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Abstract— Bayesian optimization (BO) is a popular approach
for optimizing expensive-to-evaluate black-box objective func-
tions. An important challenge in BO is its application to high-
dimensional search spaces due in large part to the curse of
dimensionality. One way to overcome this challenge is to focus
on local BO methods that aim to efficiently learn gradients,
which have shown strong empirical performance on high-
dimensional problems including policy search in reinforcement
learning (RL). Current local BO methods assume access to
only a single high-fidelity information source whereas, in many
problems, one has access to multiple cheaper approximations
of the objective. We propose a novel algorithm, Cost-Aware
Gradient Entropy Search (CAGES), for local BO of multi-
fidelity black-box functions. CAGES makes no assumption
about the relationship between different information sources,
making it more flexible than other multi-fidelity methods. It
also employs a new information-theoretic acquisition function,
which enables systematic identification of samples that max-
imize the information gain about the unknown gradient per
evaluation cost. We demonstrate CAGES can achieve significant
performance improvements compared to other state-of-the-art
methods on synthetic and benchmark RL problems.

I. INTRODUCTION

The problem of optimizing expensive-to-evaluate, noisy
black-box functions arises in many real-world applications in
science, engineering, machine learning, and beyond. Specific
examples include policy search in reinforcement learning
(RL) [1], hyperparameter tuning [2], material design [3], and
configuration of high-fidelity physics-based simulators [4].
Bayesian optimization (BO) [5] is one of the most popular
and well studied algorithms for sample-efficient black-box
optimization. Although BO has shown good empirical per-
formance on a diverse set of problems, the framework has
historically struggled on problems with more than around 10
or so dimensions. This challenge is often referred to as the
“curse of dimensionality”, i.e., BO’s cumulative regret scales
exponentially with the search space dimension (unless strong
assumptions, such as additive structure, are satisfied) [6].

Since global optimization in many dimensions inherently
requires more search space exploration, an emerging alter-
native is to search for locally optimal solutions to high-
dimensional objective functions to circumvent this challenge.
In fact, this is the same motivation used when training
large-scale (deep) neural network architectures, with the
key difference being that we cannot directly observe the
gradient of the objective function due to its black-box nature.
Nonetheless, it is possible to use BO-like approaches to
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(efficiently) learn the gradient of the objective through noisy
observations, which can be used to update the inputs in a way
that locally improves the objective. Such recently developed
local BO methods have shown strong performance on a
variety of high-dimensional optimization tasks [7], [8], [9].
A simple and intuitive example of this type of scheme is
Gradient Information with BO (GIBO) [7], which involves
three main steps: (i) construct a Gaussian process (GP) model
of the objective function, (ii) use the GP to identify the
inputs that are most likely to reduce the average variance of
the gradient estimator at a given location, and (iii) combine
the gradient estimate with a local optimization algorithm to
update the input location.

In many scenarios, we have access to lower-fidelity ap-
proximations of the objective function that can be queried
at a cheaper cost than the true objective. A common case
where this occurs is when the objective evaluation involves
some internal numerical scheme in which one can trade
off accuracy for improved computational cost. For example,
in policy search for RL, one can increase the integration
time, reduce the sample size used to estimate the average
reward, and/or replace a detailed physics-based simulator
with an approximate version to reduce cost. The problem of
integrating these so-called auxiliary “information sources” to
reduce the cost of BO is often referred to as multi-fidelity
BO (MFBO) [10], [11], [12], [13]. Many current MFBO
methods, however, have been shown to fail when certain
underlying assumptions on the auxiliary information sources
are not met. A clear example of this behavior is [10], which
requires the deviation between the true and approximate ob-
jective functions to be bounded by a known constant (rarely
the case in practice). Additionally, there has been little-to-no
work on local MFBO that could address the aforementioned
challenges with high-dimensional optimization problems.

In this work, we propose a local MFBO algorithm called
Cost-Aware Gradient Entropy Search (CAGES), which is
conceptually simple, efficiently implementable, and gener-
ally applicable to multi-fidelity objective functions (i.e., we
make no prior assumptions on the relationship between
the underlying information sources). CAGES relies on a
latent variable Gaussian process (LVGP) model [14], which
utilizes a unique covariance function structure, to enable
on-the-fly learning of relationships between the different
fidelity levels. It further maximizes a cost-aware acquisition
function, which provides a direct measure of improvement in
gradient information per query cost, to select the best input-
information source pair at every iteration. Gradient informa-
tion is measured in terms of differential entropy for which we



are able to derive a closed-form expression that shows a close
relationship to the well-known D-optimality criteria [15] in
the design of experiments literature. Through synthetic and
real-world functions, we demonstrate (empirically) that our
method, CAGES, outperforms both local and global (MF)BO
methods and other common baselines.

The rest of this paper is organized as follows. In Section II,
we provide an overview of the relevant background material
and the local multi-information source optimization problem
of interest. In Section III, we derive the proposed CAGES
algorithm and discuss some practical implementation details.
We evaluate the performance of CAGES on several numerical
experiments in Section IV and provide some concluding
remarks in Section V.

II. PRELIMINARIES

A. Bayesian optimization

Bayesian optimization (BO) aims to globally minimize a
black-box function g : X → R in a compact domain X ↑ Rd

of a set of d design (or inputs) parameters, i.e., solving

xω ↓ argmin
x→X

g(x), (1)

through possibly noisy queries y = g(x)+ω where ω denotes
some form of additive noise. BO attempts to solve (1) by first
estimating a surrogate model for g from available data, which
is used to define a policy (specified through maximization
of an acquisition function defined over the input space) for
selecting promising evaluation candidates. The function g is
evaluated at the selected candidates (typically at significant
expense) and the surrogate model is updated with the newly
collected data from which the process can be repeated until
the budget is exhausted or a convergence criteria is satisfied.

B. Gaussian processes (GPs)

GPs are the most popular class of surrogate models for
BO, as they enable flexible, probabilistic non-parametric
regression of nonlinear functions [16], [17]. A single-output
GP model over an input space X , denoted by GP(µ, k),
is fully specified by a mean function µ : X → R and
a covariance function k : X ↔ X → R+. The covariance
function is also called “the kernel” due to its connection to
kernel methods in the machine learning literature. GPs infer
a function g by assuming the output values g(X) ↓ RB

at any finite collection of inputs X ↓ RB↑d have a joint
Gaussian distribution, i.e., g(X) ↗ N (µ(X), k(X,X)).
Standard Gaussian conditioning rules can then be used to
condition the GP on a dataset D (consisting of noisy function
observations), which induces an updated posterior GP. We
denote the posterior GP for g conditioned on D as follows

g | D ↗ GP(µD, kD), (2)

where the posterior mean and covariance are given by

µD(x) = µ(x) + k(x,X)k(X,X)
↓1

(g(X)↘ µ(X)),

kD(x,x
↔
) = k(x,x↔

)↘ k(x,X)k(X,X)
↓1k(X,x),

and we have overloaded the functions g(·), µ(·), and k(·, ·)
to include element-wise operations across their inputs.

C. GP derivatives for local Bayesian optimization

An important property of GP models is that they naturally
give rise to gradient estimates since GPs are closed under
linear operators (such as derivatives) [16]. Specifically, if g ↗
GP(µ, k) is a GP with a once-differentiable mean function
µ and a twice-differentiable kernel function k, then the joint

distribution between noisy observations yX = g(X) + ω at
locations X and the gradient at any test point x is
[

yX

≃g(x)

]
↗ N

([
µ(X)

≃µ(x)

]
,

[
k̃(X,X) k(X,x)≃↗

≃k(x,X) ≃k(x,x)≃↗

])
,

where k̃(X,X) = k(X,X)+ε2I is the covariance function
of the noisy samples at evaluation points X assuming ω ↗
N (0,ε2

) and ≃↗ operates on the second argument of k.
This property enables probabilistic inference of the gradient
given noisy observations of g. The gradient GP conditioned
on dataset D can thus be expressed in terms of (2) as follows

≃g | D ↗ GP(≃µD,≃kD≃↗
). (3)

Local BO methods directly exploit the information in (3)
since, if we can learn any descent direction dt at a point xt,
then updating it by xt+1 = xt + ϑtdt for some step size
ϑt > 0 will ensure g(xt+1) < g(xt) (incrementally moving
toward our goal of minimizing g). The steepest descent
direction corresponds to the negative objective gradient, i.e.,
dt = ↘≃g(xt) for which we can build a GP model (3). The
GIBO method [7] focuses on actively querying samples that
minimize the uncertainty in the gradient predictions, as mea-
sured by the trace of the posterior covariance matrix. GIBO
has been found to achieve promising results on a number of
problems, especially as dimensionality d increases. As shown
in [18], GIBO exhibits strong convergence behavior (to local
solutions under mild assumptions) and depends only linearly
on d, which is a significant improvement over standard BO
(at the price of potentially not finding the global minimum).

D. Problem formulation

Although local BO methods such as GIBO are effective,
they require multiple expensive function evaluations at every
iteration, which is a limiting factor in many applications.
In this work, we consider a variation of (1) in which one
has access to M possibly biased and/or noisy information
sources (ISs) for g. We denote these ISs by f (ε)

(x) : X → R
for all ϖ ↓ NM

1 ↭ {1, . . . ,M} and let f (0)
= g such that

we can observe g directly without bias but possibly with
noise. Each IS {f (ε)}Mε=1 can be thought of as a “surrogate”
or “auxiliary task” with ϖ = 0 denoting the “primary task”.
In many real-world applications, such surrogates are readily
available or can be derived from simple approximations to
the high-fidelity model g. Interested readers are referred to
[19] for more information and examples.

We denote the observations from source ϖ at point x as

y(ε)x = f (ε)
(x) + ω(ε)x , (4)

where ω(ε)x ↗ N (0,ϱε(x)) is an i.i.d. Gaussian noise term
with zero mean and variance ϱε(x) for all (x, ϖ) ↓ X ↔NM

0 .



The cost of evaluating task l is given by a function cε : X →
R↘0. For simplicity, we assume that the cost function cε(x)
and the variance function ϱε(x) are known and continuously
differentiable. In practice, these functions could be estimated
from data along with other model parameters (see, e.g., [16,
Chapter 5] for details).

In this work, we want to design iterative queries of input-
IS pairs (x, ϖ) that maximize gradient information per cost of
the query. This can be thought of as an extension of GIBO to
handle multi-information source (MIS) objective functions.

III. COST-AWARE GRADIENT ENTROPY SEARCH FOR
LOCAL MULTI-INFORMATION SOURCE OPTIMIZATION

Here, we introduce the CAGES method for locally solving
a multi-information source version of (1). First, we describe
a latent variable GP extension that enables flexible incor-
poration of data from the ISs with minimal assumptions.
Second, we define a cost-aware information-theoretic ac-
quisition function to reduce uncertainty in the primary task
gradient. Third, we present the complete CAGES algorithm
and discuss some practical implementation choices.

A. MIS modeling using latent variable GPs (LVGPs)

The first challenge we encounter in MIS optimization is
that we have multiple (potentially correlated) outputs that
must be simultaneously modeled in order to fuse information
across the ISs. Multi-output Gaussian processes (MOGPs)
[20] are a natural extension that assume the outputs follow
a multivariate Gaussian distribution. An equivalent MOGP
representation can be achieved through the addition of a
(d + 1)

th dimension that represents the output index to a
single-output GP (Section II-B), which now operates on an
augmented space Rd+1 through a kernel k((x, ϖ), (x↔, ϖ↔)).

This type of representation has been used in previous
works, e.g., [11], however, an important question is what
kernel structure should be utilized? Standard kernel choices,
such as squared exponential (SE), work well for continu-
ous inputs x but are not directly applicable to categorical
variables ϖ. We propose the use of latent variable Gaus-
sian processes (LVGPs) to address this challenge, which
map the M + 1 levels of ϖ to latent numerical values
{z(0), . . . , z(M)} [14]. Let 1 ⇐ m ⇐ M denote the
dimension of the latent space. As such, the input (x, ϖ) is
mapped to a new space (x, z(ϖ)) ↓ Rd+m for which we can
associate a standard kernel such as the SE kernel

k((x, ϖ), (x↔, ϖ↔)) (5)
= ς2 exp

(
↘ 1

2r
2
(x,x↔

)↘ ⇒z(ϖ)↘ z(ϖ↔)⇒2
)
,

where ς2 is a scaling factor for the output variance and
r(x,x↔

) =

√
(x↘ x↔)↗!↓2(x↘ x↔) is a scaled Euclidean

distance with ! = diag(l1, . . . , ld) denoting a diagonal scal-
ing matrix composed of lengthscale parameters li > 0. The
complete set of hyperparameters that define the LVGP are
jointly denoted by ε = (l1, . . . , ld, z(0), . . . , z(M), ς2) ↓
Rd+(M+1)m+1. In general, we do not know how to specify

ε a priori and so look to infer them from data using the
maximum likelihood estimation (MLE) framework [14]

εω(D) = argmaxω L(ε|D), (6)

where L(ε|D) denotes the log-likelihood function under the
LVGP model given data D, which has a closed-form ex-
pression in terms of covariance matrix obtained by plugging
the available samples of (x, ϖ) into (5). The key takeaway
is that the latent variable locations are optimized in LVGPs,
enabling them to learn how to most effectively order the ISs.
Since only relative distances matter, the first level is always
set to the origin in the latent space, i.e., z(0) = 0. Although
m can be treated as a hyperparameter, the size of ε quickly
grows with m, increasing the complexity of (6). Thus, we
typically set m = 2 in practice that we found to provide a
nice balance between flexibility and complexity.

Remark 1: There is a close relationship between LVGPs
and “multi-task” GPs [21], which effectively parametrize the
kernel k((x, ϖ), (x↔, ϖ↔)) in a different but related way. In par-
ticular, we can rewrite (5) as Ki,jς2 exp(↘ 1

2r
2
(x,x↔

)) where
Ki,j = exp(↘⇒z(i)↘ z(j)⇒2) for any i, j ↓ {0, . . . ,M}. A
multi-task GP treats the entire positive semi-definite matrix
K as a hyperparameter (whose elements are the inter-
task similarities). An LVGP, on the other hand, introduces
additional structure by assuming the task can be mapped
to a lower-dimensional latent space that effectively places a
constraint on the relationship between the elements of K.

Remark 2: A computationally cheaper alternative to using
the full LVGP is to replace (5) with the following type of
multi-task mixture kernel (1 ↘ ϱ)(kx(x,x↔

) + kl(ϖ, ϖ↔)) +
ϱkx(x,x↔

)kl(ϖ, ϖ↔) where kx is a standard continuous kernel,
kl is a categorical kernel, and ϱ ↓ [0, 1] is a tunable
parameter [22]. The categorical kernel uses an indicator-
based similarity metric kl(ϖ, ϖ↔) =

ϑ
M

∑M
i=1 I(ϖ, ϖ↔) where

I is the indicator function that is 1 if its two arguments are
equal and 0 otherwise and ε is a scale parameter. This kernel
was originally proposed in the context of BO over multiple
continuous and categorical inputs and we found it to perform
similarly to LVGPs in the case studies presented in Section
IV. This is mainly due to the fact that we do not consider a
large number of tasks where LVGPs might uncover more
interesting relationships between the tasks. Note that our
code implementation includes both types of GPs.

B. A cost-aware measure of gradient information

In BO, acquisition functions measure the expected utility
of a sample point given the posterior predictive model.
Following the local BO strategy, we want to identify points
that are most informative for learning the gradient of g at the
current parameters xt. Thus, we first propose the gradient
entropy search (GES) acquisition that takes an information-
theoretic perspective to this problem by characterizing un-
certainty in ≃g(xt) in terms of differential entropy. GES
measures the expected reduction in this quantity, i.e.,

H(≃g(xt)|D)↘ Eyx {H(≃g(xt)|D ⇑ (x, yx))}



where H(Y ) = ↘
∫
p(Y ) log p(Y )dY is the differential

entropy of random vector Y ↗ p(Y ). Since the gradient GP
model (3) at xt is a multivariate Gaussian, we can derive a
closed-form expression for its differential entropy

H(≃g(xt)|D) =
d

2
log(2φe|”↔

(xt|D)| 1d ), (7)

where ”
↔
(xt|D) = ≃kD(xt,xt)≃↗. An interesting property

of GPs is that the covariance function is independent of the
observed target yx, as shown in [7]. Thus, the expectation
with respect to yx|D can be carried out analytically to yield

↼GES(x;xt,D) =
1
2 log |”

↔
(xt|X)|↘ 1

2 log|”
↔
(xt|[X,x])|,

(8)

where X is the set of past data points and X̂ = [X,x] is
a fantasy or virtual dataset that includes the potential future
evaluation point x; the one step ahead covariance matrix
depends only on X̂ due to the aforementioned property. The
main difference between GIBO and GES is the operator that
is applied to ”

↔
(xt|[X,x]) (GIBO is defined by the trace

operator Tr(·) while GES is defined by the determinant | · |).
This has close connections to the optimal experiment design
(OED) literature [15] wherein the trace and determinant op-
erators leads to so-called A- and D-optimality, respectively.
GES is thus prioritizing a reduction in the volume of the
joint confidence region of the gradient vector as opposed to
the average variance of its individual elements.

Next, we develop a cost-aware version of GES by making
two modifications: (i) we replace the standard GP model with
an LVGP model, which enables consideration of more than
one IS and (ii) we scale the expected information gain by
the query cost function, i.e.,

↼CAGES(x, ϖ;xt,D) = (9)

E
y(ω)
x

{
H(≃f (0)

(xt)|D)↘H(≃f (0)
(xt)|D ⇑ (x, ϖ, y(ε)x ))

cε(x)

}
,

=

1
2 log |”

↔
(xt, 0|X,L)|↘ 1

2 log|”
↔
(xt, 0|[X,L,x, ϖ])|

cε(x)
.

The numerator is just our GES acquisition for the primary
task ϖ = 0 evaluated using the LVGP model, which can be
simplified in exactly the same way as done in (8), leading
to the final expression in (9) where L denotes the past set
of task levels corresponding to past inputs X .

C. The CAGES algorithm

The complete CAGES algorithm is divided into two loops,
as shown in Algorithm 1. The inner loop selects input-IS
pairs that maximize gradient information per query cost and
the outer loop updates the current iterate xt using gradient-
based optimization. Note that any type of gradient-based
optimizer (e.g., Adam or L-BFGS) can be used in place of
standard gradient descent in Line 11. The choice of the batch
size B is left as a hyperparameter and can be set in multiple
ways. It can be adapted at each outer iteration t by not exiting
the inner loop until the entropy (or trace of the covariance) is
below a threshold or some allotted budget has been exceeded.

Algorithm 1 The CAGES algorithm
Input: black-box MIS functions {f (ε)}Mε=0
Hyperparameters: choice of GP kernel and associated hy-
perpriors, stepsize ϑ, initial dataset D, number of iterations
T , and batch size for gradient estimation B.
Initialize: place LVGP prior on f (ε) and select initial x0.

1: for t = 0, . . . , T do
2: Sample primary task: y(0)xt = f (0)

(xt) + ω(0)xt .
3: Augment dataset: D ⇓ D ⇑ (xt, 0, y

(0)
xt ).

4: Execute GP hyperparameter optimization (6).
5: for i = 1, . . . , B do
6: Get new input-IS query point using (9):

(xω, ϖω) ↓ argmax

(x,ε)→X↑NM
0

↼CAGES(x, ϖ;xt,D).

7: Sample task: y(ε
ε)

xε = f (εε)
(xω

) + ω(ε
ε)

xε .
8: Augment dataset: D ⇓ D ⇑ (xω, ϖω, y(ε

ε)
xε ).

9: Update LVGP posterior for ≃f (ε)
(xt).

10: end for
11: Gradient descent: xt+1 = xt ↘ ϑ≃µD(xt, 0).
12: end for

A simpler choice is to fix B ↗ d, which is motivated by the
fact that d queries to the primary task is enough to exactly
learn the gradient in the noiseless setting (assuming the GP
hyperparameters are perfectly known) [18]. Although only a
heuristic in the MIS setting, we have found it to be effective
in the numerical examples presented in the next section.

IV. NUMERICAL EXPERIMENTS

In this section, we show results on numerical experiments
that compare CAGES to four baseline methods: (1) EI [23],
which is a standard global BO method that maximizes the
expected improvement acquisition function at every iteration;
(2) GIBO [7], which is a single-source local BO method
that minimizes the trace of the posterior covariance matrix
of the objective gradient; (3) ARS [24], which estimates the
objective gradient using finite difference with random pertur-
bations; and (4) MFBO [11], which is a global knowledge
gradient-based multi-fidelity BO method. Note that since
MFBO can query any fidelity level of interest according
to the cost-aware acquisition function in [11]. Therefore, it
may never query the high-fidelity function under a limited
budget (especially if the query cost is high and the dimension
is large). Following standard practice, we minimize the
posterior mean function from the GP model to find our best
recommended design point at any finite budget value. Also,
note that we use the recently proposed logEI [25] variant
of EI that has been recently shown to make the original EI
acquisition function much easier to optimize in practice using
multi-start gradient-based optimization.

We estimate the average performance of the algorithms
across the randomly drawn initial data D, measurement noise
realizations, and random perturbations in ARS by repeating
all experiments 10 times from the same random seed. To



ensure a fair comparison between the single- and multi-
information source BO methods, we allocate a fixed budget
for initialization. EI and GIBO only use the initialization
budget on the primary task while CAGES and MFBO ran-
domly distribute the budget amongst all tasks. All plots show
the mean of the best found objective value as a function of
the query budget with the error bars indicating plus/minus
one standard error. Our complete implementation is avail-
able at: https://github.com/PaulsonLab/CAGES,
which is built upon the BoTorch package [26].

A. Rosenbrock benchmark

The Rosenbrock function is a classic benchmark in the op-
timization literature. We consider a 12-dimensional version
of this problem with two information sources. The primary
task ϖ = 0 is the standard Rosenbrock function while the
auxiliary task ϖ = 1 includes an oscillatory term [11]

f (0)
(x) =

∑d↓1
i=1 100(xi+1 ↘ x2

i )
2
+ (xi ↘ 1)

2, (10)

f (1)
(x) = f (0)

(x) + 0.1
∑d↓1

i=1 sin(10xi + 5xi+1),

where x = (x1, . . . , x12) ↓ R12 with domain X = [0, 2]12.
We assume a cost of 10 and 1 for each query to f (0) and
f (1), respectively. Observations are noise free, though we
still treat the noise as a hyperparameter in the GP models.

Fig. 1 shows the best found objective for each method
as a function of the total cost (i.e., cost of initial data plus
the accumulated query cost). We see that CAGES signif-
icantly outperforms the other methods by achieving lower
objectives given the same budget. MFBO is the second-best
performing method; however, notice that the objective value
for the recommended design has a tendency to fluctuate and
even increases for small budgets. This is a consequence of
MFBO not necessarily querying the high-fidelity at regular
intervals and thus must recommend designs by minimizing
the posterior mean GP model. When the model has access
to relatively small amounts of data in high dimensions, such
recommendations can be inaccurate. CAGES does not exhibit
such behavior, as it regularly queries the high-fidelity task
after taking a gradient descent step.

B. Cartpole-v1

Next, we focus on a realistic reinforcement learning (RL)
problem that we simulate using OpenAI Gym [27], which
provides a suite of environments for testing. We use the same
environment for the CartPole-v1 system as in Müller et al.
[7]. We use a deterministic neural network control policy
that maps 4 states to 2 discrete actions defined in terms of
d = 10 parameters. Additionally, we use the same state and
gradient normalization schemes as described [7] to ensure a
fair comparison between algorithms.

We focus on a total of three information sources, with the
primary task ϖ = 0 evaluating the reward over an episode
length of 500 steps at an integration time of 0.02 seconds.
A reward value of +1 is accumulated for every step that
the pole remains upright. To ensure the policy is robust to
the initial state, we further average the reward across 100
randomly sampled initial states in the domain. An episode

Fig. 1. Best found objective value versus total cost for the Rosenbrock
benchmark averaged over 10 replicates.

ends (terminates) if the pole angle exceeds ±12
≃ or the

cart leaves the domain. Two cheaper information sources
were created by reducing the number of initial states and
increasing the integration time. Task ϖ = 1 considers only
40 of the 100 random initial states and uses an integration
time of 0.04, leading to a cost reduction of 5x. Task ϖ = 2

considers only 10 of the 100 random initial states, leading
to a cost reduction of 10x. Therefore, the cost to query f (0),
f (1), and f (2) is 10, 2, and 1, respectively, which reflects the
true CPU time required for each simulation.

Fig. 2 shows the best found reward value of each method
as a function of the total simulation cost. CAGES signifi-
cantly outperforms the other methods, achieving the maxi-
mum possible reward value of 500 for all replicates with a
cost of < 220. ARS and GIBO are the next best performing
methods but only achieve an average reward of ↗ 350 given
a total cost of 300. The greatly improved performance with
CAGES over GIBO highlights the substantial cost savings
that can be achieved through a MIS formulation. Note that
logEI, which is a state-of-the-art global BO method, only
achieves an average reward of ↗ 300 given the same budget.
MFBO shows significant fluctuations in the reward and only
achieves an average reward of ↗ 200. These latter two results
highlight the difficulty of applying global modeling methods
in high-dimensional search spaces. Furthermore, although the
lower-fidelity tasks clearly provide valuable information for
the high-fidelity task, this information cannot be effectively
exploited by MFBO in this problem. CAGES, on the other
hand, is able to leverage this information locally to achieve
significant performance gains.

It is also worth noting that we did not need to make
any assumptions about the relationship between tasks in
this problem; it is not obvious if f (1) or f (2) is the better
approximation of f (0) but the multi-task GP can learn how



Fig. 2. Best found reward value (negative objective) versus total cost for
the Cartpole-v1 RL problem averaged over 10 replicates.

to adaptively fuse this information as more data is collected.
This problem highlights how combining a local perspective
with MIS structure can greatly reduce the resources needed
to find high-quality solutions on real-world problems.

V. CONCLUSIONS

In this paper, we develop a local Bayesian optimization
algorithm for expensive-to-evaluate, noisy black-box objec-
tive functions for which we have access to multiple cheaper
approximations of the objective. The proposed algorithm,
CAGES, is realized by two key ideas: (1) the use of a
latent variable Gaussian process (LVGP) model for flexible
multi-task learning from distinct information sources whose
underlying relationship is unknown and (2) a mathematically
elegant and computationally inexpensive acquisition function
that maximizes the gain in gradient information per query
cost. We apply CAGES to a synthetic and reinforcement
learning (RL) problem where we find that it consistently out-
performs known baseline methods. Interesting directions for
future work include reducing the computational cost of the
LVGP, developing a theoretical analysis of the convergence
properties of CAGES, and applying CAGES to even more
complicated RL problems.
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