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Spontaneous and Induced Oscillations in Confined Epithelia
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The feedback between mechanical and chemical signals plays a key role in controlling many biological
processes and collective cell behavior. Here we focus on the emergence of spatiotemporal density waves in
a one-dimensional “cell train.” Combining a minimal theoretical model with in vitro experiments on MDCK
epithelial cells confined to a linear pattern, we examine the spontaneous oscillations driven by feedback between
myosin activation and mechanical deformations, as well as their effect on the response of the tissue to externally
applied deformations. We show that the nature and frequency of spontaneous oscillations is controlled by the
size of the cell train, with a transition from size-dependent standing waves to intrinsic spontaneous waves at
the natural frequency of the tissue. The response to external boundary perturbations exhibits a resonance at this
natural frequency, providing a possible venue for inferring the mechanochemical couplings that control the tissue
behavior from rheological experiments.
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I. INTRODUCTION

Epithelial tissues display collective cell dynamics and
spontaneous spatiotemporal oscillations in many settings
[1]. Examples include coordinated cell motion in zebrafish
fin-regeneration [2], contraction pulses in T. Adherens [3], im-
mune cell migration [4], pulse ratchets in epithelial morpho-
genesis [5], and epithelial migration on patterned substrates
[6]. Self-sustained oscillations are seen in tissues undergo-
ing unconstrained expansion [7–9] and in confined epithelia
[10–12], where the period and wavelength of these sponta-
neous spatiotemporal waves are often set by the confinement
dimensions. Confined geometries are not realized only in
vitro, but also occur frequently in vivo. An example is the
migration of border cell clusters in Drosophila oocytes [13].

Theoretical models have described epithelia as active
elastic materials [14–19], with mechanochemical feedback
between tissue deformation and active stresses induced by
activation of proteins like myosins. These models have been
able to reproduce observed spatiotemporal patterns [20], but
it is generally difficult to extract model parameters from
experiments. Recent experiments have started to probe the
response of epithelia to external mechanical perturbations
[21–26]. Experiments have shown that stretched cell mono-
layers can stress stiffen [27], fluidize [28], or fracture [25],
demonstrating the need for a better understanding of the inter-
play between internally driven active stresses and externally
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imposed deformations in controlling the rheology of biologi-
cal tissue.

In this study, we consider a minimal theoretical model
of epithelium as an active elastic material that incorporates
the mechanochemical feedback between mechanical defor-
mations and phosphorylated myosins. Using this model, we
examine the emergent dynamics of a tissue confined to a
one-dimensional (1D) geometry, as well as its response to
externally imposed oscillatory deformations. We validate our
predictions with observations in an in vitro experimental sys-
tem of MDCK epithelial cells confined to a 1D collagen type
I pattern. The study of cell collectives in confined and pat-
terned geometries has become a very useful tool for probing
the adaptive mechanics of living tissue. In particular, many
cell properties have been explored by confining cells to both
unconstrained [29,30] and finite-length [12] 1D geometries.

We show that the confined tissue exhibits self-sustained
spontaneous oscillations arising from the feedback between
myosin-driven contractility and strain-driven myosin activa-
tion, as found in previous work [9]. These oscillatory modes
are contraction/expansion waves. If the length of the tissue is
smaller than a critical length, the frequency and wavelength
of oscillations are controlled by the tissue size. When the
tissue length exceeds this critical value, the frequency and
wavelength of spontaneous sustained oscillations are regu-
lated by intrinsic properties of the tissue and can be obtained
by a simple linear stability analysis. This crossover between
size-dependent standing waves and intrinsic oscillations has
been observed before and has been understood via a self-
propelled Voronoi model of the tissue as arising from the
cells’ tendency to align their polarization with their velocity
[12]. Here we show that a similar behavior also arises in our
theoretical model of an isotropic tissue from the feedback
between myosin activation and mechanical stresses, without
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an imposed alignment mechanism. In the experimental real-
ization of our cell train confinement may induce local cell
polarization, which has been shown to play an important role
in cell migration in confined and complex environments [29].
Our model demonstrates, however, that explicit alignment is
not required to set up oscillations. On the other hand, con-
tact regulation of cell polarity and locomotion reorganization
are undoubtedly important to capture the interaction of cell
groups with physical boundaries [29].

We then study the response of the tissue to localized step-
strains and compare the response of the model to in vitro
experiments on MDCK cells confined to a linear geometry
by substrate patterning. In vitro the 1D cell collective shows a
preference for moving in the direction of the mechanical stim-
ulus provided by the applied step-strain on a similar timescale
as in our theoretical model. By comparing the model to ex-
periments we find that the response to a short-lived stimulus
depends on the phase of spontaneous oscillations of the ep-
ithelium and that a mechanical perturbation applied on longer
timescales is needed to probe force transmission. We then
examine the response of the tissue to an oscillatory driving
force applied at the boundaries. We show that, in this case, the
tissue oscillates at the externally applied frequency as well
as at its intrinsic oscillation frequency and shows resonance
when the two frequencies match. We show that one can extract
the mechanochemical coupling strength in this system from
measurement of the penetration length.

The organization of the rest of the paper is as follows. We
first provide model details in Sec. II followed by the study of
emergent spontaneous oscillations in confined and unconfined
tissues and the oscillation properties in Sec. III. In Sec. IV we
introduce the experimental setup and compare the results of
step-strain perturbation in model and experiments. In Sec. V
we explore the response to oscillatory boundary forces and
conclude our results in Sec. VI.

II. MODEL DETAILS

We construct a minimal model of an epithelial monolayer
that accounts for the mechanochemical feedback between
myosin activation and cell elasticity. The model is moti-
vated by experiments on 1D cell trains confined by patterning
adhesive proteins [31–33] and inspired by related models pre-
viously considered in the literature [3,9,14].

We consider a linear chain of N cells bounded by vertices
labeled by i = 0, 1, . . . , N (Fig. 1). The unstretched tissue is
confluent and has total length L, with !̄ = L/N a mean cell
length that we take as unit of length. The ith cell is bounded by
vertices at ri and ri+1 with internal tension Ti. The overdamped
dynamics of each vertex is controlled by force balance,
given by

ζ ṙi = Ti − Ti−1, (1)

where ζ is a friction and Ti is the tension in cell i, given by

Ti = k(!i − !i0) ≡ k!̄εi, (2)

with k the stiffness of the cell, !i(t ) = ri+1(t ) − ri(t ) the
length of cell i at time t , εi(t ) = [!i(t ) − !i0(t )]/!̄ the strain,
and !i0(t ) the rest length of cell i at time t . We define the
displacement of each vertex as ui(t ) = ri(t ) − i!̄.

FIG. 1. Schematic of our model of a 1D chain of active elastic
cells with stiffness k and friction ζ . The black ovals denote the cell
vertices which experience traction from the substrate.

Cells in tissue are under tension to balance intracellular
contractile forces and traction forces exchanged with the sub-
strate. The rest length !i0(t ) of each cell is defined as the
length where the tension Ti vanishes. It is itself a dynamical
variable because it can be changed by myosin recruitment.
Previous studies on both confined [10,15] and expanding [7]
epithelia have shown the essential role of myosin in driving
sustained spontaneous oscillations by demonstrating that the
addition of myosin inhibitors leads to the loss of oscillatory
behavior. To incorporate this mechanochemical feedback, we
add equations describing the dynamics of the rest length and
the concentration ci(t ) of phosphorylated myosin in the ith
cell at time t as

!̇i0 = − 1
τa

(!i0 − !̄) − v tanh
(

ci − c0
i

c0
i

)
, (3)

ċi = − 1
τc

(
ci − c0

i

)
+ β̃ tanh

(
!i − !̄

!̄

)
. (4)

The rest length relaxes to !̄ on timescales τa and is decreased
at speed v > 0 by myosin recruitment. In one dimension the
rest length is related to the familiar active stress as

σai = −k(!i0 − !̄). (5)

On times long compared to τa, Eq. (3) then gives σa #
α̃ tanh[(ci − c0

i )/c0
i ] with α̃ = vkτa the activity. It is then

clear that α̃ > 0 corresponds to an active contractile stress.
Importantly, the relation between active stress and rest length
only holds in one dimension. In higher dimensionality, stress
is a tensor and needs to be defined more carefully and
generally.

The concentration ci of phosphorylated myosin turns over
on the timescale τc to an “equilibrium” value c0

i that corre-
sponds to the unstressed system, with !i = !̄. Myosin couples
to mechanical strain and is activated by cell elongation (!i > !̄)
[34] and degraded by cell contraction (!i < !̄) [35] at a rate
per unit length β̃ > 0.

It is useful to also write the continuum equations cor-
responding to the above discrete model. To do this we
nondimensionalize fluctuations in the myosin concentration
as δci = (ci − c0

i )/c0
i . We also use !̄ as a unit of length, the

relaxation time τ = ζ/k that describes the rate at which me-
chanical stresses diffuse in the tissue as a unit of time, and
k!̄2 as a unit of stress. The continuum equations can then be
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written in dimensionless form as

∂tε = ∂2
x ε + ∂2

x σa, (6)

τa∂tσa = −σa + α tanh(δc), (7)

τc∂tδc = −δc + β tanh(ε), (8)

where all quantities are now dimensionless.
The model now contains the two timescales τa and τc

(measured in units of τ ) and two dimensionless parameters:
α = vkτa/!̄, which measures the ratio of the rate at which
myosin activation builds up active stress to its decay rate,
and β = β̃τc/c0, which controls the rate of myosin activation
due to mechanical elongation to the rate of intrinsic myosin
turnover. The model describes a generic activator-inhibitor
system (δc, σa) coupled with a diffusive quantity ε that sets
the scale of the chemical oscillations. On timescales much
larger than the active timescales τa and τc, Eq. (6) describes
an overdamped solid with an effective elastic modulus Beff =
k!̄2(1 + αβ ) enhanced by activity, as seen in experiments over
very long timescales of 6–60 h [18].

The model described by Eqs. (6)–(8) is related to ones
previously studied in the literature [3,9,14,36–38]. In partic-
ular, to linear order it is the same as the model introduced in
Ref. [9] to describe the emergence of spatiotemporal density
waves in freely expanding monolayers from the activation
of extracellular kinase activated by mechanical signals. Here
we include saturating nonlinearities in both feedback terms
in Eqs. (7) and (8), which are important for stabilizing
oscillations.

There is some debate in literature about whether mechani-
cal activation in cells is due to strain or strain rate feedback
[18,26,28,39,40]. Our model accounts for mechanical acti-
vation through both strain and strain rate. This can be seen
by linearizing the above equations and formally integrating
Eq. (8). Substituting the result in Eq. (7) we obtain an integro-
differential form of the dynamics of active stress, given by

τa∂tσa = −σa + αβ

τc

∫ t

0
dt ′e−(t−t ′ )/τcε(t ′)

# −σa + αβε − αβτcε̇ + · · ·, (9)

with ε̇ = ∂tε. This form makes it evident that active stress is
controlled nonlocally in time by the entire mechanical strain
history over the time τc. Previous work on sustained oscilla-
tions incorporates an explicitly time-delayed strain coupling
to the rest length [41]. Equation (9) makes it evident that
our model naturally incorporates this type of time delay. We
note that effective feedback through both strain and strain rate
is important for the emergence of sustained spatiotemporal
waves (see Appendix A).

The numerical results reported below are obtained by solv-
ing the discrete nonlinear equations with RK4 time stepping
and random initial conditions for the myosin levels of each
individual cell.

III. EMERGENT SPONTANEOUS OSCILLATIONS

In the absence of external perturbations, the homoge-
neous steady state is simply c = c0 and ε = σa = 0. Next we

FIG. 2. Phase diagram as a function of the active feedback
A = αβ and τa/τc for a train of N = 100 cells and τ = 5 min. The
symbols are obtained via numerical solution of Eqs. (1), (3), and
(4), with orange dots corresponding to sustained oscillations and
blue crosses to diffusive decay. The solid line is the critical value Ac

obtained from linear stability analysis and given in Eq. (11). Insets:
real (solid orange lines) and imaginary (dashed purple lines) part of
the dispersion relations of the linear modes for A > Ac (top), where
one of the modes becomes unstable (Re[s(q)] > 0) signaling the
transition to sustained oscillations, and A < Ac (bottom), where all
modes are stable. The linear instability for A > Ac is stabilized by
nonlinear terms, resulting in sustained oscillations.

examine the linear stability of this base state by probing the
linear dynamics of fluctuations in both unconfined and con-
fined systems.

A. Unconfined tissue

We first consider an unconfined tissue and assume periodic
boundary conditions. We linearize Eqs. (6)–(8) and look for
solutions of the form ε, σa, δc ∼ est+iqx . The dispersion rela-
tions of the linear modes are then obtained from the solution
of a cubic equation, given by

(s + q2)(τas + 1)(τcs + 1) = −q2αβ. (10)

The onset of oscillations is controlled by the product of
the parameters α and β that govern the feedback between
mechanical deformations and biochemical activation. We
therefore refer to such a product A ≡ αβ as active feedback.

The dispersion relations obtained from Eq. (10) are
sketched in Fig. 2 (insets). One of the modes is always real
and stable due to the diffusive terms in Eq. (6). We refer to
this mode as sd (q). The other two modes can be imaginary
and hence can show oscillatory behavior. We refer to the pair
of imaginary modes as s1,2(q) in the rest of the text.

The two oscillatory modes, s1,2(q), become unstable for
A > Ac, with

Ac =
(√

τc

τa
+

√
τa

τc

)(√
τc

τa
+

√
τa

τc
+ 2

)
, (11)
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in a band of wave numbers q ∈ (q−, q+), given by

q2
± =

A − (τa+τc )2

τaτc
±

√
(A − Ac)

(
A − Ac + 4 τa+τc√

τaτc

)

2(τc + τa)
. (12)

The maximally unstable mode is the fastest growing mode,
which we label as s1,2(qc) = sc, s̄c. For A > Ac the monolayer
will spontaneously oscillate at the frequency of the fastest
growing mode, given by ωc = Im(sc). The wave number and
oscillation frequency of the fastest growing mode can be ex-
plicitly written for A ∼ Ac as

q2
c = 1

√
τaτc

, (13)

ω2
c = 1 + q2

c (τa + τc)
τaτc

. (14)

The parameter A describes the ratio of active stress recruit-
ment to passive stress dissipation. For A > Ac active stress
builds up faster than it is dissipated by elastic diffusion, driv-
ing the instability. The instability requires mechanochemical
feedback through both strain and strain rate. This can be
achieved through the coupled dynamics of active stress and
myosin, as encoded by the coupled equations (7) and (8), as
done in Ref. [9], or equivalently by an explicit coupling to
strain rate in the dynamics of active stress, as shown in Eq. (9).
The latter approach was effectively used in Ref. [16] by in-
corporating advection of actin-bound myosin by the network
velocity.

This instability is stabilized by the saturating effect of the
nonlinear couplings, resulting in the emergence of sponta-
neous sustained oscillations, which are obtained via numerical
integration of the nonlinear equations. The value of Ac
obtained from linear stability analysis agrees well with
the boundary between the region of decaying modes and
sustained spontaneous oscillations obtained numerically, as
shown in Fig. 2.

B. Confined tissue

For the confined system we use Dirichlet boundary con-
ditions for the displacement, u(0, t ) = u(L, t ) = 0. In this
case only wavelengths that are multiples of the system size
L are allowed, i.e., λn = 2L/n, with n an integer. Oscillatory
unstable modes exists for A > Ac and λ ∈ [λmin, λmax], with
λmin,max = 2,/q±. We therefore expect that, for a fixed value
of L, a confined 1D cell train will support spontaneous stand-
ing waves corresponding to n ∈ [nmin, nmax], with nmin,max =
2L/λmax,min. This is indeed shown in Fig. 3 that displays the
period (orange dots) and wavelength (purple crosses) of oscil-
latory modes in a confined cell line as functions of the length
L of the system. The lower and upper dashed lines in the fig-
ure correspond to the values λmin and λmax, respectively. The
middle dashed line is the wavelength of the fastest growing
mode λc = 2,/qc. For the parameter values used in the fig-
ure, λmin = 273.6 µm, λmax = 516.3 µm, and λc = 355.6 µm,
and no oscillations are observed for L < 140 µm. As L in-
creases, we observe oscillations of wavelength corresponding
to the first four modes n = 1, 2, 3, 4 shown by the dotted
black lines in the figure. Each mode can only be excited pro-
vided nλmin/2 < L < nλmax/2. When L exceeds this value for

FIG. 3. Length of a confined chain affects the nature of oscil-
lations. The period (orange dots, left axis) and wavelength (purple
crosses, right axis) of the oscillations are plotted as functions of the
system size L. The results are obtained by numerical integration of
the nonlinear Eqs. (1), (3), and (4). The lower and upper dashed
lines correspond to the wavelengths λmin and λmax, respectively.
The middle dashed line is the wavelength of the fastest growing
linearly unstable mode. Parameters determined by Eqs. (13) and
(14) to match wavelength and period from Ref. [12]: τ = 10 min,
τa = 20 min, τc = 400 min, A = 33.4, and β = 1.0.

n = 1, the system spontaneously excites the second mode and
so on, until L ∼ 4(λmax − λmin). Above this critical value, we
see a transition where the wavelength and period of sponta-
neous oscillations becomes independent of the system size as
the standing waves of wavelength controlled by the system
size are replaced by “intrinsic” spontaneous oscillations at the
natural wavelength λc of the tissue. The ratio between wave-
length and period remains constant and provides an estimate
for the speed of oscillations. To understand the origins of
this critical length, we note that the preferred wavelength of
the system is given by the fastest growing wave vector, but
it is not always attainable due to the constraint imposed by
confinement. For large systems, the band of allowed modes,
[nmin, nmax], is also large, such that a wavelength close to
the fastest growing wavelength can be attained. For smaller
systems, in contrast, the range of allowed modes is limited by
the system size. The crossover between the two is controlled
by the width of the band of unstable wave vectors, which in
turn is controlled by the activity coupling A.

This behavior has been observed experimentally in con-
fined 1D epithelia by us (see Supplemental Material videos
1 and 2 [42]) and previously others [12] and in simulations
of the self-propelled Voronoi model [12], and was under-
stood as arising from a tendency of cells to align their
direction of polarization with their own motility [12,43,44].
Here we show that mechanochemical couplings alone can
capture oscillations in confined epithelia and the transition
from size-dependent standing waves to intrinsic spontaneous
oscillations even in the absence of cell polarity or ad hoc
aligning mechanisms. Probing such a transition in confined
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FIG. 4. Micromanipulation of epithelial 1D cell train. (a) Schematic of the 1D model used for boundary force perturbation studies.
(b) 390×20 µm tracks for cells can be created in a high throughput manner using protein micropatterning, visualized using Oregon green
gelatin. The ECM tracks constrain 20 cells to a single file. (d) Following a 30 µm displacement applied at a rate of 1 µm/s, only the outer 2–3
cells were strained, allowing us to investigate the effects of the transmission of boundary forces on the unstrained collective. Scale bars are
(b) 50 µm and (c), (d) 20 µm.

tissue can provide a way of extracting quantitative information
on the strength of such mechanochemical couplings.

IV. EXPERIMENTAL SETUP AND RESPONSE
TO STEP-STRAIN

Next we examine the response of the system to externally
imposed mechanical deformations. This is inspired by our
recent experiments where a 1D micropatterned epithelial train
of cells is stretched at one end with an adhesive bead (see
Supplemental Material videos 3 and 4 [42]) [45]. The custom
experimental micromanipulation setup is shown in Fig. 4.
MCDK cells are confined to a 1D geometry by an adhesive
pattern of collagen I on a glass substrate. The probe is built by
glueing a glass microbead to a pipette tip and functionalizing
the bead with collagen I [Fig. 4(a)]. The probe is then mounted
onto a piezodriven micromanipulator. Once the probe forms a
stable adhesion to one end of the MDCK cell train [Fig. 4(c)],
the micromanipulator pulls the probe 30 µm (approximately
1.5 cell lengths) stretching the cell line. This strains the local
cell junctions at physiological rates, as quantified using digital
image correlation DIC [Fig. 4(d)]. This procedure generally
exerts a direct strain only on the outer 2–3 cells (see Sup-
plemental Material video 3 [42]) [Fig. 4(d)]. We patterned
lines of 20×390 µm to ensure lateral confinement of the cells
[Fig. 4(b)]. The length is short enough to investigate the effect
of mechanical forces on the entire system.

To quantify the position of the cells, we choose an x axis
oriented along the 1D cell train with x = 0 corresponding to
the left edge of the unstretched cell train [Fig. 4(a)]. We then

stretch the tissue by pulling towards −x and choose t = 0 as
the time of application of the stretch. Using particle image
velocimetry (PIV), we tracked the movement of the cell train
over the course of 6 h following the localized stretch on the
cell train. The local stretch resulted in the propagation of the
strains through the tissue. In the 6 h following the stretch,
the entire cellular system moved approximately 23 µm in the
direction of the applied stretch.

We find that the response of individual cell trains depends
on whether the perturbation is applied in phase or out of phase
relative to the spontaneous oscillations of the monolayer. If the
stretch is applied while the system is spontaneously moving
in the same direction as the applied stretch (i.e., towards −x),
then the cells continue to move towards −x before reversing
due to spontaneous oscillations, although the period of oscil-
lation is slightly increased by the applied stretch that increases
the length of the cell train. If the stretch is applied while the
boundary cells are moving in the direction opposite to the ap-
plied stretch (i.e., towards +x), they will continue to move
in the same direction. In both cases we observe a small de-
layed response to the external stretch in the form of a slight
increase of the amplitude of oscillations towards negative x.
This is supported by the simulations (Fig. 5). The fact that
the position of the center of mass of the cell trains averaged
over many replications in both experiments and simulations
shows motion towards the step-stretch direction implies that
the cell trains are not entirely insensitive to the pull. The
individual response, however, is highly variable and depends
on the instantaneous phase of spontaneous oscillations relative
to the step-stretch direction.
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FIG. 5. Cell-train’s center of mass moves towards the direction
of the applied step-stretch. Both plots show the instantaneous dis-
placement of the center of mass of a 1D cell train to an external
stretch applied at t = 0 along the −x direction. The light purple lines
are the trajectories of individual experiments/simulations. The dark
blue line is the average behavior. In both cases there is high variabil-
ity in the response of individual cell trains, as the cell train largely
continues to move in the direction determined by the spontaneous
oscillations, although with an enhanced amplitude when the latter are
towards −x. The mean motion, however, is always towards the ex-
ternally applied step-stretch. Experiments: trajectories are obtained
from PIV measurements averaged over n = 11 separate experiments
where the contact between the pulled cell and the rest of the cell
line did not dissociate. Simulations: the trajectory of the center of
mass is averaged over n = 100 simulations (only n = 11 trajecto-
ries are shown). The simulation parameters are chosen to match
wavelength and period from experiments: τ = 5 min, τa = 100 min,
τc = 250 min, A = 10.5, β = 1.0, L = 400 µm, and magnitude of
step strain = 30 µm.

It is evident that, in both experiments and simulations, a
step perturbation does not provide quantitative information
of the activated processes that control the tissue dynamics
because the strains and stresses induced in the tissue decay on
timescales of the order of the passive stress relaxation τ . The
relaxation time τ is generally much shorter than the timescales
controlling the buildup of active stress and myosin turnover.
In addition, in our experiment to avoid losing adhesion or
ripping the tissue, the applied stretch must be smaller than
the amplitude of spontaneous oscillations, making it difficult
to quantify the effect of this perturbation on the tissue. These
findings are consistent with the recent observation that acti-
vation of leader cell polarity in expanding cell trains decays
within a few cells and that this local action is not sufficient to
guide the entire cluster [30].

To probe the dynamics of the tissue on a broad range
of timescales we need an applied perturbation capable of
spanning this range of timescales. For this reason in the
next section we examine the response to oscillatory boundary
perturbations.

V. RESPONSE TO OSCILLATORY
BOUNDARY PERTURBATIONS

Next we examined the response of the system to an oscilla-
tory strain applied at the boundary. For simplicity we consider
a symmetric perturbation applied at both ends of a system of

length 2L. By symmetry the response is the same as for an
oscillatory perturbation applied to a system of length L while
keeping the other end fixed.

To evaluate the linear response to oscillatory perturbation,
it is convenient to consider equations for the displacement
u(x, t ) instead of the strain. Linearizing Eqs. (6)–(8), and
using the same dimensionless units, the dynamics is then
governed by

∂t u = ∂2
x u + ∂xσa, (15)

τa∂tσa = −σa + αδc, (16)

τc∂tδc = −δc + β∂xu. (17)

To describe an oscillatory mechanical perturbation at the
boundaries, we solve these equations with boundary condi-
tions u(0, t ) = −u(2L, t ) = - sin (ω0t ). We additionally re-
quire [∂xδc(x, t )]x=0,2L = 0 and [∂xσa(x, t )]x=0,2L = 0. These
conditions guarantee no flux at the boundaries. The details are
given in Appendix B. We work in Fourier space and take the
time Laplace transform with complex frequency s. Only even
components of the amplitudes of the displacement, û(qn, s),
with qn = 2n,/2L, are nonzero and can be written in terms
of a wave number and frequency dependent susceptibility as

û(qn, s) = .̂ (qn, s)F̂ (qn, s), (18)

where

F̂ (qn, s) = −2-

n,

sω0

ω2
0 + s2

. (19)

The susceptibility .̂ (qn, s) is naturally written in terms of a
frequency-dependent inverse penetration length b(s) as

.̂ (qn, s) = b2(s)/s
b2(s) + q2

n
, (20)

with

b2(s) = s

1 + A
(1+sτa )(1+sτc )

. (21)

The real part of b determines the penetration length
!p(ω) = [Re(b(iω))]−1 of the boundary perturbation. In the
absence of activity A = 0, one recovers the response of an
overdamped solid, with a susceptibility .̂ (qn, s) = 1/(s + q2

n )
describing simple diffusive dynamics and a penetration length
!p =

√
2
ω

. Recalling that frequency here is measured in units
of the diffusive time τ , this implies that perturbations at
frequency large compare to τ−1 are quickly damped, while
low frequency perturbations travel throughout the solid. For a
typical epithelial tissue, we estimate τ ∼ 5 min [14].

It is instructive to invert the Fourier and Laplace transforms
to obtain the displacement as a function of space and time. To
do this, we examine the behavior for A just above Ac and only
include the contribution from the poles s = ±iω0 associated
with the external perturbation and from the fastest growing
natural excitations or modes of the unperturbed system, s = sc.
The details of the calculation are given in Appendix C, with
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FIG. 6. Frequency ωpeak of the largest peak in the Fourier spec-
trum ũi(ω) of individual cell displacement is plotted as a function
of the frequency ω0 of the external perturbation. Both frequencies
are scaled by the frequency ωc of the spontaneous oscillations of
the tissue. The plot shows that ωpeak = ωc other than when ω0 ∼
ωc, where it becomes difficult to distinguish the two peaks. Insets:
the spectrum of the displacement field ũi(ω) shows clear peaks at
ω = ω0 (smaller peak) and ω = ωc. Left inset: ω0 = 0.36 h−1. Right
inset: ω0 = 0.96 h−1. Parameters used: same as Fig. 5, which gives
ωc = 0.67 h−1 and L = 600 µm.

the result

u(x, t ) = -|B(x)| sin (ω0t + /1)

− 4-
sin (mc,x/L)

mc,

ω0eRe(sc )t
∣∣(s2

c + ω2
0

)
T (sc)

∣∣

× cos (ωct − /2) + transient modes, (22)

where B(x) = |B(x)|ei/1 is a complex amplitude that encodes
the spatial dependence of the response and T (s) is a complex
timescale. Their explicit expressions, together with the defini-
tion of the phase /2, are given in Appendix B. The integer mc
is defined as mc = )qcL/,*, where )x* represents the floor
of x and qc = (τaτc)−1/4 is the wave number of the fastest
growing mode at A = Ac. The frequency of oscillation of the
second term ωc is the spontaneous oscillation frequency from
the previous sections (see Appendix C).

The response to the perturbation naturally separates into
two contributions. The first term on the right hand side of
Eq. (22) arises from the poles s = ±iω0 associated with the
external periodic forcing, F̂ (qn, s). It describes a contribution
that oscillates at the frequency ω0 of the external perturbation.
We will refer to this term as the perturbation mode. The
second term originates from the poles of the susceptibility,
.̂ (qn, s). It oscillates at the frequency ωc of the spontaneous
oscillations of the unperturbed system. It will be referred
to as the natural mode. Of course the susceptibility has an
infinite number of poles, but near Ac an external perturbation
mainly excites oscillations at the frequency of the external

FIG. 7. Penetration length extracted from numerics (purple dots)
agrees well with the prediction of the linear theory (orange line)
and decreases as 1/

√
ω0 (black dashed line) at both low and high

frequency. Inset: plot of the spatial profile of the perturbation mode
of displacement field. The dashed line is a fit to an exponentially
decaying sine function. Parameters used: same as Fig. 5 except
- = 20 µm and L = 6 mm, 8 mm. Inset: L = 1.2 mm.

perturbation and at the frequency of the natural oscillations
of the tissue. All other modes are rapidly damped.

This finding is supported by the numerical results shown in
Fig. 6. The numerical solution is obtained by solving the full
nonlinear system of Eqs. (1), (3), and (4) for a chain of length
L, with u(L, t ) = 0 and u(0, t ) = - sin ω0t . We compute the
displacement of each cell vertex, ui(t ), at long times after
the initial transients have died out. The Fourier spectrum of
individual displacements, ũi(ω), shown in the insets of Fig. 6
for a representative value of i and two different ω0’s displays
two clear peaks at the external frequency ω0 (smaller peak)
and at the natural frequency ωc. Of course the two peaks
merge when ω0 ∼ ωc. This is highlighted in the main part
of Fig. 6 that shows the frequency of the largest peak only
deviates from ωc when ω0 ∼ ωc and it is not possible to
distinguish the two peaks.

To quantify the effect of the external perturbation, we ex-
tract the contribution at ω0 from all numerically calculated
displacements and examine its spatial dependence.

According to our linear theory, the spatial decay of the
first term of Eq. (22) described by B(x) is well fit by an
exponentially decaying sine function, ∼e−x/!p sin(cx + d ), for
!p ! L, with c and d fitting parameters.

Fitting the numerical solution to this form, we compute the
penetration length shown as blue dots in Fig. 7. The solid red
line is the analytical expression obtained from linear theory.
This diverges at the two values of frequency where the imag-
inary part of the linear modes vanishes. This corresponds to
the vanishing of the imaginary part of the susceptibility that
describes dissipation, where the perturbation is free to travel
undamped across the entire system.

We can only reliably find the penetration length when
ω0 is well separated from the natural oscillation frequency,
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FIG. 8. Amplitude of the response at any point along the cell
train shows the resonance at natural frequency ωc. The various curves
correspond to different cell trains of lengths, L (µm). The shaded re-
gions represent standard deviations. Parameters used: same as Fig. 5
but with - = L/40.

since otherwise the two modes overlap. At small frequencies,
that is on timescales slower than any of the timescales of
the system, active stress and myosin equilibrate quickly, and
one can write σa # Aεp. This simplifies the strain dynamics
and gives !p #

√
(1 + A)/ω. In this regime the system re-

sponds like an overdamped solid, but with a stiffness of the
system enhanced by contractile activity. At large frequencies
the active stress and myosin do not have time to respond
and give !p #

√
1/ω, as in a passive overdamped solid. The

difference in intercepts of the left and right linear sections can
provide a direct measure of the active mechanochemical cou-
pling, A, in physical systems. The penetration length of an
oscillatory boundary perturbation can therefore provide a di-
rect probe of the tissue dynamics. On the other hand, one
would need to probe the system at very low frequencies
(∼10−1–101 h−1), which may be challenging. A square wave
with the same frequency and time period as the sine wave
perturbation may provide a more realistic implementation
and allow one to extract the same information, as shown in
Appendix F.

We next examine the amplitude of the contribution at
the natural frequency ωc. In our linear theory, for A = Ac,
Re(sc) + Im(sc); thus the amplitude of the natural mode
becomes inversely proportional to (ω2

0 − ω2
c ), showing a reso-

nance when the perturbation frequency ω0 matches the natural
frequency ωc. This resonance is reproduced in the numerics,
as shown in Fig. 8. Here we plot the amplitude of the con-
tribution from the natural mode to the response at a fixed
point in space as a function of ω0 for several system sizes.
The highest amplitude for each line is scaled to 1. The re-
sponse shows a clear peak at ωc. Since the numerical system
is nonlinear, we also see phase locking at resonance, where
the value of the locked phase varies with the length of the
system.

VI. CONCLUDING REMARKS

We have studied a minimal model of 1D cell trains that
exhibit spontaneous and sustained spatiotemporal waves and
we confirm these oscillations and responses to perturbations
are observed in our experimental system of a confined 1D
cell train of MDCK epithelial cells [45]. We further examine
both analytically and numerically the response of this model
to an external sinusoidal boundary perturbation. We find
that, when driven by a periodic boundary perturbation of
frequency ω0, the tissue exhibits resonance at its natural
frequency, ωc, which is controlled by the interplay of
timescales associated with myosin recruitment and activation.
Oscillatory boundary perturbations can therefore provide a
method to infer such timescales. We additionally show that
the penetration length of the perturbation can provide an
important measurable quantity and allows an estimate of
the mechanochemical couplings that control the behavior of
the tissue. In numerical simulations we also observe several
phenomena typical of driven nonlinear oscillators, such as
weak resonance at multiples of the natural frequency and
phase locking at resonance. The frequencies at which the
effects of mechanochemical coupling are evident in Fig. 7
are on the timescale of active processes, which are very slow
and estimated to be on the order of 10−1–101 h−1. This may
make it difficult to probe the response to smooth sinusoidal
perturbations. The response could, however be probed via
a square-wave perturbation, which should tease out all the
effects described (see Appendix F).
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APPENDIX A: LINEAR STABILITY ANALYSIS

To evaluate the dispersion relations of the linear modes, we
need to solve the cubic eigenvalue equation (10). This is done
numerically. To gain analytical insight we note that, above a
critical value of A, the real branch of the dispersion relation
crosses the x axis for a band of wave vectors q±. By solving
Re[s(q±)] = 0 together with the dispersion relation we obtain
the expression for q± given in Eq. (12). The requirement that
q± be real and positive gives us the condition A > Ac for
the existence of oscillations. This can also be seen from the
discriminant in Eq. (12).

To understand why we need a model with three dynamical
quantities, where active stress couples to strain rate, we now
discuss a system of two coupled equations for strain and active
stress, with both strain and strain rate coupling, as shown in
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Eq. (9). For clarity, the corresponding equations with the same
nondimensionalization as in the main text are given by

∂tε = ∂2
x ε + ∂2

x σa, (A1)
τa∂tσa = −σa + Aε − Aτc∂tε. (A2)

We can write a second order PDE for the strain by eliminating
the active stress

τa∂
2
t ε +

[
1 − (τa − Aτc)∂2

x

]
∂tε − (1 + A)∂2

x ε = 0. (A3)

The first term with the second time derivative of the strain
represents an inertial force with an effective mass τa and acts
as a memory of previous deformations. The dynamics can be
interpreted as that of a damped oscillator with local effective
frictional dissipation η(q) = 1 + (τa − Aτc)q2 and an effec-
tive elastic stiffness is renormalized by activity, K (q) = (1 +
A)q2. The dispersion relations of the corresponding eigen-
modes are given by

s = −η(q) ±
√

[η(q)]2 − 4τaK (q)
2τa

, (A4)

where η(q) can change signs but K (q) is always positive.
The modes can become oscillatory and unstable when η(q) <
0 and the discriminant is negative. It can be easily shown
that these two conditions are satisfied in a range of wave
numbers. Thus oscillatory instabilities, which are necessary
for engendering sustained oscillations upon stabilization by
nonlinearities, will be present in this system for A > τa/τc.
Without a strain rate coupling, the effective friction becomes
η = 1 + τaq2 and is always positive. Thus all oscillatory solu-
tions are stable and decay. So the presence of an oscillatory
instability requires a strain-rate coupling. Finally, we point
out that the above two coupled equations become unphysical
for negative viscosities, since the smallest scales (q → ∞)
become unstable. This issue is circumvented by using three
coupled equations as we have done in the main text.

To highlight the importance of feedback through strain
coupling, we consider the following equations:

∂tε = ∂2
x ε + ∂2

x σa, (A5)

τa∂tσa = −σa + αδc, (A6)

τc∂tδc = −δc + βε − γ ∂tε. (A7)

The coupling of myosin concentration to strain rate in
Eq. (A7) seeks to dilute the pool of myosin upon stretching
and concentrate it upon compression. The dispersion relation
is again a cubic equation in q given by

(τcs + 1)(τas + 1)(s + q2) = −q2α(β − γ s). (A8)

We can now perform the same analysis as in the main text
where we use Re(s(q±)) = 0 to solve for a pair of wave
vectors. We then assert that these wave vectors must be real
and positive. The resulting condition for sustained oscillations
is again A > Ac(γ ), with

Ac(γ ) =
√

Eγ (
√

Eγ + 2), (A9)

Eγ =
[√

τa

τc
+

√
τc

τa

][√
τa

τc
+

√
τc

τa
− αγ

√
τaτc

]
. (A10)

Here γ shifts the range of instability towards lower values of
activity A, but does not qualitatively change the results. For

FIG. 9. Kymographs of cell displacements obtained from PIV
show global spontaneous oscillations for cell trains of length 390 µm
(left) and 200 µm (right). In both cases the wavelength is twice the
system size. The period of the shorter cell train (right) is noticeably
smaller than that of the longer one (left).

this reason we have used γ = 0 in the main text. On the other
hand, if we consider a system with only strain rate coupling
(β = 0, γ .= 0), then the condition for sustained oscillations
becomes αγ > τa + τc. This model also gives sustained os-
cillations in a range of parameters, but in this case the modes
remain unstable at the shortest wavelengths [s(q → ∞) > 0],
which is clearly unphysical. In other words, the coupling to
strain (β .= 0) has the important function of stabilizing the
system at small scales.

APPENDIX B: SPONTANEOUS OSCILLATIONS
IN EXPERIMENTS

Spontaneous oscillations of epithelia on 1D micropatterned
lines have been reported before [12]. In this Appendix we
display data showing that both our experimental system and
our simulated model indeed exhibit spontaneous oscillations
when unperturbed. Figure 9 shows experimental kymographs
of cell displacement versus time for two cell-train lengths,
390 µm and 200 µm. The kymographs show global oscillations
corresponding to the first spatial Fourier mode, hence with
wavelength twice the system size. Since our experimental
data are noisy, we use established autocorrelation methods
to extract the periodicity of the dynamics. To find the period
of oscillations we calculate the time series of the velocity
of the center of the mass of each cell train and its velocity
autocorrelation function. In both experiments and simulations,
the Fourier decomposition of this function (Fig. 10) shows a
peak at the natural oscillation frequency of the system. We
find that the period of oscillations for the longer cell train is
approximately twice that of the smaller cell train, as predicted
by theory.

APPENDIX C: DERIVATION OF SOLUTION
TO AN OSCILLATING BOUNDARY PERTURBATION

For generality, we present here the solution of Eqs. (15)–
(17) in response to general time-dependent forces applied
at the boundaries of the system, i.e., for u(0, t ) = f1(t ) and
u(2L, t ) = f2(t ). At the end of this Appendix we will then
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FIG. 10. Fourier decomposition of the velocity autocorrelation
function of unperturbed cell trains shows clear peaks at the natural
oscillation frequency. Data are shown for two cell train lengths
[200 µm (left) and 390 µm (right)] from simulations (orange dots,
n = 10 runs) and experiments (navy stars, n = 17 experiments).
The experimental values peak around T = 9.08 h (left) and 14.2 h
(right), respectively. Inset: plot of scaled logarithm of velocity au-
tocorrelation function (blue curves are experimental; orange curves
are numerical). The v-shaped periodic valleys are a signature of
oscillations. Parameters used: same as Fig. 5.

specialize to the specific oscillatory and symmetric perturba-
tion discussed in the main text. The other boundary conditions
impose no flux and are as described in the main text.

To proceed, it is useful to introduce a change of variables,

u(x, t ) = v(x, t ) + f1(t ) + [ f2(t ) − f1(t )]x/2L. (C1)

The equations then take the form

∂tv − ∂2
x v − ∂xσa = G(x, t ), (C2)

τa∂tσa + σa − αδc = 0, (C3)

τc∂tδc + δc − β∂xv = β

2L
[ f2(t ) − f1(t )], (C4)

with

G(x, t ) = ( ḟ1(t ) − ḟ2(t ))x/2L − ḟ1(t ) (C5)

and boundary conditions

v(0, t ) = v(2L, t ) = 0, (C6)

v(x, 0) = [ f1(0) − f2(0)]x/2L − f1(0), (C7)

[∂xδc(x, t )]x=0 = [∂xδc(x, t )]x=2L = 0, (C8)

[∂xσa(x, t )]x=0 = [∂xσa(x, t )]x=2L = 0, (C9)

δc(x, 0) = 0, σa(x, 0) = 0. (C10)

The source term G(x, t ) in the equation for the shifted dis-
placement v is equivalent to an externally applied force.

Keeping the boundary conditions in mind, we expand our
variables in a discrete Fourier series in space,

v(x, t ) =
∞∑

n=1

vn(t ) sin (qnx), (C11)

δc(x, t ) = δc0(t ) +
∞∑

n=1

δcn(t ) cos (qnx), (C12)

σa(x, t ) = σan(t ) +
∞∑

n=1

σan(t ) cos (qnx), (C13)

with qn = n,/2L. The equations for the Fourier amplitudes
are then given by

∂tvn(t ) + q2
nvn(t ) + qnσan(t ) = G(n, t ), (C14)

τa∂tσan(t ) + σan(t ) − αδcn(t ) = 0, (C15)

τc∂tδcn(t ) + δcn(t ) − βqnvn(t ) = 0, (C16)

with

G(n, t ) = [− ḟ1(t ) + ḟ2(t )(−1)n]/qnL (C17)

and initial conditions

vn(0) = [− f1(0) + f2(0)(−1)n]/qnL, (C18)

σan(0) = 0, δcn(0) = 0 ∀n ∈ N. (C19)

Our equations are reduced to a set of ODE that we solve
introducing the Laplace transform of the Fourier amplitudes,
defined as

v̂n(s) =
∫ ∞

0
dt vn(t )e−st , vn(t ) =

∫ δ+i∞

δ−i∞

ds
2, i

v̂n(s)est ,

(C20)

where δ > 0 is chosen to the right of all poles of v̂n(s). We can
solve for v̂n(s), with the result

v̂n(s) = b2(s)
τ s

F (qn, s)
b2(s) + q2

n
, (C21)

where

b2(s) = s

1 + A
(1+sτa )(1+sτc )

(C22)

and

F (qn, s) = τ s
Lqn

∫ ∞

0
dt e−st [(−1)n f2(t ) − f1(t )], (C23)

with A = αβ quantifying activity, as defined in the main text.
We now consider the specific form of the perturbation de-

scribed in the main text, with f1(t ) = − f2(t ) = - sin (ω0t ),
which represents symmetric oscillatory boundary displace-
ments at frequency ω0. In this case by symmetry only Fourier
component corresponding to even values of n = 2m are
nonzero

v̂2m(s) = − 4-

2m,

b2(s)[
b2(s) + q2

2m

] ω0(
s2 + ω2

0

) . (C24)

Inserting the explicit expression for b(s), the inverse
Laplace transform is given by

v2m(t ) = −2-ω0

m,

∫ δ+i∞

s=δ−i∞

ds
2, i

× s(1 + sτa)(1 + sτc)est

(
s2 + ω2

0

)[
Aq2

2m +
(
s + q2

2m

)
(1 + sτa)(1 + sτc)

] .

(C25)

There are multiple poles in the denominator of Eq. (C25):
s = ±iω0, corresponding to the frequency of the external per-
turbation, and the poles of the susceptibility corresponding to
b2(s) = −q2

2m. The latter are simply given by the dispersion
relations of the natural modes of the system evaluated in
Sec. III. One of these modes, denoted by sd (qn), is always real
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and negative and hence decays over timescales of the order of τ . The other two modes, with dispersion relation s1,2(qn), can
become complex and unstable for A > Ac. Thus v2m(t ) can be written as

v2m(t ) = − 2-ω0

m,

∫ δ+i∞

δ−i∞

ds
2, i

s(1/τa + s)(1/τc + s)est

(s − iω0)(s + iω0)[s − sd (q2m)][s − s1(q2m)][s − s2(q2m)]
. (C26)

We cannot obtain an explicit solution for vn(t ) because the location of the modes in the imaginary plane depends on the value
of A. We estimate the behavior for A > Ac by including only the contribution from unstable modes and evaluating those at the
wave number corresponding to the fastest growth rate. For A approaching Ac from above, the fastest growing wave number is
qc = (τaτc)−1/4. Setting qc ∼ ,m/L, we find that the mode corresponding to the fastest growing mode is mc = )qcL/,* ()x*
represents floor of x). An example of the mode structure is shown in Fig. 11 that displays the first seven zeros of b2(s) + q2

2m = 0
for m = 1, 2, . . . , 8. The purple dots denote s1,2(q2m), while sd (q2m) are all on the negative x axis and out of the field of view. For
the parameter values used in the figure, mc = 1 and only the pair indexed by m = 1 is unstable. The integral in Eq. (C26) is then
calculated by closing the contour in a large half-circle to negative x (red path in Fig. 11) and including only the contribution from
the most unstable modes and the zeros corresponding to the external frequency ω0. All other modes are transient and do not affect
long term behavior. We note that for A > Ac there is an entire band of growing modes corresponding to )[q−] < q2m < )[q+].
Restricting ourselves to A ∼ Ac and setting s1(q2mc ) ≡ sc, s2(q2mc ) ≡ s̄c and sd ≡ sd (q2mc ), where the bar denotes complex
conjugate, we find

v(x, t ) = − - sin (ω0t )
(

1 − x
L

)
+ - Re

{
ie−iω0t

(
sinh [b(−iω0)(2L − x)] − sinh [b(−iω0)x]

sinh [b(−iω0)2L]

)}

− 4- sin (mc,x/L)
mc,

Re

{
sc(1/τa + sc)(1/τc + sc) esct

(
s2

c + ω2
0

)
(sc − sd )(sc − s̄c)

}

+ (decaying modes). (C27)

Finally, we can now write the expression for the displacement u(x, t ) as

u(x, t ) = - sin ω0t Re[B(x)] + - cos ω0t Im[B(x)] − 4-
sin (mc,x/L)

mc,
Re

[
esct

(
s2

c + ω2
0

)
T (sc)

]

+ decaying modes, (C28)

where

B(x) = sinh [b(iω0)(2L − x)] − sinh [b(iω0)x]
sinh [2b(iω0)L]

, (C29)

T (sc) = 1
sc

[
1 +

(
sc + m2

c,
2

L2

)(
1

sc + τ−1
a

+ 1
sc + τ−1

c

)]
. (C30)

Here B(x) encodes all spatial dependence and T (sc) is an effective complex timescale. In the main text B(x) is written in terms
of a magnitude and a phase as

B(x) = |B(x)|ei/1 . (C31)

The explicit expressions for |B(x)| and /1 are not particularly illuminating and are not given here.

APPENDIX D: FULL EXPRESSIONS FOR INVERSE PERTURBATION LENGTH

Below we write an expression for the squared inverse penetration length, b2(iω0), with explicit real and imaginary parts. The
expression involves growth rates evaluated at q±, s(q±) = iω±, which are purely imaginary by definition. We find the value
of ω± in the same calculation as suggested for q±. Here we draw attention to two facts. The real part of the squared inverse
perturbation length Re(b2(iω0)) is always negative for all perturbation frequencies. Secondly, the imaginary part Im(b2(iω0))
vanishes at ω±. Thus the penetration length, defined as lp = 1/Re(b(iω0)), diverges at ω±. It can also be seen that at resonance
(for ω0 = ωc, which lies between ω±) the imaginary part of the squared inverse penetration length is small, leading to a large
penetration length:

b2(iω0) =
−ω2

0τ (τa + τc)A + iω0ττ 2
a τ 2

c

(
ω2

0 − ω2
+
)(

ω2
0 − ω2

−
)

ω2
0(τa + τc)2 +

(
1 + A − ω2

0τaτc
)2 , (D1)

!p = 1/Re(b(iω0)) =

√
2

Re(b2) + |b2|
, for Im(b2) + Re(b2), !p #

√
|Re(b2)|

|Im(b2)|
, (D2)

s(q±) = iω± = i
Aτaτc −

(
τ 2

a + τ 2
c

)
±

√(
τ 2

a + τ 2
c − Aτaτc

)2 − 4τ 2
a τ 2

c (1 + A)

2τ 2
a τ 2

c
. (D3)
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FIG. 11. Plot of poles of Eq. (C25) in complex plane for A > Ac.
The purple dots are the first seven solutions to b2(s) = −q2

2m for
m = 1 to 7. The dots above the x axis are s1(q2m ), the lower dots
are s2(q2m ), and sd (q2m ) all lie on the left x axis out of the field
of view. The pair indexed by m = 1 is to the right of the y axis
and hence not a transient. The yellow dots are marginally stable
perturbation modes s = ±iω0. The red dot is δ, chosen such that it
remains to the right of all poles and the contour is closed in a large
half-circle to the left, depicted by the dashed red lines. Parameter
values: τa/τ = 20, τc/τ = 50, Ac = 9.3, and A = 11.0.

APPENDIX E: EFFECT OF PHASE OF PERTURBATION

In this section we include the effect of phase of applied
perturbation on the final solution. We find that the phase at
which the perturbation was applied directly enters the natural
amplitude term. With the perturbation u(0, t ) = −u(2L, t ) =
- sin(ω0t + /0), the solution to displacement field is given by
Eq. (E1):

u(x, t ) = -|B(x)| sin (ω0t + /0 + /1)

− 4- sin (mc,x/L)
mc,

× Re

{
[ω0 cos(/0) + sc sin(/0)] esct

[
s2

c − (iω0)2
]
T (sc)

}

. (E1)

APPENDIX F: PERIODIC BOUNDARY CONDITIONS

Changing the boundary conditions to periodic, we try to
compare our results with experiments on ring shaped geome-
tries. When starting from a homogeneous state, we first see
standing waves develop, which then become traveling waves.
The direction of travel is chosen spontaneously and the speed
of the traveling wave is determined by the highest unstable
wave vector and its oscillation frequency. We see that the
condition for a wave becomes nλ = N !̄. More importantly, in
the current model, we cannot see global rotations, as is seen
experimentally in [44,46]. To study such behavior we would
need to include cell polarity in our model.

FIG. 12. Resonance for 1D cell trains of different lengths (red:
L = 1500 µm; green: L = 1000 µm; yellow: L = 600 µm; blue: L =
400 µm). There is a peak when external frequency equals the natural
frequency ωc and since there are higher harmonics in a square wave
we also get the peaks at ωc/3.

APPENDIX G: RESPONSE TO A SQUARE
WAVE PERTURBATION

A square wave of period T0 = 2,/ω0 and ampli-
tude - can be written as the sum of a Fourier series:
4-
,

∑∞
i=1

1
(2n−1) sin[(2n − 1)ω0t]. The first term, which is of

the highest amplitude, is the sinusoidal perturbation of fre-
quency ω0. Thus substituting a square wave in place of a sine
wave will qualitatively give the same results. There will be a
few differences; there might be additional peaks in resonance
where multiples of the external frequency might equal the
natural frequency. The second largest mode with frequency
3ω0 is most likely to appear. We see this peak at ω0 = ωc/3 in
some simulations. (See Figs. 12 and 13.)

APPENDIX H: STEP-STRETCH
EXPERIMENTAL METHODS

1. Cell culture

Madin-Darby Canine Kidney (MDCK) II type G cells
expressing a GFP E-cadherin reporter were cultured in low
glucose DMEM (Thermofisher 11885084) supplemented with
10% FBS and 1% Penicillin Streptomycin at 37 ◦C with 5%
CO2. Approximately 150 000 cells were seeded within the 35
millimeter glass bottom dish containing the protein patterns
1–2 days before line pulling experiments. Prior to experi-
ments, cells were washed thoroughly with PBS to remove any
cell debris or unadhered cells. Cells were imaged in phenol red
free homemade DMEM supplemented with 50 mM HEPES,
10% FBS, and 1% Penicillin Streptomycin.

2. Protein micropatterning

35 mm glass bottom dishes (Cellvis, D35-20-1.5-N) were
plasma treated for 5 min using atmospheric plasma at 18W
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FIG. 13. Penetration length for a square wave perturbation of
different frequencies.

(Harrick, PDC-32G). A custom cut PDMS ring (8 mm inner
diameter; 12 mm outer diameter) was immediately placed in
the center of the glass bottom and a solution of 100 µg/mL
of poly(l-lysine)-graft-poly(ethylene glycol) (PLL(20)-g[3.5]-
PEG(2)) (SuSoS AG, Dübendorf, Switzerland) diluted in PBS
was added to the ring and left to incubate for 1 h at room
temperature. The PLL-g-PEG was then rinsed 10× with PBS
with excess PBS removed. 20 ÂµL of photoinitiator (PLPP,
Alvéole) was added to the ring and the sample was then
placed on the stage of a Leica DMi8 epifluorescence micro-
scope equipped with a Fluotar 20×/0.40 N.A. objective and
the Alvéole Primo photopatterning system (Alvéole, Paris,
France). To create collagen lines wide enough for a single
cell and long enough to capture long-range force propaga-
tion within our camera field of view, we designed patterns
that were 20 µm wide by 390 µm long. Digital masks for
collagen lines were made using the open-source software
program INKSCAPE56 with a conversion determined by Primo
calibration (0.277 µm/px). The Leonardo plugin (Alvéole
Laboratory) on µ manager software57 was used to create an
array of digital masks, yielding 30 collagen lines per single
glass bottom dish. Digital masks were projected through the
glass at a dosage of 800 mJ/mm2 from a 375 nm, 7.10 mW
laser. Following light exposure, the photoinitiator was rinsed
off with PBS and approximately 100 ÂµL of 50 Âµg/mL rat
tail collagen 1 (Corning, 354236) dissolved in 0.1 acetic acid
was added to the ring. The sample was left to incubate for 1 h
at room temperature before finally being rinsed and stored at
4 ◦C with PBS.

3. Preparation of custom probes

20 µm inner diameter prepulled glass micropipette tips
(World Precision Instruments, TIP20TW1) were angled to

approximately 120◦ using an open flame for better fixture
within the micromanipulator. A glass bottom polystyrene dish
was then coated with optical glue (Norland Products, NOA81)
and 30 µm diameter borosilicate glass beads (Cospheric,
BSGMS-2.2 27–32 µm). Using a micromanipulator (Sen-
sapex, uMp-3), the probe was delicately lowered in the optical
glue and pressed gently against a glass bead. The probes
were then pre-cured using a handheld UV laser (Lightfe,
UV301 365 nm) and fully cured using a 365 nm UV lamp
(Spectroline, EN-180). After the bead was glued to the glass
micropipette tip, probes were plasma treated using atmo-
spheric plasma at 18W (Harrick, PDC-32G) and immediately
incubated for 1–3 h at room temperature with 50 Âµg/mL
rat tail collagen 1 (Corning, 354236) dissolved in 0.1% acetic
acid. The probe was then rinsed with phosphate buffered
saline (PBS) and mounted to a micromanipulator (Sensapex,
uMp-3) using a probe holder (Digitimer, H-12)

4. Micromanipulation and microscopy

The sample containing cell trains was placed on the stage
of a Zeiss Axio Observer 7 widefield fluorescence microscope
placed on a vibration isolation table (Newport). To ensure
cell viability, the cell media was supplemented with HEPES
to buffer acidity and the microscope chamber was heated to
37 ◦C. The probe was lowered into the media containing dish,
1–2 µm above the substrate surface. Mineral oil (Fisher Scien-
tific, 8042-47-5) was added to the top of the dish to seal media
and prevent evaporation. After the system had stabilized from
thermal drift (1–3 h), the probe was brought flush against the
outermost cell of the cell train and left to form a strong stable
attachment over 4–12 h. The micromanipulator then applied
a predetermined displacement of 30 µm at a rate of 1 µm/s
and simultaneously imaged every 2 s. Immediately following
mechanical stretch, the cell line was imaged every 5 min for
6 h with a 20× objective using brightfield imaging.

5. Particle image velocimetry

Raw brightfield images from before and after boundary
strain were cropped to the confines of the cell train, exclud-
ing movement of the bead (approximately 400 µm×25 µm).
Image stacks were then exported as tiff files and analyzed
using PIVLab (MATLAB, The MathWorks) with a sequence
style of 1–2, 2–3, 3–4, etc. For analysis, fast Fourier trans-
form (FFT) window deformation was selected with a Gauss
2×3-point subpixel estimator. The cropped region was further
refined with an ROI to yield 4–7 rows of ROI windows (i.e.,
4–7 vectors in the vertical direction). For postprocessing, pa-
rameters under vector validation included 4 as the standard
deviation filter and 5 as the local median filter threshold.
Vectors were then thresholded to exclude x velocities greater
than 20 px/frame and less than −20 px/frame. Velocities
in the y direction greater than 10 px/frame and less than
−10 px/frame were also excluded.
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