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Abstract

Differentially private federated learning (DP-FL) offers a compelling
approach to collaborative model training by ensuring robust privacy
for clients. Despite its potential, current methods face challenges
in effectively balancing privacy, utility, and performance across
diverse federated learning scenarios. Addressing these challenges,
we introduce UDP-FL, to our knowledge the first DP-FL framework
that universally harmonizes any randomization mechanism, includ-
ing those considered optimal, by employing the Gaussian Moments
Accountant (viz. DP-SGD). Central to UDP-FL is the 'Harmonizer,
a dynamic module engineered to intelligently select and apply the
most suitable DP mechanism tailored to each client’s specific pri-
vacy requirements, data sensitivities, and computational capacities.
This selection process is driven by the principle of Rényi Differ-
ential Privacy, which serves as a crucial mediator for aligning pri-
vacy budgets effectively. Our comprehensive evaluation of UDP-FL,
benchmarked against established baseline methods, demonstrates
superior performance in upholding privacy guarantees and en-
hancing model functionality. The framework’s robustness has been
rigorously tested against a broad spectrum of privacy attacks, mak-
ing it one of the most thorough validations of a DP-FL framework
to date. !

CCS Concepts

« Security and privacy — Privacy-preserving protocols; « Com-
puting methodologies — Machine learning algorithms.
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!Source code, and the full version of this paper are available at https://github.com/
datasec-lab/UDP-FL.
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1 Introduction

As the volume of data generated by emerging applications contin-
ues to grow exponentially, federated learning (FL) [56] has emerged
as a promising solution for collaborative model training without
sharing raw data. Despite the absence of local data exposure, sen-
sitive information about the data can still be leaked through the
exchanged model parameters via, e.g., membership inference at-
tacks [8, 33, 61, 65, 83], data reconstruction attacks [26, 32, 39, 49],
and attribute inference attacks [4, 10, 25, 52, 54].

Differential privacy (DP) has been proposed to provide rigorous
privacy guarantees, ensuring that any data sample or user’s data
at any client cannot influence the output of a function (e.g., the
gradient or model parameters in FL) [1, 2, 48, 79]. However, directly
applying existing DP mechanisms and accounting approaches to FL
can result in excessive noise addition and loose privacy guarantees.

Recent techniques, such as the advanced accounting of privacy [1,
71, 74, 89] and Rényi Differential Privacy (RDP) [69], have shown
remarkable results in optimizing accounting for privacy loss in
machine learning. These techniques significantly improved the
tradeoff between data privacy and model utility. Nevertheless, ap-
plying the Moments Accountant (MA) as a budget economic solu-
tion to other DP mechanisms can be challenging. One reason is that
deriving the moments accountant for each DP mechanism often
requires a heavy analysis of the tails in their probability density
function (PDF), which can be difficult and may differ from one
mechanism to another. Accountants rely heavily on the Gaussian
mechanism to ensure DP, but this often results in excessive pertur-
bation of gradients. This can make it hard to achieve a satisfactory
balance between privacy and utility in existing DP-FL methods
[3, 24, 29, 38, 64, 68, 75, 85], which are dominantly based on the
Gaussian mechanism and the DP-SGD variants. The need to harmo-
nize different DP mechanisms in FL arises from the varying privacy
requirements and data characteristics in different applications. Due
to the different privacy-utility trade-offs and the changing privacy
regulations, no single DP mechanism can be universally optimal.
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Table 1: An example of Harmonizer’s output for choosing the DP mechanism. This is the ideal “after-the-fact” recommendation
after observing experiments. MIA, DRA and AIA stand for membership inference attacks, data reconstruction attacks and

attribute inference attacks, respectively.

DP MIA DRA ATA Computational
Mechanism Convergence | Accuracy Resilience | Resilience | Resilience FL Arch Data Pattern Efﬁpciency
Gaussian © o [ © © FedAvg, FedSGD Any size, Dense o
Laplace O () © ) ) FedProx, SCAFFOLD Any size, Sparse ©
Staircase [ [ [ [ ) FedAvg, FedOpt, q-FedAvg | Any size, Complex ©

Harmonizing DP mechanisms allows for personalized privacy for
clients and stricter privacy controls. This approach enables im-
proved privacy guarantees while maintaining high utility in diverse
FL scenarios, adapting to specific client needs and data characteris-
tics, and selecting the most suitable mechanism for each use case.

Building upon the limitations of existing DP-FL methods [3, 29,
38, 64, 68, 75, 85], we propose a novel universal solution for DP-FL
called UDP-FL, which offers a comprehensive approach for achiev-
ing DP in FL that extends beyond the popular DP-SGD algorithm
(Gaussian). It universally adopts different DP mechanisms (e.g.,
Staircase [27] which greatly outperforms Gaussian in terms of noise
magnitude?) and harmonizes privacy guarantees under a unified
framework. It allows for tighter budget accounting and comparison
of privacy guarantees between different DP-FL techniques, e.g., the
Gaussian, Laplace and Staircase noise additive mechanisms, using
the Rényi DP notion as a mediator variable [57, 74]. This approach
provides greater flexibility and generalizability for real-world sce-
narios that suit specific client and data characteristics.

DP-noise Harmonizer. The Harmonizer component is central to
UDP-FL, addressing the challenges of distributed learning systems.
It automatically selects and harmonizes different DP mechanisms
based on specific client requirements, dataset characteristics, and
privacy concerns. We also rely on the Harmonizer component to
enhance the budget accountant and management and improve the
applicability and convergence of DP-FL across diverse scenarios. It
harmonizes different DP mechanisms with the Rényi divergence,
providing a generalized, flexible, and universal approach to DP-FL
that adapts to various requirements, applications, and scenarios
while ensuring the best privacy-utility trade-off for each case. More-
over, the Harmonizer maps the Gaussian Moments Accountant [1]
to the corresponding Rényi DP of other DP mechanisms for FL, al-
lowing it to measure privacy loss using Rényi divergence [1, 57, 74].
This algorithm calculates privacy leakage for each training round
and ensures that the leakage of the adopted DP mechanism (e.g.,
Staircase mechanism [27]) does not exceed the Gaussian version
(viz. DP-SGD and other variants).

Robustness against Privacy Attacks. UDP-FL demonstrates sig-
nificant resilience against a spectrum of privacy attacks, aligning
with advanced theories presented in recent work [63]. Through
extensive empirical studies, our results reveal a substantial reduc-
tion in the success rate of Membership Inference Attacks (MIA)
(i.e., LiRA [8]) compared with non-private FL, highlighting the
framework’s effectiveness in preserving privacy. While DP is not
inherently designed to combat Attribute Inference Attacks (AIA),
we observed a reduced correlation in feature learning. Against Data
Reconstruction Attacks (DRA), UDP-FL has proven to be adept at

2The Staircase mechanism [27] has been proven to be optimal for £ and £, metrics for
a wide range of privacy budget € [27, 59].

preventing the reconstruction of original training data, thereby
reinforcing its robustness in protecting data privacy within DP-FL
environments.

Thus, the key contributions of this paper are summarized below:

(1) To our best knowledge, we propose the first DP-FL frame-
work (UDP-FL) that harmonizes different differential privacy
mechanisms in federated learning, achieving tighter privacy
bounds and higher model accuracy compared to baseline
methods while reducing computational and communication
overheads.

(2) We propose a scoring-based approach for DP mechanism
selection that considers privacy strength, utility preservation,
and computational efficiency, providing insights into how
different mechanisms can be optimally chosen for varying
FL scenarios.

(3) We conduct comprehensive privacy evaluations of UDP-FL
against membership inference [33, 65], data reconstruction
[23, 88], and attribute inference attacks [25, 52]. Our results
demonstrate superior defense capabilities, particularly with
the Staircase mechanism showing consistent improvement
across all attack scenarios while preserving model utility.

2 Preliminaries

2.1 System and Adversaries

In this work, we follow the standard semi-honest adversarial set-
ting for differentially private federated learning (DP-FL) where
the adversary can possess arbitrary background knowledge. The
server is honest-but-curious by following the protocol but attempt-
ing to derive private information about the client’s data from the
exchanged messages during the training process. Clients are also
categorized as “honest-but-curious”, by strictly adhering to the
protocol without deviating from established procedures [36]. Key
responsibilities include refraining from manipulating local model
updates and avoiding the use of poisoned or false data in the train-
ing. Upholding these guidelines is essential for maintaining the
integrity and security of the global model, ensuring its reliability
and robustness.

In terms of privacy, both UDP-FL (across all mechanisms) and the
DP-SGD are adding noise into local gradients during the training
process. Despite this, the disclosure of trained model parameters
is proven to preserve (€, §)-DP [1]. The model parameters, viewed
as post-processed results of the DP guaranteed noisy gradients, do
not affect the privacy leakage.

Despite the distributed nature of federated learning offering col-
laborative model training, the challenge of preserving data privacy
persists. The privacy concerns stem from the potential leakage of
sensitive information through clients’ local model updates. We also
empirically evaluate the performance of UDP-FL against privacy
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attacks, including membership inference attacks (MIAs) [33, 65],
data reconstruction attacks (DRAs) [23, 88], and attribute inference
attacks (AIAs) [25, 52]. Their settings (which are different from
DP-FL) will be discussed in Section 5.

2.2 Federated Learning

FL is an emerging distributed learning approach that enables a
central server to coordinate multiple clients to jointly train a model
without accessing to the raw data. Assuming the FL system has
N clients C = {C1,Cy, - -- ,Cn} and each client Cy owns a private
training dataset Dy = {(xf, yf)} with |Dy| samples and each sam-

ple x? has a label y}c. Then, FL considers the following distributed
optimization problem:

N
minF(w) = )" piF(w), M
k=1
where pg > 0 is the client Ct.’s weight and Zf: 1 Pk = 1;Each client

Cy’slocal objective is defined by Fi.(w) = @ Zl.gkl (w; (x?,y}‘)),

with £(-;-) a user-specified loss function, e.g., cross-entropy loss.
FedAvg [55] is the de facto FL algorithm to solve Equation (1) in
an iterative way. It has the following steps:
(1) Global Model Initialization. The server initializes a global
model w?, selects a random subset S, of n clients from C,
and broadcasts w° to all clients in S,,.
(2) Local Model Update. In each global epoch ¢, each client Cy.
receives the global model w?, initializes its local model wltc
as w’, and updates the local model by minimizing Fy (w’)
on the local dataset Dg. E.g., when running SGD, we have:

wh — w]tC - thW]iFk(wt), where 7; is the learning rate in

k
the t-th epoch.

(3) Global Model Update. The server collects the updated
client models {w]tc} and updates the global model w’*1 for the
next round via an aggregation algorithm. For instance, when
using FedAvg [55], the updated global model is: w*!
% 2CLES, pkw]tc, which is then broadcasted to clients for

«—

the next round.
(4) Repeat Steps 2 and 3 until the global model converges.

2.3 Differential Privacy and Rényi Accountant

The use of DP in FL enhances the benefits of collaborative model
training with the need for protecting data privacy. It ensures that
each data sample or user’s contribution to the model training pro-
cess is indistinguishable from others, and it can be implemented
by adding noise to the gradients or parameters of the model or
by using secure aggregation techniques. The notion of DP can be
defined as below.

DEFINITION 1 ((€, §)-DIFFERENTIAL PRIVACY [16, 17]). A random-
ization algorithm A is (¢, §)-differentially private if for any adjacent
databases d, d’ that differ on a single element, and for any output set
Q C range(A), we have Pr[A(d) € Q] < e Pr[A(d") € Q] + 6,
and vice versa.

FL with (e, )-DP generally requires hundreds of training rounds

to obtain a satisfactory model. Rényi accountant [71, 74] via Rényi
Differential Privacy (RDP) [57] has been proposed to provide tighter
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privacy bounds on the privacy loss than the standard DP. RDP is
defined over the Rényi divergence [69]. Recall that for two prob-
ability distributions P and Q, their Rényi divergence is defined
as Dy (P||Q) = ﬁ logEx-o( g((z)) )* where x denotes a random
variable and @ > 1 is the Rényi divergence order. Thus, the RDP

can be defined as below.

DEFINITION 2 ((@, y)-RENYI DIFFERENTIAL PRIVACY [57]). A ran-
domized mechanism A is said to have y-Rényi differential privacy
of order a, if for any adjacent datasets d,d’ that differ on a single
element, and for any output set Q C range(A), the Rényi divergence
Dy [A(d) = Q||A(d’) = Q] < y holds.

Rényi accountant [1, 58, 74] is a method for managing and as-
sessing the cumulative privacy loss in a sequence of DP operations.
It operates by tracking the cumulant generating function (CGF) of
the privacy loss random variable over the sequence of operations.
Specifically, the Rényi accountant evaluates the CGF at a series of
fixed points corresponding to different orders of Rényi divergence,
thus enabling the calculation of an overall privacy guarantee for
the sequence. This overall guarantee is expressed in terms of Rényi
Differential Privacy, providing a more nuanced and tighter estima-
tion of privacy loss compared to traditional methods. The Rényi
accountant is particularly effective in complex scenarios, such as
those encountered in machine learning algorithms, where multiple
DP operations are composed over time.

Although the efficacy of the Rényi accountant in providing a
refined estimation of privacy loss becomes increasingly signifi-
cant when addressing privacy loss in FL, several challenges still
exist. These include non-optimal noise mechanisms like Gaussian
or Laplace that degrade accuracy, loose DP guarantees in complex
systems, difficulty in tracking privacy loss across diverse clients,
and reduced convergence speed. These limitations underscore the
need for developing an enhanced DP-FL framework that universally
ensures tighter privacy out of diverse DP mechanisms while main-
taining fast convergence and accuracy. The Rényi accountant [58]
adopted in UDP-FL helps to address these challenges by providing
tighter accounting of privacy loss across numerous training rounds.
Moreover, other recent accountants [1, 71, 74, 89] can also act as
viable alternatives, offering flexibility in the choice of DP composi-
tion. Our framework’s design is orthogonal to the specific choice
of accountant, meaning it is adaptable and could incorporate even
tighter accounting methods as they become available in the future.

3 UDP-FL Framework

In this section, we propose a comprehensive framework, called
universal DP-FL (UDP-FL), for achieving superior privacy-utility
tradeoff and faster convergence in FL.

3.1 Building Blocks of UDP-FL

DP Mechanisms. UDP-FL integrates diverse DP mechanisms, in-
cluding Gaussian, Laplace, and Staircase [27], offering versatility
for various FL applications. This approach provides stronger pri-
vacy guarantees while maintaining training quality, surpassing
Gaussian-only methods in adaptability. We primarily utilize the
Staircase mechanism for its optimality in #; and # norms [27, 59],
making it particularly effective in scenarios requiring robust privacy



CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

guarantees without significant accuracy loss. UDP-FL is designed
to accommodate other advanced DP mechanisms [9, 59], enabling
flexibility to adapt to specific FL task requirements, such as data sen-
sitivity, privacy-utility trade-offs, and computational constraints.

Harmonizer. The Harmonizer dynamically selects the optimal
DP mechanism (e.g., Gaussian, Laplace, Staircase) for each client
in FL, based on their privacy requirements, data sensitivity, and
computational resources. It ensures privacy-preserving gradient
updates by clipping gradients, adding noise, and tracking privacy
budgets using Rényi Differential Privacy, balancing privacy and
utility across clients.

3.2 UDP-FL Framework
In this section, we present the main steps in UDP-FL.

(1) Local Data Preparation. The clients collect and store their
data locally. Once their data is ready, clients specify privacy
parameters (e, d) and send them to the server.

(2) Global Model Initialization. The server initializes a global
model w0, selects a subset of clients S, C C, and sends the
current global model parameters w to the selected clients.

(3) Local Model Update. Clients perform local training over
their data. The Harmonizer manages all aspects of differential
privacy during this process, including gradient processing,
noise addition, and privacy accounting. Finally, clients send
their updated local models w;; to the server.

(4) Global Model Update. The server aggregates the received
local models: (1) Initialize intermediate models by averaging
pairs of client models. (2) Optimize intermediate models to
find a low-loss path between client models. The Harmonizer
ensures privacy-preserving computations for any client-side
operations. (3) Update the global model w’*! based on the
optimized intermediate models.

The detailed procedures of UDP-FL are illustrated in Algorithm 1.
3.3 UDP-FL Harmonizer

The Harmonizer serves as the central privacy management com-
ponent within UDP-FL, orchestrating the selection and application
of differential privacy mechanisms across the federated learning
system. Its functionality can be divided into three primary aspects:
data characteristic analysis, privacy requirement assessment, and
adaptive noise management.

First, the Harmonizer performs comprehensive data character-
istic analysis for each client. This analysis begins by examining
the statistical properties of client data, including distribution pat-
terns, gradient sparsity, and feature sensitivity levels. For gradient
distribution analysis, the Harmonizer computes both the sparsity
ratio and gradient magnitude distribution. Dense gradients with
normal-like distributions typically benefit from Gaussian mecha-
nisms, while sparse gradients with heavy-tailed distributions are
better suited for Laplace mechanisms. The Harmonizer also ana-
lyzes data sensitivity by computing the maximum change possible
in the gradient when a single training example is modified, which
is crucial for calibrating noise addition.

Following data analysis, the Harmonizer conducts a thorough
privacy requirement assessment using a specialized scoring system.
This system evaluates each DP mechanism’s suitability through a
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Algorithm 1: Harmonizer

Input: Clients C = {Cy, ...,Cn }, datasets D = {Dy, ..., DN },
computational resources R, privacy requirements
E={e1,...en}, A={d1,....6N}

Output: Selected DP mechanism M*, harmonized privacy

parameters €*, §*

mechanisms « ['Gaussian’, "Laplace’, ’Staircase’];

-

best_score « —oo;
3 M* « null;

4 for each M in mechanisms do

N

5 score « calculate_score(M, D, R);
6 if score > best_score then

7 best_score « score;

8 M* — M;

9 €*,8" « initialize_privacy_params(E,A);
10 for each Cr € C do

11 g < compute_gradient(Cy);

12 gy, < clip_gradient(gx, Sk );

13 gz — addﬁnoise(g,cc, M*, €*,5%);

14 send_noisy_gradient_to_server(Cy, g,’C’);

15 RD « calculate_renyi_divergence(M*, €*, §*);
16 adjust_privacy_params(e*, 5%, RD);

17 while privacy_budget_not_exceeded do

18 check_privacy_budget(e*, §*);

19 return M*, e*, 5*;

weighted combination of privacy strength, utility preservation, and
computational efficiency. The scoring function is defined as:

Score(M) = wp=Privacy(M)+wu=Utility (M) +we*Efficiency (M)

The Privacy(M) score quantifies the mechanism’s theoretical
privacy guarantees and empirical resistance to known attacks. For
example, when handling medical data, this score reflects how well
the mechanism resists membership inference and reconstruction
attacks. The Utility (M) score measures the mechanism’s ability to
preserve model accuracy by examining historical performance data
and theoretical bounds on noise addition. The Efficiency(M) score
evaluates computational overhead, memory requirements, and com-
munication costs associated with implementing the mechanism.
The scoring-based mechanism selection process incurs minimal
computational overhead while maintaining robust performance,
making UDP-FL highly practical for real-world deployments. The
selection logic employs efficient lookup tables, as presented in
Table 2, along with simple gradient statistics, thereby avoiding
computationally intensive operations during training.

The Harmonizer dynamically adjusts scoring weights based on
client-specific requirements. For medical institutions with strict
privacy regulations, wp might be set to 0.5 or higher, while resource-
constrained IoT devices might be set to 0.4 or higher to prioritize
computational efficiency. These weights are continuously refined
based on observed performance and changing requirements.

A key function of the Harmonizer is calculating and managing
the noise multiplier, which controls the noise to be added to the
model updates while balancing privacy and utility. It adjusts this
multiplier throughout training by computing Rényi Divergence at
each iteration to ensure privacy loss remains within the set bounds.
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Furthermore, the Harmonizer incorporates a penalty term to
address heterogeneity in individual client privacy guarantees, ad-
justing the gradient updates based on the client’s privacy settings:

W]tc — W]tc -1 (gi +Ak(W]t< - Wrtnax))

Where A = E“‘é‘;:" adjusts based on each client’s privacy needs,
ensuring clients with weaker DP guarantees are balanced against
those with stronger guarantees.

Ultimately, the Harmonizer enables a highly customizable and
adaptable DP-FL process, allowing clients to define their own pri-
vacy parameters while ensuring the system harmonizes these di-
verse preferences using Rényi Divergence. This ensures efficient
management of the privacy budget across all participants, without
sacrificing model performance. By selecting optimal DP mecha-
nisms and tracking privacy budgets, the Harmonizer promotes
convergence to a unified global model while maintaining robust
privacy guarantees.

Through this comprehensive approach, the Harmonizer ensures
optimal privacy-utility tradeoffs while adapting to diverse client
requirements and data characteristics. Its modular design allows
for the incorporation of new DP mechanisms as they are devel-
oped, making UDP-FL extensible and future-proof. The system
continuously monitors and adjusts its decisions based on observed
performance metrics, ensuring robust privacy protection through-
out the federated learning process.

Table 2: Harmonizer’s Mechanism Selection Criteria. A practi-
cal interpretation of the scoring function Score (M), showing
how different characteristics influence mechanism selection
in UDP-FL.

Client Data Privacy Requirements Resource Mechanism
Dense gradients High (e < 3) Standard compute Gaussian
Sparse gradients Moderate (€ = 3-8) Limited compute Laplace
Complex distributions Low (e > 8) High compute Staircase
Heterogeneous data High (e < 3) Limited compute Gaussian
Time-series data Moderate (¢ = 3-8) Standard compute Staircase
High-dimensional data High (e < 3) High compute Gaussian
Small datasets Moderate (€ = 3-8) Limited compute Laplace
Large client pool Low (e > 8) Standard compute Staircase

4 Theoretical Analyses

In this section, we provide a theoretical analysis of the privacy
and utility of UDP-FL and examine the influence of its parameters
on the overall privacy guarantees. The proofs of the theorems are
provided in the full version of the appendix.

4.1 Error Bounds Analysis of UDP-FL

The Staircase mechanism can be viewed as a geometric mixture
of uniform probability distributions, ensuring an optimal privacy-
utility tradeoff, particularly for medium to large e values. This
mechanism generates noise by carefully mixing uniform distribu-
tions, adjusting for the privacy budget and other requirements, and
adding the noise to query responses in a way that preserves pri-
vacy without significantly compromising accuracy. The Staircase
mechanism applied to a function f is defined as follows:

CODASPY ’25, June 4-6, 2025, Pittsburgh, PA, USA

lIx|l1 € [pA, (p+ v)A]
y lxlli € [(p+v)A (p+1)A]
for p € N, where A and v are the parameters controlling the noise
distribution, A is the sensitivity of the query, and p defines the
intervals for the £;-norm of x. Furthermore, y is given by:

r=
T e (ptDA .

1-¢!
2A(v + e~ A(1 - v))
Theorem 1 formalizes the privacy guarantees of the Staircase
mechanism using Rényi differential privacy (RDP). This enables

the Harmonizer in UDP-FL to track the privacy loss of the Staircase
mechanism across different rounds of federated learning.

A

y

THEOREM 1 (PROOF IN FULL VERSION APPENDIX A.4). For any
order « > 1 and privacy budget €, > 0, the Staircase mechanism
satisfies (@, €q)-Rényi differential privacy (RDP), where €, is given
by:

1 (g 1 _ 1-e7!
:_e(a 1)/1+_ 0{/1+

=y 2° Tavee(1-v)
X ((6(0‘_1)/1 + e_a’l) (1-v)+|2v- 1|e—sgn(%—v)/1)

We now provide the error bounds for the DP mechanism (i.e.,
noise applied to the model parameters).

LEMMA 1 (PROOF IN GENG ET AL. [27]). Given the Staircase mech-
anism (A, A, v), whenv = 1-{-53%/2’ the minimum expectation of noise

amplitude is A

M2
er-1°

As demonstrated by Geng et al. [27], when the privacy bud-
get € is sufficiently small, the Staircase mechanism saves at least

2

A? (1—12 — 75 + 0(64)) perturbation in variance compared to Gauss-
ian and Laplacian mechanisms. Since our privacy budget spent in
each round is negligible (¢ — 0), we can capitalize on this improved

accuracy payoff per round, leading to enhanced model performance
while maintaining robust privacy guarantees.

THEOREM 2 (PROOF IN FULL VERSION A.1). Foranya > 1,y >
0, Staircase mechanism f (A, A, v) satisfies (a, y)-Rényi differential

log(y-1)
a—1

privacy, where v =

THEOREM 3 (PROOF IN FULL VERSION APPENDIX A.5). The expec-

tation of the £1 distance for the output model parameters preserved

by UDP-FL with the Staircase mechanism after T training rounds is:

mT

1-e 4

where m is the length of the loss function, and v, p, A are the noise
multipliers computed by UDP-FL.

(VZAZ +e M — e M2AZ 4 Ae_’l)

Furthermore, the utilization of Staircase noise has been demon-
strated to significantly accelerate convergence compared to the
baseline, as empirically validated in Figure 3, Figure 4, and Ta-
ble 1. The enhanced convergence speed is a byproduct of applying
the optimal noise for #; and ¢ distance metrics (for a wide range
of €). In essence, when DP is fixed to guarantee e, this noise has
been proven to minimize both ¢; and ¢ distances. This implies that
all noise-additive operations, including gradient perturbation and
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client model averaging, yield more accurate results, closer to the
non-private scenario.

5 Experiments

In this section, we will evaluate the performance of UDP-FL on
privacy, accuracy and efficiency. The key objectives of our evalu-
ations are: (1) Assessing the accuracy of UDP-FL in comparison
with SOTA mechanisms. (2) Investigating the convergence behavior
of UDP-FL to understand how its hyperparameters influence the
training performance. (3) Demonstrating UDP-FL’s computational
and communication efficiency against baseline methods. (4) Rigor-
ously testing UDP-FL’s resilience against common privacy attacks,
including membership inference, data reconstruction, and attribute
inference attacks, to validate its defense performance.

5.1 Implementation

Our implementation leverages PyTorch 1.9.0, allowing easy inte-
gration with existing ML pipelines. The core of UDP-FL, our Har-
monizer component, is designed as a flexible Python module that
can seamlessly switch between different DP mechanisms without
requiring changes to the overall federated learning setup. To use
UDP-FL, practitioners only need to specify their desired privacy
budget € and choose a DP mechanism, with the framework auto-
matically handling the rest of the privacy-preserving process. This
simplicity and flexibility enable UDP-FL to adapt to a wide range of
datasets and use cases beyond those presented in our experiments,
addressing potential concerns about overfitting specific scenar-
ios. We validate this adaptability by testing UDP-FL on diverse
datasets, including MNIST [45], Medical MNIST [44], UTKface [84]
and CIFAR-10 [43], demonstrating its effectiveness across various
data types and distributions.

5.2 Experiment Setup

ML Models. For the MNIST dataset, we utilize a two-layer CNN
with ReLU activation, max pooling, and two fully connected layers.
In contrast, the Medical MNIST dataset employs a four-layer CNN
with additional fully connected layers designed for 3-channel image
classification. For CIFAR-10, we use the ResNet-18 architecture [34]
other than pre-trained models. Focusing on initial training may lead
to lower accuracy, but is crucial for assessing UDP-FL’s influence
on early-stage learning and privacy in federated learning.

Parameters Setting. Although the Harmonizer supports dynamic
DP mechanism selection, we fix the mechanisms to Laplace, Gauss-
ian, and Staircase in our experiments to independently evaluate
their robustness and accuracy. Thus, the mechanisms used in the
experiments are not chosen by the Harmonizer but are manually
set to ensure consistency in evaluating each mechanism’s perfor-
mance across different datasets and privacy conditions. We have
used a learning rate of 0.01 in all experiments. For the MNIST and
Medical datasets, we have set the clipped gradient (£2) as 1 and 0.1,
respectively. For the CIFAR-10, and UTKFace datasets (to be used
in the defense evaluation against privacy attacks in Section 5.6),
the clipped gradient is set as 0.01. The default number of clients
is set at 10, and the sampling rate is set at 0.05. We set the local
communication round as 150 and the local training epoch as 2.
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Harmonizer Validation. While the Harmonizer is designed to
dynamically select the optimal DP mechanism based on client re-
quirements, data characteristics, and privacy constraints, for ex-
perimental validation purposes, we first evaluate each mechanism
independently to verify the Harmonizer’s selection criteria. This
systematic evaluation helps validate the scoring function used by
the Harmonizer and demonstrates why certain mechanisms are pre-
ferred in specific scenarios. We evaluate three primary mechanisms:
Laplace, Gaussian, and Staircase. For each dataset (MNIST, Medical
MNIST, and CIFAR-10), we first run experiments with fixed mech-
anisms to establish baseline performance across different privacy
budgets and data characteristics. These results inform the Harmo-
nizer’s scoring function and validate its mechanism selection logic.

5.3 Accuracy Comparison vs Baseline Methods

Due to the diverse settings for DP guarantee, trust model, noise
injection, and model architecture in DP-FL, there is no universally
accepted benchmark for evaluating DP-FL methods. Therefore, in
this work, we will compare UDP-FL with NbAFL [75] and DP-SGD
applied to FedAvg (equivalent to UDP-FL with Gaussian noise), as
they share similar settings (sample-level DP within each client and
local noise injection before aggregation). We also apply the classic
FedAvg [56] without DP guarantees as the baseline in the experi-
ments. Figure 1 shows the comparison results. We can observe from
Figure 1(a) and 1(b) that UDP-FL, when using the Staircase mecha-
nism, obtains higher accuracy and faster convergence rates com-
pared to other methods. For instance, on the MNIST dataset, UDP-FL
achieves 90% accuracy in about 25 epochs, while other methods
struggle to reach this level even after 100 epochs. This faster conver-
gence is particularly evident in the Medical MNIST dataset, where
UDP-FL converges in approximately 30 epochs, while other meth-
ods fail to converge even after 100 epochs. Furthermore, UDP-FL
achieves nearly the same accuracy as FedAvg without DP guarantee.
The primary reason is that we evenly distribute the datasets to each
client so that their local datasets are unique.

Moreover, each time we randomly select some clients to update
their models, this may cause the global model to take more time to
converge because the data distribution from clients is more hetero-
geneous. Thus, the noise generated from UDP-FL helps to balance
the unbiased distribution and contributes to faster convergence.
UDP-FL requires fewer training epochs to reach the optimal per-
formance (as shown in Figure 1(c) and 1(d)) whereas other methods
take more training epochs but still result in lower accuracy.

5.4 Training Performance Analysis

Figure 1(c) and 1(d) further prove that even when the data dis-
tributions from different clients are heterogeneous, UDP-FL can
still preserve good performance and converge faster than other
baselines. For instance, in Figure 1(c), it takes about 25 epochs for
UDP-FL to achieve an accuracy of 0.9 and the accuracy tends to be
stable since then. However, the accuracy of other baselines is low
and fluctuates. Similar results can be seen in Figure 1(d), where it
only takes about 30 epochs for UDP-FL to converge on the medical
dataset. In contrast, other baselines did not converge even with 100
epochs. Thus, UDP-FL converges faster and has better performance.
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Figure 1: Accuracy and convergence results of UDP-FL and the baselines. 1) among the three mechanisms, the Staircase always
performs the best with the same privacy budget; 2) UDP-FL obtains significantly better privacy-utility tradeoff and faster
convergence than the baseline; and 3) UDP-FL (Staircase) even has a comparable accuracy with FedAvg (No DP).
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Figure 2: UDP-FL on CIFAR-10 when (a) € = 2 and (b) € = 8.
For a small privacy budget (¢ = 2), DP-SGD yields better
performance, while at a larger privacy budget (¢ = 8), UDP-FL
with Staircase mechanism outperforms DP-SGD and Laplace.

Figure 2 for UDP-FL on CIFAR-10 shows that with a small privacy
budget, UDP-FL with Staircase and Laplace mechanism converge
more smoothly than DP-SGD. At a larger privacy budget, UDP-FL
achieves rapid convergence comparable to the non-private baseline,
matching the theoretical results on faster convergence.

5.5 UDP-FL Evaluation

The Number of Clients. As discussed in Section 4, the enhanced
privacy is related to a number of clients N and sampling rate gq.
Analyzing the impact of these hyperparameters allows us to gain
insights into the scalability and adaptability of UDP-FL, ensuring
optimal performance across different settings. We use UDP-FL with
the Staircase mechanism to represent the optimal randomization
(w.r.t. a range of €) and Laplace mechanism as another baseline
besides DP-SGD. We will present the performance of UDP-FL with
other mechanisms in Section 5.3.

The number of clients significantly impacts the performance,
communication overhead, model convergence, and privacy-utility
tradeoff in FL frameworks. We experimented with 50, 100, 150, 200
clients (as shown in Figure 3), selecting 10% of all the clients ran-
domly per training round. Each chosen client trains locally on 5% of
their data for 2 epochs. As shown in Figures 3(a) and 3(c), the accu-
racy slightly decreases with more clients, likely due to the increased
complexity in aggregating diverse model updates. This variance af-
fects convergence and generalization but, notably, the performance
drop is not substantial, showing UDP-FL’s effectiveness in handling
scalable, heterogeneous client scenarios in FL.

Sampling Rate. The sampling rate significantly impacts conver-
gence speed, model performance, and the privacy-utility tradeoff
in UDP-FL. A higher rate means more data samples are used per
training epoch, leading to faster convergence and better model
performance, but also higher privacy loss. Thus, more noise will be
used to preserve privacy. Figure 3(b) and 3(d) confirm the results
in the theoretical analysis (as discussed in Section 4). Experiments
demonstrate that higher sampling rates (e.g., 0.5) lead to improved
accuracy and faster convergence, whereas lower rates (e.g., 0.01)
result in slower convergence and reduced accuracy. These findings
suggest that utilizing a larger number of data samples per training
round enhances overall model performance.

Table 3: UDP-FL accuracy vs. privacy guarantees.

Datasets Mechanisms | €e=2 €=4 €=6 €=8 €=
Gaussian 0.704 0.714 0.719  0.742 0.871
CIFAR-10 | Laplace 0.475 0.461 0.506  0.638 0.871
Staircase 0.633 0.691 0.733  0.780 0.871

Performance across Privacy Settings. In our comprehensive
evaluation, we first delve into the privacy-utility trade-off on the
MNIST and Medical datasets, as depicted in Figure 4. UDP-FL’s
performance with the Staircase mechanism exhibits a steady in-
crease in accuracy as the privacy budget increases and outper-
forms other baseline methods. The accuracy versus epochs on both
datasets reveals UDP-FL’s capability for consistent learning over
time, even outperforming the non-private baseline (FedAvg) during
early epochs on the Medical dataset. These results have validated
the practicality of UDP-FL in scenarios where stringent privacy is
required without substantially compromising model performance.

Subsequently, we extend our evaluation to the CIFAR-10 dataset,
which offers a more complex challenge due to its higher dimension-
ality and diverse image representations. This further examination
on CIFAR-10 aims to validate UDP-FL’s robustness and scalability
in more intricate visual data scenarios. From the experimental re-
sults on CIFAR-10 dataset in Table 3, we observed that DP-SGD has
shown consistent moderate accuracy across varying privacy levels,
peaking when no privacy constraint was applied (¢ = o). UDP-FL
with the Laplace mechanism, while less accurate at stricter privacy
settings, improved as privacy constraints were relaxed. Notably,
UDP-FL with the Staircase mechanism initially underperformed
at lower € values but significantly improved with relaxed privacy,
surpassing Gaussian. This observation demonstrates that when
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Figure 4: Performance evaluation of UDP-FL on MNIST and Medical datasets. (a) and (c) present UDP-FL’s accuracy under
various differential privacy noise mechanisms, compared to a non-private baseline, with varying e values. (b) and (d) illustrate
the learning curves over training epochs for the MNIST and Medical datasets without privacy and with DP guarantees.

the privacy protection is medium and relatively weaker, UDP-FL
with the Staircase mechanism can effectively improve the trade-off
between privacy and utility, even in the FL setting.

Computation and Communication Overheads. The efficiency
of a DP-FL framework is a critical aspect to be considered, where the
computation and communication overheads can accurately reflect
the overall system performance. In this section, we evaluate the
computation and communication overheads of UDP-FL. Specifically,
we will present the total local training time and noise multiplier
computation time in UDP-FL, which are executed on the Flower
platform [5]. All the results are shown in Table 4 (can greatly reduce
the training time due to faster convergence). It implies that UDP-FL
does not require heavy computational resources, particularly when
compared to the training times with larger datasets and clients,
which reinforces the idea of efficient or quick parameter handling.

Table 4: Runtime of UDP-FL (sec) vs # training iterations.

Iterations 50 100 500 1000
MNIST (50 clients) 1049.71  2056.34  10500.80  20803.10
Medical (50 clients) 644.97  1328.23 648250  13177.98

CIFAR-10 (50 clients) 1808.67  3515.08  16443.23  31956.76

MNIST (100 clients) 1108.91  2196.13  10934.62  21579.99

Medical (100 clients) 714.02  1445.75  7064.78  14353.64
CIFAR-10 (100 clients) | 1873.93  3653.36  17215.17  33562.24
Computing Parameters 50.50 50.60 51.60 54.30

Moreover, since each client sends a local model to the server
with a size of ~2MB in each communication round, with a faster
convergence by UDP-FL, the total bandwidth consumption can be

reduced by more than 50%, e.g., 40GB bandwidth reduction for 10
clients involved in the FL.

5.6 Defense against Privacy Attacks

In the following, we will evaluate the performance of our UDP-FL
against several common privacy attacks in the domain of feder-
ated learning, specifically Membership Inference Attack (MIA) [65]
and Data Reconstruction Attack (DRA) [23, 88]. Notably, we un-
derscore the significance of DP’s core advantage lies in its ability
to offer plausible deniability [7], maintaining the privacy defenses
of UDP-FL against these attacks with strong indistinguishability.
This fundamental attribute ensures that, regardless of an attack’s
sophistication, the indistinguishability introduced by DP mech-
anisms significantly complicates the accurate reconstruction or
direct association of any data with individual participants. Since
these privacy attacks are primarily developed based on determinis-
tic results, the evaluation against these attacks can only be based
on several sampled random results instead of the entire output
space. DP inherently produces randomized outputs, which intro-
duces uncertainty into any inference made from the released data.
As a result, even if a privacy attack achieves high accuracy on a
subset of the perturbed results, clients and data owners retain plau-
sible deniability—they can legitimately dispute the validity of such
inferences, as formalized in [7].

Membership Inference Attacks. We assess the resilience of
UDP-FL against three advanced Membership Inference Attacks
(MIAs) using the CIFAR-10 dataset. The first attack, Shokri et al.[65],
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examines how models reveal information about their training data.
The second, Likelihood Ratio Attack (LiRA) [8], uses shadow mod-
els to statistically ascertain if a data point was used in training.
The third, the Canary attack, employs synthetic images, refined
through iteration, to probe the model’s disclosure of training data
characteristics. Our goal is to identify and mitigate potential pri-
vacy risks in the model’s outputs. Following the evaluation setting
from Canary [77], we maintain a strict True Positive Rate (TPR)
of 0.01 to measure False Positive Rate (FPR), AUC, and Accuracy
(ACC). This conservative approach minimizes false positives, ad-
dressing the significant legal and ethical concerns associated with
erroneous membership inferences and highlighting the need for a
robust defense mechanism that effectively prevents unauthorized
inferences while minimizing errors.

Table 5: Evaluation of the Shokri et al. [65], SOTA LiRA [8]
and Canary [77] MIAs on CIFAR-10. TPR* denotes the TPR
when FPR=0.01. The TPR*, ACC and AUC for Shokri et al.
are 0.053, 0.710, and 0.757. The TPR*, ACC and AUC LiRA
are 0.126, 0.651, and 0.716. The TPR*, ACC and AUC LiRA
are 0.137, 0.649, and 0.719.
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results in higher MSE and lower SSIM, substantially reducing the
attackers’ ability to reconstruct original images accurately. While
both DP-SGD and UDP-FL with Laplace baseline offer comparable
levels of protection, evidenced by similar MSE and SSIM values.
Further experiments reveal that UDP-FL’s protection against
reconstruction attacks [23] remains robust even under varying at-
tack conditions. The adversary first trains a separate reconstruction
model on a dataset from a similar distribution as the target model’s
training data. The reconstruction model learns to generate synthetic
inputs that closely match real samples, using the predictions from
the target model as feedback. By optimizing the synthetic inputs to
minimally change the target model’s outputs, the reconstruction
attack extracts information about the original training data. We as-
sess the attack’s efficacy by measuring the MSE and MAE between
the reconstructed and original images. The result in Table 7 empha-
sizes the effectiveness of the UDP-FL framework, particularly with
its Staircase mechanism, in mitigating data reconstruction attacks.
This configuration consistently exhibits slightly higher MSE and
MAE compared to both DP-SGD and UDP-FL with Laplace baseline,
suggesting a more robust defense against reconstruction attacks.

Table 6: Evaluation on the SOTA InvGrad DRA [26] on CIFAR-

Table 5 highlights the effectiveness of various noise mechanisms
in mitigating membership inference attacks. Both attacks show
that the Staircase noise addition under UDP-FL consistently yields
the lowest False Positive Rate (FPR), indicating superior privacy
preservation. The Laplace baseline also effectively reduces FPR,
although not as consistently low as the Staircase, suggesting good
but variable privacy protection. In terms of Accuracy and AUC, the
Staircase and Laplace mechanisms demonstrate moderate success
in maintaining model utility while ensuring privacy.

Data Reconstruction Attacks. We evaluate the data reconstruc-
tion attacks on UDP-FL on CIFAR-10. These attacks aim to recon-
struct training data points from a target model. Instead of training
a separate reconstruction model, we directly optimize synthetic
inputs to match the gradient information obtained from the target
model, following [26]. To evaluate multi-image attacks, we average
the gradients from batches of up to 100 images before running the
reconstruction. We assess the attack’s efficacy by measuring the
mean squared error (MSE) and Structural Similarity (SSIM) between
the reconstructed and original images.

The evaluation of data reconstruction attacks on CIFAR-10 demon-
strates the efficacy of UDP-FL against DRA threats. Notably, across
varying privacy budgets (¢ values), Staircase noise consistently

DP-SGD (La IUDPbFLI. UDP-FL 10. The MSE, PSNR and SSIM for the Non-private method are
Attack | place baseline) (Staircase) )
TPR® ACC AUC |[TPR® ACC AUC |TPR® ACC AUC 1.7104, 9.79, and 0.0751, respectively.
2(0.009 0.502 0.493|0.011 0.509 0.508 [0.009 0.506 0.501
Shokri 410.009 0.505 0.499|0.013 0.512 0.509 {0.009 0.505 0.502 DP-SGD L IUDI:;FLI, SUD_P_FL
60013 0510 0.509|0.014 0.505 0501 |0.009 0.504 0.499 € (Laplace baseline) (Staircase)
8]0.011 0.503 0.499 |0.007 0.505 0.500 | 0.008 0.504 0.496 MSE PSNR SSIM | MSE PSNR SSIM | MSE PSNR SSIM
210013 0506 0.497 | 0.009 0.506 0.501 | 0.008 0.504 0.491 2122646 8.51 0.0195|2.2686 8.63 0.0573|2.3399 8.37 0.0096
i 410.014 0513 0.505|0.013 0.505 0.495|0.008 0510 0.501 412.2058 8.69 0.0414 |2.1840 8.68 0.0629 | 2.2405 8.39 0.0204
LiRA 610.017 0.514 0.511 | 0.011 0.505 0.493|0.009 0.510 0.504 6 (21532 876 0.0417 | 2.1532 8.83 0.0692 | 2.1910 8.54 0.0207
8(0.011 0.504 0.497 |0.009 0.513 0.505 |[0.009 0.507 0.492 812.1463 8.78 0.0519|2.1290 8.95 0.0746 |2.1832 8.73 0.0225
2(0.016 0.519 0.513|0.011 0.504 0.497 [0.009 0.506 0.495
Canary 410016 0.510 0504 0.020 0.512 0.498)0.013 0.512 0.509 Table 7: Evaluation for data reconstruction attacks [23] on
610.015 0.523 0.528 | 0.011 0.510 0.507 [ 0.009 0.507 0.500
8(0.010 0.521 0.518 | 0.015 0.516 0.507 | 0.012 0.511 0.509 CIFAR-10.

UDP-FL UDP-FL
€ DP-SGD (Laplace baseline) | (Staircase)
MSE MAE | MSE MAE MSE MAE
2| 240 1.26 2.42 1.27 244 1.28
4] 235 1.24 2.38 1.25 240 1.26
6 | 2.30 1.22 2.33 1.23 235 124
8| 225 1.20 2.28 1.21 230 1.22

6 Discussion

Diverse DP Mechanisms. Our experiments mainly evaluate the
Staircase, Laplace and Gaussian mechanisms with UDP-FL. As a
universal DP-FL work, UDP-FL is flexible and can be extended to
incorporate more advanced DP mechanisms, such as the Matrix
Variate Gaussian (MVG) mechanism [9], RZDP mechanism [59],
DP Boosting [18, 20], and more. Moreover, UDP-FL is designed to
be flexible and adaptable to various FL settings. One of the key
aspects of this flexibility is the compatibility of our framework
with other aggregation functions commonly used in FL, beyond the
widely-used FedAvg and FedSGD algorithm [55, 56].

Support Diverse Aggregation Functions. Several aggregation
functions have been proposed to address the limitations of FedAvg,
such as dealing with non-IID data, mitigating the effects of strag-
glers, or improving convergence rates. Some of these alternative
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aggregation functions include Scaffold [40], FedMed [78], FedProx
[82]. To show the possibility of integrating alternative aggregation
functions into UDP-FL, we have conducted another experiments to
evaluate it. We use a wind forecasting dataset [35], and train a sim-
ple CNN to predict hourly power generation up to 48 hours ahead
at 7 wind farms. The baselines use NON-DP Scaffold aggregation
functions in the FL frameworks. The sampling rate is 0.05, and the
client number is 10, and the clipped gradient value is 10.
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Figure 5: Accuracy results on FL with the Scaffold aggregation
[40]. On small training epochs, UDP-FL with the Staircase
mechanism can achieve better accuracy more quickly.

From Figure 5, we can see UDP-FL with the Staircase mechanism
still outperforms the STOA DP-FL-based NbAFL [75]. Moreover,
when e is smaller than 5, the performance of UDP-FL is better than
FedAvg without DP. One possible reason is that each class of noise
is optimal for one specific metric and Staircase is designed for ¢; and
£ metrics, and the noise may serve as a regularization to mitigate
the unbiased distribution of clients’ data.

DP Accounting Extensions. UDP-FL can also be extended for
other accounting of differential privacy. Recent work has proposed
using characteristic functions of the privacy loss random variable as
an alternative approach for optimal privacy accounting [71, 74, 89].
This technique provides a natural composition similar to RDP
while avoiding RDP’s limitations. UDP-FL’s architecture is flexible
enough that it could potentially be extended to incorporate charac-
teristic functions instead of just Rényi divergence. Specifically, the
Harmonizer could be adapted to compute and track characteristic
functions for each mechanism. The analytic Fourier accountant
method could also replace the MA for conversion to (e, §)-DP. With
these modifications, UDP-FL could achieve tighter accounting and
flexibility by leveraging characteristic functions. The modularity
of UDP-FL makes these extensions possible without changing the
overall existing framework.

Future Works. A crucial direction for future work is the develop-
ment of a comprehensive theoretical convergence analysis frame-
work for UDP-FL. The primary challenge lies in developing a unified
theoretical framework that can handle the diverse nature of differ-
ent DP mechanisms within the same analysis. This would require
novel mathematical tools to bridge the gap between privacy ac-
counting methods and optimization theory. The framework would
need to establish formal convergence bounds for UDP-FL across
different DP mechanisms while analyzing the impact of mecha-
nism switching on convergence behavior. Of particular interest is
understanding convergence rates under varying privacy budgets
and client distributions, especially in heterogeneous data scenarios.
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Such theoretical foundations would strengthen UDP-FL’s applica-
bility in practice by providing guarantees on performance across
diverse FL environments.

7 Related Works

Differential Privacy and Rényi Differential Privacy. Differen-
tial privacy [16, 17] has been widely studied and applied to ensure
privacy protection in data analysis and machine learning tasks.
Since the introduction of DP-SGD [1], significant research has fo-
cused on tightly tracking privacy loss during training. The formal-
ization of Rényi Differential Privacy (RDP) [57] has facilitated easier
quantification of privacy loss, leading to further advancements in
mechanisms to preserve RDP [28, 58, 59, 72, 74].

In FL, RDP has been employed to enhance privacy protection. Re-
search [3, 68] explored RDP and shufflers [19, 30, 31] in FL systems
for improved privacy and utility tradeoffs. Geyer et. al. [29] propose
a client-sided DP approach for federated optimization. Bhowmick
et al. [6] demonstrate scalable, locally private model training with
minimal utility loss in large-scale image and language tasks. Li et
al. [47] investigate the feasibility of applying differential privacy
techniques to protect patient data in an FL setup.

Differentially Private Federated Learning. DP-FL is evolving
rapidly. Li et al. [46] introduced FedMask, which protects both
data and model privacy using gradient masking and perturbation.
Wei et al. [76] tackled heterogeneity in FL with a personalized DP-
FL framework that adapts to client characteristics while ensuring
strong privacy. Xu et al. [80] proposed FedCORP, a communication-
efficient personalized FL framework incorporating DP. Zhu et al.
[87] developed a DP-FL algorithm with optimal sample complexity
and theoretical guarantees.

Integrating DP-FL with other privacy-preserving technologies
has also been explored. Chen et al. [13] combined DP with secure
multi-party computation, and Fort et al. [22] examined privacy am-
plification by iteration in FL. Theoretical advances have emerged,
with Liu et al. [50] improving privacy accounting methods for sub-
sampled mechanisms, and Ding et al. [15] introducing an LDP-based
approach enhancing both privacy and communication efficiency.
Ding et al. [15] and Varun et al. [70] further enhanced DP-FL with
local differential privacy approaches that improve communication,
model accuracy, and robustness against attacks.

Recent efforts have also addressed data heterogeneity. Luo et al.
[53] combined DP with multi-task learning for personalized models
across diverse clients. Zhou et al. [86] refined privacy composition
bounds, enabling better privacy loss tracking over multiple rounds.
In the realm of large language models, Dagan et al. [14] proposed a
DP-FL framework tailored to high-dimensional models. Sun et al.
[67] introduced an adaptive DP mechanism that dynamically adjusts
privacy levels, optimizing the privacy-utility trade-off. Zheng et
al. [85] introduced federated f-DP, specifically designed for the
federated setting, while Khanna et al. [42] presented a simple FL
algorithm implementing DP for privacy across different institutions.

Privacy Attacks in FL. Chen et al. [12] proposed generative mod-
els for private data generation, focusing on the effectiveness of DP
in defending against model inversion and GAN-based attacks. In
the context of 5G networks, Liu et al. [51] developed a blockchain-
based secure FL framework, enhancing privacy preservation for
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participants. Naseri et al. [60] conducted a comprehensive eval-
uation of Local and Central DP in FL, assessing their impact on
privacy and robustness. Yang et al. [81] propose a robust distributed
backdoor attack in federated learning inspired by secret sharing
to evade detection and maintain attack efficacy. Sun and Lyu [66]
proposed FEDMD-NFDP, a federated model distillation framework
incorporating a Noise-Free DP mechanism, effectively eliminat-
ing the risk of white-box inference attacks. Kerkouche et al. [41]
introduced a new FL scheme, offering a balance between robust-
ness, privacy, bandwidth efficiency, and model accuracy. Chen et
al. [11] developed a decentralized, privacy-preserving global model
training protocol for FL in P2P networks. Hossain et al. [37] demon-
strated how DP could be exploited for stealthy and persistent model
poisoning attacks in FL. Feng et al. [21] evaluated user-level DP
in FL, specifically in the context of speech-emotion recognition
systems. Lastly, Wang et al. [73] proposed a platform-free proof
of FL consensus mechanism, focusing on sustainable blockchains
and privacy protection in FL models. Salem et al. [63] proposed a
game-based framework to unify definitions and analysis of privacy
inference risks. They use reductions between games to relate no-
tions like MIA and RIA. Nie et al. [62] develop an efficient federated
learning algorithm that is provably privacy-preserving and resilient
to Byzantine adversaries.

8 Conclusion

In this paper, we introduced UDP-FL, a novel framework for DP-
FL that addresses the critical challenge of optimizing the tradeoff
between privacy and accuracy. A key innovation in UDP-FL is the
integration of the Harmonizer, which dynamically selects the most
appropriate DP mechanism for each client, considering their pri-
vacy requirements, etc. By harmonizing various DP mechanisms
with Harmonizor, UDP-FL achieves tighter privacy bounds and
faster convergence compared to SOTA methods. Our experimen-
tal results demonstrate the superior performance of UDP-FL in
terms of both privacy guarantees and model accuracy. Furthermore,
we proposed a mode connectivity-based method for analyzing the
convergence of DP-FL models, providing valuable insights into the
faster convergence. Through extensive evaluations, we also showed
that UDP-FL exhibits substantial resilience against advanced pri-
vacy attacks, further validating the significant advancement in data
protection in FL environments.
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