Massively Parallel Maximum Coverage Revisited*

Thai Bui and Hoa T. Vu

San Diego State University, San Diego, CA 92182, USA
tbui8182@sdsu.edu, hvu2@sdsu.edu

Abstract. We study the maximum set coverage problem in the mas-
sively parallel model. In this setting, m sets that are subsets of a universe
of n elements are distributed among m machines. In each round, these
machines can communicate with each other, subject to the memory con-
straint that no machine may use more than O (n) memory. The objective
is to find the k sets whose coverage is maximized. We consider the regime
where k = Q(m) (i.e., k = m/100), m = O(n), and each machine has
O (n) memory .
Maximum coverage is a special case of the submodular maximization
problem subject to a cardinality constraint. This problem can be ap-
proximated to within a 1 — 1/e factor using the greedy algorithm, but
this approach is not directly applicable to parallel and distributed mod-
els. When k = Q(m), to obtain a 1 — 1/e — € approximation, previous
work either requires O (mn) memory per machine which is not interesting
compared to the trivial algorithm that sends the entire input to a single
machine, or requires 2°*/9)n memory per machine which is prohibitively
expensive even for a moderately small value e.
Our result is a randomized (1 — 1/e — €)-approximation algorithm that
uses

O(1/€* -logm - (log(1/€) 4 logm))
rounds. Our algorithm involves solving a slightly transformed linear pro-
gram of the maximum coverage problem using the multiplicative weights
update method, classic techniques in parallel computing such as parallel
prefix, and various combinatorial arguments.

1 Introduction

Maximum coverage is a classic NP-Hard problem. In this problem, we have m sets
S1, 82, ..., S, that are subsets of a universe of n elements [n] = {1,2,...,n}. The
goal is to find k sets that cover the maximum number of elements. In the offline
model, the greedy algorithm achieves a 1 — 1/e approximation and assuming
P # NP, this approximation is the best possible in polynomial time [8].
However, the greedy algorithm for maximum coverage and the related set
cover problem is not friendly to streaming, distributed, and massively parallel

* This work is supported by the National Science Foundation under Grant No.
2342527.

! The input size is O(mn) and each machine has the memory enough to store a con-
stant number of sets.

2 T. Bui and H. T. Vu

computing. A large body of work has been devoted to designing algorithms for
these problems in these big data computation models. An incomplete list of work
includes [3-7,9,11-13,16, 21,22, 24, 25].

Some example applications of maximum coverage includes facility and sensor
placement [17], circuit layout and job scheduling [10], information retrieval [1],
market design [15], data summarization [24], and social network analysis [13].

The MPC model. We consider the massively parallel computation model (MPC)
in which m sets S1,Sa, ..., S, C [n] are distributed among m machines. Each
machine has memory O(n) and holds a set. In each round, each machine can
communicate with others with the constraint that no machine receives a total
message of size more than O(n) Similar to previous work in the literature, we
assume that m < n.

The MPC model, introduced by Karloff, Suri, and Vassilvitskii [14] is an ab-
straction of various modern computing paradigms such as MapReduce, Hadoop,
and Spark.

Previous work. This problem is a special case of submodular maximization sub-
ject to a cardinality constraint. The results of Liu and Vondrak [20], Barbosa et
al. [23], Kumar et al. [18] typically require that each machine has enough mem-
ory to store O(v/km) items which are sets in our case (and storing a set requires
O (n) memory) with \/m/k machines. When k = Q(m) (e.g., k = m/100), this
means that a single machine may need O (mn) memory. This is not better than
the trivial algorithm that sends the entire input to a single machine and solves
the problem in 1 round.

Assadi and Khanna gave a randomized 1 — 1/e — € approximation algorithm
in which each machine has O (m‘s/ En) memory and the number of machines is
m'=%/¢ for any ¢,0 € (0,1) (see Corollary 10 in the full paper of [4]). Setting
0 = ©(1/logm) gives us a 1 — 1/e — € approximation in O(1/e - logm) rounds
with O(mm) machines each of which uses O (21/ En) memory. While Assadi and
Khanna’s result is nontrivial in this regime, the dependence on € is exponential
and if n is large, then even a moderately small value of ¢ = 0.01 can lead to a
prohibitively large memory requirement ~ 2!%°n. Their work however can handle
the case where k = o(m).

Our result. We present a relatively simple randomized algorithm that achieves
a1 —1/e — e approximation in O(1/€* - logm - (log(1/€) + logm)) rounds with
O (n) memory per machine assuming k = Q(m). Our space requirement does not
depend on € compared to the exponential dependence in Assadi and Khanna’s
result.

We note that assuming & = Q(m) does not make the problem any easier
since there are still exponentially many solutions to consider. In practice, one
can think of many applications where one can utilize a constant fraction of the
available sets (e.g., 10% or 20%). We state our main result as a theorem below.

Massively Parallel Maximum Coverage Revisited 3

Theorem 1. Assume k = Q(m) and there are m machines each of which has
O (n) memory. There exists an algorithm that with high probability finds k sets
that cover at least (1—1/e—€)OPT elements in O(1/e3-logm-(log(1/€)+logm))
rounds.

If the maximum frequency f (the maximum number of sets that any ele-
ment belongs to) is bounded, we can drop the assumption that k& = Q(m), and
parameterize the number of rounds based on f. In particular, we can obtain a
1—1/e — ¢ approximation in O(f3/¢® - log®(“L)) rounds.

Remark. We could easily modify our algorithm so that each machine uses
O (1/e - n) memory and the number of rounds is O(1/€2-log m-(log(1/€)+log m)).
At least one logm factor is necessary based on the lower bound given by Corol-
lary 9 of [4].

Randomization appears in two parts of our algorithms: the rounding step and
the subsampling step to reduce the number of rounds from logm -logn to logm -
(log(1/€) +logm). If we only need to compute an approximation to the optimal
coverage value such that the output is in the interval [(1 — ¢)OPT,OPT/(1 —
1/e — ¢€)], then we have a deterministic algorithm that runs in O(1/€* - logn -
logm) rounds. The algorithm by Assadi and Khanna [4] combines the sample-
and-prune framework with threshold greedy. This strategy requires sampling
sets. It is unclear how to derandomize their algorithm even just to compute an
approximation to the optimal coverage value.

Our techniques and paper organization. In Section 2.1, we transform the stan-
dard linear program for the maximum coverage problem into an equivalent
packing linear program that can be solved “approximately” by the multiplica-
tive weights update method. At a high level, the multiplicative weights update
method gives us a fractional solution that is a 1 —1/e — O(e) bi-criteria approxi-
mation where (1+0(e))k “fractional” sets cover (1—1/e—0O(€))OPT “fractional”
elements. We then show how to find % sets covering (1—1/e—O(e))OPT elements
from this fractional solution through a combinatorial argument and parallel pre-
fix.

Section 2.2 outlines the details to solve the transformed linear program in
the MPC model. While this part is an adaptation of the standard multiplicative
weights, an implementation in the MPC model requires some additional details
such as the number of bits to represent the weights. All missing proofs and
detailed calculation can be found in the full version.

Preliminaries. In this work, we will always consider the case where each machine
has O (n) memory and m < n. Without loss of generality, we may assume the
non-central machine j stores the set S;. For each element i € [n], we use f; to
denote the number of sets that 4 is in. This is also referred to as the frequency
of i. Assume each machine has O (n) space. The vector f can be computed in
O(log m) rounds and broadcasted to all machines. Each machine j starts with the

characteristic vector v; € {0,1}" of the set S; that it holds. The vector f is just

4 T. Bui and H. T. Vu

the sum of the characteristic vectors of the sets. We can aggregate the vectors
{v;} in O(logm) rounds using the standard binary tree aggregation algorithm.
Since in this work, the dependence on 1/€ is polynomial, an o — O(e) ap-
proximation can easily be translated to an o — e approximation by scaling € by a
constant factor. We can also assume that 1/e < n/10; otherwise, we can simulate
the greedy algorithm in O(1/€) rounds. For the sake of exposition, we will not
attempt to optimize the constants in our algorithm and analysis. Finally, in this
work we consider 1 — 1/poly(m) as a “high probability”. We use [E] to denote
the indicator variable of the event F that is 1 if E happens and 0 otherwise.

2 Algorithm

2.1 The main algorithm

Linear programming (re)formulation. We first recall the relaxed linear program
(LP) for the maximum coverage problem Il:

maximize g T;

1€[n]
(st.) x; < Z Yj Vi € [n]
Sjai
dovi=k
JE[M]
xi7yj€[071] VZE[n],jE[m}

We first reformulate this LP and then approximately solve the new LP using the
multiplicative weights update method [2]. For each j € [m], let z; :== 1 —y;. We
have the following fact.

Fact 1 For each i € [n], z; < Zyj = z; + sz < Z(yj—i-zj) = f;.
S S S

Note that if y € [0,1]™ and }°;y; = k, then z € [0,1]™ and >, z; = m — k.
Thus, it is not hard to see that the original LP is equivalent to the following LP
which we will refer to as II;.

maximize E T;
i€[n]

i1 .
(s.t.) £+—-sz§1 Vi € [n]

fi fi o3,

Z zj=m—k

j€[m]

x;, 2z € [0,1] Vi€ [n],j € [m].

Massively Parallel Maximum Coverage Revisited 5

In this section, we will assume the existence an MPC algorithm that approx-
imately solves the linear program IT; in O(1/e?-logn -logm) rounds. The proof
will be deferred to Section 2.2.

Theorem 2. There is an algorithm that finds = € [0,1]™, z € [0,1]™ such that
1. Zie[n] x; > (1 —€)OPT,
2. > jepm 2 =m —k, and
3 %44 g7 <1t+e Vieh]
in O(e~3logn -logm) rounds.

Let x and z be the be the output given by Theorem 2. Then, let x’ = x/(1+¢),
7 =z/(14+¢€),and y =1 — z’. We have

- 1 o 1—e

- ;> ——“OPT > (1 — 4¢)OPT 1
St = e Ss F0PT > (1~ 190PT 0
i " Z; m—k

!l J —
Zyi_z<1_1+6)_m_ 1T e <m—(1-2e)(m—k) <k+ 2em,
Jj=1 j=1

(2)

T+ Z 2 < fi &= 1; < Z y;, Vi€ [n], by Fact 1. (3)

SjBi SjBi

Thus, by setting x < x/(1+¢€), and y + y’, we have an approximate solution
x € [0,1]",y € [0,1]" to the LP IIy such that

in > (1 — 4¢)OPT, Zyj < k+ 2em, and
i=1 j=1
x; < Z yj, Vi € [n].
S;>i
We can then apply the standard randomized rounding to find a sub-collection

of at most k + 2em sets that covers at least (1 — 4¢)OPT elements. For the sake
of completeness, we will provide the rounding algorithm in the MPC model in

the following lemma.

Lemma 1. Suppose € [0,1]" and y € [0, 1]™ satisfy:

1. Zze[n] T; > L,

2. i < Y g,5; Yy for alli € [n],

3. Z_je[m] yj =k,

4. xi,y; €[0,1] for alli € [n] and j € [m].

Then there exists a rounding algorithm that finds a sub-collection of k sets that
in expectation cover at least (1—1/e)L elements in O(1) round. To obtain a high
probability guarantee, the algorithm requires O(1/e -logm) rounds to find k sets
that cover least (1 —1/e — O(¢))L elements.

6 T. Bui and H. T. Vu

Applying Lemma 1 to x and y with k& + 2em in place of k, we obtain a
sub-collection of at most k + 2em sets that covers at least (1 —1/e — O(e))OPT
elements. Since we assume that k£ = Q(m), that means we have found k + O(e)k
sets that cover at least (1 —1/e — O(€))OPT elements. The next lemma shows
that we can find k sets among these that cover at least (1 — 1/e — O(¢))OPT
elements. The proof is a combination of a counting argument and the well-known
parallel prefix algorithm [19].

Algorithm 1: Parallel prefix coverage

1 Compute ‘S1|, ‘SQ \ Sl|, |53 \ (Sl @] Sg)‘, ey ‘Sk \ (S1 U...uU Skfl)‘ in O(logk)

rounds.

2 Function PrefixCoverage(Si,S2,...,S%):

// Compute |Sl|,|52 USl',‘S3US2 US1|,...,|Sk USk_1 U...USl|

3 if k=1 then

4 L return |Si].

5 else

// Assume k is even.

6 In one round, machine 2j — 1 sends S2;—1 to machine 27, then machine
2j computes Qj = Szj_l U Szj.

7 Run PrefixCoverage(Q1,Q2,...,Qk/2) on machines 2,4,6,...,k.

8 Machine j now has S; US2 US3U...US; for j =2,4,6,...,k.

9 In one round, machine j = 1,3,5,...,k — 1 communicates with
machine j — 1 which has S; US> U...S;_1 and computes
SlLJSQU...USj.

// If k is odd, run the above algorithm on Si,S2,...,Sk—1 and
then compute S;US2U...USk in one round.
10 Each machine j communicates with machine j — 1 to compute
[S1US2U...US;|—|S1US2U...US;_1| in one round.

We rely on the following result which is a simulation of the parallel prefix.

Lemma 2. Suppose there are k sets and machine j holds the set S;. Then Al-
gorithm 1 computes |S1],|S2\ S1|, |93\ (51U S2)|, |54\ (S1US2USs5)|,...,|SkU
Sk—1U...US| in O(logk) rounds.

Proof. We first show how to compute (S1), (S1 U S2),(S1 U S2US3),...,(S1 U
Sy U...USg) in O(log k) rounds where machine j holds S U Sy U...US; at
the end. Once this is done, machine j can send S; U Sz U...U S; to machine
j+1 and machine j+ 1 can compute [S1USaU...USj11|—|S1US2U...US;|=
|Sj+1 \ (Sl USsuU...U SJ)|

The algorithm operates recursively. In one round, machine 2j — 1 sends Sa;_1
to machine 27, then machine 25 computes @; = S2;—1 U S2;. Assuming k is even,
the algorithm recursively computes (Q1), (@1 U Q2), (Q1 UQ2UQ3),...,(Q1U
Q2U...UQg) on machines 2,4, ..., k. After recursion, machines with even indices

Massively Parallel Maximum Coverage Revisited 7

27 has the set S;US3U...USy;. Then, in one round, machines with odd indices
2j +1 communicate with machine 2j to learn about S; USoU...USy;41. If k is
odd, we just do the same on Sy, .55, ..., Sk_1 and then compute S;USzU...USk
in one round.

There are O(log k) recursion levels and therefore, the total number of rounds
is O(log k).

Lemma 3. Let § = {S1,...,5,} be a collection of r = (1 +)k sets whose
union contains L elements where v € [0,1), then there exist k sets in S whose
union contains at least (1 —~y)L elements. Furthermore, we can find these k sets
in O(logr) rounds.

Proof. Consider the following quantities ¢1 = |S1|, 2 = |S1 U Sa|—|S1], ¢35 =
[S1 U S2 U S3|—|S1 US,,...

Clearly, 25:1 ¢; = L. We say S; is responsible for element i if i € S; \
(U;<; S1)- This establishes a one-to-one correspondence between the sets Si,, S,
and the elements they cover. S; is responsible for exactly ¢; elements. Further-
more, if we remove some sets from S, and an element becomes uncovered, the
set responsible for that element must have been removed. Thus, if we remove the
vk sets corresponding to the vk smallest ¢;, then at most yL elements will not
have a responsible set. Thus, the number of elements that become uncovered is
at most yL.

To find these sets, we apply Lemma 2 with r in place of k and O(e) in
place of v to learn about ¢1, ¢s,..., ¢, in O(logr) = O(log k) rounds. We then
remove the vk = O(€)k sets corresponding to the vk smallest ¢; and output the
remaining k sets.

Putting it all together. We spend O(1/€*-1logn -logm) rounds to approximately
solve the linear program II;. From there, we can round the solution to find a
sub-collection of k+ O(e)k sets that cover at least (1—1/e—O(€))OPT elements
with high probability in O(1/e - logm) rounds. We then apply Lemma 3 to find
k sets among these that cover at least (1 —1/e — O(€))OPT elements in O(log k)
rounds. The total number of rounds is therefore O(1/€3 - logn - logm).

Reducing the number of rounds to O(1/€* -logm - (logm + log(1/e€))). The de-
scribed algorithm runs in O(1/e -logn - logm) rounds. Our main result in The-
orem 1 states a stronger bound O(1/€® - logm - (logm + log(1/¢€))) rounds. We
achieve this by adopting the sub-sampling framework of McGregor and Vu [22].

Without loss of generality, we may assume that each element is covered by
some set. If not, we can remove all of the elements that are not covered by any set
using O(log m) rounds. Specifically, let v; be the characteristic vector of S;. We
can compute v = 23:1 v; in O(log m) rounds using the standard converge-cast
binary tree algorithm. We can then remove the elements that are not covered by
any set (elements corresponding to 0 entries in v).

We now have m sets covering n elements. Since k = Q(m), we must have that
OPT = Q(n). McGregor and Vu showed that if one samples each element in the

8 T. Bui and H. T. Vu

log (7,:)

universe [n] independently with probability p = © <620PT> then with high

probability, if we run a 8 approximation algorithm on the subsampled universe,
the solution will correpond to a 8 — € approximation on the original universe.
We have just argued that OPT = Q(n) and therefore with high probability, we

sample O (logg’?)> = O(1/€?-m) elements by appealing to Chernoff bound and

the fact that (7)) < 2.
As a result, we may assume that n = O(1/e? - m). This results in an O(1/€?-
logm - (logm + log(1/€))) round algorithm.

Bounded frequency. Assuming f = max; f; is known, we can lift the assumption
that k = Q(m) and parameterize our algorithm based on f instead. McGregor
et al. [21] showed that the largest [kf/n] sets contain a solution that covers
at least (1 — n)OPT elements. We therefore can assume that m = O(kf/n) by
keeping only the largest [kf/n] sets which can be identified in O(1) rounds.
We set € = n?/f and proceed to obtain a solution that covers at least (1 —
n?/f)(1 —n)OPT = (1 — O(n))OPT elements using at most k + O(em) = k +
O(n?/f-kf/n) = k+O(nk) sets as in the discussion above. Appealing to Lemma
3, we can find k sets that cover at least (1 — O(n))OPT elements. The total
number of rounds is O(f3/n° - log % : (log% + log k—nf)) = O(f3/n° - log? %)

2.2 Approximate the LP’s solution via multiplicative weights

Fix an objective value L. Let P be a convex region defined by

P ={(x,z) €0,1]" le—Land Zz]—m k}.

jE[m]

Note that if (x1,21), (x2,22) , ..., (X7,27) € P then (% Zthl X, ¥ Zthl zt) €
P. Consider the following problem W, that asks to either correctly declare that

#(x,2z) € P: fz fz Yz <1, Vien]

S
or to output a solution (x,z) € P such that

fz

7 f szgl—i—e Vi € [n].

S;2i

Once we have such an algorithm, we can try different values of L = [(1 +
], [(1+ &)Y, [(1 4+ €)?],...,n and return the solution corresponding to the
largest L that has a feasible solution. There are O(1/e - logn) such guesses. We
know that the guess L where OPT/(1+4¢€) < L < OPT must result in a feasible
solution.

Massively Parallel Maximum Coverage Revisited 9

To avoid introducing a log n factor in the number of rounds, we partition these
O(1/e-logn) guesses into batches of size O(1/¢) where each batch corresponds to
O(logn) guesses. Algorithm copies that correspond to guesses in the same batch
will run in parallel. This will only introduce a logn factor in terms of memory
used by each machine. By returning the solution corresponding to the largest
feasible guess L, one attains Theorem 2.

Oracle implementation. Given a weight vector w € R™ in which w; > 0 for
all i € [n]. We first consider an easier feasibility problem Ws. It asks to either
correctly declares that

(x,z) e P: Zwi- Z SZwi, Vi € [n]
i=1 i=1

Saz

or to outputs a solution (x,z) € P such that

Zwi- Z SZwH—%, Vi € [n]. (4)
=1 1=1

SBZ

That is, if the input is feasible, then output the corresponding (x,z) € P
that approximately satisfy the constraint. Otherwise, correctly conclude that
the input is infeasible. In the multiplicative weights update framework, this is
known as the approximate oracle. Note that if there is a feasible solution to Wy,
then there is a feasible solution to ¥, since

f f szgl Vi € [n =>Zwl Z gzn:wi.
7 7 i=1

S;3i SBZ

We can implement an oracle that solves the above feasibility problem W5 as
follows. First, observe that

n n
Z% x; + sz SZwL
i=1 7" i=1

SjSi
I SRS SN S D ot
i=1 fi j=1 i€S; fi i=1
To ease the notation, define
w; .)
pz-::?l, Vi € [n], and ¢; := Z Zpi, Vi € [m).
K3

icS; =

We therefore want to check if there exists (x,z) € P such that

m

LHS(x,2z) := szpl—kz,zjq] < sz

10 T. Bui and H. T. Vu

We will minimize the left hand side by minimizing each sum separately. We can
indeed do this exactly. However, there is a subtle issue where we need to bound
the number of bits required to represent p; = f “ and g; = ZzES = ics. Di
given the memory constraint. To do this, we truncate the value o ‘each i aflter
the (101log, n)-th bit following the decimal point. Note that this will result in an
underestimate of p; by at most 1/n'0. In particular, let p; be p; after truncating
the value of p; at the (101og, n)-th bit after the decimal point and §; = Ziesj Di-
For any (x,z) € [0,1]™ x [0,1]™, we can show that

LHsz Zplxl+szZpl>LHsz)

7j=1 €S

Therefore, LHS(x,2)—1/n° < L/H\S(x7 z) < LHS(x,z). Note that since Y ;" | x;
Land }37, 2 =m — k , to minimize LHS(x,z) over (x,2) € P, we simply set

x; = [p; is among the L smallest values of {p:};—;},

zj = [¢; is among the m — k smallest values of {g;};~,}].

After setting x,z as above, if Iﬁ{\S(x,z) >y wg = LHS(x,z) >
>, w;, then it is safe to declare that the system is infeasible. Otherwise, we

have found (x,z) € P such that LHS(X z) < Y w, = LHS(x,z) <
S wi 4+ 1/n® as required by Equation (4).

Lemma 4. Assume that all machines have the vector w. We can solve the feasi-
bility problem Wy in O(1) rounds, where all machines either learn that the system
is infeasible or obtain an approzimate solution (x, z) € P that satisfies Equation

(4)-

Solving the LP via multiplicative weights. Once the existence of such an oracle is
guaranteed, we can follow the multiplicative weights framework to approximately
solve the LP. We will first explain how to implement the MWU algorithm in the
MPC model. See Algorithm 2.

Lemma 5. Algorithm 2 can be implemented in O(1/€* -logn -logm) rounds.

The next lemma is an adaptation of the standard multiplicative weights al-
gorithm.

Lemma 6. The output of Algorithm 2 satisfies the following property. If there
exists a feasible solution, then the output satisfies:

f+zf<1—|—e Vi € [n ,andez—L

S;21

Otherwise, the algorithm correctly concludes that the system is infeasible.

Massively Parallel Maximum Coverage Revisited 11

Algorithm 2: Multiplicative weights for solving the LP
Input: Objective value L, e < 1/4

1 Initialize w<0) =1 for all ¢ € [n].

2 for iteration t = 1,2,...,T = O(1/€*> - logn) do

3 Run the oracle in Lemma 4 with w®~%) to check if there exists a feasible
solution. If the answer is INFEASIBLE, stop the algorithm. If the answer is
FEASIBLE, let x® and z® be the output of the oracle that are now
stored in all machines .

4 Each machine Jj constructs Y; = {Yj1,Yj2,...,Y;n} where
Yii = 2 - [{i € S},

5 Compute W =3icim Yi in O(logm) rounds using the a converge-cast
binary tree and send W to the central machine. Note that
Wi = Zs.gx Z('t>~

TELRE
6 For each ¢ € [n], the central machine computes Ei(t fi- error(t where
t (t)

error() ;) V}? =1- % — Zsﬁi Z]T Vi € [n] and sends
Sy E(d) to all other machines.

7 For each i € [n], each machine computes
wz(t) — 2—6-23:1 Egd)/fl g€ Zt 1 error() — 9 error (t 1)

8 After T iterations, output x = + ST x® and z = + Sr ¢

Proof (sketch). If the algorithm does not output INFEASIBLE, this implies that
in each iteration ¢, Y1, LE(t) =L and Y.) — 1 — k. Hence, the output

j=17%j
(x,z) € P. Define the potential function ®®) := 3" | w(t)

We will make use of the fact exp (—nz) < 1 — nm + n212 for |nx\< 1. Note
2
€ [-1,1]. Let

a =€-In(2), as long as € < 1/4, we have |a - errorz(-)|< 1 and therefore

2
wgt) = exp (—a . errorl(.t)> . wgtfl) < (1 —a- errorz(-t) +a?- (errorl(-t))) . wgtfl).

that for all 4 and ¢, we always have error()= 1-

Summing over i gives:

o) i (1 - error()) -wgtfl)

:(1—1—042)2 Z(t 2 aZerror w!Y.

i=1
The first inequality follows from the fact that (error()) [0,1]. Note that

(t—1) L1

z:error(t (=1 _ Zw _xifi —Z jfz‘

S;2i

12 T. Bui and H. T. Vu

n (t Z(tfl)

n -1) (
= ngt_l) — Z’wgt_l) Lif. + Z]f' > —%.
o i i

i=1 S;>i

The last inequality follows from the oracle’s guarantee. Thus, ®(t) < (1 +
a?) T w4 & = (1+a?)®""! + %. We can show by induction that

i=1 "1

1
(T) DT gHO) , & 2\T
) < (1+a)'® +Om5(1+a).
Recall that o = €In2 and we assume 1/¢ < n/10. Thus, 1/(an’®) < €*/In2 < 1.
Furthermore, recall that ®(©) = n. We have,

ng) <(14+a)T(n+1)<(14+a®)T2n

T
exp <a Z errorl(.t)> < (14)T (2n)

t=1

T
—« Z errorgt) <1In(2n) 4+ TIn(1 + o?).
t=1

We use the fact that In(1 4+ z) < « for € R to get

In(2 In(1 + a?
Zerrorgt) > — n(2n) -T n(1 +a%)
o o
t=1
T z® 20 In(2n) a2
(1% > olin) _ge?
t=1 fi ey fi @ @
I (ool sal) e
Tt:l fl S;3i fz o Ta
LT ﬁ_,ln@n),a
Ji 53 fi Ta
G o TN - BT
— < — 2 < €).
i s fi Ta fi 53 i

The last inequality follows from choosing T = ©(1/e? - logn) and the fact
that a = €ln(2); furthermore, recall that the final solution z; = 23:1 xz(-t)

and z; = % Zthl z§t). Thus, the output of the algorithm satisfies the desired
properties.

References

1. Anagnostopoulos, A., Becchetti, L., Bordino, I., Leonardi, S., Mele, 1., Sankowski,
P.: Stochastic query covering for fast approximate document retrieval. ACM Trans.
Inf. Syst. 33(3), 11:1-11:35 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Massively Parallel Maximum Coverage Revisited 13

. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-

algorithm and applications. Theory Comput. 8(1), 121-164 (2012)

Assadi, S.: Tight space-approximation tradeoff for the multi-pass streaming set
cover problem. In: PODS. pp. 321-335. ACM (2017)

Assadi, S., Khanna, S.: Tight bounds on the round complexity of the distributed
maximum coverage problem. In: SODA. pp. 2412-2431. SIAM (2018)

Assadi, S., Khanna, S., Li, Y.: Tight bounds for single-pass streaming complexity
of the set cover problem. STAM J. Comput. 50(3) (2021)

Cervenjak, P., Gan, J., Umboh, S.W.; Wirth, A.: Maximum unique coverage on
streams: Improved FPT approximation scheme and tighter space lower bound. In:
APPROX/RANDOM. LIPIcs, vol. 317, pp. 25:1-25:23. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2024)

Chakrabarti, A., McGregor, A., Wirth, A.: Improved algorithms for maximum
coverage in dynamic and random order streams. CoRR abs/2403.14087 (2024)

. Feige, U.: A threshold of In n for approximating set cover. J. ACM 45(4), 634-652

(1998)

Har-Peled, S., Indyk, P., Mahabadji, S., Vakilian, A.: Towards tight bounds for the
streaming set cover problem. In: PODS. pp. 371-383. ACM (2016)

Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Research Logistics (NRL) 45(6), 615-627 (1998)
Indyk, P., Mahabadi, S., Rubinfeld, R., Ullman, J.R., Vakilian, A., Yodpinyanee,
A.: Fractional set cover in the streaming model. In: APPROX-RANDOM. LIPIcs,
vol. 81, pp. 12:1-12:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2017)
Indyk, P., Vakilian, A.: Tight trade-offs for the maximum k-coverage problem in
the general streaming model. In: PODS. pp. 200-217. ACM (2019)

Jaud, S., Wirth, A., Choudhury, F.M.: Maximum coverage in sublinear space,
faster. In: SEA. LIPIcs, vol. 265, pp. 21:1-21:20. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2023)

Karloff, H.J., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In:
SODA. pp. 938-948. STAM (2010)

Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence
through a social network. Theory Comput. 11, 105-147 (2015)

Khanna, S.,; Konrad, C., Alexandru, C.: Set cover in the one-pass edge-arrival
streaming model. In: PODS. pp. 127-139. ACM (2023)

Krause, A., Guestrin, C.: Near-optimal observation selection using submodular
functions. In: AAAIL pp. 1650-1654. AAAT Press (2007)

Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. ACM Trans. Parallel Comput. 2(3), 14:1-14:22 (2015)
Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831-838
(1980)

Liu, P., Vondrak, J.: Submodular optimization in the mapreduce model. In: SOSA.
OASlIcs, vol. 69, pp. 18:1-18:10. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik
(2019)

McGregor, A., Tench, D., Vu, H.T.: Maximum coverage in the data stream model:
Parameterized and generalized. In: ICDT. LIPIcs, vol. 186, pp. 12:1-12:20. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2021)

McGregor, A., Vu, H.T.: Better streaming algorithms for the maximum coverage
problem. Theory Comput. Syst. 63(7), 1595-1619 (2019)

da Ponte Barbosa, R., Ene, A., Nguyen, H.L., Ward, J.: A new framework for
distributed submodular maximization. In: FOCS. pp. 645-654. IEEE Computer
Society (2016)

14 T. Bui and H. T. Vu

24. Saha, B., Getoor, L.: On maximum coverage in the streaming model & application
to multi-topic blog-watch. In: SDM. pp. 697-708. SIAM (2009)

25. Warneke, R., Choudhury, F.M., Wirth, A.: Maximum coverage in random-arrival
streams. In: ESA. LIPIcs, vol. 274, pp. 102:1-102:15. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2023)

	Massively Parallel Maximum Coverage Revisited

