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Abstract

Bayesian optimization relies on iteratively
constructing and optimizing an acquisition
function. The latter turns out to be a chal-
lenging, non-convex optimization problem it-
self. Despite the relative importance of this
step, most algorithms employ sampling- or
gradient-based methods, which do not prov-
ably converge to global optima. This work in-
vestigates mixed-integer programming (MIP)
as a paradigm for global acquisition function
optimization. Specifically, our Piecewise-
linear Kernel Mixed Integer Quadratic Pro-
gramming (PK-MIQP) formulation intro-
duces a piecewise-linear approximation for
Gaussian process kernels and admits a cor-
responding MIQP representation for acqui-
sition functions. The proposed method is
applicable to uncertainty-based acquisition
functions for any stationary or dot-product
kernel. We analyze the theoretical regret
bounds of the proposed approximation, and
empirically demonstrate the framework on
synthetic functions, constrained benchmarks,
and a hyperparameter tuning task.

1 INTRODUCTION

Optimization of black-box functions is a compelling
task in many scientific fields, such as hyperparameter
tuning for machine learning (Ranjit et al., 2019), rout-
ing for robot control problems (Nambiar et al., 2022),
designing energy systems (Thebelt et al., 2022b), and
drug discovery (Colliandre and Muller, 2024). These
tasks share challenges such as limited knowledge about
the true underlying objective function and expensive
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evaluations on the target function, i.e., experiments.
Given the latter, finding a high-quality sample point
at each evaluation becomes extremely valuable.

Bayesian optimization (BO) is a popular class of al-
gorithms designed for this setting. BO can be di-
vided into two main components: (1) a Bayesian model
of the objective function (usually a Gaussian process
(GP)), and (2) an acquisition function to decide which
point x→ to sample next. An acquisition function is a
mathematical expression that quantifies the value of
evaluating a particular point in the search space. The
choice of acquisition function balances exploration and
exploitation (Paulson and Tsay, 2024). Mathemati-
cal optimization of the acquisition function is thus a
key step of BO. While many works formulate more in-
dicative and sophisticated acquisition functions, com-
paratively less attention has been given to computing
the optimal solutions of acquisition functions. While a
well-formulated acquisition function is critical, its reli-
able optimization can be just as beneficial for BO per-
formance (Wilson et al., 2018; Kim and Choi, 2021).

Gradient- and sampling-based methods remain the
mainstream for acquisition function optimization.
While the objective function of BO is a black box,
closed-form expressions are available for many ac-
quisition functions, e.g., Upper Confidence Bound
(UCB) (Srinivas et al., 2010), Expected Improvement
(EI) (Jones et al., 1998). Therefore, mathematical
programming, especially (stochastic) gradient-based
methods such as L-BFGS-B (Zhu et al., 1997) can
perform well given first- and sometimes second-order
derivatives. However, derivative information can be
unreliable, e.g., due to numerical issues (Ament et al.,
2024). Gradient-based methods can also be trapped
at local optima and thus return sub-optimal solutions.
On the other hand, sampling methods are invariably
limited by the curse of dimensionality and are also
likely to return sub-optimal solutions, given limited
evaluation budgets. Algorithms that provide a global

optimality guarantee for solving acquisition functions
are thus lacking.

An alternative class of deterministic methods is mixed-
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Figure 1: (left) Illustration of piecewise linear approximation of kernel function. (right) Visualization of the
e!ect of kernel approximation on LCB acquisition function. The solution from gradient-based method (orange
square) may end up at a local minimum, a sampling-based solution can miss the global minimum, and optimizing
approximated LCB using global model (red star) will provide the global solution.

integer programming (MIP) (Belotti et al., 2013),
where established algorithms can globally optimize an
objective function subject to various constraints. Con-
ditions of a given problem are expressed as linear,
quadratic, nonlinear and/or integral constraints and
are passed to modern solvers that utilize branch-and-
bound (B&B) algorithms. By bounding the objec-
tive value, B&B algorithms provide some guarantees
on the global optimality of the solution. To the best
of our knowledge, the application of MIP in BO has
only been studied by Schweidtmann et al. (2021). This
work further explores MIP-based global optimization
for BO, specifically with novel kernel approximation
techniques tailored to the solution methods.

In this paper, we propose Piecewise-linear Kernel
Mixed Integer Quadratic Programming (PK-MIQP),
a global optimization framework for GP acquisition
functions. Specifically, we introduce a piecewise linear
approximation of the GP kernel function (Figure 1,
left) that enables a mixed-integer quadratic program-
ming (MIQP) formulation of the acquisition function.
Note that the model becomes mixed-integer linear if
only the GP mean is required. Lower confidence bound
(LCB) is chosen as a representative example to demon-
strate the proposed framework. We then use a B&B
solver to globally optimize the approximated acquisi-
tion function. While gradient-based methods can re-
turn sub-optimal solutions without further indication
(Figure 1, right), our method approximates the global
optimum within a bounded neighborhood. The main
contributions of this work are as follows:

1. We propose a MIP-motivated piecewise linear ap-
proximation for GP kernel functions in stationary
or dot-product form.

2. We present an MIQP formulation to solve the
resulting acquisition function optimization prob-

lems with global optimality guarantees.

3. We theoretically analyze the performance and
worst-case error of PK-MIQP.

4. We embed PK-MIQP in a full BO procedure
and evaluate its performance against state-of-the-
art optimization methods on tasks including syn-
thetic functions, constrained benchmarks, and a
hyperparameter tuning task.

2 RELATED WORK

Recent research in the field of BO often focuses on
solving long-standing problems, such as scaling BO
to perform on problems with higher dimensionalities
(Spagnol et al., 2019; Cartis et al., 2023; Eriksson and
Jankowiak, 2021) and improving computational e”-
ciency through more informative acquisition functions
(Oh et al., 2018; De Ath et al., 2021; Ament et al.,
2024). While these innovations can be important and
e!ective, the acquisition functions in these works re-
main optimized using classic and traditional methods.

Gradient-based methods such as L-BFGS-B (Zhu
et al., 1997) and stochastic gradient ascent (Kingma
and Ba, 2015) are popular choices to optimize acqui-
sition functions in BO. For example, Eriksson and
Jankowiak (2021) optimize the EI acquisition function
based on a sparse axis-aligned subspace GP using L-
BFGS-B (Zhu et al., 1997). Oh et al. (2018) propose a
cylindrical transformation of the search space to allow
the chosen acquisition function to explore more near
the center of search space using the Adam algorithm
(Kingma and Ba, 2015). Though widely-used, solv-
ing acquisition functions using gradient-based meth-
ods has its limitations. Ament et al. (2024) high-
light the issue of vanishing values and gradients when
applying gradient-based methods to acquisition func-
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tion optimization. Specifically, improvement-based ac-
quisition functions (e.g., EI) can su!er from numer-
ically zero acquisition values and gradients, making
gradient-based methods return sub-optimal solutions
due to lack of gradient information. Ament et al.
(2024) thus propose a reformulation of the EI acqui-
sition family, termed LogEI, where functions retain
the same optima, but more stable in terms of gradi-
ent values; the authors demonstrated performance in
BO using L-BFGS-B to solve the LogEI acquisition
functions. Daulton et al. (2022) also address the lim-
itations of gradient-based methods on maximizing ac-
quisition functions in discrete and mixed search space.
The authors propose a novel probabilistic representa-
tion of the acquisition function, where continuity of
parameters in the acquisition function is restored, en-
abling the use of the gradient-based method Adam.
Popular BO tools, e.g., BoTorch (Balandat et al.,
2020), often consider multi-start gradient approaches
to overcome local optima. However, these approaches
may have di”culty in determining the non-flat regions
of acquisition functions, especially in higher dimen-
sional settings (Rana et al., 2017; Adebiyi et al., 2024).

As an alternative direction, sampling methods such
as Nelder-Mead (Nelder and Mead, 1965) are also a
popular tool for acquisition function optimization in
BO methods. While gradient-based methods su!er
from di”culties in getting reliable gradient informa-
tion, sampling methods mainly su!er from the curse
of dimensionality. Here, Kandasamy et al. (2015) pro-
pose an additive structure to model the objective func-
tion to exploit the e”ciency of sampling methods in
low-dimensional problems. Eriksson et al. (2019) em-
ploy Thompson sampling in local trust regions and
search for global optima through multiple local search.

Global optimality in BO has primarily been discussed
in terms of the black-box objective function, rather
than the acquisition function evaluated at each iter-
ation. Towards the latter, some researchers heuristi-
cally search for global optimality through multi-start
local methods (Eriksson et al., 2019; Mathesen et al.,
2021) or evolutionary algorithms such as Firefly (Song
et al., 2024), CMA-ES (Hansen, 2006; Wilson et al.,
2018) and TSEMO (Bradford et al., 2018). MIP com-
prises a well-known paradigm to solve optimization
problems globally, but to-date has been rarely used in
BO. Some works apply MIP to solve acquisition func-
tions based on more compatible surrogate models, e.g.,
neural networks (Papalexopoulos et al., 2022) or deci-
sion trees (Thebelt et al., 2022b). MIP is also used to
handle discrete decisions in hybrid/combinatorial BO
(Baptista and Poloczek, 2018; Daxberger et al., 2020;
Deshwal et al., 2021). Relatively few works apply MIP
with GP-based surrogate models in BO. Thebelt et al.

(2022a) formulate GPs using tree kernels and solve the
resulting acquisition function as an MIQP. Schweidt-
mann et al. (2021) formulate acquisition functions for
smooth-kernel GPs as a mixed-integer nonlinear pro-
gram (MINLP), which is then solved using a B&B al-
gorithm. However, MINLP can easily exceed computa-
tional budgets in real applications. This work seeks a
more stable and practical algorithm for standard GPs
that combines some global optimality guarantees, with
more realistic computing times.

3 BACKGROUND

3.1 Gaussian Processes

A Gaussian process (GP) models a joint multivari-
ate Gaussian distribution over some random variables
(Schulz et al., 2018). A GP is fully specified by a prior
mean function µ(·) and a kernel K(·, ·):

f(·) → GP(µ(·),K(·, ·))

Normally the prior mean is set to zero to simplify the
subsequent posterior computation, leaving only the
kernel function. Common choices here are the squared
exponential (SE) kernel or Matérn kernel.

GP regression can be viewed as a Bayesian statisti-
cal approach for modelling and predicting functions.
Given t observed data points {(xi, f(xi))}ti=1, we de-
note X = [x1, . . . ,xt], y = [f(x1), . . . , f(xt)]. For a
new point x ↑ Rn, the posterior mean and variance of
its function value is given by Frazier (2018):

µt(x) = KxXK→1
XXy

ω2
t (x) = Kxx ↓KxXK→1

XXKXx

(1)

where we omit the conditioning on (X,y) and use
KXY = K(X,Y ) for simplicity. Note that Kxx is
the kernel variance ω2

f .

When the observed output is noisy, i.e., y = f(x) + ε,
we assume ε → N (0,ω2

ω ), giving a posterior mean and
variance of:

µt(x) = KxX(KXX + ω2
ωI)

→1y

ω2
t (x) = Kxx ↓KxX(KXX + ω2

ωI)
→1KXx

(2)

Nevertheless, for simplicity, we omit the noise term
and assume that ↔KXX↔2 ↗ ω2

ω in our proofs.

3.2 Bayesian Optimization

A general BO procedure constructs an acquisition
function (AF) based on the above GP and seeks to
maximize its value. We consider the classic lower con-
fidence bound (LCB) acquisition function:

ϑLCB (x) = µt(x)↓ ϖ1/2
t ωt(x)
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Here µt and ωt are the posterior mean and variance
from surrogate model, and ϖt is a hyperparameter
that controls exploration and exploitation of the ac-
quisition function. The next sample point proposed
by acquisition function is then evaluated on the objec-
tive function, adding to the sample data set for next
round of surrogate modelling and acquisition evalua-
tion. Gaussian process regression and evaluation on
acquisition function are performed repeatedly during
the optimization process until a pre-defined budget on
number of iterations is achieved.

3.3 Mixed-Integer Quadratic Programming

Mixed-integer quadratic programming (MIQP) consid-
ers problems with quadratic constraints/objectives:

min
x↑RD

xTQx+ qTx (objective)

s.t. Ax ↘ b (linear)

xTQjx+ qT
j x ↘ bj , ≃j ↑ J (quadratic)

xi ↑ Z, ≃i ↑ I ⇐ {1, . . . , D} (integrality)

xL ↘ x ↘ xU (bounds)

Section 4.2 presents our MIQP formulation for LCB
with approximated posterior mean and variance. Sev-
eral commercial solvers for MIQP are available; we use
Gurobi v11.0.0 (Gurobi Optimization, LLC, 2024).

4 METHODOLOGY

4.1 Piecewise linearization of kernel

This section introduces our proposed piecewise-linear
approximation for stationary or dot-product kernel
functions. Consider a kernel function k(r) : R+

0 ⇒ R+,
where r is some distance measure or dot-product be-
tween data points x,x↑

↑ RD. Intuitively, fewer lin-
ear segments are needed for approximately-linear parts
of the function. We therefore select piecewise-linear
breakpoints based on the curvature of k(·), which is
proportional to its second derivative. Specifically, we
first set a threshold εk to define “near-linear” parts,
i.e., segments of the kernel with |k↓↓(r)| ↘ εk.

The threshold value can be selected to balance the
trade-o! between the number of piecewise-linear seg-
ments and the approximation accuracy. We empir-
ically choose εk to be half of the maximal value of
k↓↓(r), which bounds the approximation error eapprox
to relatively small values. Future work could inves-
tigate a more systematic derivation of this threshold
value. Figure 2 visualizes our piecewise linearization
strategy using the Matérn 3/2 kernel as an example.

For stationary kernels enjoying similar shape to the

Figure 2: (top) Matérn 3/2 kernel function divided
into 3 parts. (bottom) The second-order derivative
of Matérn 3/2 kernel function. Parts within threshold
are considered as “near-linear.”

Matérn 3/2 kernel function, e.g., RBF, Matérn 5/2,
the kernel is partitioned into three parts:

[r0, r1] ⇑ [r2, r3]︸ ︷︷ ︸
Rnonlinear

⇑ [r1, r2]︸ ︷︷ ︸
Rlinear

⇑ [r3, r4]︸ ︷︷ ︸
Rtail

where r1, r2, r3 are derived by solving |k↓↓(r)| = εk, and
r0, r4 denote the minimum and maximum values of r.

Based on the above, we use D segments in the do-
main of Rlinear and 2D segments for both Rnonlinear

and Rtail. We use 2D segments in Rtail due to its
relatively large range. The final set of breakpoints is:

R = S2D
r0,r1 ⇑ SD

r1,r2 ⇑ S2D
r2,r3 ⇑ S2D

r3,r4 ⇑ {r4}

= {R0, · · · , RM | Ri < Rj , ≃i < j}

where Sn
l,r denotes the set of n points evenly spaced

over interval [l, r), and M is the number of segments.

Using the approximated kernel, denoted by k̃(·), we
can now define the approximated posterior mean µ̃
and variance ω̃2 analogously to (1):

µ̃(x) := K̃xXK̃→1
XXy

ω̃2(x) := K̃xx ↓ K̃xXK̃→1
XXK̃Xx

(3)

which then give us the approximated LCB:

ϑ̃LCB (x) = µ̃(x)↓ ϖ1/2
t ω̃(x) (4)

where by convention we take ϖt = 0.2D log 2t for its
convergence properties (Kandasamy et al., 2015).
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Table 1: Piecewise linearization parameter values for
Matérn 3/2 and RBF kernels.

Variables Matérn 3/2 RBF

εk
3
2 exp(↓2)ω2

f exp(↓ 3
2 )ω

2
f

eapprox 0.025ω2
f 0.022ω2

f

r1 0.4866 0.8280
r2 0.7113 1.2099
r3 2.1237 2.5213

We take two classic stationary kernels, Matérn 3/2 and
RBF kernel, as examples. Their kernel functions are:

kMat érn 3/2 (r) = ω2
f (1 +

⇓
3r) exp(↓

⇓
3r)

kRBF (r) = ω2
f exp(↓

1

2
r2)

where r = ↔x→x→↔2

l and l is the lengthscale.

The values of parameters involved in their piecewise-
linear approximations are presented in Table 1.

4.2 Mixed-integer Optimization Formulation

Given this piecewise linear kernel approximation, we
now formulate the minimization of the approximated
LCB (4) as an MIQP:

min
x↑X

µ̃↓ ϖ1/2
t ω̃ (5a)

s.t. µ̃ = K̃xXK̃→1
XXy (5b)

ω̃2
↘ ω̃2

f ↓ K̃xXK̃→1
XXK̃Xx (5c)

r2i =
↔x↓ xi↔

2
2

l2
, ≃1 ↘ i ↘ N (5d)

K̃xXi = k̃(ri), ≃1 ↘ i ↘ N (5e)

Note ϖ1/2
t , K̃→1

XX ,y, l are independent of x and their
values are precomputed. Constraints (5b) and (5c)
follow from (3), where the inequality comes from
quadratic constraint relaxation. The scaled Euclidean
distance is given by constraint (5d).

Constraint (5e) involves the piecewise linearization of
k(·), whose encoding is well-studied in MIP litera-
ture (Beale and Tomlin, 1969; Forrest et al., 1974)
and is provided in modern MIP solvers such as
Gurobi (Gurobi Optimization, LLC, 2024). Here we
present the classic encoding using our notations in
Eq. (6). First, as shown in Eqs. (6a)–(6c), point
(ri, k̃(ri)) is expressed as a convex combination of
points {(Rj , k̃(Rj))}0↗j↗M with {wj

i }0↗j↗M as the
nonnegative and sum-to-one coe”cients. Then, as

given in Eqs. (6d)–(6g), an indicator variable ϱj
i is in-

troduced to model that point (ri, k̃(ri)) lies in j-th lin-
ear segment between (Rj→1, k̃(Rj→1)) and (Rj , k̃(Rj)),

i.e., only wj→1
i and wj

i can be nonzero if ϱj
i = 1.

ri =
M∑

j=0

wj
iRj (6a)

K̃xXi =
M∑

j=0

wj
i · k̃(Rj) (6b)

M∑

j=0

wj
i = 1, wj

i ↗ 0, ≃0 ↘ j ↘ M (6c)

M∑

j=1

ϱj
i = 1, ϱj

i ↑ {0, 1}, ≃1 ↘ j ↘ M (6d)

w0
i ↘ ϱ1

i (6e)

wj
i ↘ ϱj

i + ϱj+1
i , ≃1 ↘ j < M (6f)

wM
i ↘ ϱM

i (6g)

Initialization Heuristic. Note that finding a feasi-
ble initial point (upper bound) for (5) is simple: we
need only select a point x and evaluate (3)–(4). We
propose a heuristic to find initial points based on mini-
mizing the posterior mean. Specifically, before solving
(5), PK-MIQP first minimizes a sub-problem with µ̃ as
the objective and (5b), (5d)–(5e) as constraints. With-
out the quadratic constraint (5c), the sub-problem can
be solved relatively quickly, producing an initial solu-
tion pool Psub containing solutions with lowest mean.
The full-problem (5) is then solved using the best solu-
tion among Psub and several randomly sampled points
Prand as a good incumbent solution. While the approx-
imation error is theoretically analyzed in the following
section, in practice we employ two steps to polish the
solution. First, PK-MIQP selects the best solution
found while solving (5) with lowest ϑ(·), i.e., true LCB
value. Then we apply a few steps of gradient descent
to ensure we are exactly at a local optimum. The final
solution xt obtained is a minimum with global opti-
mality guarantees (see Section 4.3). PK-MIQP can
seamlessly handle constrained optimization problems
by adding known constraints to the formulation (5).
PK-MIQP also adapts to any acquisition function that
can be linearly (or quadratically) represented, e.g.,
GLCB (Rodemann and Augustin, 2024), by replacing
the objective function in (5a) accordingly. One itera-
tion of PK-MIQP is outlined in Algorithm 1.

As PK-MIQP is a generic optimization framework,
computational cost can be reduced using existing
strategies, e.g., additive GP (add-GP) training (Duve-
naud et al., 2011; Kandasamy et al., 2015). The basic
idea of add-GP is to decompose black-box function f
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Algorithm 1 PK-MIQP at t-th iteration

Input: sample points Dt→1 = {(xi, yi)}
t→1
i=1, ϖt.

Kernel approximation:
kernel parameters ω2

f , l ⇔ GP fit to Dt→1.

k̃(·) ⇔ piecewise linearization.
Warm start (optional):
Psub ⇔ solve sub-problem of (5).
Prand ⇔ random feasible solutions of (5).

Acquisition optimization:
Pfull ⇔ solve (5) (incumbent from Psub ⇑ Prand).

Solution polishing:
x0
t = argmin

x↑Pfull

ϑ(x) ⇔ solution with lowest LCB.

xt ⇔ correction starting at x0
t .

Output: next sample xt.

among Ng disjoint sets of dimensions:

f(x) =

Ng∑

i=1

f (i)(x(i))

where each set of dimensions has a kernel that only
acts on the included dimensions. Since the sets of di-
mensions are independent, they can be optimized sep-
arately, e.g., applying PK-MIQP Ng times in parallel.

4.3 Theoretical Analysis

Given the approximation and methodology above, we
now aim to establish a bound on regret rt := f(xt)↓
f(x→) for using a GP with the proposed approximated
kernel at the tth iteration of a full BO loop. Here
f is the black-box objective, x→ denotes the (oracle)
optimum point that minimizes f , and xt is the chosen
point to evaluate at iteration t. We begin with two
remarks on the proposed approximated kernel:
Remark 4.1. The di!erence between the true and ap-
proximated kernel functions is bounded by error εM ,
which is a function of the number of linear pieces M .
Remark 4.2. Error εM asymptotically converges to 0
as the number of linear pieces increases:

lim
M↘≃

εM = 0

With the above remarks, Theorem 4.3 shows that the
approximated kernel mean (and variance) converges to
the true mean (and variance) as M ⇒ ↖.

Theorem 4.3. Given N observed data points X with

outputs y, for any x ↑ D, we have:

|µ(x)↓ µ̃(x)| ↘ CµN
2εM , |ω(x)↓ ω̃(x)| ↘ CεNε1/2M

Proof (Sketch). Denote ς := KxX ↓ K̃xX and # :=
KXX ↓ K̃XX . By the definition of µ(x) and µ̃(x),

µ(x)↓ µ̃(x) = ↓K̃xXK→1
XX#K̃→1

XXy + ςK→1
XXy

Since ↔ς↔2 ↘
⇓
NεM , ↔#↔2 ↘ NεM , ↔K̃xX↔2 ↘

⇓
Nω2

f , and ↔y↔2 ↘
⇓
N (In our implementation, we

scaled the objective f(x) ↑ [0, 1]), we have:

|µ(x)↓ µ̃(x)| ↘ CµN
2εM

where the constant Cµ = ω→4
ω ω2

max and ω2
max is the

upper bound of kernel variance ω2
f .

Similarly, the di!erence of variances is:

ω2(x)↓ ω̃2(x) =K̃xXK→1
XX#K̃→1

XXK̃Xx

↓ 2K̃xXK→1
XXςT

↓ ςK→1
XXςT

Then we have:

|ω2(x)↓ ω̃2(x)| ↘ C2
εN

2εM

where the constant Cε = ω→2
ω ω2

max. Since variances
are non-negative, we can derive:

|ω(x)↓ ω̃(x)| ↘ CεNε1/2M

which completes the proof. A more comprehensive
proof is provided in Appendix.

Theorem 4.3 holds for any continuous kernel with a
proper piecewise linear approximation. With addi-
tional smoothness assumptions on the kernel, we can
derive similar regret bounds as Srinivas et al. (2012).
Following the same settings as Lemma 5.8 in Srini-
vas et al. (2012), Theorem 4.4 bounds the regret
rt = f(xt)↓f(x⇐), where xt is the optimal solution of
MIQP (5) at t-th iteration. Since we may need more
pieces in our approximation, denote Mt as the number
of linear pieces at t-th iteration.

Theorem 4.4. Let D ⇐ [0, r]d be compact and com-

plex, d ↑ N, r > 0. Suppose kernel K(x,x↑) satisfies

the following high probability bound on the derivatives

of GP sample paths f : for some constants a, b > 0:

Pr

{
sup
x↑D

|φf/φxj | > L

}
↘ ae→(L/b)2 , j = 1, 2, . . . , d

Select ↼ ↑ (0, 1), and define ϖt = 2 log(2t2↽2/(3↼)) +
2d log(t2dbr

√
log(4da/↼)). Then the following regret

bounds

rt ↘ 2ϖ1/2
t ωt→1(xt) + 1/t2 + 2Cµt

2εMt + 4Cεϖ
1/2
t tε1/2Mt

hold with probability ↗ 1↓ ↼.

Proof (Sketch). Lemma 5.5 and Lemma 5.7 in Srinivas
et al. (2012) give us:

|f(xt)↓ µt→1(xt)| ↘ ϖ1/2
t ωt→1(xt)

|f(x→)↓ µt→1([x
→]t)| ↘ ϖt→1([x

→]t) + 1/t2
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where [x→]t is the closest point in Dt to x→, and Dt ⇐

D is a discretization at t-th iteration.

Recall the definition of xt, we have:

µ̃t→1(xt)↓ ϖ1/2
t ω̃t→1(xt) ↘

µ̃t→1([x
→]t)↓ ϖ1/2

t ω̃t→1([x
→]t)

Using Theorem 4.3 to replace µ, ω with µ̃, ω̃, we have:

rt = f(xt)↓ f(x→)

↘ µ̃t→1(xt)↓ µ̃t→1([x
→]t) + ϖ1/2

t ω̃t→1([x
→]t)

+ ϖ1/2
t ω̃t→1(xt) + 1/t2 + 2Cµt

2εM + 2Cεϖ
1/2
t tε1/2M

↘ 2ϖ1/2
t ω̃t→1(xt) + 1/t2 + 2Cµt

2εMt + 2Cεϖ
1/2
t tε1/2Mt

Applying Theorem 4.3 again completes this proof.

See Appendix A for full proofs of Theorems 4.3 and
4.4. Lemma 4.5 is a direct conclusion from Theo-
rem 4.4, which implies that the same regret bounds
as Srinivas et al. (2012) hold when using PK-MIQP to
optimize approximated LCB.

Lemma 4.5. For εMt = 1/O(t4+ω), ≃t ↗ 1 with some

ε > 0, running PK-MIQP for a sample f from a GP

with zero mean and covariance K(x,x↑), we can bound

regret by O
⇐(
⇓
dT⇀T ) with high probability. Precisely,

pick ↼ ↑ (0, 1), with C1 = 8/ log(1 + ω→2
f ), C2 =

T∑
t=1

(1/t2 + 2Cµt2εMt + 4Cεϖ
1/2
t tε1/2Mt

), we have:

Pr
{
RT ↘

√
C1TϖT ⇀T + C2

}
↗ 1↓ ↼

where RT =
∑T

t=1 rt is the cumulative regret, ⇀T is the

maximal information gain after T rounds.

Proof. Replacing the term 1/t2 by 1/t2 + 2Cµt2εMt +

4Cεϖ
1/2
t tε1/2Mt

in the proof of Theorem 2 in Srinivas
et al. (2012) finishes this proof.

Remark 4.6. The smoothness assumption holds for
any stationary kernel K(x,x↑) = k(x↓x↑) that is four
times di!erentiable, including squared exponential and
Matérn kernels with ⇁ > 2. Whether the same con-
clusion for Matérn 3/2 holds is unclear, so we choose
Matérn 3/2 in the main paper to empirically test its
performance and find promising results.

5 RESULTS

We compare the performance of PK-MIQP against
state-of-the-art minimizers over several benchmarks
and a hyperparameter tuning problem. The Matérn
3/2 kernel and LCB are used for all methods; only the

optimizer used for the acquisition function is changed.
For gradient-based methods, we choose L-BFGS-B
(Zhu et al., 1997), SLSQP (Kraft, 1988) and trust-
constr (Byrd et al., 1999). For sampling-based meth-
ods, we consider COBYLA (Powell, 1994) and Nelder-
Mead (Nelder and Mead, 1965). These methods are
chosen since they are relatively general and can be di-
rectly deployed without altering the BO algorithm or
acquisition function. We use the default implementa-
tions in scipy (Virtanen et al., 2020).

All experiments were performed on a 3.2 GHz Intel
Core i7-8700 CPU with 16 GB memory. For each
case, we report the mean with ±0.5 standard devi-
ation of simple regret over 20 replications. For all
benchmarks, we initially sample min{10D, 30} points
using Latin hypercube sampling (LHS). For the SVM
tuning problem, the size of the initial set is chosen
as 10, since evaluations are time-consuming. At each
iteration, the sample points are standardized to [0, 1]
before the GP training. We set size of solution pools
Psub and Prand to 10 for PK-MIQP. We use GPflow
(Matthews et al., 2017) to implement GP models and
Gurobi v11.0.0 (Gurobi Optimization, LLC, 2024) to
solve the resulting MIQPs (including solution pools).
Full implementation details are provided in Appendix
B. The code is available at GitHub.

5.1 Single acquisition function optimization

Before considering a full BO loop, we first study the
performance of PK-MIQP on optimizing a given ac-
quisition function. Specifically, we consider GP mod-
els given random samples from the prior in 1D–5D
and employ di!erent solvers to minimize the result-
ing LCB. The results for GP models with Matérn 3/2
kernel are given in Table 2. PK-MIQP consistently
outperforms the other gradient- and sampling-based
methods considered, suggesting the benefits of global
optimization. Notably, increasing the problem dimen-
sion does not significantly impact the solution quality
returned by PK-MIQP. The same conclusions can be
made when using the RBF kernel (results given in Ap-
pendix C), which furthermore supports the generaliz-
ability of the proposed PK-MIQP framework.

5.2 Real-time results

To investigate the computational requirements to
achieve global optimality using PK-MIQP, we report
the computational time of each method used in Sec-
tion 5.1. Add-GP training is applied to 1D–5D func-
tions sampled from GP models, where each function
is decomposed into Ng = D groups. The GP model
is then trained with the additive kernel, and optimiza-
tion solvers are applied for each group independently.

https://github.com/YilinElinXie
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Table 2: Comparison of solvers on optimizing random acquisition functions using Matérn 3/2 kernel. The mean
of the optimal LCB values found over the 20 replications is reported with 0.5 standard deviation in parentheses.
PK-MIQP consistently outperforms other gradient- and sampling-based methods.

method 1D 2D 3D 4D 5D

L-BFGS-B -0.68(0.54) -0.94(0.51) -1.79(0.74) -1.21(0.77) -1.22(0.50)
Nelder-Mead -0.65(0.51) -0.96(0.51) -1.32(0.42) -1.98(1.07) -1.07(0.41)
COBYLA -1.09(0.44) -1.26(0.52) -1.48(0.75) -1.58(0.75) -0.68(0.49)
SLSQP -0.59(0.53) -0.99(0.70) -1.58(0.75) -1.49(0.86) -1.43(0.51)

trust-constr -0.54(0.53) -1.19(0.55) -1.95(0.53) -1.71(0.88) -1.61(0.49)
PK-MIQP -1.76(0.27) -2.26(0.49) -2.17(0.36) -2.25(0.74) -1.62(0.50)

Table 3: Comparison of solvers on optimizing random acquisition functions using Matérn 3/2 kernel. The mean of
the computational time in seconds over the 20 replications is reported with 0.5 standard deviation in parentheses.

method 1D 2D 3D 4D 5D

L-BFGS-B 0.12(0.06) 0.14(0.08) 0.46(0.25) 0.41(0.16) 0.80(0.37)
Nelder-Mead 0.27(0.11) 1.63(2.35) 1.96(1.28) 2.34(0.96) 3.75(1.51)
COBYLA 0.21(0.06) 0.48(0.29) 1.57(1.32) 2.21(1.52) 1.68(0.75)
SLSQP 0.08(0.04) 0.10(0.05) 0.40(0.17) 0.24(0.13) 0.61(0.23)

trust-constr 0.26(0.11) 0.78(0.21) 0.88(0.29) 2.67(1.76) 1.78(0.84)
add-GP PK-MIQP 2.08(0.35) 7.14(0.93) 15.41(2.04) 19.06(4.52) 22.45(3.34)

PK-MIQP 2.08(0.35) 11.37(3.95) 866.48(601.49) 1557.82(576.70) 3199.24(361.09)

As shown in Table 3, PK-MIQP has a higher time com-
plexity compared to gradient- and sample-based meth-
ods, which is the expected cost of employing global op-
timization. Note that BO is particularly useful when
evaluating the unknown objective function is expen-
sive, meaning extended computational times may not
be a deterrent in many BO settings. Introducing add-
GP greatly reduces the time cost for PK-MIQP, and
we hope that our work motivates future research in
MIQP methods to accelerate solutions.

5.3 Bayesian optimization using PK-MIQP

This section tests the performance of PK-MIQP with
the Matérn 3/2 kernel in a full BO loop over the follow-
ing functions (see Appendix B for their formulations):

Unconstrained benchmarks: Bumpy (1D), Multi-
modal (1D), Ackley (2D), Branin (2D), Rosenbrock
(2D), Hartmannn (3D), and Michalewicz (5D). Most
of these functions are commonly used as synthetic
benchmarks in BO literature. Additionally, to high-
light cases where intuitively there may be significant
di!erence between choosing a global minima and a lo-
cal minima of the acquisition function, we also select
Bumpy and Multimodal as benchmarks. Bumpy is
periodic with multiple local and global minima, and
Multimodal has multiple local minima and a unique
global minimum.

Constrained benchmark: KS224 (2D) function
with 4 linear constraints (Schittkowski, 2008). This
function is used to demonstrate the ability of PK-
MIQP to handle additional constraints.

SVM hyperparameter tuning: As a real-world ex-
ample with long evaluation times, we consider the hy-
perparameter tuning task using support vector ma-
chine (SVM) as a text classifier. The regularization
parameter and kernel coe”cient in SVM are set as
the hyperparameters to be tuned. The objective is to
maximize the 5-fold cross-validation score of the SVM.

For the 3D and 5D benchmarks, we use add-GP train-
ing for all methods as in Section 5.2. Figures 3f and
3g show the results for the these cases.

For the constrained benchmark, PK-MIQP can eas-
ily handle linear and quadratic constraints by adding
them into formulation (5). For methods that can-
not directly incorporate constraints, such as L-BFGS-
B and Nelder-Mead, we add a penalty term to LCB
on the constraint violation with a scaling parameter
ϱ. We run the experiment three times with ϱ set as
{10, 100, 1000} respectively. We pick the ϱ setting that
achieves the lowest regret at the end of BO, and report
the results in Figure 3h. For hyperparameter tuning,
we use the SVM implementation in scikit-learn (Pe-
dregosa et al., 2011), which is trained as a text classi-
fier on the 20 news group text dataset (Lang, 1995).
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(a) 1D Multimodal (b) 1D Bumpy (c) 2D Ackley

(d) 2D Branin (e) 2D Rosenbrock (f) 3D Hartmann

(g) 5D Michalewicz (h) 2D constrained KS224 (i) 2D hyperparameter tuning

Figure 3: Numerical results on Bayesian optimization using PK-MIQP with Matérn 3/2 kernel and the state-of-
the-art minimizers. The mean with 0.5 standard deviation of simple regret is reported over 20 replications.

Optimization results on the benchmark functions
and real-world application are presented in Figure 3.
BO with PK-MIQP demonstrates comparable perfor-
mance to the state-of-the-art comparison methods on
smooth functions, e.g., 1D multimoddal, 2D Branin
and 2D Rosenbrock. On more di”cult functions
with numerous local minima, e.g., 1D Bumpy and 2D
Ackley, PK-MIQP outperforms other methods con-
siderably. This follows the intuition that gradient-
based methods are easily trapped at local minima,
and sampling-based methods can miss the global
minima. PK-MIQP manages an (approximately)
global optimization step. With add-GP training, PK-
MIQP remains competitive performance. Note that,
as dimensionality increases, sampling-methods such
as COBYLA and Nelder-Mead can fail to improve
through iterations. Figure 3h illustrates the results
of a constrained benchmark, where again PK-MIQP
is found to be e!ective in handling the known con-
straints. Finally, for the hyperparameter tuning prob-

lem, PK-MIQP achieves a cross-validation accuracy
score at 91.4% at the end of optimization, which out-
performs most of other solvers.

6 CONCLUSION

This work proposes PK-MIQP, a mixed-integer
programming-based paradigm for global optimization
of GP-based acquisition functions. Our formulation in-
troduces a piecewise-linear approximation for smooth
GP kernels and a corresponding MIQP representa-
tion of acquisition functions. We analyze the theo-
retical regret bounds of PK-MIQP, and empirically
demonstrate the framework on synthetic functions,
constrained benchmarks, and a hyperparameter tun-
ing task. We hope this work demonstrates the po-
tential of mixed-integer programming in BO settings.
Future work can improve and further scale PK-MIQP
using tools from this community, e.g., cutting planes,
tighter formulations, and/or branching rules.
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dimensional Bayesian optimisation and bandits via
additive models. In ICML, 2015.

J. Kim and S. Choi. On local optimizers of acquisi-
tion functions in Bayesian optimization. In Machine

Learning and Knowledge Discovery in Databases,
2021.

D. P. Kingma and J. Ba. Adam: a method for stochas-
tic optimization. In ICLR, 2015.

https://arxiv.org/abs/2410.22322
https://arxiv.org/abs/2410.22322
https://www.gurobi.com
https://www.gurobi.com


Yilin Xie, Shiqiang Zhang, Joel A. Paulson, Calvin Tsay

D. Kraft. A software package for sequential quadratic

programming. Wiss. Berichtswesen d. DFVLR, 1988.

K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the Twelfth International Conference

on Machine Learning, pages 331–339, 1995.

L. Mathesen, G. Pedrielli, S. H. Ng, and Z. B. Zabin-
sky. Stochastic optimization with adaptive restart:
A framework for integrated local and global learn-
ing. Journal of Global Optimization, 79:87–110,
2021.

A. G. d. G. Matthews, M. van der Wilk, T. Nick-
son, K. Fujii, A. Boukouvalas, P. León-Villagrá,
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A Extended Proofs

Proof of Theorem 4.3. Denote ς := KxX ↓ K̃xX and # := KXX ↓ K̃XX . Since the di!erence between the true
and approximated kernel functions is bounded by εM (see Remark 4.1), we can obtain:

↔ς↔2 ↘

⇓

NεM , ↔#↔2 ↘ NεM

where we use the fact that ↔#↔2 ↘ N↔#↔max and ↔#↔max ↘ εM .

By the definition of µ(x) and µ̃(x),

µ(x)↓ µ̃(x) = KxXK→1
XXy ↓ K̃xXK̃→1

XXy

= (K̃xX + ς)K→1
XXy ↓ K̃xXK̃→1

XXy

= K̃xXK→1
XXy + ςK→1

XXy ↓ K̃xXK̃→1
XXy

= K̃xX(K→1
XX ↓ K̃→1

XX)y + ςK→1
XXy

= K̃xXK→1
XX(K̃XX ↓KXX)K̃→1

XXy + ςK→1
XXy

= ↓K̃xXK→1
XX#K̃→1

XXy + ςK→1
XXy

where we use the property A→1
↓B→1 = A→1(B ↓A)B→1 for two invertible matrices A and B.

Note that ↔K̃xX↔2 ↘
⇓
Nω2

f and ↔y↔2 ↘
⇓
N (recall our assumption that f(x) ↑ [0, 1]), then we have:

|µ(x)↓ µ̃(x)| ↘ ↔K̃xX↔2↔K
→1
XX↔2↔#↔2↔K̃

→1
XX↔2↔y↔2 + ↔ς↔2↔K

→1
XX↔2↔y↔2

↘ N↔K→1
XX↔2(Nω2

f↔K̃
→1
XX↔2 + 1)εM

↘ CµN
2εM

where the constant Cµ = ω→4
ω ω2

max and ω2
max is the upper bound of kernel variance ω2

f . Note we ignore the small
term since N ↙ 1 and only consider the dominating term (the first term in this case).

Similarly, for the di!erence between variance ω2(x) and ω̃2(x), we have:

ω2(x)↓ ω̃2(x) = Kxx ↓KxXK→1
XXKXx ↓ K̃xx + K̃xXK̃→1

XXK̃Xx

= K̃xXK̃→1
XXK̃Xx ↓KxXK→1

XXKXx

= K̃xXK̃→1
XXK̃Xx ↓ (K̃xX + ς)K→1

XX(K̃Xx + ςT )

= K̃xXK̃→1
XXK̃Xx ↓ K̃xXK→1

XXK̃Xx ↓ 2K̃xXK→1
XXςT

↓ ςK→1
XXςT

= K̃xX(K̃→1
XX ↓K→1

XX)K̃Xx ↓ 2K̃xXK→1
XXςT

↓ ςK→1
XXςT

= K̃xXK→1
XX#K̃→1

XXK̃Xx ↓ 2K̃xXK→1
XXςT

↓ ςK→1
XXςT

where Kxx = K̃xx = ω2
f in our approximation, and we reuse equation K̃→1

XX ↓K→1
XX = K→1

XX#K̃→1
XX .

Then we have:

|ω2(x)↓ ω̃2(x)| ↘ ↔K̃xX↔2↔K
→1
XX↔2↔#↔2↔K̃

→1
XX↔2↔K̃Xx↔2 + 2↔K̃xX↔2↔K

→1
XX↔2↔ς↔2 + ↔K→1

XX↔2↔ς↔
2
2

↘ N↔K→1
XX↔2(Nω4

f↔K̃
→1
XX↔2 + 2ω2

f + εM )εM

↘ C2
εN

2εM

where the constant Cε = ω→2
ω ω2

max. Note that we again only consider the dominating term (the first term again).

Consider the following two cases:

Case 1: if max(ω(x), ω̃(x)) ↘ CεNε1/2M , then:

|ω(x)↓ ω̃(x)| = max(ω(x), ω̃(x))↓min(ω(x), ω̃(x)) ↘ max(ω(x), ω̃(x)) ↘ CεNε1/2M

since min(ω(x), ω̃(x)) ↗ 0.
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Case 2: if max(ω(x), ω̃(x)) > CεNε1/2M , then:

|ω(x)↓ ω̃(x)| =
|ω2(x)↓ ω̃2(x)|

ω(x) + ω̃(x)
↘

|ω2(x)↓ ω̃2(x)|

max(ω(x), ω̃(x))
↘ CεNε1/2M

Therefore, we conclude that:

|ω(x)↓ ω̃(x)| ↘ CεNε1/2M

Proof of Theorem 4.4. Except for the fact that xt is chosen by minimizing the approximated LCB instead of
the true LCB, all conditions of this theorem are the same as in Lemma 5.8 of Srinivas et al. (2012). Therefore,
the conclusions of Lemma 5.5 and Lemma 5.7 in Srinivas et al. (2012) still hold here, and we first restate them
without repeating proofs for simplicity:

|f(xt)↓ µt→1(xt)| ↘ ϖ1/2
t ωt→1(xt)

|f(x→)↓ µt→1([x
→]t)| ↘ ϖt→1([x

→]t) + 1/t2

where [x→]t is the closest point in Dt to x→, and Dt ⇐ D is a discretization at t-th iteration.

Recall the definition of xt, we have:

µ̃t→1(xt)↓ ϖ1/2
t ω̃t→1(xt) ↘ µ̃t→1([x

→]t)↓ ϖ1/2
t ω̃t→1([x

→]t)

Combining those three inequalities with our inequalities from Theorem 4.3 gives

rt = f(xt)↓ f(x→)

↘ µt→1(xt) + ϖ1/2
t ωt→1(xt)↓ µt→1([x

→]t) + ϖ1/2
t ωt→1([x

→]t) + 1/t2

↘ µ̃t→1(xt) + ϖ1/2
t ω̃t→1(xt)↓ µ̃t→1([x

→]t) + ϖ1/2
t ω̃t→1([x

→]t) + 1/t2 + 2Cµt
2εMt + 2Cεϖ

1/2
t tε1/2Mt

↘ 2ϖ1/2
t ω̃t→1(xt) + 1/t2 + 2Cµt

2εMt + 2Cεϖ
1/2
t tε1/2Mt

↘ 2ϖ1/2
t ωt→1(xt) + 1/t2 + 2Cµt

2εMt + 4Cεϖ
1/2
t tε1/2Mt

B Experimental Implementation Details

B.1 Problem setup

For our experiments, the GP models, including the additive GPs, are implemented with a Matérn 3/2 kernel
using the GPflow package (Matthews et al., 2017). In our implementation, kernel variance ω2

f is bounded to be
within [0.05, 20] and kernel lengthscale l is bounded to be within [0.005, 20]. The GP parameters are optimized
over 10 multiple starts, with random initial values for kernel parameters. The set of parameters with minimal
negative log likelihood is then selected. We take the noise term ω2

ω = 10→6.

For PK-MIQP, all MIQPs are solved using Gurobi v11.0.0 (Gurobi Optimization, LLC, 2024). We list relevant
solver hyperparameters in Table 4 and use default values for other hyperparameters.

As mentioned in the “Initialization Heuristic” paragraph of Section 4.2, PK-MIQP first solves a sub-problem to
initialize the full-problem. The sub-problem drops all variance-related terms, resulting in

min
x↑X

µ̃

s.t. µ̃ = K̃xXK̃→1
XXy

r2i =
↔x↓ xi↔

2
2

l2
, ≃1 ↘ i ↘ N

K̃xXi = k̃(ri), ≃1 ↘ i ↘ N
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Table 4: Gurobi hyperparameters.

Parameter Value

NonConvex 2
ObjScale 0.5
ScaleFlag 1
MIPgap 0.5

PoolSolutions 10
TimeLimit 5400

For sub-problem, we set TimeLimit to 1800(s); most are solved relatively quickly.

We use scipy (Virtanen et al., 2020) to implement state-of-the-art optimizers for comparison, including:

L-BFGS-B: Limited-memory Broyden–Fletcher–Goldfarb–Shanno Bound (L-BFGS-B) (Zhu et al., 1997) algo-
rithm is a gradient-based solver for minimizing di!erentiable function. L-BFGS-B uses the first derivative as well
as an estimate of the inverse of Hessian matrix to steer the search. It doesn’t support constrained minimization
problems.

COBYLA: Constrained Optimization BY Linear Approximation (COBYLA) (Powell, 1994) algorithm is a
derivative-free solver for minimizing scalar functions. COBYLA updates a linear approximation of both the
objective and constraints and performs a simplex method within the trust region to solve the problem. It
supports constrained minimization problems.

trust-constr: Trust-region algorithm for constrained optimization (trust-constr) (Byrd et al., 1999) is a gradient-
based solver that applies the interior point algorithm to minimize a given function. Both gradients and Hessians
are approximated during the solving. It supports constrained minimization problems.

Nelder-Mead: Nelder-Mead algorithm (Nelder and Mead, 1965) is a derivative-free method for solving mul-
tidimensional optimization problems. It uses a simplex algorithm based on function comparison and doesn’t
support constrained minimization problems.

SLSQP: Sequential Least SQuares Programming (SLSQP) (Kraft, 1988) algorithm is a gradient-based optimizer.
It uses the Han-Powell quasi-Newton method combined with BFGS to solve a Lagrange function at each iteration.
It supports constrained minimization problems.

For these methods, the tolerance of termination (tol) is set to 10→6, and the maximum number of iterations
(maxiter) is set to 1000. The starting point (x0) for applicable methods is set to 0.

B.2 Benchmarks

In this section, we provide the formulations for all benchmark functions used in our experiments.

Bumpy (1D):

min ↓

6∑

i=1

i · sin ((i+ 1)x+ i)

s.t. x ↑ [↓10, 10]

(Bumpy)

Multimodal (1D):

min sinx+ sin

(
10

3
x

)

s.t. x ↑ [↓2.7, 7.5]

(Multimodal)

Ackley (2D)

min ↓ 20 exp

(
↓0.2

√
0.5(x2

1 + x2
2)

)
↓ exp (0.5(cos (2↽x1)) + cos (2↽x2)) + 20 + exp (1)

s.t. x1, x2 ↑ [↓32, 16]

(Ackley)

https://www.gurobi.com/documentation/current/refman/nonconvex.html
https://www.gurobi.com/documentation/current/refman/objscale.html
https://www.gurobi.com/documentation/current/refman/scaleflag.html
https://www.gurobi.com/documentation/current/refman/mipgap2.html
https://www.gurobi.com/documentation/current/refman/poolsolutions.html
https://www.gurobi.com/documentation/current/refman/timelimit.html
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Branin (2D)
min a(x2 ↓ bx2

1 + cx1 ↓ r)2 + s(1↓ t) cos (x1) + s

s.t. x1 ↑ [↓5, 10], x2 ↑ [0, 15]
(Branin)

where a = 1, b = 5.1/(4↽2), c = 5/↽, r = 6, s = 10, t = 1/(8↽).

Rosenbrock (2D)
min (1↓ x1)

2 + 100(x2 ↓ x2
1)

2

s.t. x1 ↑ [↓2, 2], x2 ↑ [↓1, 3]
(Rosenbrock)

Hartmann (3D)

min ↓

4∑

i=1

ϑi exp



↓

3∑

j=1

Aij(xj ↓ Pij)
2





s.t. x1, x2, x3 ↑ [0, 1]

(Hartmann)

where ϑ = (1, 1.2, 3, 3.2)T and

A =





3 10 30
0.1 10 35
3 10 30
0.1 10 35



 , P = 10→4





3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828





Michalewicz (5D)

min ↓

5∑

i=1

sin (xi) sin
20

(
ix2

i

↽

)

s.t. xi ↑ [0,↽], i = 1, · · · , 5

(Michalewicz)

Constrained KS224 (2D) For thise case, we solve the following constrained minimization problem with the
2D KS224 function (Schittkowski, 2008) as the objective.

min 2x2
1 + x2

2 ↓ 48x1 ↓ 40x2

s.t. ↓ (x1 + 3x2) ↘ 0

↓ (18↓ x1 ↓ 3x2) ↘ 0

↓ (x1 + x2) ↘ 0

↓ (8↓ x1 ↓ x2) ↘ 0

x1, x2 ↑ [0, 6]

(Constrained KS224)

SVM hyperparameter tuning: The 20 newsgroup dataset (Lang, 1995) is a classic dataset consisting of
posts on 20 topics for text classification. We implement a simple pipeline for this text classification in scikit-
learn (Pedregosa et al., 2011) comprising first using a TF-IDF vectorizer to convert text to vectors and then
applying C-Support Vector Classification (SVC). We use the default settings for hyperparameters in SVC except
leaving the regularization hyperparameter C ↑ [0.01, 1000] and kernel coe”cient ⇀ ↑ [0.01, 1000] to be tuned.
Negative 5-fold cross validation accuracy is set as the objective to be minimized.

C Numerical results using RBF kernel

We perform the same single acquisition function optimization experiment as in Section 5.1, but using the RBF
kernel instead of the Matern 3/2 kernel. Table 5 reports the mean of the optimal LCB values found by di!erent
optimizers, along with half of the standard deviation. For Bayesian optimization, we empirically demonstrate
the performance of PK-MIQP with RBF kernel in two benchmarks as shown in Figure 4.
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Table 5: Comparison of solvers on optimizing random acquisition functions using RBF kernel. The mean of
the optimal LCB values found over the 20 replications is reported with 0.5 standard deviation in parentheses.
PK-MIQP consistently outperforms other gradient- and sampling-based methods.

method 1D 2D 3D 4D 5D

L-BFGS-B -0.67(0.68) -0.90(0.42) -2.03(1.85) -2.77(1.45) -2.26(1.31)
Nelder-Mead -0.98(0.63) -0.87(0.67) -1.53(0.74) -2.70(1.43) -2.12(1.38)
COBYLA -1.25(0.82) -1.44(0.60) -2.18(1.83) -1.47(0.99) -2.49(1.37)
SLSQP -1.04(1.00) -0.72(0.41) -2.34(1.83) -2.53(1.49) -2.28(1.29)

trust-constr -0.57(0.68) -1.27(0.38) -1.90(0.70) -3.06(1.56) -2.89(1.32)
PK-MIQP -1.82(0.71) -1.99(0.49) -2.94(0.65) -4.20(1.87) -3.10(1.28)

(a) 1D Bumpy (b) 2D Ackley

Figure 4: Numerical results on Bayesian optimization using PK-MIQP with RBF kernel and the state-of-the-art
minimizers. The mean with 0.5 standard deviation of simple regret is reported over 20 replications. PK-MIQP
is similarly applicable to the RBF kernel and again outperforms other minimizers.
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