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Abstract—Integrated sensing and communication (ISAC) has
emerged as a pivotal technology for next-generation wireless
communication and radar systems, enabling high-resolution sens-
ing and high-throughput communication with shared spectrum
and hardware. However, achieving a fine radar resolution of-
ten requires high-rate analog-to-digital converters (ADCs) and
substantial storage, making it both expensive and impractical
for many commercial applications. To address these challenges,
this paper proposes an orthogonal time frequency space (OTFS)-
based ISAC architecture that operates at reduced ADC sampling
rates, yet preserves accurate radar estimation and supports si-
multaneous communication. The proposed architecture introduces
pilot symbols directly in the delay-Doppler (DD) domain to
leverage the transformation mapping between the DD and time-
frequency (TF) domains to keep selected subcarriers active while
others are inactive, allowing the radar receiver to exploit under-
sampling aliasing and recover the original DD signal at much
lower sampling rates. To further enhance the radar accuracy,
we develop an iterative interference estimation and cancellation
algorithm that mitigates data symbol interference. We propose a
code-based spreading technique that distributes data across the
DD domain to preserve the maximum unambiguous radar sensing
range. For communication, we implement a complete transceiver
pipeline optimized for reduced sampling rate system, including
synchronization, channel estimation, and iterative data detection.
Experimental results from a software-defined radio (SDR)-based
testbed confirm that our method substantially lowers the required
sampling rate without sacrificing radar sensing performance and
ensures reliable communication.

Index Terms—ISAC, OTFS, sub-Nyquist sampling, radar per-
formance, SDR experiments

I. INTRODUCTION

Over the past decade, integrated sensing and communication

(ISAC) [1]–[3] has evolved into one of the major themes for

next-generation wireless networks, particularly in the context of

6G systems. ISAC unifies sensing and communication within

a single system infrastructure, leveraging shared spectral and

hardware resources. This integration simplifies system deploy-

ments and enables transformative applications such as environ-

ment monitoring [4], autonomous driving [5], human-computer

interaction [6], and smart city initiatives [7].

Thanks to significant advancements in hardware technology,

substantial progress in ISAC has been achieved in the de-

velopment of multiple-input-multiple-output (MIMO) technol-

ogy [8] and the expansion of frequency bandwidths [9]. In
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modern 5G communication systems, MIMO technology is fully

leveraged to exploit spatial resources, resulting in notable im-

provements in spectral and energy efficiency. Similarly, MIMO

radar benefits from these advancements by enabling finer angle

estimation and enhanced sensing capabilities [10]. Moreover,

hardware improvements have facilitated the extension of the

radio frequency spectrum from the frequency bands used in

4G systems to millimeter-wave (mmWave) and terahertz (THz)

bands. These higher frequency bands offer broader bandwidths,

significantly enhancing communication throughput and radar

sensing resolution. However, these advances introduce a critical

challenge for ISAC waveform design. As bandwidth grows, the

Nyquist-Shannon theorem [11] requires ever-higher sampling

rates to avoid signal distortion, thereby placing substantial de-

mands on analog-to-digital converters (ADCs). In radar systems

that use predefined waveforms, such as frequency-modulated

continuous wave (FMCW), stretch processing can be applied

to downconvert the high-bandwidth echo to an intermediate

frequency (IF) signal, thereby reducing the required sampling

rate before digitization. In contrast, communication signals

contain unknown data and need full-band Nyquist sampling for

effective decoding, making the integration of radar and commu-

nication waveforms more complex. For instance, according to

the Nyquist-Shannon theorem, achieving GHz-level bandwidth

transmission without distortion requires an ADC capable of

sampling at gigasamples per second (GSPS). The commonly

used 12-bit AD9625 ADC [12], with a sampling rate of 2.6

GSPS, is priced at approximately $1, 500 per unit. This makes it

prohibitively expensive for systems that require multiple ADCs

in multi-channel configurations. Operating at this rate, a single

ADC generates a data flow of 31.2 Gbps, necessitating advanced

storage and data transmission solutions. This, in turn, escalates

the overall cost of commercial ISAC systems and restricts their

affordability and broader adoption.

Currently, FMCW radar remains the predominant waveform

in radar applications. It achieves a high resolution using a

limited ADC through the stretch processing. However, the

FMCW waveform offers a limited flexibility in encoding the

transmission data [13], [14], confining its applications to sce-

narios with low transmission rates such as LoRa [15], [16] and

chirp spread spectrum (CSS) [17] schemes. As the need for high

throughput ISAC applications grows, there has been a shift to-

wards orthogonal frequency division multiplexing (OFDM) [18].

OFDM is a well-established and proficient modulation scheme

extensively adopted in recent wireless communication standards,

including 4G LTE and 5G NR. Numerous radar systems based

on OFDM have been proposed, highlighting its potential as

a waveform for ISAC applications. Nonetheless, OFDM faces

substantial challenges in high mobility environments, primarily

due to Doppler shifts. To address this issue, orthogonal time

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3607858

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on January 04,2026 at 13:54:21 UTC from IEEE Xplore.  Restrictions apply. 



2

frequency space (OTFS) [19] modulation has been emerged

as a viable solution, noted for its robustness in maintaining

consistent performances under doubly-dispersive channels.

In this paper, we present an OTFS-based ISAC system that

operates at a reduced ADC sampling rate without sacrificing

radar sensing resolution and range. We first strategically place

pilot symbols in the delay-Doppler (DD) domain according

to a carefully derived transformation mapping between DD

and TF domains. By doing so, we ensure that only certain

subcarriers in the time-frequency (TF) domain carry active pilot

symbols, while all others remain inactive. This selective activa-

tion facilitates a structured aliasing effect when undersampling

is applied, allowing signals from multiple sub-bands to be

effectively merged into a narrower bandwidth. To accurately

retrieve the target’s radar information from the downsampled

signals, we introduce a two-phase iterative cancellation and

detection algorithm. For data modulation and demodulation

within the constraints of Nyquist-Shannon sampling theorem,

effective data is allocated at the transmitter to maximize capacity

according to the reduced sampling rate at the receiver. A

code-based spreading technique is then applied to distribute

the data across the entire DD domain, ensuring the maximum

radar estimation range. Furthermore, we design a complete

synchronization, modulation and demodulation pipeline that

accommodates the reduced sampling rate at the receiver, and

we adopt an iterative channel estimation and data detection

algorithm to reliably decode the transmitted information. This

ISAC system achieves a precise estimation with a sub-Nyquist

sampling rate, thereby reducing hardware complexity and data

storage requirements, making it highly suitable for low-budget

commercial applications. We build an OTFS-based ISAC proto-

type using software-defined radios (SDRs). Through simulations

and extensive experiments, we demonstrate the effectiveness of

our system with reduced sampling rate, which delivers accurate

radar estimation without compromising resolution or sensing

range, while also ensuring reliable communication. In summary,

this paper the following contributions:

• As per the authors’ best knowledge, this work is the first

to design and implement an OTFS-based ISAC system that

operates with a reduced ADC sampling rate, addressing

the cost and complexity concerns while maintaining a high

radar performance;

• We propose an OTFS-based radar estimation algorithm that

achieves precise sensing without sacrificing the resolution

or the maximum unambiguous sensing range, even under

reduced sampling rate constraints;

• We develop an integrated communication pipeline, includ-

ing modulation, demodulation, synchronization, channel

estimation, and iterative data detection, ensuring a reliable

data transmission in the reduced sampling rate framework.

• We have implemented the proposed system on our ISAC

testbed using SDRs and conducted extensive experimental

studies. The results validate the effectiveness of our ap-

proach, demonstrating accurate radar estimation and robust

communication performance under reduced sampling rates,

without compromising the sensing resolution or communi-

cation performance.

The remainder of this paper is organized as follows. The

researches related to this paper are introduced and compared in

Section II. The general system model is introduced in Section

III. Then, the radar estimation algorithm and communication

pipeline are elaborated in Section IV and V respectively. The

properties of the reduced sampling rate system compared with

the case of full sampling rate are discussed in Section VI. The

corresponding numerical and experimental results are provided

in Section VII. Finally the conclusions are drawn in Section

VIII.

II. RELATED WORKS

Several strategies have been developed to reduce the ADC

sampling rate in OFDM radar systems. The stepped-carrier

(SC) OFDM radar [20] divides a wide-bandwidth OFDM signal

into narrower sub-bands, transmitting them sequentially, which

affects the maximum unambiguous velocity and requires a fast-

settling-time phase-lock loop (PLL) and phase-offset calibration

between sub-bands. Sparse OFDM radar [21] utilizes narrow-

band signals at randomly chosen frequencies, reconstructed

via compressed sensing to match the full OFDM resolution,

though it increases the hardware complexity and computational

demand. Frequency-comb (FC) OFDM radar [22], [23] expands

the RF bandwidth by multiplying the baseband signal with a

frequency comb, at the cost of complicating the hardware due

to its need for precise calibration to avoid peak-to-sidelobe ratio

degradation. Subcarrier-aliasing (SA) OFDM radar [24] designs

a proper active subcarrier interval in the OFDM signal allows

active subcarriers in each sub-band not to be overlapped in the

undersampled signal. Although this involves simple hardware

and radar signal processing compared to other approaches, its

system performances in terms of the maximum unambiguous

range and the range processing gain are severely degraded due

to the reduced number of active subcarriers. Recently, a sub-

Nyquist sampling (SNS) OFDM radar system with reduced

sampling rate is proposed in [25], [26], which ensures a high

range resolution and the maximum detectable range without

ambiguities. The proposed method uses sub-Nyquist sampling,

with demodulation unfolding the signal and introducing symbol-

mismatch noise (SMN). The SMN is then canceled, thus restor-

ing the dynamic range of the unfolded signal. However, the

effectiveness of this approach relies heavily on the assumption

that the entire bandwidth is fully occupied by radar symbols.

This assumption limits the feasibility of the approach in ISAC

applications.

In OTFS modulation, an OTFS-FMCW waveform design is

proposed in [27]. This design capitalizes on the simultaneous

locality property of the FMCW in both the time-frequency

and delay-Doppler domains to superimpose OTFS and FMCW

signals in an orthogonal manner. However, the authors obscure

a critical concept pertinent to multicarrier modulations such as

OTFS and OFDM, wherein each specific tone remains static

during its transmission interval and alters only between succes-

sive intervals. This attribute aligns the approach more closely

with stepped-frequency radar rather than with continuous-wave

frequency modulation. Consequently, it cannot straightforwardly

harness the intrinsic properties of FMCW radar.

III. SYSTEM OVERVIEW

In this section, we provide the overview of the OTFS-ISAC

system and the design of the proposed pilot scheme, taking
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Fig. 1: Processing pipeline of OTFS-ISAC system with reduced

ADC sampling rate.

into account the effects of reduced sampling rate aliasing. As

depicted in Fig. 1, the OTFS-ISAC system can be principally

divided into two functional areas in terms of application tasks,

namely the radar sensing part and the communication part. In the

system, the transmitter operates at full sampling rate, while the

receivers, both on the radar and communication ends, operate

at reduced sampling rates. This configuration ensures sufficient

physical bandwidth on the transmitter side for the accurate radar

parameter estimation, while the reduced sampling rate at the

receivers helps mitigate the stringent demands on the ADC and

data storage capacities.

A. Input-Output Relation of OTFS

In this section, the signal model for OTFS modulation is

delineated. The transmission data XDD ∈ CMτ×Nν is embedded

in the DD domain with an Mτ × Nν grid. Each grid cell

spans T seconds in the time dimension and ∆f Hertz in

the Doppler shift, uniquely corresponding to a specific delay

and Doppler pair. Mτ and Nν denote the number of delay

and Doppler bins respectively. Then by applying an inverse

symplectic finite Fourier transform (ISFFT), the DD domain

signals are transformed into the TF domain:

XTF = FMτ
XDDFH

Nν
, (1)

where XTF ∈ CMτ×Nν is the time-frequency domain represen-

tation and FN is the unitary discrete Fourier transform (DFT)

matrix of size N ×N . FH denotes the conjugate transpose of

matrix F. Subsequently, the Heisenberg transform is employed

and a transmit pulse-shaping filter gtx(t) supported in [0, T ] is

utilized to generate the transmission signal s(t) in time domain:

s(t) = 1√
Mτ

Nν−1∑

n=0

Mτ−1∑

m=0
XTF[m,n]gtx(t− nT )

ej2πm∆f (t−nT ).

(2)

On the communication receiver side, the received signal r(t)
is multiple delayed copies of transmitted ones:

r(t) =
∫

ν

∫

τ
h(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + w(t)

=
P∑

i=1

hie
j2πνits(t− τi) + w(t),

(3)

where w(t) represents the additive white Gaussian noise

(AWGN), P denotes the number of paths, h(τ, ν) represents

the channel impulse response:

h(τ, v) =
P∑

i=1

hiδ(τ − τi)δ(ν − νi), (4)

where hi is the complex gain associated with the i-th path, while

δ(·) is the Dirac delta function. The expression for path delay τi

and Doppler shift νi of the i-th path assumes integer multiples

of the respective delay and Doppler resolutions, articulated as

τi = li
Mτ∆f and νi = ki

NνT
, respectively. Here, li and ki

are integers denoting the delay and Doppler taps of the i-
th path, respectively. For conventional wideband systems, the

sampling time 1/(Mτ∆f) is sufficiently small, allowing delay

taps to be effectively approximated as integers [28]. Similarly,

consistent with [29], [30], we currently do not account for

fractional Doppler effects. This approximation is justified by

the decreasing Doppler resolution 1/(NνT ) as the Doppler bin

number Nν increases [31]. When the Doppler bin is small, the

window design schemes proposed in [32], [33] can be exploited

to maintain the sparsity of the DD domain effective channel.

This time domain signal r(t) is sampled and transformed to

the TF domain signal YTF ∈ CM×N by applying the Wigner

transform:

YTF[m,n] =
∫
g∗rx(t− nT )r(t)e−j2πm∆f (t−nT )dt, (5)

where grx(t) is the receive pulse-shaping filter. Next, the sym-

plectic finite Fourier transform (SFFT) is applied to transform

YTF back to the DD domain:

YDD = FH
Mτ

YTFFNν
. (6)

Combining Eqs. (1)-(6), the input-output relationship of OTFS

in DD domain can be written as

yDD = HxDD +w

=

P∑

i=1

hiΓi(τi, vi)x
DD +w,

(7)

where xDD = vec(XDD) and yDD = vec(YDD). vec(X)
denotes the vectorization of matrix X. H denotes the channel

matrix in DD domain. w ∼ Nc(0, σ
2
wIMτNν

) is the AWGN

vector with variance σ2
w, where IMτ

denotes the MτNν×MτNν

identity matrix. Γi denotes the DD domain channel matrix of

each reflected path:

Γi(τi, vi) = (FNν
⊗Grx)Π

li
MτNν

∆ki

MτNν
(FH

Nν
⊗Gtx),

(8)

where ∆ki

MτNν
=diag{ej2π

0
MτNν , ej2π

ki
MτNν , · · · , ej2π

ki(MτNν−1)

MτNν }.

The matrix Πli
MτNν

denotes the li step forward cyclic-shift

(permutation) matrix. Gtx and Grx are the Mτ ×Mτ diagonal

matrices whose entries are the coefficients of the corresponding

transmit pulse and receive pulse (in this paper we make

the assumption that both the transmit and receive pulses are

rectangular, thus that Gtx and Grx are identity matrices,

denoted IMτ
).

B. OTFS-based Radar

In the monostatic OTFS-based radar system, the transmit

symbols XDD and the received symbols YDD are known. How-

ever, the round-trip delay–Doppler radar channel, denoted as

hr(τ, ν), remains unknown. The purpose of radar processing is

to estimate (hr, τ, ν), which provides us the target information,

such as the corresponding ranges and velocities. The commonly

used model for OTFS radar parameter estimation based on

maximum likelihood estimation (MLE) [34], [35] is described

as follows.

For the ith target, let hr,i denote the corresponding round-trip

channel coefficient. When estimating the parameters of the ith

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3607858

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on January 04,2026 at 13:54:21 UTC from IEEE Xplore.  Restrictions apply. 



4





Fig. 2: Pilot placement in the DD domain.

target, the reflections from other targets should be treated as

interference. Specifically, hr,iΓix and
∑

j ̸=i hr,iΓjx represent

the signal and interference, respectively. To address the mutual

interference, an interference cancellation mechanism is required.

When estimating the parameters of the ith target, the interference

from the (i− 1) previously estimated targets must be removed.

Considering the first target with parameters (hr,1, τ1, ν1), The

MLE for this target is given by

(ĥr,1, τ̂1, ν̂1) = arg min
(hr,1,τ1,ν1)

∥hr,1Γ1(τ1, ν1)x− y∥2. (9)

Eq. (9) is a quadratic least-squares problem in the scalar hr,1:

h⋆
r,1 =

(Γ1(τ1, ν1)x)
Hy

∥Γ1(τ1, ν1)x∥22
. (10)

Substituting Eq. (10) back converts the minimization in Eq. (9)

yields

min ∥hr,1Γ1(τ1, ν1)x−y∥2 = ∥y∥22−
∣
∣(Γ1(τ1, ν1)x)

Hy
∣
∣
2

(Γ1(τ1, ν1)x)H(Γ1(τ1, ν1)x)
.

(11)

∥y∥22 is independent of (τ1, ν1), so minimizing the residual

is equivalent to maximizing the ratio
|(Γ1(τ1,ν1)x)

Hy|2

(Γ1(τ1,ν1)x)H(Γ1(τ1,ν1)x)
.

Because Γ1(τ1, ν1) is the product of unit-norm operations

(phase rotation, circular shift, unitary DFT matrices), and the

pilot x is a norm-one impulse in the DD domain, we have

∥Γ1(τ1, ν1)x∥
2
2 = xHx = ∥x∥22 = constant. (12)

Consequently, the denominator can be dropped without affecting

the maximizer, yielding

(τ̂1, ν̂1) = arg max
(τ1,ν1)

∣
∣(Γ1(τ1, ν1)x)

Hy
∣
∣
2
, (13)

and the channel coefficient hr,1 is calculated by ĥr,1 =
xHΓH

1 (τ̂1,ν̂1)Γ1(τ̂1,ν̂1)x
(Γ1(τ̂1,ν̂1)x)Hy

. For the remaining (P − 1) targets, such

as the ith target, where i = 2, 3, . . . , P , interference can-

cellation is performed by subtracting the interference term
∑i−1

j=1 ĥr,jΓj(τ̂j , ν̂j)x from the received vector y. Accordingly,

the estimator for the ith target is expressed as

(τ̂i, ν̂i) = arg max
(τi,νi)

∣
∣
∣
∣
∣
∣

(Γi(τi, νi)x)
H



y −
i−1∑

j=1

ĥr,jΓj(τ̂j , ν̂j)x





∣
∣
∣
∣
∣
∣

2

,
(14)

and the estimated channel coefficient hr,i is derived as:

ĥr,i =
xHΓH

i (τ̂i, ν̂i)Γi(τ̂i, ν̂i)x

(Γ1(τ̂1, ν̂1)x)H
(

y −
∑i−1

j=1 ĥr,jΓj(τ̂j , ν̂j)x
) . (15)

C. Pilot Scheme for Reduced Sampling Rate System

Inspired by the subcarrier-aliasing technique introduced in

OFDM radar systems [24], we propose to generate a DD

domain signal by strategically placing pilot signals in designated

grids within the DD domain. This configuration ensures that

these pilot signals correspond to active symbols on every µth

subcarrier in the TF domain. Utilizing the aliasing effect,

this method efficiently folds the full bandwidth signal into a

sub-band without loss of pilot information. Consider the full

sampling rate fs at the transmitter, and the downsample rate at

the receiver side is κ. The captured signal is folded into 1
κ of

its original bandwidth, while the time axis remains unchanged.

Unlike OFDM, which intuitively modulates data directly in

the TF domain, allowing straightforward design and control of

aliasing, OTFS is tailored to combat doubly-dispersive channels

by spreading each DD domain symbol across the entire TF

domain. Consequently, designing a pilot scheme for OTFS

requires strategic planning and poses non-trivial challenges for

subsequent radar estimation and communication processing.

From Eq. (1), the delay-time (DT) domain representation

XDT is derived by applying the inverse DFT to the DD

domain signal XDD along the Doppler axis. Similarly, the

frequency-Doppler (FD) domain representation XFD is obtained

by performing a DFT on XDD along the delay axis. By carefully

placing pilot impulses along delay axis in the DD domain

and controlling their periodic spacing, we induce a structured

aliasing in the TF domain that can be later exploited to recover

range-Doppler estimates with a reduced sampling rate.

For reference, consider the DFT of a finite-length sequence

x[n] defined for 0 ≤ n ≤ N − 1:

X[k] =

N−1∑

n=0

x[n]e−i 2πkn
N . (16)

When input x[n] is an impulse δ[n] then Eq. (16) is reduces to

X[k] =

N−1∑

n=0

δ[n]e−i2πkn/N = 1, (17)

where δ[n] is the Kronecker delta function. Thus, the DFT of a

single impulse is a constant spectrum of 1 across all k.

Now consider a periodic impulse sequence:

x[n] =

∞∑

k=−∞
δ[n− kTp], (18)

where Tp is the period of the impulse sequence. The DFT of

x[n] is given by

X[k] =

N−1∑

n=0

( ∞∑

m=−∞
δ[n−mTp]

)

e−i2π k
N

n. (19)

Since the inner Kronecker delta in Eq. (19) is 1 only when the

sample index n equals an integer multiple of the period Tp, we
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(a) (b) (c) (d)

Fig. 3: Representations of pilot signal in different domains: (a) transmitted pilot signal in DD domain, (b) transmitted pilot signal

in TF domain, (c) downsampled captured pilot signal in TF domain, (d) Recovered pilot signal in DD domain.

Fig. 4: Illustration of reduced sampling rate aliasing.

can substitute n = mTp. Because n is also limited to the DFT

window 0 ≤ n ≤ N − 1, the integer m can take only values of

m = 0, 1, . . . , L− 1, L ≜

⌊
N − 1

Tp

⌋

+ 1. (20)

Hence Eq. (19) reduces to a finite geometric series:

X[k] =

L−1∑

m=0

e−j 2πk
N

mTp =
1−

(

e−j 2πk
N

Tp

)L

1− e−j 2πk
N

Tp

=
1− ωL

1− ω
,

(21)

where ω = e−i2π k
N

Tp . When we take the DFT of x[n] over an

interval of N samples, the impulses at multiples of Tp contribute

to a repetitive pattern in frequency. This repetition results in a

frequency spectrum that repeats every N
Tp

samples.

Based on the above derivation, our system ensures that the

TF domain signals remain active only every µ-th subcarrier by

strategically placing pilot impulses in the DD domain. Specifi-

cally, we position these pilots along the delay axis at intervals of
Nc

µ , where Nc denotes the total number of subcarriers, which is

equal to the number of delay bins (Mτ ). As illustrated in Fig. 2

and 3(a), this placement partitions the DD domain into µ sub-

bands along the delay axis, each with dimensions Mτ

µ ×Nν . To

further enhance the spectral efficiency, a single impulse pilot is

allocated along the Doppler axis, thus reserving the majority of

Doppler resources for data transmission. Fig. 2(b) and (c) depict

the resulting TF-domain signals observed at both the transmitter

and receiver.

Unlike a pure radar task, where all symbols are dedicated

to radar parameter estimation, the ISAC system allocates the

majority of resources to data embedding, with only the pilot

symbols reserved for estimation, as shown in Fig. 2. In each

sub-band, there is only a single impulse for the pilot, while the

remaining resources are used for data transmission. After the

aliasing effect incurred by the reduced sampling rate, the signals

from all sub-bands are folded into a single band as shown in

Fig. 4. To ensure that the folded pilots remain free from mutual

interference, a careful selection of system parameters is needed.

D. Parameter Selection

Consider x(t) be a complex-valued signal with a bandwidth

B. The Fourier transform of the sampled signal xs(t) with

a sampling rate of f ′
s results in a replication of the original

spectrum X(f) at intervals of f ′
s, namely

Xs(f) =

∞∑

k=−∞
X(f − kf ′

s), (22)

where k is an integer representing the index of the spectral

replication. The replicated spectra are shifted by multiples of

f ′
s in both the positive and negative frequency ranges.

If the sampling rate f ′
s is less than the bandwidth B, aliasing

occurs. In this case, the spectral replicas overlap, and frequency

components beyond the Nyquist frequency fold back into the

baseband. For a complex signal containing a frequency compo-

nent f0, the aliased frequency falias can be determined by

falias = f0 − kf ′
s, k =

⌊
f0
f ′
s

+
1

2

⌋

, (23)

which always returns an falias ∈
(

− f ′

s

2 ,
f ′

s

2

]

. Here ⌊·⌋ is the

floor operator. In our system, both the reduced sampling rate κ
and the active subcarrier frequencies, which are determined by

the number of subcarriers (Mτ ) and active subcarrier spacing

µ, must be designed carefully. The first constraint requires

that the number of subcarriers (Nc), which is also equal to

the number of delay bins (Mτ ), be an integer multiple of κ.

Otherwise, the active subcarriers would be placed “in between”

the frequency bins, causing severe windowing effects due to

loss of orthogonality. The second constraint relates κ and µ.

After the aliasing operation in Eq. (23), all active carriers

should fold into a single sub-band without interference. Since

the size of each sub-band is Mτ

µ , and the number of subcarriers

after downsampling by κ is Mτ

κ , these quantities must match.

Equating Mτ

µ and Mτ

κ yields µ = κ.

To determine suitable parameters of Mτ and κ, we propose

a parameter search algorithm, outlined in Algorithm 1. Specif-

ically, the goal is to identify the optimal downsampling rate,

κ, at the receivers and the number of delay bins in the DD

domain. The algorithm iterates over potential values for these

parameters. For each iteration, a specific pilot placement in
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Algorithm 1 Parameter selection

Require: Mmin, Mmax, κmax

1: for κ = 2, 3, . . . , κmax do

2: for Mτ = Mmin,Mmin + 1, . . . ,Mmax − 1,Mmax do

3: if Mτ

κ ∈ Z then

4: µ = κ, f ′
s =

fs
κ ;

5: Construct pilot placement scheme XDD
p based

on Mτ and µ;

6: Construct YTF
p based on Eq. (5);

7: Construct Ba based on f ′
s, µ,Mτ ;

8: Derive ỸTF
p = BaY

TF
p ;

9: if ỸTF
p contains Mτ

κ ones then

10: return Mτ , κ;

11: end if

12: end if

13: end for

14: end for

the DD domain is constructed based on the current parameter

values. The DD signals are then transformed into the TF domain,

where the aliasing effect is simulated, and the resulting aliased

signal in the frequency domain is analyzed. If the normalized

aliased signal in the frequency domain consists of only ones,

it indicates that every frequency bin is occupied by only

one active subcarrier. This ensures that the chosen parameters

eliminate the inter-subband interference and prevent information

loss. Consequently, the appropriate parameters are identified

to maintain the signal integrity. In most cases, the reduced

sampling rate, κ, at the receiver is predetermined and fixed

by the hardware constraints of the system. This significantly

reduces the complexity of the parameter search process.

IV. RADAR PARAMETER ESTIMATION WITH REDUCED

SAMPLING RATE

Although a careful design ensures that pilots are free from

mutual interference, interference from data symbols is still

Algorithm 2 The iterative radar detection algorithm

1: Input: Convergence error ϵ, transmitted data signal xDD
d ,

transmitted pilot signal xDD
p , unfolded received signal ỹDD;

2: Output: Target range estimation τ̂ , target velocity estima-

tion ν̂;

3: Perform the MLE estimation in Eqs. (14)(15) to yDD
uf based

on xDD
p to obtain a coarse estimation (ĥr, τ̂ , ν̂);

4: Iterate all possible wrap around range estimations, find the

absolute estimation, update the estimation (ĥr, τ̂ , ν̂);
5: while not terminate do

6: Generate ideal received data signal ysim
d based on xDD

d

and channel (ĥr, τ̂ , ν̂) using Eq. (24);

7: Cancel ysim
d from yDD

uf and update yDD
uf ;

8: Perform the MLE estimation to modified yDD
uf to get a

new estimation (ĥ′
r, τ̂

′, ν̂′);
9: if |τ̂ ′ − τ̂ | ≤ ϵ & |ν̂′ − ν̂| ≤ ϵ then

10: Update (ĥr, τ̂ , ν̂) and terminate;

11: end if

12: Update (ĥr, τ̂ , ν̂) = (ĥ′
r, τ̂

′, ν̂′)
13: end while

unavoidable. Therefore, an iterative cancellation and detection

algorithm is essential in this context. In this section, we describe

a two-phase algorithm of iterative interference cancellation and

detection.

By properly selecting the parameters, we can generate an

OTFS signal that the pilot symbols are mutually interference

free from each other in the frequency domain even after the

aliasing effect. This allows us to unfold the folded signal in

frequency domain to recover the original pilot signal in TF

domain before aliasing, and further convert to DD domain

for the final range and velocity estimations. The relationship

between the transmitted DD signal xDD and captured unfolded

DD domain signal yDD
uf can be written as:

yDD
uf =

P∑

i=1

(FNν
⊗Grx)BuBaΠ

li+l′i
MτNν

∆
ki+k′

i

MτNν

(FH
Nν

⊗Gtx)x
DD,

(24)

where Ba ∈ C
MτNν

κ
×MτNν and Bu ∈ CMτNν×MτNν

κ represent

the aliasing matrix and unfolding matrix. The unfolding matrix

Bu is constructed by interpolating the aliased subcarriers with

µ − 1 zero-inserted subcarriers between adjacent subcarriers,

and by then sorting these aliased subcarriers according to their

aliasing patterns.

Since the pilot is designed as an impulse sequence with a

period of µ in the DD domain, the maximum unambiguous

sensing range is reduced by a factor of µ when considering only

the pilot signals. This phenomenon, known as the range ambi-

guity, arises from the radar’s inability to uniquely determine the

true distance to the target. This behavior is analogous to OFDM

radar, where the maximum unambiguous range rmax is inversely

proportional to the subcarrier spacing [24], [36] as rmax = c
2∆f

,

where c is the light speed and ∆f is the subcarrier spacing.

In our setup, pilots are periodically placed along the delay

axis with fixed interval µ in the DD domain, resulting in the

periodic activation of subcarriers in the TF domain, while other

subcarriers remain inactive. This is equivalent to increasing the

subcarrier spacing by a factor of µ, which consequently degrades

the maximum unambiguous sensing range to c
2µ∆f

. However,

in addition to the pilot symbols, leveraging the transmission

data can provide supplementary information to eliminate the

ambiguity. This approach is equivalent to utilizing the entire

bandwidth without any idle subcarriers, ensuring that the system

maintains both sensing resolution and maximum sensing range

without degradation.

In the first phase of the algorithm, we aim to obtain a coarse

estimation without range ambiguity. Initially, we perform a MLE

on the unfolded signal yDD
uf after Eq. (24) with the transmitted

pilot signals xDD
p , while disregarding the transmission data. In

this step, the aliased transmission data xDD
d is treated entirely

as an interference. By considering only the pilot signals in the

estimation, the unambiguous range is reduced, which may lead

to an inaccurate estimation. Subsequently, based on this initial

estimation, we adjust the estimation by adding or subtracting

the maximum unambiguous range to account for all potentially

correct range values. We then iterate through these potential

range values, applying virtual channels based on these values to

the transmission data. For each potential channel, we calculate

the Euclidean distance between the resulting signal and the re-

ceived signal. This process helps eliminate the range ambiguity

and yields an accurate estimation.
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Fig. 5: Code spreading in DD domain.

After obtaining a coarse estimation, the algorithm proceeds to

the second phase, where we iteratively cancel the interference

from the transmission data and refine the estimation of the

target parameters. At each iteration, MLE is employed for

channel coefficients, range and Doppler estimations (ĥr, τ̂ , ν̂).
Then the estimations are iterated until convergence. The detailed

algorithm is described in Algorithm 2.

V. COMMUNICATION WITH REDUCED SAMPLING RATE

As discussed in the previous section, the reduced sampling

rate can infer radar targets’ ranges and velocities without

compromising resolution and maximum sensing range. This is

because, in a monostatic radar system, the transmitted signal

is fully known to the transceiver, and the channel estimation

requires much less information, which can be efficiently handled

even with reduced bandwidth. However, for communication

systems, the transmission capacity is directly constrained by the

signal bandwidth, which is determined by the sampling rate. A

reduced sampling rate leads to a proportional reduction in the

data rate. To address this problem, we design a specific data

embedding approach to embed the data.

A. Data Embedding

To maintain compliance with the Shannon-Nyquist theorem,

the transmitter must proportionally reduce its data transmission

rate. Specifically, if the receiver down-samples the signal by a

factor of 1
κ relative to the available bandwidth, then the trans-

mitter can only allocate 1
κ of its resources to data embedding.

In our proposed scheme, we partition the DD domain re-

sources along the delay axis into κ slices of sub-bands, as

illustrated in Figures 2 and 5. Effective transmission data

XDD
e ∈ C

Mτ
κ

×Nν is embedded into the first slice, represented

by the blue symbols in Fig. 5. This configuration ensures the

maximum effective transmission data rate, complying with the

Shannon-Nyquist theorem, when using a sampling rate reduced

by a factor of κ on the communication receiver side. To

avoid degrading the maximum unambiguous sensing range, as

discussed in the previous section, it is crucial not to leave the

remaining DD resources empty. To address this, we need a

spreading technique that distributes the effective transmission

data across the entire domain. While in our scenario, traditional

waveform-based spreading techniques such as direct sequence

spread spectrum (DSSS), chirp spreading, or other windowing

techniques are not feasible. This limitation arises because the

receiver operates with downsampled sampling, making it chal-

lenging to despread the received signal directly.

To enable effective spreading and despreading of signals at

a reduced sampling rate on the receiver side without the need

for additional analog hardware, we propose a spreading-code-

based approach. A pair of transmitter and receiver maintain

a sequence of length κ for spreading purpose. Consider a

multi-user scenario, where the sequence associated with the i-
th transmitter and the j-th receiver is a Zadoff-Chu sequence

denoted as Si,j = {Si,j
1 , Si,j

2 , · · · , Si,j
κ }. Zadoff-Chu sequences

are complex-valued sequences with constant amplitude and ideal

correlation properties, defined as

Si,j
n = e−j

πri,jn(n+1)
κ , n = 1, . . . , κ, (25)

where ri,j is the root index that determines the sequence and

ensures its uniqueness for each transmitter-receiver pair. In the

following, we use QPSK as an example, while this approach

can be seamlessly extended to other modulation schemes with

different modulation orders. After the effective transmission

data XDD
e embedded onto the DD domain, it spreads out to

the entire domain to generate the ultimate transmission data

XDD ∈ CMτ×Nν using the corresponding code sequence:

XDD = SDDXDD
e

= (Si,j ⊗ IMτ
κ
)XDD

e ,
(26)

where IMτ
κ

denotes the identity matrix of size Mτ

κ . The vector-

ized form can be written as

xDD = (INν
⊗ (Si,j ⊗ IMτ

κ
))xDD

e , (27)

where xDD = vec(XDD) and xDD
e = vec(XDD

e ). Once

the ultimate transmission data is ready, it is transmitted via

the channel in Eq. (4). Based on Equations (7) and (8), the

input-output (IO) relationship between xDD
e = vec(XDD

e ) and

captured signal yDD with full sampling rate system can be

written as:

yDD = HxDD +w

= H(IN ⊗ (Si,j ⊗ IM
κ
))xDD

e +w

= GxDD
e +w,

(28)

where G denotes the DD channel matrix involving code spread-

ing:

G =
P∑

i=1

hi(FNν
⊗Grx)Π

li+l′i
MτN

∆
ki+k′

i

MτNν
(FH

Nν
⊗Gtx)

(INν
⊗ (Si,j ⊗ IMτ

κ
)).

(29)

The IO relationship with full sampling rate in Equations (28)

and (29) can be further extended to the case when the receiver

is downsampled by a factor of κ. The IO relationship between

xDD
e and the captured signal ỹDD with reduced sampling rate

system can be written as

ỹDD = G̃xDD
e +w, (30)

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3607858

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on January 04,2026 at 13:54:21 UTC from IEEE Xplore.  Restrictions apply. 



8

where G̃ is the channel matrix of reduced sampling rate system1:

G̃ =
P∑

i=1

hi(FNν
κ

⊗Grx)DκΠ
li
MτN

∆ki

MτNν
(FH

Nν
⊗Gtx)

(INν
⊗ (Si,j ⊗ IMτ

κ
)),

(31)

where Dκ ∈ C
MτNν

κ
×MτNν denotes the downsampling matrix

with rate κ:

Dκ = IMτNν
κ

⊗ [1, 0, · · · , 0]
︸ ︷︷ ︸

κ elements

.
(32)

Given the IO relationships established in Equations (31) and

(32), various equalization and decoding techniques, such as

the minimum mean square error (MMSE) estimator, can be

subsequently employed for effective data decoding.

B. Synchronization with Reduced Sampling Rates

In communication systems where the transmitter and receiver

operate at mismatched sampling rates, synchronization poses

significant challenges. This disparity complicates the accurate

estimation of timing and frequency offsets, both of which are

essential for maintaining communication integrity. Extensive

research in signal processing has addressed synchronization

challenges in systems with mismatched sampling rates [37],

[38], proposing various interpolation-based solutions to manage

these issues. In our system, which operates at reduced sampling

rates, we encounter synchronization difficulties due to decreased

temporal and frequency resolution at the receiver. We have opted

to implement a vanilla sinc interpolation-based approach. This

choice is practical as systems with integer-reduced sampling

rates are straightforward to analyze, and sinc interpolation

effectively ensures sufficient synchronization accuracy for our

communication needs, which are less stringent than those re-

quired in radar applications. Let the transmitted baseband signal

be denoted by x(t), at sampling rate fs:

x[n] = x(nTs), n ∈ Z, Ts =
1

fs
. (33)

At the receiver, the signal is sampled at f ′
s =

fs
κ :

ỹ[m] = x(mT ′
s) + w[m], m ∈ Z, T ′

s =
1

f ′
s

, (34)

where w[m] represents AWGN. Considering both timing and

frequency offsets, the received signal can be expressed as

ỹ[m] = x(mT ′
s − τ)ej2π∆fmT ′

s + w[m], (35)

where τ and ∆f denote the timing and frequency offset sepa-

rately. Our objective is to accurately estimate and compensate

for τ and ∆f despite the reduced sampling rate.

1) Time Offset Estimation: We utilize cross correlation with

interpolation to achieve fractional sampling synchronization.

The interpolation process aims to reconstruct the original full

sampling rate signal y[k] from the low-rate samples ỹ[m]. For

practical implementation, a sinc interpolation filter can be used

to minimize the aliasing [39]:

y[k] =

∞∑

m=−∞
ỹ[m] · sinc

(
k −mκ

κ

)

, (36)

1Notations with a tilde indicate counterparts in the reduced sampling rate
system, relative to the full sampling rate system, unless stated otherwise.

where sinc(x) = sin(πx)
πx . Here, the interpolation kernel rescales

the downsampled grid by a factor of κ, effectively reconstructing

the samples at the original rate. Thus, the interpolated signal

y[k] aligns closely with the transmitter’s sampling instances.

In practice, this sum is truncated and a finite-length filter

approximates the ideal sinc function. Despite the truncation, the

dominant contribution typically comes from terms near m ≈ k
κ ,

making the truncated signal a good approximation of y[k].
With y[k] approximating the full-rate received sequence, we

can estimate the timing offset τ by correlating y[k] with the

known transmitted reference sequence x[n]. Define the cross-

correlation as

Ryx[ℓ] =
∑

l

y[l]x∗[l − ℓ], (37)

where (·)∗ denotes complex conjugation. The value of ℓ̂ that

maximizes |Ryx[ℓ]| provides an estimate of the timing offset.

More explicitly, we have τ̂ = ℓ̂Ts.

2) Frequency Offset Estimation: After we have estimated and

compensated the timing offset τ̂ , the next step is to estimate the

frequency offset ∆f . One common approach is to use an MLE.

Assume that the timing offset has been corrected; therefore the

received samples can be modeled as

y[m] ≈ x(mT ′
s − τ̂)ej2π∆fmT ′

s + w[m]. (38)

The MLE for ∆f is obtained by maximizing the following

likelihood function:

∆̂f = argmax
∆f

∑

m

y[m]x∗(mT ′
s − τ̂)e−j2π∆fmT ′

s . (39)

To find the maximum, we take the derivative with respect

to ∆f , set it to zero, and solve for ∆f . Differentiating and

rearranging terms, we have

∆̂f =
1

2π

∑

m mT ′
s Im{y[m]x∗(mT ′

s − τ̂)}
∑

m |y[m]x∗(mT ′
s − τ̂)|2

, (40)

where Im{·} denotes the imaginary parts.

C. Frame Structure

Since OTFS is specifically designed for high-mobility ap-

plications, where channel aging is inherently severe due to

rapid temporal variations in the channel state, this necessitates

frequent updates to channel estimation to maintain optimal

channel estimation. We assume a communication channel is

represented by the complex vector hn, where n denotes the

block index. For simplicity, the channel aging is modeled as a

frequency-flat fading, whose dynamics are expressed as [40]

hn = ρqhn−1 +
√

1− ρ2qeq,n, (41)

where ρq denotes temporal correlation coefficient dependent

on the Doppler shift fq , modeled as ρq = J0(2πfqT ) using

the Jakes’ model [41]. Here, J0(·) is the zeroth-order Bessel

function of the first kind. eq,n ∼ CN (0, βqILt
) denotes the

complex Gaussian noise independent of hn−1, representing

new randomness in the channel. βq is the large-scale fading

coefficient. It is demonstrated in [42] that channel aging can

have a severe impact to communication performance under high

mobility scenario.

Additionally, due to the periodic nature of pilot placement

of the ISAC signal along delay axis in the DD domain, as
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Fig. 6: Illustration of the frame structure.

illustrated in Fig. 2 and Fig. 3(a), channel estimation is highly

susceptible to delay ambiguity. To address this issue and ensure

accurate channel delay estimation, it is essential to include a

dedicated channel estimation block capable of resolving abso-

lute channel parameters without delay ambiguity.

Based on the aforementioned requirements, we design the

frame structure shown in Fig. 6. Each block refers to one com-

plete OTFS-ISAC waveform (i.e., a single delay–Doppler grid of

size Mτ ×Nν), as first depicted in Fig. 2. Each frame includes

a preamble and multiple ISAC signal blocks. The preamble,

containing a chirp-based synchronization signal and training

sequence, enables frame-based channel estimation. By keeping

the frame length within the coherence time, channel information

(e.g., the number of paths, delays, Doppler shifts) remains

constant throughout the frame. The training sequence provides

slow-varying channel information, while block-by-block updates

refine channel coefficients, minimizing performance degradation

in high-mobility scenarios. Absolute delay estimates in the

training sequence also resolve delay ambiguities. In this paper,

we pick N such that the correlation between the first and the last

OTFS block inside a frame exceeds a design target ρq = 0.90
based on the coherence-time-based rule. We select each frame

contains N = 3 blocks, which is sufficient for high mobility

scenarios. Note that the frame/block structure can be rescaled

for other channel dynamics.

D. Iterative Channel Estimation and Data Decoding

Since we utilize the superimposed pilot scheme to improve

the communication efficiancy, an iterative channel estimation

and data decoding algorithm [29] is necessary. Contrary to

systems that operate at full sampling rates, our reduced sampling

rate system necessitates specific adaptations of the iterative

algorithm. Specifically, these modifications involve tailored

channel coefficient estimation to accommodate our novel pilot

placement, and a data detector based on the IO relationship

specific to the reduced sampling rate system, as derived in

Eq. (31). The detailed algorithm is as follows, First, an initial

channel estimation is achieved based on the training sequence,

delivering the number of channel paths P , channel delay taps

l1,2,··· ,P and channel Doppler taps k1,2,··· ,P using Algorithm 2.

Then the reduced sampling rate ISAC signal is unfolded in

the DD domain using Eq. (24) to obtain yDD
uf . Then a coarse

channel coefficient estimation is implemented for each channel

path based on yDD
uf . In our system, since we have multiple pilots

instead of a tradition case with a single peak pilot, an averaging

operation can be applied to improve the channel coefficient

estimations. The channel coefficient estimation of the p-th path

Algorithm 3 The iterative channel estimation and data detection

algorithm

1: Input: Convergence error ϵ, received signal ỹDD, channel

delays taps l1,2,··· ,P , channel Doppler taps k1,2,··· ,P , num-

ber of multipaths P .

2: Output: Decoded data x̂DD
e ;

3: Initialize: Counter r = 1;

4: Unfold the received signal ỹDD using Eq. (24) to get yDD
uf ;

5: while not terminate do

6: for i = 1 · · ·P do

7: Get the channel coefficient ĥr
i using Eq. (42) based

on yDD
uf ;

8: end for

9: Construct the channel matrix G̃ using Eq. (31) based on

ĥr
i ,τ ,µ;

10: Use MMSE to decode data x̂r
e using Eq. (43);

11: Cancel out the interference based on G̃ and x̂r
e using

Eq. (44) and get the canceled signal ỹ′DD;

12: Update the unfolded signal yDD
uf based on ỹ′DD;

13: if |ĥr−1 − ĥr| ≤ ϵ & x̂r−1
e == x̂r

e then

14: x̂DD
e = x̂r

e and terminate;

15: end if

16: r = r + 1
17: end while

can be written as

ĥp [(l − lp)Mτ
, (k − kp)Nν

] =
1

µ

µ−1
∑

j=0

yDD
uf [l + jMτ

µ , k]

xp
, (42)

where xp denotes the pilot value. After obtaining the channel

estimation, we now use the MMSE to detect data by using

data-aided channel estimate. Given this vectorized input-output

relation in OTFS in Eq. (31), MMSE can be utilized to estimate

the transmitted effective data XDD
e :

x̂DD
e = (G̃HG̃+ σ2IMτNν

κ
)−1G̃H ỹDD (43)

After OTFS symbol detection, we have the symbols given by

XDD
e . Then we are able to cancel out the interference induced

by the data symbols based on the estimated channel and the

obtained symbols, given by

ỹ′DD = ỹDD − G̃x̂DD
e . (44)

If the interference is perfectly cancelled, then the resid-

ual term ỹ′DD contains only the pilot information and the

noise. Nevertheless, due to the impact of noise, cancellation

is generally imperfect. Therefore, we employ a scheme that

iteratively performs data detection and channel estimation. In

the r-th iteration, the channel estimate ĥr is obtained using the

signal after interference cancellation from the previous iteration.

Subsequently, the data symbols x̂r
e are detected based on the

estimated channel, ĥr. Both x̂r
e and ĥr are then utilized for the

interference cancellation, generating the interference-canceled

signal for use in the (r+1)-th iteration. After multiple iterations,

the channel estimates and the detected data symbols are refined

and finalized. The iterative process is terminated when the

performance improvement from additional iterations becomes

negligible.
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(a) Ground truth of the targets’ ranges and
velocities.
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(b) Estimation result with only pilot.
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(c) Estimation result with iterative detection.

Fig. 7: Simulation results of the range-velocity profile for two targets with distinct ranges and velocities.

(a) Estimation result with two targets
located within range resolution.

(b) Estimation result with two targets
located beyond range resolution.

Fig. 8: Simulation results of the range-velocity profile for two

closely located targets.

VI. PERFORMANCE ANALYSIS

In this section, we compared of the performance of our

reduced sampling rate system with the full sampling rate

system, in the aspects of range resolution, maximum sensing

range, velocity resolution, channel estimation performance, and

communication performance.

A. Effects on Radar Parameter Estimation

The range resolution of a radar system is determined by

its bandwidth. In our design, the pilot scheme is configured

to occupy the same virtual bandwidth as that of the full-

sampling-rate system, ensuring that the range resolution remains

unaffected. Additionally, the maximum unambiguous sensing

range increases with the number of subcarriers. By leveraging

the data-aided estimation and distributing communication across

the entire bandwidth, our system achieves the maximum sensing

range without performance degradation or ghost target estima-

tion. Furthermore, the reduced sampling rate system retains the

same maximum velocity and velocity resolution capabilities as

the full-sampling-rate system.

B. Effects on Channel Estimation

In the superimposed scheme, the interference from the data

to the pilot is unavoidable. In the full sampling rate system, the

interference term from data can be expressed as

Ik,l =
∑

i∈Q
hiX

DD
d [(l − li)Mτ

, (k − ki)Nν
] e−j2π

kili
NνMτ , (45)

where Q denotes the set containing indices of all data symbols

contributed to sample YDD[k, l]. In particular, the pilot is

interfered by P data symbols, therefore |Qk,l| = P . Based on

Eq. (45) and with the assumption that the channel coefficients

hi are modeled as independent random variables with variance

σ2
h for different paths, we have:

E{hih
∗
i′} =

{

σ2
h, i = i′,

0, i ̸= i′.
(46)

The interference energy EI = E
{
|Ik,l|

2
}

can be expressed

as [29]

EI =
∑

i∈Qk,l

E
{
|hi|

2
}
Es, (47)

where Es = E{|XDD
d [k, l]|2} denotes the average data symbol

energy and Ep = E{|XDD
p [k, l]|2} denotes the average pilot

symbol energy. Considering the normalized channel power

gains,
∑P

i=1 E
{
|hi|

2
}

= 1, the energy of the interference

term is established as EI = Es. Consequently, the signal-to-

interference-plus-noise ratio (SINR) for the pilot signal can be

expressed as

SINRp =
Ep

σ2
w + Es

. (48)

In the reduced sampling system, where the alisaing effect

caused by downsampling will introduce further interference. As

illustrated in Fig. 4, the signal is folded into a signal band after

aliasing, therefore the data and noises from different sub-band

are summed together. Therefore the powers of interference and

noises are κ times the full sampling system. Consequently, we

have the SINR for reduced sampling rate system

S̃INRp =
Ep

κ(σ2
w + Es)

. (49)

C. Effects on Communication Performance

When considering the SINR of the communication data, pilot

signals are treated as interference. Following a similar analysis

as in the Section VI-B, the SINR of the full sampling rate system

is expressed as

SINRd =
Es

σ2
w + Ep

. (50)

For the reduced sampling rate system, a known code sequence

is employed to spread the data across the entire domain.

Consequently, the data symbols folded from other sub-bands can

be effectively utilized as communication data rather than being

treated as interference. In this case, the SINR of the reduced

sampling rate system remains unaffected.
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D. Effects on PAPR

Although downsampling at the receiver does not directly

affect the peak-to-average power ratio (PAPR), which depends

solely on the transmitted signal, it introduces additional noise

and interference caused by the aliasing effect, as discussed in

Section VI-B. This degradation in signal quality can negatively

impact the performance of channel estimation in a reduced

sampling rate system. To ensure accurate channel estimation,

increasing the pilot power is recommended. While According

to [43], there is an upper bound of PAPR for transmitted signal

with rectangle pulse shape:

PAPRmax =
Nν maxk,l |X

DD
d [l, k]|2

E(|XDD
d [l, k]|2)

· (51)

Increasing the pilot power inevitably raises the PAPR, which

can lead to signal distortion if the signal peaks exceed the

amplifier’s limit. However, thanks to the design of our frame

structure, an initial large-scale channel estimation is performed

using a dedicated training sequence, thus providing a reliable

estimation of channel delays and Doppler taps. Subsequently,

by leveraging the ISAC signal, frequent updates are achieved to

ensure that channel variations remain minimal across consec-

utive blocks. This approach relaxes the strict requirement for

high pilot power.

E. Effects on Cramér-Rao Lower Bound

In this subsection, we derive Cramér-Rao Lower Bound

(CRLB) for our sub-Nyquist system and compare with the

CRLB for full rate OTFS-ISAC. To derive the CRLB for

a reduced-rate OTFS system where the receiver uses κ-fold

downsampling, we extend from the original full-rate OTFS

framework from the paper [34].

Since the reduced sampling takes place in the TF domain,

we start with the full-rate OTFS received signal in TF domain,

which is given by

yTF = HTF(θ)xTF +wTF, (52)

where yTF = vec(YTF), xTF = vec(XTF). HTF ∈
CMτNν×MτNν denotes the channel matrix in TF domain and

θ = [h, τ, ν]T . After κ-fold downsampling, we obtain:

ỹTF = DκH
TF(θ)xTF

︸ ︷︷ ︸

µκ(θ)

+Dκw
TF

︸ ︷︷ ︸
wκ

, (53)

where Dκ ∈ C(MτNν
κ

)×(MτNν) is the downsampling matrix in

Eq. (32). We define µκ(θ) = E[ỹTF] and wκ = Dκw
TF. The

noise covariance remains white: namely

E
[
wκ(wκ)

H
]
= σ2

w DκD
H
κ

︸ ︷︷ ︸

IMτNν
κ

= σ2
wIMτNν

κ
.

(54)

The Fisher information matrix (FIM) for θ = [h, τ, ν]H is given

by

I(θ)]ij =
2

σ2
w

Re

((
∂µκ

∂θi

)H
∂µκ

∂θj

)

. (55)

The partial derivative is given by

∂µκ

∂θi
= Dκ

∂HTF

∂θi
XTF. (56)

Substituting into the FIM, we obtain

I(θ)]ij =
2

σ2
w

Re

{

XTFH

(

∂HTFH

∂θi
DH

κ Dκ
∂HTF

∂θj

)

X

}

.

(57)

Here, DH
κ Dκ ∈ C(MτNν

κ
)×(MτNν

κ
) is a diagonal matrix with 1s

at downsampled indices. Down-sampling the OTFS receive grid

by a uniform integer factor κ simply inserts a selection matrix

in front of the original observation. The Fisher information,

and therefore the corresponding C-R bound, grows in direct

proportion to the fraction of samples that are retained. With

uniform decimation by a factor κ and no aliasing, the velocity

and range CRLBs become κ times larger than the full rate

values given in equations (24) to (26) of [34]. This result is also

consistent with the CRLB degradation reported for compressed

sensing in [44]. Accordingly, lowering the receiver sampling

rate by the factor κ reduces the sampling burden by the same

factor but increases the associated estimation error variances by

κ.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we first numerically validate the algorithm

and the performance of the proposed designs using simulation

results, then demonstrate these findings using our hardware

ISAC testbed.

A. Simulation Results

In this study, we explore an OTFS system characterized by

specific parameters: the number of delay bins (Mτ = 80),

Doppler bins (Nν = 80), carrier frequency (28 GHz), and

subcarrier spacing (2.5 MHz). The system employs a rectangular

pulse shaping method. The downsampling rates at both the radar

and communication receivers are 16. The signal-to-noise ratio

(SNR) is defined on a per-receive-sample basis as SNR ≜ Es

σ2
w
.

Both the simulation and practical experiments were conducted

using the aforementioned settings unless otherwise noted. The

parameters of OTFS system are outlined in Table I. Under this

setting, the range resolution (∆r) and velocity resoultion (∆ν)

are calculated as:

∆r =
c

2∆fMτ
≈ 0.75m (58)

∆ν =
c∆f

2fcNν
≈ 167m/s (59)

1) Radar Estimation Performance: In the simulation, we

artificially control the locations and velocities of the two targets.

Given the large Doppler resolution in OTFS settings, distin-

guishing between the two targets along the Doppler axis is

challenging. We assign one target an artificially high velocity,

TABLE I: Detailed parameter settings

Parameters Values

Sampling rate at the transmitter (fs) 200 MHz
Downsample rate (κ) 16
Sampling rate at the receivers (f ′

s) 12.5 MHz
Central frequency (fc) 28 GHz
# of delay bins (Mτ ) 80
# of Doppler bins (Nν ) 80
# of pilots (Np) 16
Subcarrier spacing(∆f ) 2.5 MHz
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Fig. 9: RMSE of range estimations of OTFS/OFDM with

full/sub-Nyquist sampling rate versus SNR.

which, although unrealistic in practical scenarios, enhances the

visualization of the effects of the proposed algorithms.

In the first experiment, we simulate two targets located at 10

meters and 30 meters with velocities of 0 m/s and 1000 m/s,

respectively. The range-velocity profile is depicted in Fig. 7(a).

After performing a coarse estimation with only the unfolded

pilot symbol, the result in Fig. 7(b) shows ambiguity in the

range estimations. This range ambiguity arises from the reduced

maximum sensing range, leading to a wrap-around effect that

prevents true range estimation. However, the results obtained

using our proposed algorithm, illustrated in Fig. 7(c), show

that the ambiguity is eliminated, and the estimation closely

aligns with the true locations and velocities of the targets. This

demonstrates the effectiveness of our algorithm in achieving

accurate estimations with a reduced sampling rate, without

compromising the maximum sensing range.

In the second experiment, we set the targets close to each

other, both being stationary. In Fig. 8(a), the distance between

the two targets is slightly below the range resolution given by

Eq. (58), specifically 0.7 meters. The figure shows a single peak,

indicating that the two targets are indistinguishable. In Fig. 8(b),

we adjust the distance between the targets to slightly above the

range resolution, at 0.8 meters. This adjustment results in two

distinct peaks in the range-velocity profile, clearly distinguishing

the two targets. These results validate the effectiveness of our

algorithm in achieving accurate estimation using a reduced

sampling rate without sacrificing the range resolution.

We then evaluate the radar parameter estimations for de-

lay and velocity of our proposed system, comparing it with

an OFDM system under both full-rate and sub-Nyquist sam-

pling settings. The sensing error is quantified using the root

mean square error (RMSE). Four simulation scenarios were

conducted: OFDM with full sampling rate, OFDM with sub-

Nyquist sampling rate, OTFS with full sampling rate, and OTFS

with sub-Nyquist sampling rate. For a fair comparison, the

OFDM signal employs the same signaling scheme as illus-

trated in Fig. 3(b). Figures 9 and 10 present the range and

velocity estimation results versus varying SNR, respectively.

It is observed that reducing the sampling rate in both OTFS

and OFDM systems degrades sensing performance by approx-

imately four times, aligning with the CRLB analysis provided

in Section VI-E. Specifically, OTFS demonstrates a slightly

better performance in delay estimation but slightly inferior

performance in Doppler estimation compared to OFDM; overall,
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Fig. 10: RMSE of velocity estimations of OTFS/OFDM with

full/sub-Nyquist sampling rate versus SNR.
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Fig. 11: Convergence of radar parameter estimation.

their performances are very similar. Furthermore, our proposed

method closely approaches the CRLB. For range estimation,

sub-Nyquist OTFS achieves an RMSE of less than 0.01 for SNR

values above 3 dB, and for velocity estimation, it achieves an

RMSE below 1 m/s at SNR values exceeding 9 dB, highlighting

the robust performance of our proposed system.

Fig. 11 depicts the convergence behaviour of the proposed

radar-parameter-estimation algorithm. Approximately ten itera-

tions are sufficient for convergence across all tested SNRs. At

an SNR of 10 dB, the range-estimation RMSE decreases by

a factor of about 30 after eight iterations, while the velocity-

estimation RMSE is reduced by roughly 40 times. Ultimately,

the range-estimation error converges to below 0.01 m and the

velocity-estimation error to below 1 m/s, confirming the rapid

convergence and high accuracy of the iterative algorithm.

2) Synchronization & Channel Estimation Performance: We

first evaluate the performance of synchronization. In the sim-

ulation, a linear-chirp preamble spanning 0–20 MHz (20 MHz

bandwidth) is used, and 104 Monte Carlo trials are conducted

under the following settings. The normalized carrier frequency

offset (CFO) is randomly generated from a uniform distribution

within the range [−ϵmax, ϵmax], where ϵmax is the maximum

CFO, which is selected to be half of the sub carrier spacing.

For each trial, the signal delay is randomly generated from a

uniform distribution within the range [0, 0.25µs]. Timing error

is measured by the RMSE; frequency-synchronization error is

reported as a normalized RMSE (NRMSE) with respect to the

sub-carrier spacing. Fig. 12 plots timing and CFO NRMSE

versus SNR, comparing the proposed sub-Nyquist receiver with

a conventional full-rate design. The sub-Nyquist architecture

incurs roughly a three-fold performance loss relative to full-

rate sampling, yet still delivering good performances: at 0 dB
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Fig. 12: Synchronization performance.
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Fig. 13: Performance of channel estimation.

SNR the fine estimator achieves < 10−8 second timing RMSE

and < 0.01 CFO NRMSE.

We then present the performance of channel estimation in

Fig. 13. The channel estimation error is quantified using nor-

malized mean square error (NMSE), defined as NMSEh =
||ĥ−h||2
||h||2 . In the simulations, the averaged pilot energy is set

as Ep = 0.04 and the averaged data energy as Es = 1. Due

to the interference between data symbols and the pilot symbol,

coarse channel estimation, which treats all interference as noise,

exhibits significant performance degradation. With an increasing

SNR, the additive noise is reduced, thus alleviating interference

in pilot estimation. The convergence behavior of the channel

estimation algorithm is illustrated in Fig. 13(a), indicating that

three iterations are sufficient to achieve convergence across

various SNR levels. Specifically, at a high SNR of 20 dB, the

NMSE is reduced approximately threefold after the first iteration

and further decreased by around 1.5 times after the second

iteration. We also compare our proposed approach with the

conventional embedded pilot-aided channel estimation method

presented in [45]. In [45], zero-padding guard intervals around

the pilot are used to prevent interference from data symbols.

Fig. 13(b) demonstrates that despite the presence of interference

from data and noise, the coarse estimation performance signifi-

cantly improves after three iterations of our iterative algorithm,

approaching the performance of the zero-padding embedded

pilot scheme from [45]. Our iterative estimator achieves an

NMSE below 0.01 at an SNR of 10 dB and below 10−3 at

an SNR of 20 dB, highlighting the effectiveness of our channel

estimation method.

3) Communication Performance: We further simulate and

analyze the communication performance. The simulation em-

ployed a Rician channel model, accompanied by a randomized

channel impulse response (CIR) generation. Specifically, we
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Fig. 14: QAM 64 constellation diagram.

simulated 1 × 104 distinct channel realizations for each SNR

level within the Monte Carlo analysis framework. To evalu-

ate the system performance, we considered three modulation

schemes, including QPSK, 16-QAM, and 64-QAM.

In the first simulation, we compared the performance of

the original full-bandwidth OTFS communication system with

that of a reduced-sampling-rate system. The evaluation was

conducted using 64-QAM modulation under a fixed SNR of

35 dB, assuming perfect channel knowledge. The resulting

constellation diagrams, depicted in Fig. 14, demonstrate that the

communication performance of the reduced-sampling system

closely matches that of the full-sampling system. This result

validates the theoretical analysis presented in Section VI-C.

In the second simulation, we evaluated the performance of

the reduced sampling rate system under three different channel

assumptions: 1) with integer delay and Doppler shifts, and

perfect channel knowledge; 2) with integer delay and Doppler

shifts, and imperfect channel knowledge; 3) with fractional

delay and Doppler shifts, and imperfect channel knowledge. As

shown in Fig. 15, the BER performance for different modulation

orders as the SNR increases from 0 to 30 dB under these

three channel conditions is presented. In scenario (a), QPSK

achieves the lowest BER, reaching 10−4 at approximately 15

dB, while 16-QAM and 64-QAM achieve similar BER values

at higher SNRs of 20 dB and 25 dB, respectively. In scenario

(b), the BER degrades due to imperfect channel knowledge,

with QPSK maintaining better noise tolerance and requiring

around 17 dB to achieve 10−4 BER, compared to 22 dB for

16-QAM and 28 dB for 64-QAM. Scenario (c) introduces the

most severe degradation due to both imperfect synchronization

and channel knowledge. Under these conditions, QPSK still

performs relatively well, requiring 20 dB to reach a 10−4

BER, whereas 16-QAM and 64-QAM exhibit significant a BER

degradation, requiring SNR values exceeding 25 dB and 30 dB,

respectively.

We further benchmark our system against a full-sampling-

rate OTFS baseline and a conventional OFDM system. First,

we compared OTFS operating at sub-Nyquist and full sampling

rates under imperfect synchronization and channel estimation.

To ensure a fair comparison, both OTFS configurations employ

the same superimposed pilot scheme. As depicted in Fig. 16(a),

the two configurations achieve nearly identical BER curves; the

sub-Nyquist receiver exhibits only a marginal loss, attributable

to the slight deterioration in channel-estimation accuracy. These
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Fig. 15: Simulation results of communication performance with different modulation orders.

findings are consistent with the constellation results in Fig. 14

and the analysis in Section VI-C, confirming that a reduced

sampling rate diminishes raw throughput in proportion to the

downsampling factor κ while preserving the QoS.

We finally compare the communication performance of OTFS

and OFDM, each operating at either the nominal (full-rate)

or a sub-Nyquist sampling rate, under two mobility regimes,

namely high velocity condition and low velocity condition.

QPSK modulation is used. The channel Doppler spreads are set

to 3 kHz and 180 kHz for low and high mobility, respectively,

which correspond to approximately 20 m/s and 1,000 m/s at a

28 GHz central frequency. Our sub-Nyquist OFDM baseline

follows the implementation in [24]; additional details match

that reference. The existing solutions for sub-Nyquist OFDM

communication system suffer from a κ-fold increase in noise

because aliasing folds independent noise bands onto the signal.

As a result, the BER degrades rapidly as the downsampling

factor grows, in agreement with the trends reported in [24], [26].

In contrast, the spreading code presented in Fig. 5 preserves

the SNR after folding in our OTFS design; only the user data

rate is reduced. The results are presented in Fig. 16(b). We

can observe that OFDM with full sampling rate under low

mobility condition has the best BER performance because it

is free of interference from superimposed pilots. However, with

κ = 16 times downsampled OFDM system, the BER degrades

severely and cannot maintain a link. In our OTFS architecture,

the curves for full-rate and sub-Nyquist sampling are almost

identical, and both remain robust even in the high-mobility

scenario. Conversely, OFDM, whether full rate or sub-Nyquist,

fails completely at high mobility. These findings validate the

proposed sub-Nyquist OTFS design and underlines its suitability

for high-mobility ISAC applications.

B. Experimental Results

In this section, we further present experimental results to

evaluate the performance of our system using an ISAC testbed.

1) Hardware Implementation: Our ISAC testbed, as shown

in Figures 17(a) and 17(b), consists of two main components.

The first component is the monostatic radar system, which

also functions as the communication transmitter, as depicted

in Fig. 17(a). The second component is the communication

receiver, as illustrated in Fig. 17(b). For the operation of the

system, two USRP X410 devices are deployed for generating
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Fig. 16: Communication performance of BER of OTFS/OFDM

with different sampling and mobility settings versus SNR.

(a) Communication TX and monostatic
radar.

(b) Communication RX.

(c) Radar estimation setup. (d) Communication setup.

Fig. 17: Hardware and experimental setup.

and capturing the baseband OTFS signals. Additionally, up-

down converters are integrated on both the transmitter and

receiver sides to enable the conversion between the baseband

and the 28 GHz radio frequency band. The radar system’s front-

end transceiver features dedicated beamformers for transmission

(TX) and reception (RX). A horn antenna is deployed on the

communication receiver side. The transmitter operates at the full

sampling rate of 200 MHz, while the sampling rate for both the

radar and communication receivers is reduced by a factor of 16.

2) Radar Sensing Performance: In the experiment, two RF

reflectors are placed at a fixed distance of 0.8 m from each
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𝑑 ≈ 0.8݉

Fig. 18: Experimental result of the range-velocity profile.
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Fig. 19: BER versus different modulation orders with SDR

testbed.

other, as shown in Fig. 17(c). Fig. 18 illustrates the range-

velocity estimation under the previously described experimental

conditions. Notably, even with the reduced sampling rate, the

two closely located targets, A and B, can still be distinguished.

This result demonstrates that our proposed method enables

accurate target estimation with a reduced sampling rate, without

compromising the sensing resolution.

3) Communication performance: We also evaluated the com-

munication performance of our proposed system in a practical

indoor environment. As illustrated in Fig. 17(d), the transmitter

and receiver were positioned approximately 5 meters apart. By

adjusting the transmission power at the transmitter side, we are

able to manually control SNR to evaluate system performance

under varying conditions.

The BER performance is depicted in Fig. 19. The results

demonstrate that the system performs well with QPSK mod-

ulation, achieving a BER of zero at an SNR of 25 dB under

an uncoded scheme. For 16-QAM modulation, a BER of zero

was observed at an SNR of approximately 30 dB. However, for

64-QAM modulation, the performance slightly degrades, likely

due to hardware imperfections and potential signal distortion

in the physical system. These practical experiments confirm

the effectiveness of our system, highlighting its capability to

maintain reliable communication performance under real-world

conditions.

VIII. CONCLUSION

This paper presents a novel OTFS-based ISAC system that

addresses the challenges of high sampling rates and storage re-

quirements in high-resolution radar estimation while simultane-

ously enabling effective communication. By strategically plac-

ing pilot symbols in the delay-Doppler domain and leveraging

aliasing effects, our approach enables accurate radar estimation

and efficient data transmission at sub-Nyquist sampling rates. A

code-based spreading technique ensures the unambiguous sens-

ing range, while an iterative interference cancellation algorithm

enhances radar accuracy by mitigating data-induced interfer-

ence. Furthermore, we developed a comprehensive transceiver

pipeline optimized for reduced sampling rates, incorporating

synchronization, iterative channel estimation, and data detection

to ensure reliable communication. Experimental validation using

an SDR-based ISAC testbed confirms that our system signifi-

cantly lowers sampling requirements while maintaining sensing

resolution and communication performance. This work provides

a cost-effective solution for advancing integrated sensing and

communication technologies, paving the way for practical de-

ployment in next-generation wireless networks.
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