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1. INTRODUCTION

This paper examines the problem of modeling the dynam-
ics of oxygen flow in a mechanical ventilator’s endotracheal
(or “breathing”) tube. This problem is motivated by the
grand challenge of providing life support for respiratory
failure patients. The COVID-19 pandemic brought this
challenge to the forefront of societal awareness by causing
millions of deaths worldwide (Taylor (2022)). Moreover,
even before the pandemic, more than 1.1 million respira-
tory failure patients were hospitalized annually in the U.S.
alone, with the average hospitalization lasting 10 days and
costing more than $150,000 (Kempker et al. (2020)).

Mechanical ventilation is the most prevalent respiratory
support technology today. It involves supplying inhaled
gas at elevated pressures and oxygen concentrations com-
pared to spontaneous breathing. Unfortunately, such ag-
gressive pulmonary support has the potential to cause
ventilator-induced lung injury (VILI): a condition that
worsens ventilation effectiveness, and can be life threaten-
ing (Anzueto et al. (2004)). When mechanical ventilation
is no longer viable due to VILI, severe lung parenchyma
disease, etc., the only alternative is to support the pa-
tient in an extra-pulmonary manner. This can be achieved
through extra-corporeal membrane oxygenation (ECMO),
where blood is oxygenated using a gas exchange membrane
extracorporeally, then returned to the patient (Marasco
et al. (2008)). ECMO is highly effective, but it comes

with significant complexity, cost, and safety risks (Murphy
et al. (2015)). These factors have motivated research on
extra-pulmonary interventions where oxygen carriers are
circulated through a body cavity such as the abdomen or
large intestine. The idea is to enable diffusion-based oxy-
gen transport into the bloodstream, thereby employing the
above body cavities as “third lungs” (Carr et al. (2006);
Feshitan et al. (2014); Okabe et al. (2021)).

Modeling the dynamics of endotracheal oxygen transport
is important because it can enable: (i) mechanical venti-
lator control; (ii) patient monitoring; and (iii) pulmonary
oxygen intake estimation. Estimating pulmonary oxygen
intake is particularly valuable during laboratory animal
experiments on respiratory failure. One possible protocol
for such experiments involves using a mechanical venti-
lator to induce either hypoxia (i.e., oxygen deprivation)
or hypercarbia (i.e., excessive CO2 in the bloodstream)
by curtailing either inspired oxygen concentration or ven-
tilation rate, respectively (KadkhodaeiElyaderani et al.
(2023)). Researchers can then examine the physiological
impacts of hypoxia/hypercarbia, as well as the degree to
which different extra-pulmonary life support technologies
can help mitigate respiratory failure.

In theory, estimating the rate of endotracheal oxygen flow
is a three-step process. One needs to measure (i) endo-
tracheal oxygen concentration and (ii) total airway flow
rate, then simply (iii) multiply these two signals. Unfor-
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tunately, the sensors typically employed for the above two
measurements in clinical settings often have significantly
different dynamics and communication delays. This can
induce sizable estimation errors, especially if the difference
in overall measurement lag between the two sensors is
non-trivial compared to the duration/period of a single
breath. Instantaneous tracheal oxygen flow rate estima-
tion is, therefore, quite challenging in practice, even if it
appears straightforward in theory.

There is a significant literature on endotracheal oxygen
intake modeling and estimation. Schena et al. (2015) and
Breen and Rosenbaum (2013) survey the ideas and tech-
nologies employed for such estimation. Airway oxygen flow
estimation is recognized as being quite difficult in this lit-
erature, with at least one study reporting failure to achieve
such estimation (Vincent et al. (2016)). The literature
identifies sensor time delay as being a major contributor
to this difficulty, for both O2 and CO2 flow rate estimation
(Breen et al. (1992); Chen and Chen (2019)). The litera-
ture also recognizes the importance of accounting for the
multiplicity of time constants and/or delays for a given
gas concentration sensor (Vincent et al. (2014)). Correct-
ing concentration and flow rate sensor measurements for
different humidity levels and temperatures is also recog-
nized as important for overall estimation accuracy (Breen
(2000)). Different innovations in estimation algorithms and
measurement hardware are proposed for addressing these
challenges (e.g., Rosenbaum et al. (2007)). This includes
the design of closed-loop ventilation circuits where aggres-
sive CO2 purging, coupled with measurements of total gas
volume change, enables the estimation of oxygen intake
rate (Hirschl et al. (1993)). The literature also presents
the development of testing hardware for evaluating differ-
ent respiratory gas flow rate measurement and estimation
systems (Helwig et al. (2014)).

The above literature, while valuable, focuses predomi-
nantly on correcting tracheal oxygen flow estimates for
measurement errors, dynamics, and time delays. While
such correction is valuable, at least one other factor has
a non-trivial effect on the accuracy of instantaneous pul-
monary oxygen intake estimation - namely, tracheal advec-
tion. The endotracheal tube, together with the hardware
attached to it such as water traps, filters, etc., essentially
serves as a dead volume. Modeling the impact of this dead
volume on overall pulmonary gas transport dynamics is
important - and, to the best of our knowledge, relatively
unexplored in the literature.

The remainder of this paper addresses the above research
gap by presenting: (i) a sensor package for pulmonary
oxygen flow rate estimation; plus (ii) an integrated model
of the tracheal advection and sensor dynamics associated
with this package. To the best of our knowledge, this
integrated model as well as its experimental parameter-
ization is a novel and important addition to the literature.
The remainder of the paper presents the sensor package
(Section 2), its initial bench-top characterization (Section
2), the proposed model (Section 3), and its parameteriza-
tion using laboratory hypoxia experiments on a Yorkshire
swine (Section 3). As discussed in Section 3, the proposed
model estimates tracheal oxygen concentration measure-
ments accurately. This provides confidence in its suitability
for pulmonary oxygen intake estimation in future research.

2. SENSOR PACKAGE AND BENCHTOP
CHARACTERIZATION

Fig. 1. Sensor package and characterization setup

Figure 1 provides a schematic of this paper’s sensor pack-
age, as well as the benchtop setup used for its prelimi-
nary characterization. The sensor package measures oxy-
gen concentration and total gas flow rate in a gas tube.
One end of the gas tube is open to the atmosphere. The
other end receives an adjustable mixture of O2 and N2

from a characterization setup consisting of two gas tanks
plus two mass flow controllers. The sensor package uses an
inline sensor (SFM3200-AW, Sensirion AG) for obtaining
bidirectional flow rate measurements in the gas tube. A
clip-on cap/cable evaluation kit (SEK-SFM3xxx-AW/D,
Sensirion AG), which includes a built-in pressure sensor,
is attached to the flow sensor. Both sensors communicate
via the I2C protocol, which the clip-on cap converts to RS-
232. Moreover, the clip-on cap’s 0.5 W built-in heater is
continuously activated to prevent moisture accumulation
on the sensor. The RS-232 signals are converted to TTL
and read by a microcontroller development board (Teensy
4.1), which then converts the measurement data into ana-
log signals using two DAC converters (Adafruit AD5693R,
Analog Devices) at a rate of 2 kHz. A small portion of total
gas flow (namely, 200 mL/min) is sampled and routed into
a clinical capnograph (Datex-Ohmeda Capnomac Ultima)
for oxygen concentration measurement. Analog oxygen
concentration and gas flow rate measurements are finally
read by a data acquisition board (dSpace MicroLabBox-II)
at a 100Hz sampling rate.

Every sensor and actuator in the above setup has inherent
dynamics and delays. Recognizing this, one can perhaps
design a separate setup for characterizing each sensor and
actuator independently. However, doing so is unnecessary
for accurate tracheal oxygen flow estimation, because the
accuracy of such estimation depends on the ability to
characterize the difference in dynamics and delays between
the setup’s two sensors. The purpose of the above setup is
to provide an initial characterization of this difference.

Figures 2 and 3 show the total gas flow rate measured
during one of the benchtop characterization experiments.
The commanded N2 flow rate was 0.5 L/min throughout
this experiment, but a step O2 input was commanded,
rising from zero to 4.5 L/min. The intent was to generate
a rise in O2 concentration from zero to 90%. The plot in
Fig. 2 shows the measured total flow rate in the gas tube.
The fact that this plot is not a perfect step function reflects
the combined dynamics, delays, and errors associated with
the gas flow controllers and flow rate sensor.
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Fig. 2. Gas flow during benchtop characterization

Fig. 3. Benchtop sensor characterization results

We characterized the difference in dynamics between the
flow rate and oxygen concentration sensors by solving the
following optimization problem:

min
ξ1,qN2

,α,τ

N−500∑

i=501

(ξi−τ/δt − ϕi)
2

sub. to : ξ∗i =
qi − qN2

qi
,
ξi − ξi−1

δt
= α(ξ∗i−1

− ξi−1)

(1)

In the above optimization problem, i represents a discrete-
time sampling index, ϕi is a measurement of oxygen con-
centration (as a fraction), and qi is a total flow rate
measurement. A constant N2 flow rate value of qN2

is
assumed at all moments in time. Therefore, the quantity
ξ∗i represents a flow rate measurement-based estimate of
oxygen concentration. The dynamics of the actual mea-
surement of oxygen concentration versus time are related
to this flow rate measurement-based estimate through a
first-order discrete-time filter whose dynamics are dictated
by the constant α. Moreover, this measurement is assumed
to go through a pure time delay equal to τ , corresponding
to τ/δt samples, where δt = 0.01 seconds is the sampling
time. If this number of samples is not an integer, linear
interpolation is used for computing ξi−τ/δt. The optimiza-
tion objective represents the summed square error in pre-
dicting the oxygen sensor’s concentration measurement.
Because the time delay, τ , can be substantial, optimization
is performed over a shortened time window compared to
the full experiment, starting 5 seconds after the beginning
of the experiment and ending 5 seconds before its com-
pletion. The optimized parameters are the initial oxygen

concentration estimate, ξ1, the constant nitrogen flow rate,
qN2

, the constant α representing sensor dynamics, and the
sensor delay τ . Please note that while the commanded N2

flow rate is known, optimizing an estimated N2 flow rate,
qN2

, makes it possible to correct for at least one possible
cause of experimental error (namely, N2 flow command
execution error). This optimization problem was solved
using the particleswarm function in Matlab.

Figure 3 plots the time-shifted estimate of oxygen con-
centration measurement versus the actual measurement.
An excellent quality of fit is obtained, with a root mean
square concentration percentage error of 1.70%. The opti-
mal parameter estimates are ξ1 = 0, qN2

= 0.434L/min.,
α = 1.65s−1, and τ = 3.95s. These values reflect the
facts that the initial gas tube oxygen concentration is
zero, the gas flow controllers are imperfect, and the oxygen
sensor has non-trivial measurement dynamics/delay. The
estimated value of τ is particularly important because it
is comparable in magnitude to the duration of a typical
breath. This is a massive time delay, one that is guaranteed
to jeopardize tracheal oxygen intake estimation accuracy
if it is not accounted/corrected for. To complicate mat-
ters further, the value of this delay is not guaranteed
to remain the same as one migrates from benchtop to
animal experiments. A portion of this delay, for instance,
is likely to depend on the length of the tubing used for
providing sampled gas to the capnograph. This tubing
is often replaced between experiments, and its length is
not guaranteed to remain precisely the same from one
experiment to another.

3. ADVECTION MODEL DEVELOPMENT AND
IDENTIFICATION

Sensor dynamics and delays are not the only factors
affecting the accuracy of oxygen intake estimation. The
dead volume of the endotracheal tube and its attachments
is also very important to model. To see this, consider a
hypoxia experiment where tidal volume and respiratory
rate are set to 500 mL/breath and 20 breaths/minute,
respectively. Moreover, suppose that the inspired (i.e.,
inhaled) and expired (i.e., exhaled) oxygen concentrations
in this experiment are 20% and 15%, respectively. If one
neglects endotracheal tube volume, it is reasonable to
estimate a net/average pulmonary oxygen transport rate
of 20 × 500 × (0.2 − 0.15) = 500 mL/min. Now suppose
that the endotracheal tube has a total volume of 100
mL. This implies that during every breath, while the
mechanical ventilator provides 500 mL of inspired air, 20%
of this air fills the endotracheal tube, and only 80% reaches
the lungs. A similar calculation can be employed during
exhalation, the conclusion being that the true pulmonary
oxygen transport rate is only 400 mL/min. This simple
example illustrates the fact that the larger the volume of
the tracheal tube, the more important it is to take into
account when computing pulmonary gas transport rates.
In fact, in the limit as the tracheal tube’s volume becomes
equal to (or greater than) tidal volume, net endotracheal
gas transport rates will approach zero. Endotracheal tubes,
in and of themselves, tend to be small in volume. However,
once these tubes are equipped with additional devices
(e.g., filters, water traps, etc.), their effective volumes



716	 Behzad KadkhodaeiElyaderani  et al. / IFAC PapersOnLine 59-30 (2025) 713–718

Fig. 4. Advection model schematic

increase, with the 100 mL volume used in this illustrative
example being plausible in practical hypoxia experiments.

This paper addresses the above insights by proposing a
novel model capturing both (i) the dynamics of endotra-
cheal gas transport and (ii) the difference in dynamics
between airway flow rate and concentration sensors. As
shown in Fig. 4, the model treats the endotracheal tube
as a purely advective transport channel connecting two
well-mixed chambers representing a mechanical ventilator
and the lungs, respectively. The assumption that these two
chambers are well-mixed means that at every moment in
time, there will exist two bodies of gas in the endotracheal
tube, each body containing a spatially uniform gas con-
centration equal to either inspired or expired gas concen-
tration. This simplifies the advection modeling problem by
eliminating the need for solving an advection partial dif-
ferential equation (PDE). Instead, one can simply employ
an ordinary differential equation (ODE) model, such as
the one shown below:

ẋ =
q(t)

πD2

4

(1− U(−x)− U(x− L))

ξ∗(t) = cet(t) + (ci(t)− cet(t))U(x(t)− xs)

ξ̇ = β(ξ∗(t)− ξ(t)), y(t) = ξ(t− τ)

(2)

The above model approximates the endotracheal tube as a
cylinder of length L and diameterD. The model represents
the ventilator and lungs as well-mixed chambers providing
gas at the inspired and expired oxygen concentrations,
ci(t) and cet(t), respectively. These concentrations are
treated as inputs to the model, and their variations with
time are assumed to be much slower than the duration of a
single breath. The state variable x(t) represents the axial
location of a boundary separating these two gas concen-
trations. Total airway gas flow rate is denoted by q(t), and
treated as a model input. Dividing this flow rate by tube
area furnishes a nominal velocity, ẋ of the boundary point
between the two gas concentrations. The terms U(−x) and
U(x − L) correct this velocity term by preventing x(t)
from dropping below zero or exceeding L, respectively,
with U being the unit step function. The constant pa-
rameter xs represents the location of the oxygen sensor
along the endotracheal tube. The gas concentration at this
sensor, ξ∗(t) equals cet(t) when x(t) < xs, and equals ci(t)
otherwise. The sensor is assumed to have continuous-time
linear first-order dynamics with an eigenvalue −β, related
to the discrete-time constant α and the time step δt from
the benchtop characterization experiment by α = (1 −

e−βδt)/δt. Finally, the output measurement from the sen-
sor, y(t), is equal to the output of these first-order sensor
dynamics with a time delay τ .

Fig. 5. Experimental results: measured total gas flow rate

Fig. 6. Experimental results: O2 concentration measure-
ments

We parameterized the above model for an IACUC-
approved hypoxia experiment conducted at Temple Uni-
versity on an adult Yorkshire swine. The experiment in-
volved curtailing inspired oxygen concentration to induce
hypoxia, using a recirculating mechanical ventilator capa-
ble of delivering inhaled anesthetics (AVS-Penlon). The
ventilator settings were adjusted to provide a tidal volume
of 500 mL/min, at a respiratory rate of 20 breaths/minute.
A total of 550 seconds of experimental data were used for
model parameterization, as discussed in more detail below.

Figure 5 shows the raw measurements of total gas flow
rate in the endotracheal tube, for a representative portion
(namely, the first 60 seconds) of the overall fitting dataset.
The ventilator provides the animal with the requested
respiratory rate. Moreover, in order to track the desired
tidal volume command, the ventilator provides significant
instantaneous gas flow rates, potentially as high as 30-
40 liters per minute. Trapezoidal numerical integration
of this signal with respect to time makes it possible to
estimate total changes in lung volume versus time. This,
in turn, makes it possible to correct small biases in the flow
rate measurement signal (specifically, by adjusting the bias
corrections to eliminate long-term drifts in lung volume
estimates). Doing so furnishes the flow rate signal, q(t),
employed in the proposed advection model.
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Figure 6 provides the real-time oxygen concentration mea-
surements from our sensor package. Time-dependent upper
and lower bounds of this measurement are obtained us-
ing a simple moving-horizon peak-finding algorithm, then
smoothed using a moving-horizon average. This furnishes
estimates of both inspired oxygen concentration, ci(t),
and expired oxygen concentration, cet(t), that are subse-
quently used for fitting the proposed advection model. As
shown in the figure, these concentrations vary slowly with
time compared to the duration of a single breath, even
in a transient hypoxia experiment. This supports one of
the assumptions behind the proposed advection model -
namely, that inspired and expired oxygen concentrations
vary slowly compared to the time duration of one breath.

Given the above input signals, we used the particleswarm
optimization routine in Matlab to minimize the root mean
square deviation between predicted and measured oxygen
concentrations. Optimization was performed with respect
to seven model parameters, as shown below.

Table 1. Model parameterization results

Symbol Meaning Estimate Units

D Tube diameter 17.7 mm
L Tube length 1.66 m

x(0) Initial condition 1.66 m
xs Sensor location 0.37 m
−β Sensor eigenvalue -2.79 1/sec
ξ(0) Initial condition 32.6 %
τ Time delay 4.26 s

The above parameter values resulted in excellent pre-
dictions of oxygen concentration sensor measurements.
Figures 7 and 8 highlight this by comparing the true
oxygen sensor output versus the predicted sensor output
for both the full fitting period and the first 60 seconds of
this period, respectively. The root mean square error in
predicting instantaneous oxygen concentration is 0.50%.
This suggests that modeling endotracheal oxygen trans-
port dynamics as being advective in nature is reasonable.
It also suggests that the model parameters provide a good
fit for the underlying dynamics.

At least two important observations can be made by
examining the above model parameter values:

• First, while the optimal estimate of the endotracheal
tube’s diameter is reasonable, the optimal estimate
of tube length is excessively large. In this paper’s
hypoxia experiment, the endotracheal tube consisted
of multiple interconnected sections, ranging in diam-
eter from 16 mm to 22 mm. The estimated diameter
falls within this range. However, the total length of
the endotracheal tube in the hypoxia experiment was
significantly shorter than the optimal estimate. This
discrepancy can be easily explained and justified by
computing the estimate of the endotracheal tube’s
volume from the optimal estimates of its length and
diameter - namely, 408 mL. While this is an unrea-
sonable estimate of the volume of the endotracheal
tube alone, it is a potentially plausible estimate of the
volume of the tube plus the attached accessories (es-
pecially the water trap used for preventing moisture
accumulation on the flow rate sensor). The magnitude
of this “dead volume” is quite substantial compared
to the ventilator’s tidal volume setting, highlighting

Fig. 7. Fitting results: full duration

Fig. 8. Fitting results: first 60 seconds

the great importance of modeling this dead volume
prior to oxygen intake estimation.

• Second, while the estimated values of the sensor’s
time constant and delay are on the same order of
magnitude as the outcomes of the benchtop experi-
ment, there are non-trivial differences between those
two sets of parameter estimates. These differences are
to be expected, for a number of reasons, one of which
is that variation in the length of the sampling tube
used for capnography from one experiment to an-
other. This observation underscores the importance of
utilizing the proposed advection model, together with
system identification, for experiment-specific charac-
terization of airway oxygen transport dynamics.

4. CONCLUSIONS

The main conclusion of this paper is that modeling and
parameterizing the dynamics of endotracheal gas transport
and oxygen sensor dynamics/delays makes it possible to
fit the real-time measurements of airway oxygen concen-
tration with very high accuracy. A reasonable next step, to
be explored in future research, is to validate the pulmonary
oxygen intake estimates furnished by such modeling. This,
in turn, has the potential to be quite valuable as an
experimental tool for assessing and comparing different
respiratory support technologies.

ACKNOWLEDGEMENTS

This research was supported by the National Science Foun-
dation’s Growing Convergence Research (GCR) program
under Grants OIA2121110 and OIA2227939. The authors
gratefully acknowledge this support.



718	 Behzad KadkhodaeiElyaderani  et al. / IFAC PapersOnLine 59-30 (2025) 713–718

REFERENCES

Anzueto, A., Frutos-Vivar, F., Esteban, A., Aĺıa, I.,
Brochard, L., Stewart, T., Benito, S., Tobin, M.J.,
Elizalde, J., Palizas, F., et al. (2004). Incidence, risk
factors and outcome of barotrauma in mechanically ven-
tilated patients. Intensive care medicine, 30, 612–619.

Breen, P.H. (2000). Importance of temperature and hu-
midity in the measurement of pulmonary oxygen uptake
per breath during anesthesia. Annals of Biomedical
Engineering, 28(9), 1159–1164.

Breen, P.H., Isserles, S.A., Harrison, B.A., and Roizen,
M.F. (1992). Simple computer measurement of pul-
monary vco2 per breath. Journal of Applied Physiology,
72(5), 2029–2035.

Breen, P.H. and Rosenbaum, A. (2013). Monitoring of
o2 uptake and co elimination during anesthesia and
surgery. Monitoring Technologies in Acute Care Envi-
ronments: A Comprehensive Guide to Patient Monitor-
ing Technology, 305.

Carr, S.R., Cantor, J.P., Rao, A.S., Lakshman, T.V.,
Collins, J.E., and Friedberg, J.S. (2006). Peritoneal
perfusion with oxygenated perfluorocarbon augments
systemic oxygenation. Chest, 130(2), 402–411.

Chen, H.Y. and Chen, C. (2019). Development of a
breath analyzer for o2 and co2 measurement. The Open
Biomedical Engineering Journal, 13(1).

Feshitan, J.A., Legband, N.D., Borden, M.A., and Terry,
B.S. (2014). Systemic oxygen delivery by peritoneal
perfusion of oxygen microbubbles. Biomaterials, 35(9),
2600–2606.
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