-based frameworks take much longer time.

Comparison with PPVC [36] (low accuracy). Additionally, we
compare with PPVC [36], the SOTA method for secure two-party

video classification, which uses MPC for private classification. Table

4 shows that PPVC takes slightly less time since it utilizes a 2D

ConvNet-trained model for video classification instead of the C3D

model (however, this method can only obtain a very low accuracy
of 56%, as shown in Table 6). The architecture of ConvNets is de-

signed as [(CONV-RELU)-POOL]-[(CONV-RELU)*2-POOL]*2- [FC-

RELU]*2-[FC-SOFTMAX] on the FER 2013 dataset. Unlike 2D Con-

vNets, the C3D architecture employs 3D convolutional operations,

such as Conv3D, to extract spatial-temporal features across multi-

ple consecutive frames. Moreover, the C3D model [48] is trained

on the Sports-1M dataset [24] for action recognition, while PPVC

is trained on the RAVDESS dataset [31] for emotion detection.

Layer Evaluation. Figure 9b shows the execution time on the

convolution layers in Crypto3D when running on the GPU using

different batch sizes 𝑏 ∈ {1, 5, 10}. Given different batch sizes, the

execution time on each convolutional layer is distinct. We observe

that the results of batch size 1 outperform the results of using other

batch sizes. Similar to the Delphi, the prime field we used enables

the implementation for GPU libraries for the linear operations. By

amortizing the batch convolutions over different inputs together,

we can reduce the cost compared to single convolutions.

6.3 Accuracy
In our work, the video classifier samples every 15th frame, classifies

it with the above ConvNet, and assigns the final class label as the

label that has the highest average probability across all frames in
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Figure 8: Crypto3D (ours) vs. SOTA systems (Gazelle (3D), Intel SGX (3D), CryptoDL (3D), HEANN (3D), E2DM (3D)) based on
C3D and I3D models on UCF-101 and HMDB-51 datasets, respectively.

Table 4: Comparison with SOTA secure systems, their features, and performance (non-trivial extensions from 2D to 3D) on one
input video, RGB tensors of size 16×112×112. Crypto3D is significantly more efficient than other systems. The execution time of
Crypto3D is over 554.68×, 189.21×, 182.61×, 133.56×, 11.09×, 8.90×, 3.71×, 12.97×, and 1.49× faster than CryptoDL (3D), HEANN
(3D), MP-SPDZ (3D), E2DM (3D), Intel SGX (3D), Gazelle (3D), Delphi (3D), CryptFlow2 (3D), and Cheetah (3D), respectively.

Method Design Library Network Optimization Runtime Amortized
(3D) (Sec) (Sec)

Gazelle HE, GC, SS PALISADE C3D N/A 1916.48 2.48

Intel SGX TEE - C3D N/A 2387.77 3.08

PPVC [36] MPC, SS MP-SPDZ 2DCNN N/A 511.64[36] -

MP-SPDZ MPC, SS MP-SPDZ C3D N/A 39303.72 50.78

CryptoDL HE HELIB C3D N/A 119388.28 154.25

HEANN HE HEANN C3D N/A 40725.29 52.62

E2DM HE HEANN C3D N/A 28747.26 37.14

Delphi HE, GC, SS SEAL C3D NeuralArch. Search 798.54 1.03

CrypTFlow2 HE, SS SEAL C3D N/A 2790.79 3.6

Cheetah HE, SS SEAL C3D N/A 318.30 0.41

Crypto3D HE,GC, SS SEAL C3D Irregular Pruning 215.24 0.28

the video. The accuracy of video classification can vary depending on the training model used. Delphi enhances Gazelle by integrating
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Figure 9: Crypto3D optimization

Table 5: Weight-pruning optimization (based on SLR
schemes) comparison on C3D pre-trained model process-
ing with different sparsity (0.95, 0.9 and 0.5) on layer weight.
Model 0.5 is used as Crypto3D (optimized) for further com-
parison with SOTA systems in Table 4.

Sparsity Sparsity Sparsity
(0.95) (0.9) (0.5)*

Compression Rate: 18.16 9.541 1.99

(#) of Nonzero Params: 4317867 8216849 39408704

Params Pruned (%): 95 90 50

Table 6: Inference accuracy comparison between PPVC, Del-
phi, and Crypto3D. By employing a distinct optimization tech-
nique, Crypto3D attains the same level of accuracy as Delphi
but with a significantly reduced runtime.

Method Network Optimization Accuracy Runtime
(Sec)

PPVC 2D Conv N/A 56% 511.64

Delphi (3D) C3D Neural Arch. Search 82.3% 798.54

Crypto3D C3D Irregular Pruning 82.4% 215.24

garbled circuits and quadratic polynomials for activation functions,

yielding results that closely match the original ones. As mentioned

earlier, our approach surpasses existing systems in both perfor-

mance and accuracy, achieving high performance without sacrific-

ing accuracy. To facilitate further fair comparisons in optimization,

we strive to identify an appropriate placement or network config-

uration for Delphi (3D) through optimization. We utilize NAS to

capitalize on performance-accuracy tradeoffs to ensure that accu-

racy above a specified threshold (82.3%), as shown in Table 6 with a

margin of 0.1% lower than ours. Similarly, Cheetah and CrypTFlow2,

when based on our environment, exhibit an accuracy lower than

70% without optimization, even though they demonstrate high per-

formance with effective approximate truncation. PPVC inherits the

MP-SPDZ and Gazelle techniques (MPC), resulting in an improve-

ment of 0.8%. Due to the hardware security technique, the accuracy

will not be impacted in Intel SGX. Also, CryptoDL, HEANN, and

ED2M are all mainly based on the HE with different libraries and

settings parameters. The results are close to the original accuracy

in the test set (< 70%). To facilitate comparison with our work,

we modify the network structures and retrain them using special

LHE-friendly non-linear functions. Additionally, we make adjust-

ments to the structure, approximate function/softmax, and selected

layers in the UCF-101 dataset to better align with the frameworks.

However, such alterations may potentially have a negative impact

on the accuracy of compressed models in order to satisfy high per-

formance. Nonetheless, in our model, we effectively manage the

trade-off between accuracy with explicitly lower communication

overheads and compression rate, achieving 82.4% accuracy while

ensuring privacy.

7 Conclusion
Many existing techniques are proposed to perform the secure two-
party inferences with the cryptographic schemes for the deep neural

networks. However, they cannot be directly applied to video in-

ferences which extracts spatio-temporal (3D) features for more

accurate video recognition. We propose crypto3D, the first crypto-
graphic inference technique based on spatial-temporal (3D) features,

which (i) privately infers videos with the C3D and I3D DNNmodels;

(ii) optimizes the matrix operations and ciphertext packing tech-

nique to boost efficiency; (iii) adopts weight pruning optimization

for further boosting the efficiency of cryptographic C3D and I3D.

Crypto3D is significantly more efficient than SOTA cryptographic

inference systems, and it can also achieve 82.4% accuracy on pri-

vate inferring videos, which is also significantly more accurate than

SOTA cryptographic inference systems.
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