Secure and Efficient Video Inferences with Compressed
3-Dimensional Deep Neural Networks

Bingyu Liu
Wentworth Institute of Technology
Boston, United States

Ali Arastehfard

University of Connecticut
Storrs, United States

Rujia Wang
Microsoft Research
Redmond, United States

Weiran Liu Zhongjie Ba Shanglin Zhou

Alibaba Group Zhejiang University Yuan Hong

Beijing, China Hangzhou, China University of Connecticut
Storrs, United States

Abstract

Deep neural network (DNN) services have been widely deployed
for efficient and accurate inferences in many different domains.
In practice, a client may send its private data (e.g., images, text
messages and videos) to the service to get the inferences with the
proprietary DNN models. Significant privacy and security con-
cerns would emerge in such scenarios. Cryptographic inference
systems have been proposed to address such privacy and secu-
rity concerns. However, existing systems are tailored for DNNs
on image inferences, but not directly applicable to video inference
tasks that operate on the spatio-temporal (3D) features. To address
such critical deficiencies, we design and implement the first crypto-
graphic inference system, Crypto3D, which privately and efficiently
infers videos with compressed 3D DNNs while ensuring rigorous
privacy guarantees. We also update most cryptographic inference
systems (designed for images) to support video understanding on
3D features with non-trivial extensions, treating them as baselines.
We evaluate Crypt3D and benchmark with baselines utilizing the
widely adopted C3D and I3D models on the UCF-101 and HMDB-
51 datasets. Our results demonstrate that Crypto3D significantly
outperforms existing systems on execution time: 554.68% vs. Cryp-
toDL (3D), 189.21x vs. HEANN (3D) , 182.61x vs. MP-SPDZ (3D),
133.56% vs. E2DM (3D), 11.09% vs. Intel SGX (3D), 8.90% vs. Gazelle
(3D), 3.71 X vs. Delphi (3D), 12.97 X vs. CryptFlow2 (3D), 1.49X vs.
Cheetah (3D); accuracy: 82.4% vs. < 80% for all of them.!

CCS Concepts

« Security and privacy — Privacy-preserving protocols;

Keywords
privacy, neural network predictions, video inference

ACM Reference Format:
Bingyu Liu, Ali Arastehfard, Rujia Wang, Weiran Liu, Zhongjie Ba, Shanglin
Zhou, and Yuan Hong. 2025. Secure and Efficient Video Inferences with

1Code is available at https://github.com/datasec-lab/crypto3D

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY °25, Pittsburgh, PA, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1476-4/2025/06

https://doi.org/10.1145/3714393.3726505

Compressed 3-Dimensional Deep Neural Networks. In Proceedings of the
Fifteenth ACM Conference on Data and Application Security and Privacy
(CODASPY °25), June 4-6, 2025, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3714393.3726505

Crypto3D

Inference ‘

Result]
[Tsecureont

Secure Video
er\ierence Protocol

S
P=u77) (@

- -~ -
el)
Input Video Streams

Client

19pIAOId BDIAIAS PNOID

Input Video Convolution and Pooling Layers Fully Connected Layers
L L

st
e =M rrl- M=y m <%
s 5 S B-Fu

s
P

(b) Video Clip

(c) 3D DNN (C3D) Network

Figure 1: Crypto3D for private inferences based on spatial-
temporal (3D) features. Figure 1a shows the Cryptographic
inference for video classification between a client C and a
server S. The client C holds the input video (Figure 1b), while
the server S holds the pre-trained 3D DNN model (Figure 1c).
Private inference is achieved through the two-party interac-
tions via Crypto3D, ensuring that neither party can learn any
private information from each other.

1 Introduction

Deep neural networks (DNNs) have seen a rising deployment in
practice encompassing object detection, image and action classifi-
cation, anomaly detection, among others. Within the framework of
a client-server model for DNNs, such as deep learning as a service,
the client typically transmits its data to a server. The server then
furnishes inference services, including classification and prediction,
utilizing its pre-trained DNN models. However, the data supplied
by clients often contain substantial private information, such as
human faces, activities, and workspace details. Directly disclos-
ing them to the cloud would compromise users’ privacy. On the
contrary, the pre-trained DNN model should also be considered
as proprietary information for the server and cannot be directly
shared to clients for local inference.

https://github.com/datasec-lab/crypto3D
https://doi.org/10.1145/3714393.3726505
https://doi.org/10.1145/3714393.3726505

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

To mitigate such privacy risks, cryptographic inference systems
[4, 29, 56] are designed for secure inferences (see Table 1). A cryp-
tographic inference protocol allows the client to input its private
data in the encrypted form, and privately obtain the learning result
from the provider. In this process, the server cannot learn anything
about the inputs, while the client cannot obtain any information
about the model weights, thus reducing privacy and security risks.

Several cryptographic primitives can be used to construct se-
cure inference systems. Fully Homomorphic Encryption (FHE) [4]
can provide strong privacy guarantees, but it is computationally
expensive. Moreover, some non-polynomial functionalities (e.g.,
non-linear activation functions ReLU) cannot be directly supported
by FHE. Garbled Circuit (GC) [56] and Secret Sharing (SS) 2, 9, 55]
support arbitrary functionality, but GC results in significant com-
munication overheads, while SS requires high round complexity.
Thus, directly using such primitives is not ideal for secure DNN
inferences.

Many existing works use one or more cryptographic primitives
to construct secure inference systems, with specified optimizations
for DNN model inferences. As shown in Table 1, most recent crypto-
graphic inference systems are proposed to improve the performance
(e.g., efficiency and accuracy) on inferring images with 2D features.
Unfortunately, securely inferring images based on 2D features by
state-of-the-art (SOTA) systems are far from enough for video-
based applications. Such task poses new significant challenges from
cryptographic systems, more complex model architecture, and their
integration. Compared with the 2D ConvNets, most 3D ConvNets
have to infuse the temporal information of the videos after each
convolution/pooling operations. Performing 3D convolution and
pooling operations is expected to deliver temporal information
across all the neural network layers to the end. Integrated with
both spatial and temporal information in each feature, 3D ConvNets
(e.g., the recent C3D [48] and I3D [5] networks) have been demon-
strated to be more accurate on video inferences than 2D ConvNets
[5, 48]. However, to our best knowledge, cryptographic inferences
based on 3D features for video DNNs have not been studied yet.

To address this critical deficiency, we design and implement the
first cryptographic inference system Crypto3D for private infer-
ences based on 3D spatial-temporal features (both C3D [48] and I3D
[5]). Crypto3D enables to privately perform inferences for video
classification, action recognition and prediction, as well as visual
anomaly detection. We boost the efficiency of Crypto3D for a hy-
brid design (with cryptographic primitives of FHE, GC and SS) by
adapting three new methods: (1) optimizing the matrix operations
for 3D DNN, (2) ciphertext packing technique, and (3) surrogate La-
grangian relaxation (SLR)-based network pruning [13] for the 3D
DNN: . Specifically, we make the following major contributions:

e To our best knowledge, we design and implement the first
cryptographic inference system Crypto3D for private and
accurate video inferences based on 3D DNNGs.

o Given the high complexity of the 3D video models and the
naturally incurred computational overheads, to boost the
efficiency of Crypto3D, we also take the first step towards the
co-design for harmonizing the cryptographic primitives (e.g.,
ciphertext packing), matrix operations optimization, and
model compression (e.g., weight-pruning optimization) for

Bingyu Liu et al.

3D video models. We prove that the co-design in Crypto3D
(for boosting efficiency) does not leak private information.

e We conduct substantial experiments while benchmarking
with all non-trivially extended 3D cryptographic inference
systems. To do so, we redesign and re-implement a wide
variety of cryptographic systems for image inferences to
support the video inferences. Such non-trivial extensions
involve the complex tasks of tailoring their dimensions and
formats to match different cryptographic primitives. We
demonstrate that Crypto3D achieves superior performance
over all the baselines.

2 Related Work

Homomorphic Encryption-based Protocols. Homomorphic en-
cryption enables mathematical operations on ciphertext without
requiring knowledge of the unencrypted data. One notable proto-
col, CryptoNets [12], proposes an HE-based secure neural network
inference framework. Other applications of DNNs leverage faster
homomorphic encryption schemes [4, 60], but these schemes have
limitations in terms of the supported depth of encryption and the
ability to perform multiplication operations without bootstrap-
ping [60]. In CryptoDL, polynomials are employed to approximate
complex nonlinear activation functions, such as Sigmoid and tanh.
However, it is important to note that homomorphic encryption
is not ideal and practical in terms of efficiency due to significant
computational overhead.

MPC-based Protocols. MPC enables multiple parties to jointly
evaluate a function without revealing their individual inputs to
each other, except for the final results. Existing works include Gar-
bled Circuit (GC) [1, 41, 43], Secret Sharing [2, 9, 55], and Mixed
Protocol approaches [23, 34, 42]. For instance, [41] and [1] pro-
pose optimizations for neural network activation functions using
garbled circuits. In [1], practical data aggregation protocols are
designed based on Shamir’s t-out-of-n secret sharing protocol [15].
However, secret sharing and garbled circuits have limitations that
can introduce computational overhead. To address this, Mixed Pro-
tocols [23, 34, 42] have been proposed, which combine additive
secret sharing or homomorphic encryption for linear operations
and garbled circuits for non-linear computations. Delphi [33] builds
upon Gazelle and improves it by incorporating garbled circuits and
quadratic polynomials for activation functions. CrypTFlow2 [40]
designs new two-party computation (2PC) protocols for secure
comparison and division, aiming to balance round and communica-
tion complexity for secure inference tasks. Cheetah [19] presents
a highly optimized architecture based on HE and communication-
efficient primitives to handle the large overhead of the current
2PC-NN. However, these prior works are primarily focused on 2D
ConvNets, and the inference results do not retain temporal infor-
mation for video data. In Crypto3D, we employ the C3D model for
performing cryptographic inference in video classification, thereby
preserving the temporal features in the prediction.

TEE-based Protocols. Trusted Execution Environments (TEE)
[6, 16, 25, 46, 47] provide a secure enclave where the model/data
owner can isolate sensitive computations for DNN models from
an untrusted software stack. TEEs ensure both data privacy and

Secure and Efficient Video Inferences with Compressed 3-Dimensional Deep Neural Networks CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Table 1: Comparison of cryptographic inference systems. Visor [38] provides confidentiality for video analysis via TEE. However,
it still privately infers data (e.g., object detection and tracking) based on 2D features. PPVC [36] preserves privacy for video
classification based on cryptographic protocols, but it still utilizes the 2D ConvNets without fully preserving temporal info.

Cryptographic Inference Systems Design Security Video Spatial Temporal
CryptoNets [12] HE Cryptographic X v X
CryptoDL [17] HE Cryptographic X 4 X
XONN [41], MiniONN [29] GC Cryptographic X v X
DeepSecure [43] GC Cryptographic X v X
PSA [2], SPDZ [29] SS Cryptographic X v X
MLCapsule [16], Privado [46], Slalom [47] TEE Hardware-based X v X
Visor [38] TEE Hardware-based v v X
ABY3 [34], Crypten [26], CrypTFlow2 [40] Mixed Cryptographic X v X
GALA [58] Chameleon [42] Mixed Cryptographic X v X
Delphi [33], Cheetah [19] Mixed Cryptographic X v X
PPVC [36] Mixed Cryptographic v v X
Crypto3D (Ours) Mixed Cryptographic 4 v v

integrity. In[38], Visor is a proposed system that enables privacy-
preserving video analytics services using a hybrid TEE architecture.
It ensures strong confidentiality and integrity for video streams.
TEE-based secure cryptographic inference often outperforms MPC
protocols. However, it requires trust in the hardware, has a weaker
threat model, and necessitates implementation within the enclave.
Additionally, the vulnerability to side-channel attacks is a signifi-
cant concern that needs to be addressed.

Differential Privacy-based Solutions. Differential privacy-based
techniques for DNNs aim to reduce the amount of sensitive informa-
tion carried by the data and mitigate the errors of noise addition on
training. Shokri et al. [44] utilize differential privacy in deep learn-
ing models to ensure that data privacy is not compromised when
sharing local parameters with the server. Other works [37, 50] pro-
pose different approaches to handle the trade-off between privacy
and accuracy (i.e., adding noise to the weights [37] or dynamically
setting the privacy budget [57]).

3 Preliminaries

3D CNN Neural Network. Given a video V, we possess the follow-
ing steps for the inference. First, the video is divided into multiple
segments. Then, several frames from each part are selected to com-
pose a clip. Then, these clips, representing the entire video, are
fed into the 3D-CNNs respectively. The 3D-CNN, extending the
2D-CNN into the temporal dimension, is more adept at capturing
the three-dimensional data features of videos. For C3D, it consists
of 3 X 3 X 3 convolutional kernels followed by 2 X 2 X 2 pooling
at each layer (as shown in Fig 2). The C3D model is trained on a
large scale video dataset such as UCF101 [45] and Sports 1M [24].
For the generic feature extraction, the 3D convolutions are able to
extract both spatial and temporal components information in the
videos, e.g., the motion of objects, human action and human-object
interactions. It directly encodes the temporal structure with a 3D
convolutional network instead of 2D. The involved 3D kernel is
able to extract information from both spatial and temporal dimen-
sions and fuse them into the same feature [48]. Compared with
a 2D ConvNet, a 3D ConvNet provides better modeled temporal
information with 3D convolution and 3D pooling operations for

more accurate video recognition. I3D [5] is a new Two-Stream In-
flated 3D ConvNet based on the 2D ConvNet inflation. It enables

Input Video Convolution and Pooling Layers Fully Connected Layers

1 1 [—-=
Max Pooling Max Pooling Max Pooling

Convolution Convolution Convolution Convolution Convolution

Convab [Z| Convsa 2
s12 |8 e

Convia
64

Conv2a
128

Convsb
64

FC6
4096

Conv3a
256

S
H 8 8
g g g

Figure 2: Illustration of the spatio-temporal convolution Net-
work Architecture of C3D. 3D ConvNet is designed to have
8 convolution layers, 5 pooling layers, followed by 2 fully
connected layers, and a softmax output layer.

Secure 3D Inference. We assume the generic two-party secure
inference setting, involving a client C and a server S. The pre-
trained 3D neural network model is held by the server S while
the input video to be classified is held by the client C. The DNN
architecture (i.e., dimensions and type of each layer in the neural
networks) are known to the public. We consider the privacy of
input video and the security of model weights during the inference
process. We assume that the pre-trained DNN model from the server
will not be changed and updated. This can be naturally extended to
the updated variant with necessary parameters synchronization.

3.1 Cryptographic Primitives

Homomorphic Encryption. A homomorphic encryption of x
enables the computing encryption of f(x) without any knowl-
edge of the decryption key. A Linearly homomorphic public-key
encryption [11, 35] with a finite ring R as the message space in-
cludes a set of probabilistic polynomial-time algorithms 7wy =
(KGen, Enc, Dec, Eval):

o (pk,sk) < HE.KGen. The key generation algorithm is used
to generate a public/private key pair (pk, sk).

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

e ¢ «— HE.Enc(pk, m). The ciphertext c is generated by the
encryption algorithm with the public key pk and the message
m.

e m « HE.Dec(sk,c). The message m can be obtained by
running the decryption algorithm with the secret key sk and
the ciphertext c.

e ¢; « HE.Eval(pk, ci,c2, £). The new ciphertext ¢; is gen-
erated by the evaluation algorithm with pk, two encrypted
messages c1, c2, and the linear function £, where £ maps
(my, mz) to kmq + my for k € R.

This work involves several different HE libraries for implemen-
tations. More details are deferred to the Table 3.

Oblivious Transfer. Oblivious Transfer (OT) [39] is a fundamental
cryptographic building block in MPC. OT is executed between
a sender and a receiver. The sender has two inputs xg, x; while
the receiver wants to receive the x;, (a selection bit b) without
revealing b or learning anything from the server. In this work, we
use (L;xp) < OT(xp,x1;b) to represent this functionality.

Garbled Circuits. Garbled Circuits (GC), proposed by Yao [56], is
the first secure two-party computation protocols support compu-
tations on arbitrary functions. The garbled circuit generator (one
party) prepares the encrypted circuit computing f while the garbled
circuit evaluator (the other party) computes the output of the circuit
without learning any intermediate values. Denoting the Boolean
circuit as C, for the input x, a Garbling scheme includes a group of
algorithms GS = (GARBLE, EvaL), as follows:

. (5, {labj, labj1}ie(n)) < GS.GARBLE(C). Given the input
of aboolean circuit C, the Garble algorithm outputs a garbled
circuit C and a set of labels {lab; o, lab;1}ic(n], Where lab; j,
is the assigned value b € {0, 1} to the i-th input label.

°y — GS.EVAL(&, {labjx, }). The evaluation algorithm out-
puts y = C(x) with the input garbled circuit C and the given
labels {lab;y,} corresponding to the input x; € {0,1} for

i€[n].

4 Cryptographic Inference Protocol Co-Design

We define the DNNs model owned by server privately as £ =
(P1, P2, ... P|Ny) with k layers. P; represents the layer of the model.
Given a video V = { ﬁ}i:fl consisting of N frames. Video-level
takes a sequence consisting of multiple frames as input, we have
V ={fi, fip» - f1, }, Where t] <ty < t3,.., < theN.

In this section, we first define the threat model and the security
guarantees for our secure inference system Crypto3D, and then
illustrate the protocol design.

4.1 Threat Model

We consider the security of Crypto3D under the semi-honest model.
A protocol is secure against semi-honest adversaries if the corrupted
parties in the real world have views that are indistinguishable from
their views in the ideal world. We refer to the ideal-world adversary
as simulator 7s;,,,, since it generates a real-world view while in the
ideal world. Showing that such simulator exists proves that there is
nothing an adversary can accomplish in the real world that could
not also be done in the ideal world. More specifically, we denote the

Bingyu Liu et al.

protocol 7secureINF, the polynomial-time functionality F, vie~ws of
party Viewsg, final output of party y and the corrupted parties P. Sim
denotes a simulator algorithm. Then we have 7secureINF (P;; x)ReAL,
which represents each party runs the protocol honestly with given
private input x. In this case, the output is {ViewgsecureINF li € Pi}, (y).

Similarly, we denote Simgr(f’i;x)IDEAL to compute the 7 (x), the
output would be Sim(P;, {(x,y)|i € Pi}, (y).

Definition 4.1. (Security w.r.t semi-honest behavior): A crypto-
graphic inference protocol 7secyreInF between the two parties C
and S with input feature vector x and the pre-trained model pa-
rameters P = (P1, Pz, ... |n}|) securely computes the probabilistic
polynomial-time functionality ¥, and satisfies the Correctness and
Security.

o Correctness: For all set of model parameters # and all feature
input vectors x, the output at the end of protocol is the
correct prediction y in the cryptographic inference.

e Security:

— Semi-Honest Server Security. There exists a simulator
Simg such that {View’srsecurEINF (P,x)}, (y)
~¢ {Simg(P, F (P, x))}, (y), where ViewisrsecureINF denotes
the view of the server in the protocol 7secyreInF. Simg is
able to simulate a view of the semi-honest server without
learning any private input vector x of client in polynomial
time.

— Semi-Honest Client Security: There exists a simulator
Sim¢ such that Viewgs‘ec‘"eINF (P,x) = Sime(x, F(P,x)),
where ViewgSecureINF denotes the view of the client in the
protocol 7 and output represents the results of inference.
Simc is able to simulate a view of the semi-honest client
without learning any pre-trained model parameters ¥ in
polynomial time.

4.2 Protocol Design

Without loss of generality, we present the design of Crypto3D based
on C3D [48]. This design can be extended, as demonstrated in the
extended evaluations for another 3D DNN model I3D, in Section 6.
The design of Crypto3D is formally shown in Figure 3. It contains
two sub-protocols 7secyreL 1N and 7secureNonL IN» details of both are
shown in Figure 4 and Figure 5.
Protocol (7secureLIN). Crypto3D provides secure computation for
linear layers. First, (pk, sk) can be fetched via the KGen algorithm
for the client. We denote (r;) < R™,i € [1,..,, N] and (s;) < R",i €
[1,.., N] as the random masking vectors for the i-th layer. In the
linear layer, the encrypted ciphertext CT? «— Enc(pk, (r;)) is sent
to the server by the client. With the Eval procedure, the server
computes the OILIN and send its ciphertext back to the client. Then,
the client decrypts and learns (P;r;). Thus, the additive secret
sharing of #; - [[r;] is held by both the client and the server before
the online phase execution. Given the input x (x € ZEXDXHXW
Process(V)), the server receives x — (r1). At this time, the additive
secret shares of x are held by the client and server, respectively.
At the beginning of the i-th layer evaluation, x; can be fetched
from the first (i — 1) layers of the neural network. The client holds
(r;) while server holds (x;)—(r;). For the evaluation of the linear

Secure and Efficient Video Inferences with Compressed 3-Dimensional Deep Neural Networks

Protocol 7secureInr (Pi, X, 7, 5):

Input: DNNs model £ = (P4, P2, ..., Pn|) and Video V
Output: Inference results O
v AL il =V
20 V=A{fy,ftyr o ftn} Wheret; <ty < t3,...,
3. x € ZOXPXHXW process(V)

4: foreachie€ [1,|N]|] do

< th<N

5 switch P; do

6: case Linear :

7 O,LIN ¢ TsecureLin ()
8: case Non-Linear :

9: O?IONLINﬂSecureNonLIN()

10: return O « xnN — (rN)

Figure 3: Protocol 7secureInF

Protocol 7secureNont IN():

Input: DNNs model P = (P1, P, ..., Pn|) and Video V
Output: ONOMIN 3pd ONoNLIN

1: S computes (x; — (ri))

2: / set the x; to be the result of evaluation for the first (i-1)-th layers on x

3: x; « EVAL;_1(x)

4: foreachi € [1,N]do

5: switch P; do

6: case Garbled circuits :

/ Construct Garbled Circuit

7: {C, lab;p,labiy}icn] < GS.Garble(1%, C)
8: INVOKE OT({ri+1), (Pi - rj — si))
9: O.EIONLIN — COMPUTE (Xj+1 — (Ti+1))s

10 : case Polynomial approximation :
/ Compute Beavers triples

1n: (Xi+1)1> (Xi+1)2 < Beaverstriples()

ONOMIN _ CoMPUTES (X141), — (Fiz1)

0§ONLIN +(Xis1)2

« Computes ONONIN

Figure 4: Protocol 7msecyreNonLIN

layer(s), the server computes P; - (x; — (r;)) via the Permu(-) (via
Equation 2), which ensures that the additive shared secrets of P; - x;
are held by the client and server.

Protocol (7secureNonLIN)- Regarding the non-linear layer execution,
the execution of activation function depends on what type of func-
tion. The garbled circuit C is constructed via GC schemes. It helps
to solve the ReLU function by exchanging the labels for input wires
with (ri+1) and P; - (ri) — (si)-

On the other hand, the Beaver’s multiplication procedure is
executed for the polynomial approximation evaluation. The client
and sever will hold the (xj+1); and (xjt1),, separately after the
Beaver’s multiplication procedure. At this time, the client sends the
results of the (xj4+1); — (ri+1) to the server. The (xj+1) — (rit1) will

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

Protocol msecureL N ():

Input: DNNs model # = (P4, P, ..., Pn|) and Video V
Output: Encode((Permu(P;)) - (ri)), (ri)
Encode((Permu(P;)) - (ri)s

1: (pk,sk) « KGen(lA)

20 (ri),(si) « R™(Vie[1,.,IN]])

3: foreachi € [|N| - 1],

4: CT;g «— Enc(pk, (ri))

5: O%IN « Evalg ((pk, Encode(Permu(P;)) - (ri) — (si)
6: S :learns (s;), (Piri)

7: C :learns (P;r;)

Figure 5: Protocol 7secureLIN

be obtained by adding the (x;i1),. Finally, the client learns the xpn
from the received xn - (rn/).

Matrix-Vector Multiplication. We assume that the input matrix
P has the size ng X n;, where n; is smaller than the number of
plaintext slots ns. We denote the sub-matrices $;j (wWhere 0 < i < ng
and 0 < j < I) with the size of 1 X (n;/l), which is splited from
the P. Next we pack the different matrics (I - ngs)/n; into a single
ciphertext, and the n. = (ns/n;) copies of the input vector r into a
single cipertext. With the encoding nc, the first diagonal vectors of
the matrix into a plaintext vector as below:

((PoolPral- 1P 1,1-DI(ProlPrayil--1Par-1,1-1]-
(Pr-(ne-1,01P1 (ne=1) 41,1 1P1-(ne—1)+1-1,1-1)) € R™

Each extended diagonal vector is encrypted in a single cipher-
text and these ciphertexts are multiplied with [rotations of the
encrypted vector r. Next we add together and the output (cipher-
text) represents (n;/l)- sized (I - n;) chunks. With the log(n;/I)
rotations, we get the ciphertext with the first (I - n.) entries of
P -r € R™. Finally, we get the no/(I - n¢) ciphertexts after repeat-
ing the procedures no/(l - nc).

Optimized Matrix Multiplication. Arithmetic operations of the
encrypted matrices can lead to inefficiency in high-dimensional data
tensors computation. To mitigate this issue, our Crypto3D utilizes
the optimized matrix permutation [22] to efficiently perform the
operation of matrix computations with ciphertext packing and
parallelism [7]. The operation of the matrix multiplication can be
considered as the sum of component-wise products with the specific
permutations of the matrices themselves. We assume that there
are two square matrices with size n X n, the n permutations of the
matrix A via the followings symmetric permutations:

o(A)ij = Aijivj, T(A) = Aisjj
$(A))j = Aijr1, Y(A) = Ay,
where ¢ and i/ are denoted as the shifting functions for column

and row, respectively. Then, the multiplication of two matrices (we
denote A and B) with the order d can be computed as below:

1)

d-1
A-B=) ($F00(4) x (y* 0 2(B)) @)
k=1

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

where O refers to the component-wise product and k represents
the number of times for perturbation. As such, we can efficiently
compute the two matrix multiplications. In Crypto3D, we utilize
the function Permu(-) to represent the computation of the n per-
mutation operations. To boost the efficiency, we also utilize the
vectorable HE “Ciphetext packing”. We use the Encode(-) to refer
to the matrix transformations, which transforms a matrix into a
plaintext vector with encoding map functions. Similarly, Decode(-)
is used for the plaintext vector transformations to the matrix. Equa-
tion 2 can be securely computed with the multiplicative property
of HE. Our Crypto3D uses the optimized matrix multiplication and
ciphertext packing [22] for the efficiency improvement. Since we
can pack all the inputs into a single ciphertext and perform layer
computation (e.g., convolutions) in parallel, we can enable the SIMD
parallelism with the ciphertext packing.

Network Pruning. SOTA DNNs often suffer from challenges due
to their large model sizes, which encompass millions of parameters.
This characteristic results in extended inference times, substantial
memory requirements, and poses significant difficulties in meeting
critical requirements during the inference phase, such as real-time
processing and low power consumption. The objective of deep
model compression is to optimize the model in a more efficient
format by alleviating the cost of the large model size and leave
minimal impact on the performance of the model. Recently, there
have been many orthogonal network optimization methods, such
as ReLU optimizations [8, 20, 21, 28]. In our work, we consider the
weight pruning (Irregular Pruning) [13] as the main optimization
technique. In the future, we may continue our research work on
ReLU optimizations.

In Crypto3D, we use DNN weight pruning [13], which aims to
reduce the number of non-zero elements in the weight matrix [61].
Specifically, we consider the model compression technique Surro-
gate Lagrangian Relaxation (SLR) for weight pruning. For an N-layer
DNN, where i € {1,2,.., N}, we denote the weights at each con-
volutional layer as W;. The objective of irregular weight pruning
is to minimize the DNN loss function while satisfy the constraints
that the number of nonzero weights in each W; should be less than
the predefined percentage [;: minwy, f (W;) s.t.card(W;) < [;. The
unconstrained forms can be written as below:

N
n&}?f (W;) + Zgi (W;) where g; (W;) =

i=1

0 if card (W;) < [;
+0o otherwise

(©)]

In the equation, f(-) represents the nonlinear loss function, g;(-)
represents the non-differentiable “cardinality” penalty term for
each layer, which is the indicator function [59]. In the equation,
f(-) represents the nonlinear loss function, g;(-) represents the non-
differentiable “cardinality” penalty term for each layer, which is the
indicator function [59]. In the SLR-based weight pruning, duplicate
variables Z; are introduced to decompose the loss function [3], and
the problem is equivalently as minwy, f(W;) +Z£1 gi(Z;), st W; =
Z;. Lagrangian multipliers A; are leveraged to relax the constraints,
and quadratic penalties are used to penalize their violations. The
result Augmented Lagrangian function can be written as Eq. 4,
where || - || denotes the Frobenius norm and tr(-) denotes the trace.

Bingyu Liu et al.

This relaxed problem can be decomposed into two sub-problems
and solved iteratively until convergence.

N N
Ly (Wi, Zi, Ai) = f (Wi) +)" gi (Zi) +)t [A] (Wi = Z))]
i=1 i=1
@

Z

+ IW; - Z; 1%

i

i
2
1

At iteration ¢, the first sub-problem is using SGD to minimize
Ly (Wi, Zf‘l,Af) for W;, while keeping Z; = Zf‘l for given val-
ues of multipliers A} under the surrogate optimality condition

L, (Wf,Zf‘l,Af) <L, (Wf‘l, Zf‘l,Al?).The second sub-problem

is minimizing L, (Wf, Z’I.Alt. +1) for Z; by using projections onto dis-
crete subspace. This step fixes W; and analytically obtain the Z;.
The surrogate optimality condition that need to be satisfied in this
step is L, (wf,zf,AlHl) <1, (Wg,zg—l,Ag“).

We note that SLR also brings helps for engineering. The 3D
video sequence is significantly more data-intensive than 2D images
since the dimension of data is increased. This means that more data
needs to be stored and processed during the training phase. In our
implementation, we use a GPU-accelerated library for convolution
evaluations to speedup the performance. Using GPU requires copy-
ing the layer weights and input into GPU RAM and then copying
the output back into the CPU RAM. Thanks to SLR, the model size
is reduced so that the 3D model can be fully loaded and copied
during the entire training phase.

5 Security Analysis

We conduct the security analysis for the two cases where one of
the parties is corrupted.

THEOREM 5.1. The secure two-party inference protocol secyreINF
for Crypto3D (including msecureLIN and msecureNonLIN as shown in
Figure 5 and 4) is secure against semi-honest adversaries.

ProOF. Our security proof follows the ideal-world/real-world
paradigm. Our goal is to show that the adversary’s view in real-
world is indistinguishable to that in the ideal-world. Therefore, we
prove this theorem by considering two cases separately: (1) Security
against a semi-honest client, and (2) Security against a semi-honest
server. Then, we build polynomial simulators Sim to simulate the
views of all the participants of the protocol, detailed as below.

Case I: Client C is corrupted (C € P;). In this case, we provide

the security against the semi-honest client by constructing an ideal-
world simulator Sim. We begin by describing the simulator S as:

(1) Upon input, S uniformly choose the random-tape r; for

the client C. During the offline msecyreor. phase, we have

simulator S receives pk and ciphertext C(r;) « Enc(pk,r;).

(2) Then, simulator S sends ciphertext C(s,-)/ «— Enc(pk, —s;)

with random s;. € R" to the server. Simulator S invokes the

§G s for garble circuits and runs on 1% and 111 and sets the

random value for the circuit §G5 output (5 {Lix; }ie[n])-

For the i-th OT execution, S sends the input ({Lix; }ie[n]}>

Secure and Efficient Video Inferences with Compressed 3-Dimensional Deep Neural Networks CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

HYBRID Experiments H; (.)

HYBRID : It corresponds to real world distribution with the actual input matrices £ = (P1, Ps, ...P|n|) from the server.

HYBRID' : The simulator S sends y — (rn). With the knowledge of the client’s random tape, the simulator S begins the evaluation of the
i-th layer with x — (r;).The distribution on the view of the A for above is identical with this syntactic change.

HYBRID? : The server provides {Lix; }ie[n] }to replace the labels corresponding to 0 and 1 in each OT execution, where x; is inputted from
from the client in that OT execution. b is a result of setting the random tape and learning the input of corrupted client.

Hybrid2 is indistinguishable from Hybrid1 with the sender security of OT execution.

HYBRID? : We generate c using the §G s on input 14,1/ and ¢ (z), where z is the input corresponding to the circuits evaluation.
C(z)is an one-time pad (OTP) encryption, which is distributed identically to a random string.

HYBRID3 is indistinguishable from Hybrid2 with the followed security of the garbled circuits.

HYBRID* : The multiplication triples in the offline phase is generated with the corresponding simulator S for Beaver’s protocol

This follows from the simulation security that Hybrid4 is indistinguishable from Hybrid3.

HYBRID® : We use simulator S for the Beaver’s multiplication procedure for every quadratic approximation layer.
Note that in this hybrid, x; — (r;), (s;) and matrix P; are no longer used for i-th layer evaluation.

Similarly, this follows from the simulation security that Hybrid5 is indistinguishable from Hybrid4.
HYBRID® : The simulator S is used for the function privacy with respect to each homomorphic evaluation in the offline phase.

Also, S only requires the #; - (r;) — (s;)for the homomorphically evaluated ciphertext generation.
This follows the function privacy of HE in which Hybridé is computationally indistinguishable from Hybrid5.

HYBRID’ : We set input — <s;> instead of the true value (P; - (r;) — (s;)). It is given to the S with randomly sampled <s;> from R".
The s; is chosen uniformly at random, this indicates that the Hybrid7 is identically distributed to Hybridé.

Eventually, we note that Hybrid7 is identically distributed to the simulator S soutput.

Figure 6: Random experiments H;(.) for corrupted client C :

HYBRID Experiments H; (.)

HYBRID" : The simulator S corresponds to the real world distribution with the actual input x from client.
HYBRID' : Same as Hybrid0, except for a syntactic change. With respect to the layer evaluation by the garbled circuits,
we send the one-time pad encryption OTP(x;+1 — [ri+1])by the knowledge of x, P; and random tape of the server,
instead of the circuits evaluation. Similarly, a share is sent in final round. Thus, when the server adds it with its own share,
it gets x4 — (r;i). Hybrid1 is identical to the Hybrid0 with this syntactic change.
HYBRID? : The inputs that client provides to each OT execution are changed, in which it acts as the sender.
We provide the fake input with ’0’ to replace the real inputs. This follows the receiver security of obvious transfer protocol,
and Hybrid2 is computationally indistinguishable from Hybrid1.
HYBRID? : We generate the multiplication triples with the simulator for Beaver’s multiplication protocol.
With the followed simulation security, the Hybrid3 is computationally indistinguishable from Hybrid2.
HYBRID* : We use simulator S for the procedure of Beaver’s multiplication,
with respect to each quadratic approximation layer of the neural network. With the followed simulation security, Hybrid4 is
computationally indistinguishable from Hybrid3.
HYBRID® : We update the ciphertexts sent by the client in the offline phase. The client sends Enc(pk, 0) instead of Enc(pk, r;).
The Hybrid5 is computationally indistinguishable from Hybrid4 since this follows the semantic security of the encryption scheme.
HYBRID® : We make some changes. With respect to the layer evaluation by the garbled circuits, we send (encryption OTP[[r;41])
with randomly chosen([r;1 || to the server. Similarly, in terms of the each quadratic approximation layer, a share, which is chosen

uniformly at random is sent at the final round. Furthermore, a uniformly chosen value(r;)in the offline phase will be sent.

Eventually, we note that Hybrid6 is identically distributed to the simulator’s S output.

Figure 7: Random experiments H;(.) for corrupted Server S :

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

C) to the client. S runs the corresponding simulator with
the Beaver’s triples procedure under msecyreINF-

(3) Similarly, during the online phase: Simulator S receives x —
(r1) from the offline phase, sends x to the ideal functionality
¥ and obtains the output y. The simulator S performs the
corresponding evaluation as:

e Simulator S sends the simulated labels for GC layers.

o Simulator S evaluates the polynomial approximation layer
for Beaver’s multiplication procedure. For the output layer,
Simulator S sends output y — [[;] to the client.

In this case, a simulator S that is given (C, x) can simulate the com-
plete view of C. In Figure 6, we now present that the distribution
of real world is computationally indistinguishable to the simulator
S in the ideal world. We prove this by a sequence of random ex-
periments H;(.) as shown in Figure 6. It shows that the successive
random experiments are computationally indistinguishable. The
server’s model weights will not be used in the simulator S for the
final simulated distribution, thus nothing except the prediction re-
sults and model architecture will be learned by the corrupted client.
This completes the proofs for the case of adversarial client.

Case II: Server S : is corrupted (S € Ps). In this case, we assume
that the simulator S exists as below, once given the inputs £ =
(P1, P2, ...P|N|) from the server:

(1) The simulator S generates uniform random tape from Servers.

(2) During the offline phase, Simulator S sends Enc(pk, 0) to
the server with chosen pk and receives the ciphertext from
the server. And simulator S and works as the receiver from
server and uses the fake input with “0” as receiver’s choice bit.
Simulator runs the corresponding simulator S for Beaver’s
triples generating.

(3) On the Online phase, simulator S sends (r1) from the of-
fline phase with an uniformly chosen (r;). The simulator S
performs the corresponding evaluation as below:

e Simulator S sends the random value back to sever for GC
layers.

e S uses simulator for Beaver’s multiplication to evaluate
the polynomial approximation. The random value is sent
back to the server at the final round.

We present that the distribution of real world is computationally
indistinguishable to the simulated distribution by the following
hybrid arguments in the Figure 7. Since the user’s input is not used
by the simulator in the final simulated distribution, a corrupted
server will not know anything in the real world.

Thus, this completes the proof. O

6 Experimental Evaluations

Experimental Environment. Our Crypto3D is implemented in
Rust, Python, and C++. All the experiments are evaluated on a
Ubuntu 20.04.2 LTS server with the NVIDIA RTX A6000.

Datasets and 3D DNN Models. UCF-101 and HMDB-51 human
action recognition datasets are utilized to evaluate Crypto3D, as
shown in Table 2. The UCF-101 dataset consists of 13,320 videos

Bingyu Liu et al.

Table 2: Characteristics of video datasets.

UCF-101 HMDB-51
Average Resolution 360 X 288 360 X 240
Pretrained Sports-1M Sports-1M
Clips 13320 6766
Category/Class 101 51
Background Dynamic Dynamic
Release Year 2012 2011
Resource YouTube Movies, YouTube

from YouTube, with over 101 categories of human actions. HMDB-
51 contains 6,849 video from 51 distinct action classes. The C3D
weight model is generated from Sports-1M, which contains more
than 1 million YouTube videos annotated with 487 sports classes.
The I3D ConvNet model [5] is trained for action recognition with
Kinetics-400, which includes 400 different actions. The C3D network
helps the temporal information preservation in the first layer and
then builds higher level representation of the temporal information
with the subsequent layers. The I3D model can further improve
C3D via inflating 2D models.

Benchmark Systems.2 We compare the cryptographic inference
results and performance of Crypto3D with several other systems:
Gazelle, Intel SGX (hardware-based protection), 3D secure infer-
ence with the MPC protocol (e.g., MP-SPDZ), optimized HE-based
privacy-preserving ML frameworks (e.g., CryptoDL, HEANN and
E2DM). More details for HE libraries are deferred to the Table 3.

Note that almost all systems only implement and focus on im-
age classification datasets with 2D CNN, which does not directly
support the video understanding models. The PPVC [36] proposes
a privacy-preserving framework for video classification, but it still
utilizes a 2D CNN instead of a 3D ConvNets for the prediction. To
fairly compare our Crypto3D with them on videos, we redesign and
re-implement these systems with non-trivial extensions to enable
cryptographic inferences on the 3D models.

Table 3: The detailed description for the benchmarks.

Methods Description
Gazelle BFV & lattice encryption library
Intel SGX Graphene with SGX support

MP-SPDZ MPC

CryptoDL SIMD operations
Division of ciphertexts is not supported
Limited number of computations
HEANN | Scheme with native support for fixed-point approx. arithm.

ED2M C++ implementation of matrix computation using HEANN

Libraries for FHE. Many existing works use the privacy preserv-
ing computation based on the homomorphic encryption (HE). HE
enables the computation on the encrypted data without decryption.
However, it consists of many restrictions. Therefore, we bench-
marks the different state-of-the-art secure two party inference frame-
works for valuations by integrating different HE libraries. As shown
in Table 3, we discuss the details of the provided benchmark. For the

%In this work, we focus on comparing the computational costs since the communication
overheads of our Crypto3D are explicitly lower than existing systems due to the
compressed neural networks.

Secure and Efficient Video Inferences with Compressed 3-Dimensional Deep Neural Networks

benchmark of Gazelle 3D, we still use Brakerski-Fan-Vercauteren
(BFV) scheme from the 2D CNN inference [23]. That supports the
integer operations with the Lattice encryption library. And PAL-
ISADE is a framework that provides a general API for multiple FHE
schemes including BFV, BGV, and CKK.

Microsoft SEAL is a HE library that enable additions and multi-
plications to be performed on encrypted integers or real numbers.
Also, it comes with two different FHE schemes with different prop-
erties: BFV and CKK. The modular arithmetic can be performed
on encrypted integers by the BFV scheme. And CKKS scheme al-
lows additions and multiplications on encrypted real or complex
numbers, however, the approximate results can be generated. The
CKKS scheme would be the one of best options for the application
such as calculating the total encrypted real numbers or evaluating
machine learning models on encrypted data. The BFV scheme is
the only option for the application, which requires the exact value.

With respect to the hardware-based protection TEE, the strong
privacy and integrity can be guaranteed. In our evaluation, we use
the Graphene [49] (a lightweight guest OS) as Intel SGX for the C3D
inference execution. It can replaces the Intel SDK for the enclave
and host process. Furthermore, the MP-SPDZ library is designed
for the Secure Multiparty Computation (MPC) implementation. In
[36], it uses the MP-SPDZ library for the private video classification
based on the Secure MPC. The privacy preserving technique can
be achieved and executed for the video classificiation in [36], it still
utilizes single frame method for inference with 2D ConvNet instead
of the 3D CNN model.

CryptoDL uses the HEIlib library, it supports the SIMD operations,
however there are limitations. Firstly, the division of ciphertexts is
not supported. Also, it may causes the incorrect decryption with the
exceeded noise, since the additional noise will be added for every
computation performed on the ciphertext. Thus, an arbitrary num-
ber of computations (i.e., activation functions) can not be supported.
In this case, we use the polynomials as activation functions. The
fixed point arithmetics can be supported by HEAAN library. This
library supports approximate operations between rational numbers.
The approximate error depends on some parameters and almost
same with floating point operation errors. Cheon et al. [7] used
the scheme in this library. And the HEMat is a extension from the
HEANN schemes, where it designed for performing a optimized
matrix computation with homomorphic encryption.

In summary, we benchmark the following systems based on the
C3D model: Gazelle (3D), Intel SGX (3D), MP-SPDZ (3D), CryptoDL
(3D), HEANN (3D), E2DM (3D), CryptFlow2(3D), and Cheetah(3D).
However, GALA cannot be extended due to its end-to-end 2D struc-
ture or lack of source code.

6.1 The Performance of Crypto3D

Comparison on UCF-101 and HMDB-51 with C3D and I3D.
For the generic human action recognition setting, we work on the
two most representative datasets (UCF-101 and HMDB-51). The
pre-trained weight models we used are extracted from Sports-1M
for C3D and kinetics-400 for I3D, respectively.

Figure 8 shows faster amortized execution time for the HMDB-51
than UCF-101 in both C3D and I3D compared with benchmarks.
C3D performs better than I3D on both UCF-101 and HMDB-51 as
well. Compared to the pre-trained model and DNNs architecture,

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

we find that the dataset would not be the main factor for the perfor-
mance impact under this case. Note that a further comparison will
be conducted after the network pruning process on C3D. Further
information can be found in the Table 4.

Weight-pruning Optimization on SLR Approach. In order to
reduce the computation cost and model size, we use SLR [14] based
weight-pruning for C3D pre-trained model. We have three pruning
models which are presented with different pruning parameters
(0.95, 0.9, and 0.5) in Table 5. The best performance model (Model
0.5) is used for further comparison with SOTA secure systems.

6.2 Further Comparison with SOTA Systems

Runtime Comparison with the SOTA Systems. Table 4 sum-
marizes the methodology, library, total execution time, speedup,
and amortized time of secure inference for an input video from
the UCF-101 dataset among the state-of-the-art secure systems.
Crypto3D outperforms all other 3D frameworks significantly. Fig-
ure 9a presents the times of speedup with prior secure systems.
The execution time of Crypto3D is over 554.68%, 189.21X, 182.61X,
133.56%, 11.09%, 8.90%, 3.71X, 12.97X, and 1.49X faster than Cryp-
toDL (3D), HEANN (3D), MP-SPDZ (3D), E2DM (3D), Intel SGX
(3D), Gazelle (3D), Delphi (3D), CryptFlow2 (3D), and Cheetah (3D),
respectively. These results show that Crypto3D (optimized) is much
more efficient in 3D privacy-preserving video input inference. Ad-
ditionally, Crypto3D only takes an average of 0.28 sec (before 0.83
sec) to process the secure inference for each frame, while other
HE-based frameworks take much longer time.

Comparison with PPVC [36] (low accuracy). Additionally, we
compare with PPVC [36], the SOTA method for secure two-party
video classification, which uses MPC for private classification. Table
4 shows that PPVC takes slightly less time since it utilizes a 2D
ConvNet-trained model for video classification instead of the C3D
model (however, this method can only obtain a very low accuracy
of 56%, as shown in Table 6). The architecture of ConvNets is de-
signed as [(CONV-RELU)-POOL]-[(CONV-RELU)*2-POOL]*2- [FC-
RELU]*2-[FC-SOFTMAX] on the FER 2013 dataset. Unlike 2D Con-
vNets, the C3D architecture employs 3D convolutional operations,
such as Conv3D, to extract spatial-temporal features across multi-
ple consecutive frames. Moreover, the C3D model [48] is trained
on the Sports-1M dataset [24] for action recognition, while PPVC
is trained on the RAVDESS dataset [31] for emotion detection.

Layer Evaluation. Figure 9b shows the execution time on the
convolution layers in Crypto3D when running on the GPU using
different batch sizes b € {1, 5, 10}. Given different batch sizes, the
execution time on each convolutional layer is distinct. We observe
that the results of batch size 1 outperform the results of using other
batch sizes. Similar to the Delphi, the prime field we used enables
the implementation for GPU libraries for the linear operations. By
amortizing the batch convolutions over different inputs together,
we can reduce the cost compared to single convolutions.

6.3 Accuracy

In our work, the video classifier samples every 15th frame, classifies
it with the above ConvNet, and assigns the final class label as the
label that has the highest average probability across all frames in

CODASPY ’25, June 4-6, 2025, Pittsburgh,

N
w»

g
o

=
w»

g
o

o
0

== Gazelle3D
== Crypto3D

Amortized Execution Time (s)

o
1=}

UCF101 HMDB-51
Comparison with Gazelle 3D

(a) Gazelle (3D) vs. Crypto3D
(C3D)

== CryptoDL (3D)
== Crypto3D

UCF101 HMDB-51
Comparison with CryptoDL 3D

(e) CryptoDL (3D) vs. Crypto3D
(C3D)

== E2DM3D
== Crypto3D

UCF101
Comparison with E2DM 3D

HMDB-51

(i) E2DM (3D) vs. Crypto3D
(C3D)

PA, USA

o
©

o
o

o
IS

o
N

== Gazelle3D
== Crypto3D

UCF101
Comparison with Gazelle 3D

Amortized Execution Time (s)

o
=)

HMDB-51

(b) Gazelle (3D) vs. Crypto3D
(I3D)

le2

u o

iy

Amortized Execution Time (s)
N w »

== CryptoDL (3D)
== Crypto3D

UCF101 HMDB-51
Comparison with CryptoDL 3D

(f) CryptoDL (3D) vs. Crypto3D

(I3D)

== E2DM3D
== Crypto3D

UCF101 HMDB-51
Comparison with E2DM 3D

(j) E2DM (3D) vs. Crypto3D
(I13D)

Bingyu Liu et al.

== Intel SGX (3D)
= Crypto3D

UCF101 HMDB-51
Comparison with Intel SGX 3D

(c) Intel SGX (3D) vs. Crypto3D
(C3D)

lel

w

IS

w

N

-

== HEANN3D
== Crypto3D

Amortized Execution Time (s)

UCF101 HMDB-51
Comparison with HEANN 3D

(g) HEANN (3D) vs. Crypto3D
(C3D)

lel

w

IS

w

N

i

== MP-SPDZ3D
== Crypto3D

Amortized Execution Time (sec)

UCF101 HMDB-51
Comparison with MP-SPDZ

(k) MP-SPDZ (3D) vs. Crypto3D
(C3D)

o B B
© o N

o
IS

Amortized Execution Time (s)
o
>

o
N

== Intel SGX (3D)
== Crypto3D

UCF101 HMDB-51
Comparison with Intel SGX 3D

(d) Intel SGX (3D) vs. Crypto3D
(I3D)

)

== HEANN3D
== Crypto3D

UCF101 HMDB-51
Comparison with HEANN 3D

(h) HEANN (3D) vs. Crypto3D
(I3D)

== MP-SPDZ3D
B = Crypto3D

UCF101
Comparison with MP-SPDZ

HMDB-51

(1) MP-SPDZ (3D) vs. Crypto3D
(I3D)

Figure 8: Crypto3D (ours) vs. SOTA systems (Gazelle (3D), Intel SGX (3D), CryptoDL (3D), HEANN (3D), E2DM (3D)) based on
C3D and I3D models on UCF-101 and HMDB-51 datasets, respectively.

Table 4: Comparison with SOTA secure systems, their features, and performance (non-trivial extensions from 2D to 3D) on one
input video, RGB tensors of size 16xX112x112. Crypto3D is significantly more efficient than other systems. The execution time of
Crypto3D is over 554.68x, 189.21x, 182.61x, 133.56x, 11.09x, 8.90X, 3.71x, 12.97x, and 1.49x faster than CryptoDL (3D), HEANN
(3D), MP-SPDZ (3D), E2DM (3D), Intel SGX (3D), Gazelle (3D), Delphi (3D), CryptFlow2 (3D), and Cheetah (3D), respectively.

Method Design Library = Network Optimization Runtime Amortized
(3D) (Sec) (Sec)
Gazelle HE,GC,SS PALISADE C3D N/A 1916.48 2.48
Intel SGX TEE - C3D N/A 2387.77 3.08
PPVC [36] MPC,SS MP-SPDZ 2D CNN N/A 511.64[36] -
MP-SPDZ MPC,SS MP-SPDZ C3D N/A 39303.72 50.78
CryptoDL HE HELIB C3D N/A 119388.28 154.25
HEANN HE HEANN C3D N/A 40725.29 52.62
E2DM HE HEANN C3D N/A 28747.26 37.14
Delphi HE, GC, SS SEAL C3D Neural Arch. Search 798.54 1.03
CrypTFlow2 HE, SS SEAL C3D N/A 2790.79 3.6
Cheetah HE, SS SEAL C3D N/A 318.30 0.41
Crypto3D HE, GC, SS SEAL C3D Irregular Pruning 215.24 0.28

the video. The accuracy of video classification can vary depending

on the training model used. Delphi enhances Gazelle by integrating

Secure and Efficient Video Inferences with Compressed 3-Dimensional Deep Neural Networks

Speedup (x)
N w > w

-

0 H H H H n . :
» (&* S 01’@0\VX\GO\ G$09\ \\&o\ \\"@0\ «10@\‘»“0@
Q(’!V‘B “@P» “\Y,EX o° “@\6 @ o Cd?&\ﬁ Rt

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

2 le2
= batchSize=1]

—= batchSize=5

== batchSize=10

g =
=}

o
o

Execution Runtime (ms)
o <3
B o

e
)

Mﬁ@%ﬁ

convl conv2 conv3 conv4 conv5 convé conv7 conv8
Convolution Layer (Crypto3D)

g
=}

(a) Comparison with SOTA cryptographic systems, in terms of (b) Execution runtime vs. convolutional layers and different batch

Speedup (x) over them by Crypto3D (optimized).

sizes (batch size varies as 1, 5 and 10).

Figure 9: Crypto3D optimization

Table 5: Weight-pruning optimization (based on SLR
schemes) comparison on C3D pre-trained model process-
ing with different sparsity (0.95, 0.9 and 0.5) on layer weight.
Model 0.5 is used as Crypto3D (optimized) for further com-
parison with SOTA systems in Table 4.

Sparsity Sparsity Sparsity

(0.95) (0.9) (0.5)
Compression Rate: 18.16 9.541 1.99
(#) of Nonzero Params: 4317867 8216849 39408704
Params Pruned (%): 95 90 50

Table 6: Inference accuracy comparison between PPVC, Del-
phi, and Crypto3D. By employing a distinct optimization tech-
nique, Crypto3D attains the same level of accuracy as Delphi
but with a significantly reduced runtime.

Method Network Optimization Accuracy Runtime
(Sec)
PPVC 2D Conv N/A 56% 511.64
Delphi (3D) C3D Neural Arch. Search 82.3% 798.54
Crypto3D C3D Irregular Pruning 82.4% 215.24

garbled circuits and quadratic polynomials for activation functions,
yielding results that closely match the original ones. As mentioned
earlier, our approach surpasses existing systems in both perfor-
mance and accuracy, achieving high performance without sacrific-
ing accuracy. To facilitate further fair comparisons in optimization,
we strive to identify an appropriate placement or network config-
uration for Delphi (3D) through optimization. We utilize NAS to
capitalize on performance-accuracy tradeoffs to ensure that accu-
racy above a specified threshold (82.3%), as shown in Table 6 with a
margin of 0.1% lower than ours. Similarly, Cheetah and CrypTFlowz2,
when based on our environment, exhibit an accuracy lower than
70% without optimization, even though they demonstrate high per-
formance with effective approximate truncation. PPVC inherits the
MP-SPDZ and Gazelle techniques (MPC), resulting in an improve-
ment of 0.8%. Due to the hardware security technique, the accuracy
will not be impacted in Intel SGX. Also, CryptoDL, HEANN, and
ED2M are all mainly based on the HE with different libraries and
settings parameters. The results are close to the original accuracy

in the test set (< 70%). To facilitate comparison with our work,
we modify the network structures and retrain them using special
LHE-friendly non-linear functions. Additionally, we make adjust-
ments to the structure, approximate function/softmax, and selected
layers in the UCF-101 dataset to better align with the frameworks.
However, such alterations may potentially have a negative impact
on the accuracy of compressed models in order to satisfy high per-
formance. Nonetheless, in our model, we effectively manage the
trade-off between accuracy with explicitly lower communication
overheads and compression rate, achieving 82.4% accuracy while
ensuring privacy.

7 Conclusion

Many existing techniques are proposed to perform the secure two-
party inferences with the cryptographic schemes for the deep neural
networks. However, they cannot be directly applied to video in-
ferences which extracts spatio-temporal (3D) features for more
accurate video recognition. We propose crypto3D, the first crypto-
graphic inference technique based on spatial-temporal (3D) features,
which (i) privately infers videos with the C3D and I3D DNN models;
(ii) optimizes the matrix operations and ciphertext packing tech-
nique to boost efficiency; (iii) adopts weight pruning optimization
for further boosting the efficiency of cryptographic C3D and I3D.
Crypto3D is significantly more efficient than SOTA cryptographic
inference systems, and it can also achieve 82.4% accuracy on pri-
vate inferring videos, which is also significantly more accurate than
SOTA cryptographic inference systems.

Acknowledgments

We sincerely thank the anonymous reviewers for their constructive
comments and suggestions. This work is supported in part by the
National Science Foundation (NSF) under Grants No. CNS-2308730,
CNS-2302689, CNS-2432533, CNS-2319277, and CMMI-2326341. It
is also partially supported by the Wentworth Faculty Awarded
Summer 2024 Bistline Grants. Meanwhile, thanks to the Institute
for Experiential Al - Northeastern University for their generous
support and the use of their facilities, which contributed to the
progress of this work.

References

[1] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski.
Garbled Neural Networks are Practical. IACR Cryptol. ePrint Arch., 2019.

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

(2]

=

&

[9

=

[10

[11]

[12

[13]

[14]

[15

[16]

[17]

(18]

[19

[20]

(21

[22]

[23

[24]

[25

[26]

[27]

[28

[29]

[30]

Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practi-
cal Secure Aggregation for Privacy-Preserving Machine Learning. In ACM CCS,
2017.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning , 1-122.
Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory
6,3 (2014), 13:1-13:36.

Jodo Carreira and Andrew Zisserman. 2017. Quo Vadis, Action Recognition? A
New Model and the Kinetics Dataset. In IEEE CVPR 2017 .

Xuhui Chen, Jinlong Ji, Lixing Yu, Changging Luo, and Pan Li. 2018. SecureNets:
Secure Inference of Deep Neural Networks on an Untrusted Cloud. In Proc. of the
ACML, 2018, Vol. 95, 646-661.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
Encryption for Arithmetic of Approximate Numbers. In Advances in Cryptology,
2017, 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Vol. 10624.

Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde.
Selective Network Linearization for Efficient Private Inference. In ICML 2022.
Ivan Damgéard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-
party Computation from Somewhat Homomorphic Encryption. CRYPTO12.
Shuya Feng, Meisam Mohammady, Han Wang, Xiaochen Li, Zhan Qin, and Yuan
Hong. 2024. DPI: Ensuring Strict Differential Privacy for Infinite Data Streaming.
In IEEE Symposium on Security and Privacy, 2024.

Taher El Gamal. 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory 31, 4 (1985), 469-472.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks
to Encrypted Data with High Throughput and Accuracy. In ICML 2016,

Deniz Gurevin, Mikhail A. Bragin, Caiwen Ding, Shanglin Zhou, Lynn Pepin,
Bingbing Li, and Fei Miao. 2021. Enabling Retrain-free Deep Neural Network
Pruning Using Surrogate Lagrangian Relaxation. In I[JCAI, 2021.

Deniz Gurevin, Shanglin Zhou, Lynn Pepin, Bingbing Li, Mikhail Bragin, Caiwen
Ding, and Fei Miao. 2020. Enabling retrain-free deep neural network pruning
using surrogate lagrangian relaxation. (2020).

Joseph Halpern and Vanessa Teague. 2004. Rational secret sharing and multiparty
computation. In Proc. of the thirty-sixth annual ACM STOC. 623-632.

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin,
Michael Backes, and Mario Fritz. 2021. MLCapsule: Guarded Offline Deployment
of Machine Learning as a Service. In IEEE Conference on CVPR Workshops 2021 .
Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N. Wright. 2018.
Privacy-preserving Machine Learning as a Service. PoPETs, 2018.

Yuan Hong, Jaideep Vaidya, Haibing Lu, Panagiotis Karras, and Sanjay Goel. 2022.
Collaborative Search Log Sanitization: Toward Differential Privacy and Boosted
Utility. In IEEE Transactions on Dependable and Secure Computing. 2015.
Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. In USENIX’22.
Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. 2021.
DeepReDuce: ReLU Reduction for Fast Private Inference. In ICML 2021,
Nandan Kumar Jha and Brandon Reagen. 2023. DeepReShape: Redesigning
Neural Networks for Efficient Private Inference. CoRR abs/2304.10593 (2023).
Xiaogian Jiang, Miran Kim, Kristin E. Lauter, and Yongsoo Song. 2018. Secure
Outsourced Matrix Computation and Application to Neural Networks. In CCS.
Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A Low Latency Framework for Secure Neural Network Inference. In USENIX
Security, 2018, 1651-1669.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-Scale Video Classification with Convolutional
Neural Networks. In IEEE Conference on CVPR 2014.

Julien Keuffer, Refik Molva, and Hervé Chabanne. 2018. Efficient Proof Composi-
tion for Verifiable Computation. In Computer Security - 23rd European Symposium
on Research in Computer Security, ESORICS 2018, Barcelona, Spain, September 3-7,
2018, Proc., Part I (Lecture Notes in Computer Science, Vol. 11098), 152-171.

Brian Knott, Shobha Venkataraman, Awni Y. Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. CrypTen: Secure Multi-Party Com-
putation Meets Machine Learning. In Advances in NeurIPS 2021.

Hildegard Kuehne, Hueihan Jhuang, Estibaliz Garrote, Tomaso Poggio, and
Thomas Serre. 2011. HMDB: A large video database for human motion recogni-
tion. In ICCV, 2011.

Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Tiffany Liu, and Peter A.
Beerel. 2023. Learning to Linearize Deep Neural Networks for Secure and Efficient
Private Inference. In ICLR, 2023.

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network
Predictions via MiniONN Transformations. In ACM CCS, 2017 .

Bingyu Liu, Shangyu Xie, and Yuan Hong. 2020. PANDA: Privacy-Aware Double
Auction for Divisible Resources without a Mediator. In AAMAS, 2020 .

Bingyu Liu et al.

Steven R Livingstone and Frank A Russo. 2018. The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set
of facial and vocal expressions in North American English. PloS one 13, 5 (2018).
Meisam Mohammady, Lingyu Wang, Yuan Hong, Habib Louafi, Makan Pourzandi,
and Mourad Debbabi. Preserving both privacy and utility in network trace
anonymization. In CCS, 2018.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. Delphi: A Cryptographic Inference Service for Neural Networks.
In USENIX Security, 2020.

Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In ACM CCS, 2018.

Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology - EUROCRYPT °99, International
Conference on the Theory and Application of Cryptographic Techniques.

Sikha Pentyala, Rafael Dowsley, and Martine De Cock. 2021. Privacy-Preserving
Video Classification with Convolutional Neural Networks. In ICML 2021.
NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. Adaptive Laplace Mecha-
nism: Differential Privacy Preservation in Deep Learning. In IEEE ICDM, 2017.
Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and
Raluca Ada Popa. 2020. Visor: Privacy-Preserving Video Analytics as a Cloud
Service. In USENIX Security, 2020. , pp. 1039-1056.

Michael O. Rabin. 2005. How To Exchange Secrets with Oblivious Transfer. JACR
Cryptol. ePrint Arch. (2005), 187.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. CrypTFlow2: Practical 2-Party Secure
Inference. In ACM CCS, 2020,

M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter,
and Farinaz Koushanfar. XONN: XNOR-based Oblivious Deep Neural Network
Inference. In USENIX Security, 2019, 1501-1518.

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In AsiaCCS, 2018.
Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
scalable provably-secure deep learning. In Proc. of the 55th Annual DAC, 2018
Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep Learning. In CCS.
Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild. CoRR
abs/1212.0402 (2012).

Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran
Ramjee. Privado: Practical and Secure DNN Inference. CoRR abs/1810.00602 (18).
Florian Tramér and Dan Boneh. Slalom: Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware. In ICLR 2019, .

Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. 2015. Learning Spatiotemporal Features with 3D Convolutional Networks.
In IEEE ICCV, 2015. 4489-4497.

Chia-che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen,
Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela A. S. de Oliveira, and
Donald E. Porter. 2014. Cooperation and security isolation of library OSes for
multi-process applications. In EuroSys. 9:1-9:14.

Di Wang, Minwei Ye, and Jinhui Xu. 2018. Differentially Private Empirical Risk
Minimization Revisited: Faster and More General. CoRR abs/1802.05251 (2018).
Han Wang, Shangyu Xie, and Yuan Hong. 2020. VideoDP: A Flexible Platform
for Video Analytics with Differential Privacy. PoPETs, 2020.

Han Wang, Yuan Hong, Yu Kong, and Jaideep Vaidya. 2020. Publishing Video
Data with Indistinguishable Objects. EDBT, 2020,.

Shangyu Xie, Han Wang, Yu Kong, and Yuan Hong. 2022. Universal 3-Dimensional
Perturbations for Black-Box Attacks on Video Recognition Systems. In IEEE
Symposium on Security and Privacy, 2022.

Shangyu Xie, Yan Yan, and Yuan Hong. 2024. Stealthy 3D Poisoning Attack on
Video Recognition Models. In TDSC, 2024.

Masashi Yamane and Keiichi Iwamura. 2020. Secure and Efficient Outsourcing of
Matrix Multiplication based on Secret Sharing Scheme using only One Server. In
IEEE CCNC, 2020,.

Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended
Abstract). In IEEE FOCS, 1986, 162-167.

Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. 2019.
Differentially Private Model Publishing for Deep Learning. In IEEE Symposium
on Security and Privacy, 2019. 332-349.

Qiao Zhang, Chunsheng Xin, and Hongyi Wu. 2021. GALA: Greedy ComputAtion
for Linear Algebra in Privacy-Preserved Neural Networks. In NDSS, 2021.
Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. 2018. A systematic dnn weight pruning framework using
alternating direction method of multipliers. In ECCV, 2018, pp. 184-199.
Hongchao Zhou and Gregory W. Wornell. Efficient homomorphic encryption on
integer vectors and its applications. In ITA, 2014.

Shanglin Zhou, Mimi Xie, Yufang Jin, Fei Miao, and Caiwen Ding. An end-to-end
multi-task object detection using embedded gpu in autonomous driving. In IEEE
ISQED, 2021, 122-128.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Cryptographic Primitives

	4 Cryptographic Inference Protocol Co-Design
	4.1 Threat Model
	4.2 Protocol Design

	5 Security Analysis
	6 Experimental Evaluations
	6.1 The Performance of Crypto3D
	6.2 Further Comparison with SOTA Systems
	6.3 Accuracy

	7 Conclusion
	References

