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Abstract—Integrated sensing and communication (ISAC) has
emerged as a pivotal technology for next-generation wireless
communication and radar systems, enabling high-resolution sens-
ing and high-throughput communication with shared spectrum
and hardware. However, achieving a fine radar resolution of-
ten requires high-rate analog-to-digital converters (ADCs) and
substantial storage, making it both expensive and impractical
for many commercial applications. To address these challenges,
this paper proposes an orthogonal time frequency space (OTFS)-
based ISAC architecture that operates at reduced ADC sampling
rates, yet preserves accurate radar estimation and supports si-
multaneous communication. The proposed architecture introduces
pilot symbols directly in the delay-Doppler (DD) domain to
leverage the transformation mapping between the DD and time-
frequency (TF) domains to keep selected subcarriers active while
others are inactive, allowing the radar receiver to exploit under-
sampling aliasing and recover the original DD signal at much
lower sampling rates. To further enhance the radar accuracy,
we develop an iterative interference estimation and cancellation
algorithm that mitigates data symbol interference. We propose a
code-based spreading technique that distributes data across the
DD domain to preserve the maximum unambiguous radar sensing
range. For communication, we implement a complete transceiver
pipeline optimized for reduced sampling rate system, including
synchronization, channel estimation, and iterative data detection.
Experimental results from a software-defined radio (SDR)-based
testbed confirm that our method substantially lowers the required
sampling rate without sacrificing radar sensing performance and
ensures reliable communication.

Index Terms—ISAC, OTFS, sub-Nyquist sampling, radar per-
formance, SDR experiments

I. INTRODUCTION

Over the past decade, integrated sensing and communication
(ISAC) [1]-[3] has evolved into one of the major themes for
next-generation wireless networks, particularly in the context of
6G systems. ISAC unifies sensing and communication within
a single system infrastructure, leveraging shared spectral and
hardware resources. This integration simplifies system deploy-
ments and enables transformative applications such as environ-
ment monitoring [4], autonomous driving [5], human-computer
interaction [6], and smart city initiatives [7].

Thanks to significant advancements in hardware technology,
substantial progress in ISAC has been achieved in the de-
velopment of multiple-input-multiple-output (MIMO) technol-
ogy [8] and the expansion of frequency bandwidths [9]. In
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modern 5G communication systems, MIMO technology is fully
leveraged to exploit spatial resources, resulting in notable im-
provements in spectral and energy efficiency. Similarly, MIMO
radar benefits from these advancements by enabling finer angle
estimation and enhanced sensing capabilities [10]. Moreover,
hardware improvements have facilitated the extension of the
radio frequency spectrum from the frequency bands used in
4G systems to millimeter-wave (mmWave) and terahertz (THz)
bands. These higher frequency bands offer broader bandwidths,
significantly enhancing communication throughput and radar
sensing resolution. However, these advances introduce a critical
challenge for ISAC waveform design. As bandwidth grows, the
Nyquist-Shannon theorem [11] requires ever-higher sampling
rates to avoid signal distortion, thereby placing substantial de-
mands on analog-to-digital converters (ADCs). In radar systems
that use predefined waveforms, such as frequency-modulated
continuous wave (FMCW), stretch processing can be applied
to downconvert the high-bandwidth echo to an intermediate
frequency (IF) signal, thereby reducing the required sampling
rate before digitization. In contrast, communication signals
contain unknown data and need full-band Nyquist sampling for
effective decoding, making the integration of radar and commu-
nication waveforms more complex. For instance, according to
the Nyquist-Shannon theorem, achieving GHz-level bandwidth
transmission without distortion requires an ADC capable of
sampling at gigasamples per second (GSPS). The commonly
used 12-bit AD9625 ADC [12], with a sampling rate of 2.6
GSPS, is priced at approximately $1, 500 per unit. This makes it
prohibitively expensive for systems that require multiple ADCs
in multi-channel configurations. Operating at this rate, a single
ADC generates a data flow of 31.2 Gbps, necessitating advanced
storage and data transmission solutions. This, in turn, escalates
the overall cost of commercial ISAC systems and restricts their
affordability and broader adoption.

Currently, FMCW radar remains the predominant waveform
in radar applications. It achieves a high resolution using a
limited ADC through the stretch processing. However, the
FMCW waveform offers a limited flexibility in encoding the
transmission data [13], [14], confining its applications to sce-
narios with low transmission rates such as LoRa [15], [16] and
chirp spread spectrum (CSS) [17] schemes. As the need for high
throughput ISAC applications grows, there has been a shift to-
wards orthogonal frequency division multiplexing (OFDM) [18].
OFDM is a well-established and proficient modulation scheme
extensively adopted in recent wireless communication standards,
including 4G LTE and 5G NR. Numerous radar systems based
on OFDM have been proposed, highlighting its potential as
a waveform for ISAC applications. Nonetheless, OFDM faces
substantial challenges in high mobility environments, primarily
due to Doppler shifts. To address this issue, orthogonal time
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frequency space (OTFS) [19] modulation has been emerged
as a viable solution, noted for its robustness in maintaining
consistent performances under doubly-dispersive channels.

In this paper, we present an OTFS-based ISAC system that
operates at a reduced ADC sampling rate without sacrificing
radar sensing resolution and range. We first strategically place
pilot symbols in the delay-Doppler (DD) domain according
to a carefully derived transformation mapping between DD
and TF domains. By doing so, we ensure that only certain
subcarriers in the time-frequency (TF) domain carry active pilot
symbols, while all others remain inactive. This selective activa-
tion facilitates a structured aliasing effect when undersampling
is applied, allowing signals from multiple sub-bands to be
effectively merged into a narrower bandwidth. To accurately
retrieve the target’s radar information from the downsampled
signals, we introduce a two-phase iterative cancellation and
detection algorithm. For data modulation and demodulation
within the constraints of Nyquist-Shannon sampling theorem,
effective data is allocated at the transmitter to maximize capacity
according to the reduced sampling rate at the receiver. A
code-based spreading technique is then applied to distribute
the data across the entire DD domain, ensuring the maximum
radar estimation range. Furthermore, we design a complete
synchronization, modulation and demodulation pipeline that
accommodates the reduced sampling rate at the receiver, and
we adopt an iterative channel estimation and data detection
algorithm to reliably decode the transmitted information. This
ISAC system achieves a precise estimation with a sub-Nyquist
sampling rate, thereby reducing hardware complexity and data
storage requirements, making it highly suitable for low-budget
commercial applications. We build an OTFS-based ISAC proto-
type using software-defined radios (SDRs). Through simulations
and extensive experiments, we demonstrate the effectiveness of
our system with reduced sampling rate, which delivers accurate
radar estimation without compromising resolution or sensing
range, while also ensuring reliable communication. In summary,
this paper the following contributions:

o As per the authors’ best knowledge, this work is the first
to design and implement an OTFS-based ISAC system that
operates with a reduced ADC sampling rate, addressing
the cost and complexity concerns while maintaining a high
radar performance;

+ We propose an OTFS-based radar estimation algorithm that
achieves precise sensing without sacrificing the resolution
or the maximum unambiguous sensing range, even under
reduced sampling rate constraints;

o We develop an integrated communication pipeline, includ-
ing modulation, demodulation, synchronization, channel
estimation, and iterative data detection, ensuring a reliable
data transmission in the reduced sampling rate framework.

o We have implemented the proposed system on our ISAC
testbed using SDRs and conducted extensive experimental
studies. The results validate the effectiveness of our ap-
proach, demonstrating accurate radar estimation and robust
communication performance under reduced sampling rates,
without compromising the sensing resolution or communi-
cation performance.

The remainder of this paper is organized as follows. The
researches related to this paper are introduced and compared in

Section II. The general system model is introduced in Section
III. Then, the radar estimation algorithm and communication
pipeline are elaborated in Section IV and V respectively. The
properties of the reduced sampling rate system compared with
the case of full sampling rate are discussed in Section VI. The
corresponding numerical and experimental results are provided
in Section VII. Finally the conclusions are drawn in Section
VIIL

II. RELATED WORKS

Several strategies have been developed to reduce the ADC
sampling rate in OFDM radar systems. The stepped-carrier
(SC) OFDM radar [20] divides a wide-bandwidth OFDM signal
into narrower sub-bands, transmitting them sequentially, which
affects the maximum unambiguous velocity and requires a fast-
settling-time phase-lock loop (PLL) and phase-offset calibration
between sub-bands. Sparse OFDM radar [21] utilizes narrow-
band signals at randomly chosen frequencies, reconstructed
via compressed sensing to match the full OFDM resolution,
though it increases the hardware complexity and computational
demand. Frequency-comb (FC) OFDM radar [22], [23] expands
the RF bandwidth by multiplying the baseband signal with a
frequency comb, at the cost of complicating the hardware due
to its need for precise calibration to avoid peak-to-sidelobe ratio
degradation. Subcarrier-aliasing (SA) OFDM radar [24] designs
a proper active subcarrier interval in the OFDM signal allows
active subcarriers in each sub-band not to be overlapped in the
undersampled signal. Although this involves simple hardware
and radar signal processing compared to other approaches, its
system performances in terms of the maximum unambiguous
range and the range processing gain are severely degraded due
to the reduced number of active subcarriers. Recently, a sub-
Nyquist sampling (SNS) OFDM radar system with reduced
sampling rate is proposed in [25], [26], which ensures a high
range resolution and the maximum detectable range without
ambiguities. The proposed method uses sub-Nyquist sampling,
with demodulation unfolding the signal and introducing symbol-
mismatch noise (SMN). The SMN is then canceled, thus restor-
ing the dynamic range of the unfolded signal. However, the
effectiveness of this approach relies heavily on the assumption
that the entire bandwidth is fully occupied by radar symbols.
This assumption limits the feasibility of the approach in ISAC
applications.

In OTFS modulation, an OTFS-FMCW waveform design is
proposed in [27]. This design capitalizes on the simultaneous
locality property of the FMCW in both the time-frequency
and delay-Doppler domains to superimpose OTFS and FMCW
signals in an orthogonal manner. However, the authors obscure
a critical concept pertinent to multicarrier modulations such as
OTFS and OFDM, wherein each specific tone remains static
during its transmission interval and alters only between succes-
sive intervals. This attribute aligns the approach more closely
with stepped-frequency radar rather than with continuous-wave
frequency modulation. Consequently, it cannot straightforwardly
harness the intrinsic properties of FMCW radar.

III. SYSTEM OVERVIEW

In this section, we provide the overview of the OTFS-ISAC
system and the design of the proposed pilot scheme, taking
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Fig. 1: Processing pipeline of OTFS-ISAC system with reduced
ADC sampling rate.

into account the effects of reduced sampling rate aliasing. As
depicted in Fig. 1, the OTFS-ISAC system can be principally
divided into two functional areas in terms of application tasks,
namely the radar sensing part and the communication part. In the
system, the transmitter operates at full sampling rate, while the
receivers, both on the radar and communication ends, operate
at reduced sampling rates. This configuration ensures sufficient
physical bandwidth on the transmitter side for the accurate radar
parameter estimation, while the reduced sampling rate at the
receivers helps mitigate the stringent demands on the ADC and
data storage capacities.

A. Input-Output Relation of OTFS

In this section, the signal model for OTFS modulation is
delineated. The transmission data XPP € CM~*Nv js embedded
in the DD domain with an M, x N, grid. Each grid cell
spans 1" seconds in the time dimension and A, Hertz in
the Doppler shift, uniquely corresponding to a specific delay
and Doppler pair. M, and N, denote the number of delay
and Doppler bins respectively. Then by applying an inverse
symplectic finite Fourier transform (ISFFT), the DD domain
signals are transformed into the TF domain:

XTF = Fy, XPPFY | (1)

where XTF € CM+>*Nv jg the time-frequency domain represen-
tation and F is the unitary discrete Fourier transform (DFT)
matrix of size N x N. FH denotes the conjugate transpose of
matrix F. Subsequently, the Heisenberg transform is employed
and a transmit pulse-shaping filter g, (¢) supported in [0, 7] is
utilized to generate the transmission signal s(¢) in time domain:

N,—1M,—-1
0=z &5 XTmalgu(t-nT)

n=0 m=0
ejZTrmAf(tfnT) .

On the communication receiver side, the received signal r(t)
is multiple delayed copies of transmitted ones:
r(t) = [, [ h(r,v)s(t — 7)™ drdy + w(t)
P

=3 hed?™its(t — 1;) + w(t),

i=1

3)

where w(t) represents the additive white Gaussian noise
(AWGN), P denotes the number of paths, h(7,v) represents
the channel impulse response:

P
h(r,v) =3 hid(T — 1:)0(v — v3), 4

i=1
where h; is the complex gain associated with the i-th path, while
d(+) is the Dirac delta function. The expression for path delay 7;

and Doppler shift v; of the ¢-th path assumes integer multiples
of the respective delay and Doppler resolutions, articulated as
T, = #f and v; = WiT’ respectively. Here, [; and k;
are integers denoting the delay and Doppler taps of the -
th path, respectively. For conventional wideband systems, the
sampling time 1/(M,Af) is sufficiently small, allowing delay
taps to be effectively approximated as integers [28]. Similarly,
consistent with [29], [30], we currently do not account for
fractional Doppler effects. This approximation is justified by
the decreasing Doppler resolution 1/(N,T') as the Doppler bin
number N, increases [31]. When the Doppler bin is small, the
window design schemes proposed in [32], [33] can be exploited
to maintain the sparsity of the DD domain effective channel.
This time domain signal r(¢) is sampled and transformed to
the TF domain signal Y% € CM*N by applying the Wigner
transform:

Y™ [m,n] = [gr(t— nT)r(t)e=2mmAst=nT)qe  (5)

where g, (t) is the receive pulse-shaping filter. Next, the sym-
plectic finite Fourier transform (SFFT) is applied to transform
YTF back to the DD domain:

YPD = Fi YTFFy, . (©6)

Combining Eqgs. (1)-(6), the input-output relationship of OTFS
in DD domain can be written as

yPP — HxPP | w

P
7
= Zhiri(Tiavi)XDD +w, @
i=1
where xPP = vec(XPP) and yPP = vec(YPP). vec(X)

denotes the vectorization of matrix X. H denotes the channel
matrix in DD domain. w ~ N.(0,021,, n,) is the AWGN
vector with variance afu, where I, denotes the M. N, x M, N,
identity matrix. I'; denotes the DD domain channel matrix of
each reflected path:

Ti(1i,0:) = (Fn, ® G v AN v (FE ® Gyy),
L ®
i(Mz Ny —1)

M, N,

where A%ITNV =diag{ej2”ﬁ , ejzﬁﬁ, B
The matrix Hl]("L ~, denotes the [; step forward cyclic-shift
(permutation) matrix. G, and G, are the M, x M, diagonal
matrices whose entries are the coefficients of the corresponding
transmit pulse and receive pulse (in this paper we make
the assumption that both the transmit and receive pulses are
rectangular, thus that G, and G,, are identity matrices,

denoted I,/ ).

B. OTFS-based Radar

In the monostatic OTFS-based radar system, the transmit
symbols XPP and the received symbols YPP are known. How-
ever, the round-trip delay—Doppler radar channel, denoted as
h,.(7,v), remains unknown. The purpose of radar processing is
to estimate (h,, 7, ), which provides us the target information,
such as the corresponding ranges and velocities. The commonly
used model for OTFS radar parameter estimation based on
maximum likelihood estimation (MLE) [34], [35] is described
as follows.

For the i target, let h,; denote the corresponding round-trip
channel coefficient. When estimating the parameters of the ™
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L 5ub.bandM‘_l OFDM radar systems [24], we propose to generate a DD

Fig. 2: Pilot placement in the DD domain.

target, the reflections from other targets should be treated as
interference. Specifically, h,;I';x and > ki h,;I'jx represent
the signal and interference, respectively. To address the mutual
interference, an interference cancellation mechanism is required.
When estimating the parameters of the i target, the interference
from the (i — 1) previously estimated targets must be removed.
Considering the first target with parameters (h,1,71,71), The
MLE for this target is given by

(hr71,721,ﬁ1) = arg min

hpo1,71,01

[hea D1 (i, v)x —y[*. (9

Eq. (9) is a quadratic least-squares problem in the scalar h,. ;:

o (Culm,v)x)y

- . 10
"= I () {10

Substituting Eq. (10) back converts the minimization in Eq. (9)
yields

min [|h 1Ty (71, v1)x=y % = [lyll3~

|(T1 (71, 00)%) Py |
(Fl(Tl, Vl)X)H(Fl (Tl, Vl)X) ’

lyl|3 is independent of (71,v1), so minimizing the residual

. . o . Ty (r1,00)x) Ty
is equivalent to maximizing the ratio (|T(1 ;S;;;g;i(:l'hl)x).

Because I'y(7y,v1) is the product of unit-norm operations
(phase rotation, circular shift, unitary DFT matrices), and the
pilot x is a norm-one impulse in the DD domain, we have

Y

H

||1"1(7'1,u1)x||§ =x"x= ||x||§ = constant. (12)

Consequently, the denominator can be dropped without affecting
the maximizer, yielding

L 2
(f1,01) = arg maX) ‘(Fl(ﬁ, Vl)x)Hy‘ , (13)

(T1,01

and the channel coefficient h,; is calculated by ﬁr’l =

xHTH (71,0101 (F1,01)x
(T1(F1,00)x) My

as the ¢ target, where ¢+ = 2,3,..., P, interference can-

cellation is performed by subtracting the interference term

Z;;ll an ;T;(7j,7;)x from the received vector y. Accordingly,

the estimator for the i target is expressed as

. For the remaining (P — 1) targets, such

(74, V;) = arg max
TisVi
2

= (14)
(Cilri,v))™ [y =D ey TRy, 05)x | |
j=1

domain signal by strategically placing pilot signals in designated
grids within the DD domain. This configuration ensures that
these pilot signals correspond to active symbols on every uth
subcarrier in the TF domain. Utilizing the aliasing effect,
this method efficiently folds the full bandwidth signal into a
sub-band without loss of pilot information. Consider the full
sampling rate f; at the transmitter, and the downsample rate at
the receiver side is . The captured signal is folded into % of
its original bandwidth, while the time axis remains unchanged.
Unlike OFDM, which intuitively modulates data directly in
the TF domain, allowing straightforward design and control of
aliasing, OTFS is tailored to combat doubly-dispersive channels
by spreading each DD domain symbol across the entire TF
domain. Consequently, designing a pilot scheme for OTFS
requires strategic planning and poses non-trivial challenges for
subsequent radar estimation and communication processing.

From Egq. (1), the delay-time (DT) domain representation
XPT is derived by applying the inverse DFT to the DD
domain signal XPP along the Doppler axis. Similarly, the
frequency-Doppler (FD) domain representation X is obtained
by performing a DFT on XPP along the delay axis. By carefully
placing pilot impulses along delay axis in the DD domain
and controlling their periodic spacing, we induce a structured
aliasing in the TF domain that can be later exploited to recover
range-Doppler estimates with a reduced sampling rate.

For reference, consider the DFT of a finite-length sequence
x[n] defined for 0 <n < N — 1:

N-1
(16)

n=0

When input z[n] is an impulse §[n] then Eq. (16) is reduces to

N—-1
X[k =) dnje2mhn/N = 1, (17)
n=0

where §[n] is the Kronecker delta function. Thus, the DFT of a
single impulse is a constant spectrum of 1 across all k.
Now consider a periodic impulse sequence:

x[n] = i 0[n — kT}), (18)

k=—o0

where T), is the period of the impulse sequence. The DFT of
z[n] is given by

xi-X (3

n=0 \m=-—o0

Sn — mTp]> g2 (19)

Since the inner Kronecker delta in Eq. (19) is 1 only when the
sample index n equals an integer multiple of the period T},, we
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can substitute n = mT),. Because n is also limited to the DFT
window 0 < n < N — 1, the integer m can take only values of

N -1
m=0,1,...,L—1, LA{J+L (20)
TP
Hence Eq. (19) reduces to a finite geometric series:
L—1 . 1_ (efj%Tp)L
X[k] = e IRy — =
mz_:o 1— e I @1
1= wk
Cl-w’

where w = e~"2"~%Tr. When we take the DFT of z[n] over an
interval of [NV samples, the impulses at multiples of T}, contribute
to a repetitive pattern in frequency. This repetition results in a
frequency spectrum that repeats every % samples.

Based on the above derivation, our system ensures that the
TF domain signals remain active only every u-th subcarrier by
strategically placing pilot impulses in the DD domain. Specifi-
cally, we position these pilots along the delay axis at intervals of
Ne where N, denotes the total number of subcarriers, which is
equal to the number of delay bins (M. ). As illustrated in Fig. 2
and 3(a), this placement partitions the DD domain into p sub-
bands along the delay axis, each with dimensions = x N,,. To
further enhance the spectral efficiency, a single impulse pilot is
allocated along the Doppler axis, thus reserving the majority of
Doppler resources for data transmission. Fig. 2(b) and (c) depict
the resulting TF-domain signals observed at both the transmitter
and receiver.

Unlike a pure radar task, where all symbols are dedicated
to radar parameter estimation, the ISAC system allocates the
majority of resources to data embedding, with only the pilot
symbols reserved for estimation, as shown in Fig. 2. In each
sub-band, there is only a single impulse for the pilot, while the
remaining resources are used for data transmission. After the

aliasing effect incurred by the reduced sampling rate, the signals
from all sub-bands are folded into a single band as shown in
Fig. 4. To ensure that the folded pilots remain free from mutual
interference, a careful selection of system parameters is needed.

D. Parameter Selection

Consider z(t) be a complex-valued signal with a bandwidth
B. The Fourier transform of the sampled signal z,(t) with
a sampling rate of f. results in a replication of the original
spectrum X (f) at intervals of f., namely

X ()= X(f—kf),

k=—o0

(22)

where k is an integer representing the index of the spectral
replication. The replicated spectra are shifted by multiples of
f1 in both the positive and negative frequency ranges.

If the sampling rate f7 is less than the bandwidth B, aliasing
occurs. In this case, the spectral replicas overlap, and frequency
components beyond the Nyquist frequency fold back into the
baseband. For a complex signal containing a frequency compo-
nent fo, the aliased frequency fy,s can be determined by

falias:fo_kfgv k= \:ﬂ)“l‘lJ y (23)

fo 2

which always returns an fy.s € (—%,% . Here |-] is the
floor operator. In our system, both the reduced sampling rate
and the active subcarrier frequencies, which are determined by
the number of subcarriers (M) and active subcarrier spacing
1, must be designed carefully. The first constraint requires
that the number of subcarriers (/V.), which is also equal to
the number of delay bins (M), be an integer multiple of «.
Otherwise, the active subcarriers would be placed “in between”
the frequency bins, causing severe windowing effects due to
loss of orthogonality. The second constraint relates x and u.
After the aliasing operation in Eq. (23), all active carriers
should fold into a single sub-band without interference. Since
the size of each sub-band is %, and the number of subcarriers
after downsampling by « is %, these quantities must match.
Equating % and % yields u = k.

To determine suitable parameters of M., and k, we propose
a parameter search algorithm, outlined in Algorithm 1. Specif-
ically, the goal is to identify the optimal downsampling rate,
K, at the receivers and the number of delay bins in the DD
domain. The algorithm iterates over potential values for these
parameters. For each iteration, a specific pilot placement in
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Algorithm 1 Parameter selection

Require: Min, Moz, Kmax
1: for Kk =2,3,..., Kmax do
2: for M. = Min, Muin + 1, ..., Moz — 1, Mipae do
3 if 2= € 7 then
4 p=r fl=L
5 Construct pilot placement scheme XDP based
on M, and p;
6: Construct Yg F based on Eq. (5);
7 Construct B, based on f!, u,M;;
8 Derive ?EF =B,Y, ",
9: if YPT F contains Li’ ones then
10: return M, x;

11: end if
12: end if

13: end for

14: end for

the DD domain is constructed based on the current parameter
values. The DD signals are then transformed into the TF domain,
where the aliasing effect is simulated, and the resulting aliased
signal in the frequency domain is analyzed. If the normalized
aliased signal in the frequency domain consists of only ones,
it indicates that every frequency bin is occupied by only
one active subcarrier. This ensures that the chosen parameters
eliminate the inter-subband interference and prevent information
loss. Consequently, the appropriate parameters are identified
to maintain the signal integrity. In most cases, the reduced
sampling rate, , at the receiver is predetermined and fixed
by the hardware constraints of the system. This significantly
reduces the complexity of the parameter search process.

IV. RADAR PARAMETER ESTIMATION WITH REDUCED
SAMPLING RATE

Although a careful design ensures that pilots are free from
mutual interference, interference from data symbols is still

Algorithm 2 The iterative radar detection algorithm

1: Input: Convergence error e, transmitted data signal ng,
transmitted pilot signal x>, unfolded received signal y°P;
2: Output: Target range estimation 7, target velocity estima-
tion 7;
3: Perform the MLE estimation in Egs. (14)(15) to ygD based
on xPP to obtain a coarse estimation (h,., 7, );
4: Iterate all possible wrap around range estimations, find the
absolute estimation, update the estimation (}ALT, 7,0);
5: while not terminate do
Generate ideal received data signal y5™ based on xJP
and channel (iz,«,f', V) using Eq. (24);
Cancel yflim from yl?fD and update yIPfD;
8: Perform the MLE estimation to modified y2P to get a
new estimation (h/., 7, 7');
9: if |7/ —7| <e & |0 — 0| <ethen
10: Update (h,.,7,?) and terminate;
11: end if
122 Update (hy,7,0) = (h.,7,0')
13: end while

unavoidable. Therefore, an iterative cancellation and detection
algorithm is essential in this context. In this section, we describe
a two-phase algorithm of iterative interference cancellation and
detection.

By properly selecting the parameters, we can generate an
OTEFS signal that the pilot symbols are mutually interference
free from each other in the frequency domain even after the
aliasing effect. This allows us to unfold the folded signal in
frequency domain to recover the original pilot signal in TF
domain before aliasing, and further convert to DD domain
for the final range and velocity estimations. The relationship
between the transmitted DD signal xPP and captured unfolded
DD domain signal y2P can be written as:

P ! i
YE%D = _21(FNV ® er)BuBaHMTNVAMTNV (24)

(FI @ Gy,)xPP,

My N, M, N,
where B, € C~ = “*M+Nv and B,, € CM~NovX 777 represent

the aliasing matrix and unfolding matrix. The unfolding matrix
B, is constructed by interpolating the aliased subcarriers with
1 — 1 zero-inserted subcarriers between adjacent subcarriers,
and by then sorting these aliased subcarriers according to their
aliasing patterns.

Since the pilot is designed as an impulse sequence with a
period of g in the DD domain, the maximum unambiguous
sensing range is reduced by a factor of ;1 when considering only
the pilot signals. This phenomenon, known as the range ambi-
guity, arises from the radar’s inability to uniquely determine the
true distance to the target. This behavior is analogous to OFDM
radar, where the maximum unambiguous range r,x is inversely
proportional to the subcarrier spacing [24], [36] as 7max = ﬁ,
where c is the light speed and Ay is the subcarrier spacing.
In our setup, pilots are periodically placed along the delay
axis with fixed interval g in the DD domain, resulting in the
periodic activation of subcarriers in the TF domain, while other
subcarriers remain inactive. This is equivalent to increasing the
subcarrier spacing by a factor of 1, which consequently degrades
the maximum unambiguous sensing range to ﬁ. However,
in addition to the pilot symbols, leveraging the transmission
data can provide supplementary information to eliminate the
ambiguity. This approach is equivalent to utilizing the entire
bandwidth without any idle subcarriers, ensuring that the system
maintains both sensing resolution and maximum sensing range
without degradation.

In the first phase of the algorithm, we aim to obtain a coarse
estimation without range ambiguity. Initially, we perform a MLE
on the unfolded signal yDP after Eq. (24) with the transmitted
pilot signals X}?D, while disregarding the transmission data. In
this step, the aliased transmission data xP is treated entirely
as an interference. By considering only the pilot signals in the
estimation, the unambiguous range is reduced, which may lead
to an inaccurate estimation. Subsequently, based on this initial
estimation, we adjust the estimation by adding or subtracting
the maximum unambiguous range to account for all potentially
correct range values. We then iterate through these potential
range values, applying virtual channels based on these values to
the transmission data. For each potential channel, we calculate
the Euclidean distance between the resulting signal and the re-
ceived signal. This process helps eliminate the range ambiguity
and yields an accurate estimation.

Authorized licensed use limited to: Purdue University. Downloaded on January 04,2026 at 13:54:21 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2025.3607858 7

@ Data symbol Y Pilot symbol

Ny-1

® ® ®

P ]

Q, On Q, M-1
1

1

-l - 1 _li 1
|<H | 10
¥

°|® 0o e e e e e
9 0 0 e e e e

—_——
=3

Fig. 5: Code spreading in DD domain.

After obtaining a coarse estimation, the algorithm proceeds to
the second phase, where we iteratively cancel the interference
from the transmission data and refine the estimation of the
target parameters. At each iteration, MLE is employed for
channel coefficients, range and Doppler estimations (ﬁr,f', D).
Then the estimations are iterated until convergence. The detailed
algorithm is described in Algorithm 2.

V. COMMUNICATION WITH REDUCED SAMPLING RATE

As discussed in the previous section, the reduced sampling
rate can infer radar targets’ ranges and velocities without
compromising resolution and maximum sensing range. This is
because, in a monostatic radar system, the transmitted signal
is fully known to the transceiver, and the channel estimation
requires much less information, which can be efficiently handled
even with reduced bandwidth. However, for communication
systems, the transmission capacity is directly constrained by the
signal bandwidth, which is determined by the sampling rate. A
reduced sampling rate leads to a proportional reduction in the
data rate. To address this problem, we design a specific data
embedding approach to embed the data.

A. Data Embedding

To maintain compliance with the Shannon-Nyquist theorem,
the transmitter must proportionally reduce its data transmission
rate. Specifically, if the receiver down-samples the signal by a
factor of % relative to the available bandwidth, then the trans-
mitter can only allocate % of its resources to data embedding.

In our proposed scheme, we partition the DD domain re-
sources along the delay axis into x slices of sub-bands, as
illustrated in Figures 2 and 5. Effective transmission data
XDD ¢ C*F*Nv is embedded into the first slice, represented
by the blue symbols in Fig. 5. This configuration ensures the
maximum effective transmission data rate, complying with the
Shannon-Nyquist theorem, when using a sampling rate reduced
by a factor of x on the communication receiver side. To
avoid degrading the maximum unambiguous sensing range, as
discussed in the previous section, it is crucial not to leave the
remaining DD resources empty. To address this, we need a
spreading technique that distributes the effective transmission
data across the entire domain. While in our scenario, traditional
waveform-based spreading techniques such as direct sequence
spread spectrum (DSSS), chirp spreading, or other windowing

techniques are not feasible. This limitation arises because the
receiver operates with downsampled sampling, making it chal-
lenging to despread the received signal directly.

To enable effective spreading and despreading of signals at
a reduced sampling rate on the receiver side without the need
for additional analog hardware, we propose a spreading-code-
based approach. A pair of transmitter and receiver maintain
a sequence of length « for spreading purpose. Consider a
multi-user scenario, where the sequence associated with the ¢-
th transmitter and the j-th receiver is a Zadoff-Chu sequence
denoted as S = {S}7, 557, -+, 847}, Zadoff-Chu sequences
are complex-valued sequences with constant amplitude and ideal
correlation properties, defined as

. _ artIn(nt1)
Syl =e™? " , n=1,...,K, (25)
where %7 is the root index that determines the sequence and
ensures its uniqueness for each transmitter-receiver pair. In the
following, we use QPSK as an example, while this approach
can be seamlessly extended to other modulation schemes with
different modulation orders. After the effective transmission
data XEDembedded onto the DD domain, it spreads out to
the entire domain to generate the ultimate transmission data
XPD e CM-xNv yging the corresponding code sequence:

XDD _ SDD XDD

o 26

— (579 ® L, )XPP, (20

where I, denotes the identity matrix of size MKT. The vector-
ized form can be written as

xPP = (Iy, ® (S @ Tar )7, 27)

where xPP = vec(XPP) and xPP = vec(XPP). Once

the ultimate transmission data is ready, it is transmitted via
the channel in Eq. (4). Based on Equations (7) and (8), the
input-output (I0) relationship between xPP = vec(XDP) and
captured signal yPP with full sampling rate system can be
written as:

yPD — fxPP |
=H(Iy ® (8" @Tu))xPP +w

=GxPP +w,

(28)

where G denotes the DD channel matrix involving code spread-
ing:

P ’ . v
G =3 hi(Fn, ® Gpo)T AN (FE @ Gy)
(In, @ (5" @ 1n,)).

(29)

The IO relationship with full sampling rate in Equations (28)
and (29) can be further extended to the case when the receiver
is downsampled by a factor of . The 1O relationship between
xDP and the captured signal y°P with reduced sampling rate
system can be written as

SIDD = éxeDD + w, (30)
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where G is the channel matrix of reduced sampling rate system':

- P
G = ; hi(Fx, ® G.)D I, y AL v (FE ® Gia)

(In, ® (S™7 @ 1)),

M+ N, h (31)
where D,, € C™= “*M=Nv denotes the downsampling matrix
with rate x:

D, =1Tmn, ®[170,--- 70].
’ ~ elements
Given the IO relationships established in Equations (31) and
(32), various equalization and decoding techniques, such as
the minimum mean square error (MMSE) estimator, can be
subsequently employed for effective data decoding.

(32)

B. Synchronization with Reduced Sampling Rates

In communication systems where the transmitter and receiver
operate at mismatched sampling rates, synchronization poses
significant challenges. This disparity complicates the accurate
estimation of timing and frequency offsets, both of which are
essential for maintaining communication integrity. Extensive
research in signal processing has addressed synchronization
challenges in systems with mismatched sampling rates [37],
[38], proposing various interpolation-based solutions to manage
these issues. In our system, which operates at reduced sampling
rates, we encounter synchronization difficulties due to decreased
temporal and frequency resolution at the receiver. We have opted
to implement a vanilla sinc interpolation-based approach. This
choice is practical as systems with integer-reduced sampling
rates are straightforward to analyze, and sinc interpolation
effectively ensures sufficient synchronization accuracy for our
communication needs, which are less stringent than those re-
quired in radar applications. Let the transmitted baseband signal
be denoted by x(t), at sampling rate f:

1
z[n] =x(nTy), neZ, Ts= 7 (33)

At the receiver, the signal is sampled at f! = %
glm| = T Z, T.= ! 34
y[m]—x(m J—F’UJ[TTLL m € 4, s_?v ( )

where w[m] represents AWGN. Considering both timing and
frequency offsets, the received signal can be expressed as

(35)

where 7 and Af denote the timing and frequency offset sepa-
rately. Our objective is to accurately estimate and compensate
for 7 and A f despite the reduced sampling rate.

1) Time Offset Estimation: We utilize cross correlation with
interpolation to achieve fractional sampling synchronization.
The interpolation process aims to reconstruct the original full
sampling rate signal y[k| from the low-rate samples §[m]. For
practical implementation, a sinc interpolation filter can be used
to minimize the aliasing [39]:

> b sine (£

m=—0o0

glm] = a(mT, - 7)e/*™™ T wlm),

ylk] = (36)

INotations with a tilde indicate counterparts in the reduced sampling rate
system, relative to the full sampling rate system, unless stated otherwise.

where sinc(z) = % Here, the interpolation kernel rescales

the downsampled grid by a factor of x, effectively reconstructing
the samples at the original rate. Thus, the interpolated signal
y[k] aligns closely with the transmitter’s sampling instances.
In practice, this sum is truncated and a finite-length filter
approximates the ideal sinc function. Despite the truncation, the
dominant contribution typically comes from terms near m = %
making the truncated signal a good approximation of y[k].

With y[k] approximating the full-rate received sequence, we
can estimate the timing offset 7 by correlating y[k] with the
known transmitted reference sequence x[n|. Define the cross-
correlation as

Ry [0) =yl ™[l - 4], 37)

where (-)* denotes complex conjugation. The value of { that
maximizes |R,.[¢]| provides an estimate of the timing offset.
More explicitly, we have 7 = T,

2) Frequency Offset Estimation: After we have estimated and
compensated the timing offset 7, the next step is to estimate the
frequency offset A f. One common approach is to use an MLE.

Assume that the timing offset has been corrected; therefore the

received samples can be modeled as
ylm] = z(mT. — %)ejQﬂAfst’ + wlm]. (38)

The MLE for Af is obtained by maximizing the following
likelihood function:

A — * I A\, —j2nAfmT!
Af argni?}x%:y[m]:c (mT, — 7)e . (39

To find the maximum, we take the derivative with respect
to Af, set it to zero, and solve for Af. Differentiating and
rearranging terms, we have
1 >, mTyIm{y[m]z*(mT; — 7)}
2 >, lylmlar(mT] - )2

where Im{-} denotes the imaginary parts.

Af = (40)

C. Frame Structure

Since OTFS is specifically designed for high-mobility ap-
plications, where channel aging is inherently severe due to
rapid temporal variations in the channel state, this necessitates
frequent updates to channel estimation to maintain optimal
channel estimation. We assume a communication channel is
represented by the complex vector h,, where n denotes the
block index. For simplicity, the channel aging is modeled as a
frequency-flat fading, whose dynamics are expressed as [40]

h, = pqhnfl + \/ 1- pgeq,na

where p, denotes temporal correlation coefficient dependent
on the Doppler shift f,, modeled as p, = Jo(27f;T) using
the Jakes’ model [41]. Here, Jy(:) is the zeroth-order Bessel
function of the first kind. e;,, ~ CN(0, B4Ir,) denotes the
complex Gaussian noise independent of h,_;, representing
new randomness in the channel. 3, is the large-scale fading
coefficient. It is demonstrated in [42] that channel aging can
have a severe impact to communication performance under high
mobility scenario.

Additionally, due to the periodic nature of pilot placement
of the ISAC signal along delay axis in the DD domain, as

(41)
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Fig. 6: Illustration of the frame structure.

illustrated in Fig. 2 and Fig. 3(a), channel estimation is highly
susceptible to delay ambiguity. To address this issue and ensure
accurate channel delay estimation, it is essential to include a
dedicated channel estimation block capable of resolving abso-
lute channel parameters without delay ambiguity.

Based on the aforementioned requirements, we design the
frame structure shown in Fig. 6. Each block refers to one com-
plete OTFS-ISAC waveform (i.e., a single delay—Doppler grid of
size M, x N,), as first depicted in Fig. 2. Each frame includes
a preamble and multiple ISAC signal blocks. The preamble,
containing a chirp-based synchronization signal and training
sequence, enables frame-based channel estimation. By keeping
the frame length within the coherence time, channel information
(e.g., the number of paths, delays, Doppler shifts) remains
constant throughout the frame. The training sequence provides
slow-varying channel information, while block-by-block updates
refine channel coefficients, minimizing performance degradation
in high-mobility scenarios. Absolute delay estimates in the
training sequence also resolve delay ambiguities. In this paper,
we pick N such that the correlation between the first and the last
OTFS block inside a frame exceeds a design target p, = 0.90
based on the coherence-time-based rule. We select each frame
contains N = 3 blocks, which is sufficient for high mobility
scenarios. Note that the frame/block structure can be rescaled
for other channel dynamics.

D. Iterative Channel Estimation and Data Decoding

Since we utilize the superimposed pilot scheme to improve
the communication efficiancy, an iterative channel estimation
and data decoding algorithm [29] is necessary. Contrary to
systems that operate at full sampling rates, our reduced sampling
rate system necessitates specific adaptations of the iterative
algorithm. Specifically, these modifications involve tailored
channel coefficient estimation to accommodate our novel pilot
placement, and a data detector based on the IO relationship
specific to the reduced sampling rate system, as derived in
Eq. (31). The detailed algorithm is as follows, First, an initial
channel estimation is achieved based on the training sequence,
delivering the number of channel paths P, channel delay taps
l1,2....,p and channel Doppler taps k; 2 ... p using Algorithm 2.
Then the reduced sampling rate ISAC signal is unfolded in
the DD domain using Eq. (24) to obtain y5P. Then a coarse
channel coefficient estimation is implemented for each channel
path based on foD. In our system, since we have multiple pilots
instead of a tradition case with a single peak pilot, an averaging
operation can be applied to improve the channel coefficient
estimations. The channel coefficient estimation of the p-th path

Algorithm 3 The iterative channel estimation and data detection
algorithm

1: Input: Convergence error ¢, received signal SIDD, channel
delays taps 1 2 ... p, channel Doppler taps ki 2 ... p, num-
ber of multipaths P.

2: Output: Decoded data X2P;

3: Initialize: Counter r = 1;

4: Unfold the received signal yPP using Eq. (24) to get y1P;

5: while not terminate do

6: fori=1---Pdo

7 Get the channel coefficient lAﬁ using Eq. (42) based
on yu;

8: end for

9: Construct the channel matrix G using Eq. (31) based on
by

10: Use MMSE to decode data %X using Eq. (43);

11: Cancel out the interference based on G and X[ using

Eq. (44) and get the canceled signal y'PP;

12: Update the unfolded signal y2P based on y'PP;
132 if A7 =BT < e & X771 == X7 then

14: %DPP = %7 and terminate;

15: end if

16: r=r+1

17: end while

can be written as

hp [(Z - ZP)MTa (k - kp)NV} =

Lp

where x,, denotes the pilot value. After obtaining the channel
estimation, we now use the MMSE to detect data by using
data-aided channel estimate. Given this vectorized input-output
relation in OTFES in Eq. (31), MMSE can be utilized to estimate
the transmitted effective data XDP:
%DD — (GHG + 0L ayn, )1 GHyPP (43)
After OTFS symbol detection, we have the symbols given by
XDD_ Then we are able to cancel out the interference induced
by the data symbols based on the estimated channel and the
obtained symbols, given by

/DD

y yPP — GxPP.

y (44)

If the interference is perfectly cancelled, then the resid-
ual term y’PP contains only the pilot information and the
noise. Nevertheless, due to the impact of noise, cancellation
is generally imperfect. Therefore, we employ a scheme that
iteratively performs data detection and channel estimation. In
the r-th iteration, the channel estimate h" is obtained using the
signal after interference cancellation from the previous iteration.
Subsequently, the data symbols X/ are detected based on the
estimated channel, h". Both X, and h" are then utilized for the
interference cancellation, generating the interference-canceled
signal for use in the (r+1)-th iteration. After multiple iterations,
the channel estimates and the detected data symbols are refined
and finalized. The iterative process is terminated when the
performance improvement from additional iterations becomes
negligible.
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VI. PERFORMANCE ANALYSIS

In this section, we compared of the performance of our
reduced sampling rate system with the full sampling rate
system, in the aspects of range resolution, maximum sensing
range, velocity resolution, channel estimation performance, and
communication performance.

A. Effects on Radar Parameter Estimation

The range resolution of a radar system is determined by
its bandwidth. In our design, the pilot scheme is configured
to occupy the same virtual bandwidth as that of the full-
sampling-rate system, ensuring that the range resolution remains
unaffected. Additionally, the maximum unambiguous sensing
range increases with the number of subcarriers. By leveraging
the data-aided estimation and distributing communication across
the entire bandwidth, our system achieves the maximum sensing
range without performance degradation or ghost target estima-
tion. Furthermore, the reduced sampling rate system retains the
same maximum velocity and velocity resolution capabilities as
the full-sampling-rate system.

B. Effects on Channel Estimation

In the superimposed scheme, the interference from the data
to the pilot is unavoidable. In the full sampling rate system, the
interference term from data can be expressed as

Ly = 3" X0 (1= l)ar, (k — ki), ) e 27 %00k | (45)
1€Q

where Q denotes the set containing indices of all data symbols

contributed to sample YPP[k,l]. In particular, the pilot is

interfered by P data symbols, therefore |Qy ;| = P. Based on
Eq. (45) and with the assumption that the channel coefficients
h; are modeled as independent random variables with variance
U}ZL for different paths, we have:

oF, =1,
P #

0,
E {|Zx4]*} can be expressed

Er= Y E{lhl*}E,,
1€Qk,1

where E; = E{|X}P[k,[]|>} denotes the average data symbol
energy and E, = E{|XPP[k,{]|?} denotes the average pilot
symbol energy. Considering the normalized channel power
gains, ZQIE{VMP} = 1, the energy of the interference
term is established as E; = E;. Consequently, the signal-to-
interference-plus-noise ratio (SINR) for the pilot signal can be
expressed as

E{h;h;} = (46)

i

The interference energy E;
as [29]

(47)

E
SINR,, = ——2 (48)

o2+ Es’
In the reduced sampling system, where the alisaing effect
caused by downsampling will introduce further interference. As
illustrated in Fig. 4, the signal is folded into a signal band after
aliasing, therefore the data and noises from different sub-band
are summed together. Therefore the powers of interference and
noises are ~ times the full sampling system. Consequently, we
have the SINR for reduced sampling rate system

—~ Ep
SINRp = ————~ CREYA (49)

C. Effects on Communication Performance

When considering the SINR of the communication data, pilot
signals are treated as interference. Following a similar analysis
as in the Section VI-B, the SINR of the full sampling rate system
is expressed as

Es
o2+ E,
For the reduced sampling rate system, a known code sequence
is employed to spread the data across the entire domain.
Consequently, the data symbols folded from other sub-bands can
be effectively utilized as communication data rather than being
treated as interference. In this case, the SINR of the reduced
sampling rate system remains unaffected.

SINR, = (50)
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D. Effects on PAPR

Although downsampling at the receiver does not directly
affect the peak-to-average power ratio (PAPR), which depends
solely on the transmitted signal, it introduces additional noise
and interference caused by the aliasing effect, as discussed in
Section VI-B. This degradation in signal quality can negatively
impact the performance of channel estimation in a reduced
sampling rate system. To ensure accurate channel estimation,
increasing the pilot power is recommended. While According
to [43], there is an upper bound of PAPR for transmitted signal
with rectangle pulse shape:

N,, maxg, | |XdDD[l7 k’} |2
E(IXZP[k]1?)

Increasing the pilot power inevitably raises the PAPR, which
can lead to signal distortion if the signal peaks exceed the
amplifier’s limit. However, thanks to the design of our frame
structure, an initial large-scale channel estimation is performed
using a dedicated training sequence, thus providing a reliable
estimation of channel delays and Doppler taps. Subsequently,
by leveraging the ISAC signal, frequent updates are achieved to
ensure that channel variations remain minimal across consec-
utive blocks. This approach relaxes the strict requirement for
high pilot power.

PAPRx = (51)

E. Effects on Cramér-Rao Lower Bound

In this subsection, we derive Cramér-Rao Lower Bound
(CRLB) for our sub-Nyquist system and compare with the
CRLB for full rate OTFS-ISAC. To derive the CRLB for
a reduced-rate OTFS system where the receiver uses r-fold
downsampling, we extend from the original full-rate OTFS
framework from the paper [34].

Since the reduced sampling takes place in the TF domain,
we start with the full-rate OTFS received signal in TF domain,
which is given by

yTF — HTF (B)XTF _|_ WTF7 (52)

where yT' = vec(YTF), xTF = vec(XTF). HTF ¢
CM-NuxM:Ni denotes the channel matrix in TF domain and
0 = [h,1,v]T. After k-fold downsampling, we obtain:

yTF — DFMHTF(B)XTF _|_ DHWTF7
—_—

Hr (9) Wr

(53)

where D,, € C*5)x(M-N.) g the downsampling matrix in

Eq. (32). We define 1, (8) = E[yTY] and w, = D, wT¥. The
noise covariance remains white: namely

E [w.(w,)"] = 02 D.D/

——

IJM.,-KN,, (54)

= UiIJLITNU .
"

The Fisher information matrix (FIM) for @ = [h, 7, ] is given

by
2 o H on
10)];; = — £ . 55
( )] J 0_3) Re << 80L ) 69] ( )
The partial derivative is given by
oy _ OH™ g
26, — " ag; X (56)

Substituting into the FIM, we obtain

Here, DAD,, € C**)*(*5%) ig 3 diagonal matrix with 1s

at downsampled indices. Down-sampling the OTFS receive grid
by a uniform integer factor x simply inserts a selection matrix
in front of the original observation. The Fisher information,
and therefore the corresponding C-R bound, grows in direct
proportion to the fraction of samples that are retained. With
uniform decimation by a factor x and no aliasing, the velocity
and range CRLBs become x times larger than the full rate
values given in equations (24) to (26) of [34]. This result is also
consistent with the CRLB degradation reported for compressed
sensing in [44]. Accordingly, lowering the receiver sampling
rate by the factor x reduces the sampling burden by the same
factor but increases the associated estimation error variances by
K.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we first numerically validate the algorithm
and the performance of the proposed designs using simulation
results, then demonstrate these findings using our hardware
ISAC testbed.

A. Simulation Results

In this study, we explore an OTFS system characterized by
specific parameters: the number of delay bins (M, = 80),
Doppler bins (N, = 80), carrier frequency (28 GHz), and
subcarrier spacing (2.5 MHz). The system employs a rectangular
pulse shaping method. The downsampling rates at both the radar
and communication receivers are 16. The signal-to-noise ratio
(SNR) is defined on a per-receive-sample basis as SNR £ fz .
Both the simulation and practical experiments were conducted
using the aforementioned settings unless otherwise noted. The
parameters of OTFS system are outlined in Table I. Under this
setting, the range resolution (A,) and velocity resoultion (A,)
are calculated as:

C

A. = — X U.
7 v 75m (58)
A, = B o 167m/s (59)
Y2fN, T

1) Radar Estimation Performance: In the simulation, we
artificially control the locations and velocities of the two targets.
Given the large Doppler resolution in OTFS settings, distin-
guishing between the two targets along the Doppler axis is
challenging. We assign one target an artificially high velocity,

TABLE I: Detailed parameter settings

Values

Sampling rate at the transmitter (fs) 200 MHz
Downsample rate (k) 16

Parameters

Sampling rate at the receivers (f}) 12.5 MHz
Central frequency (fe) 28 GHz
# of delay bins (M) 80

# of Doppler bins (IV,,) 80

# of pilots (Np) 16
Subcarrier spacing(A ) 2.5MHz
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Fig. 9: RMSE of range estimations of OTFS/OFDM with
full/sub-Nyquist sampling rate versus SNR.

which, although unrealistic in practical scenarios, enhances the
visualization of the effects of the proposed algorithms.

In the first experiment, we simulate two targets located at 10
meters and 30 meters with velocities of 0 m/s and 1000 m/s,
respectively. The range-velocity profile is depicted in Fig. 7(a).
After performing a coarse estimation with only the unfolded
pilot symbol, the result in Fig. 7(b) shows ambiguity in the
range estimations. This range ambiguity arises from the reduced
maximum sensing range, leading to a wrap-around effect that
prevents true range estimation. However, the results obtained
using our proposed algorithm, illustrated in Fig. 7(c), show
that the ambiguity is eliminated, and the estimation closely
aligns with the true locations and velocities of the targets. This
demonstrates the effectiveness of our algorithm in achieving
accurate estimations with a reduced sampling rate, without
compromising the maximum sensing range.

In the second experiment, we set the targets close to each
other, both being stationary. In Fig. 8(a), the distance between
the two targets is slightly below the range resolution given by
Eq. (58), specifically 0.7 meters. The figure shows a single peak,
indicating that the two targets are indistinguishable. In Fig. 8(b),
we adjust the distance between the targets to slightly above the
range resolution, at 0.8 meters. This adjustment results in two
distinct peaks in the range-velocity profile, clearly distinguishing
the two targets. These results validate the effectiveness of our
algorithm in achieving accurate estimation using a reduced
sampling rate without sacrificing the range resolution.

We then evaluate the radar parameter estimations for de-
lay and velocity of our proposed system, comparing it with
an OFDM system under both full-rate and sub-Nyquist sam-
pling settings. The sensing error is quantified using the root
mean square error (RMSE). Four simulation scenarios were
conducted: OFDM with full sampling rate, OFDM with sub-
Nyquist sampling rate, OTFS with full sampling rate, and OTFS
with sub-Nyquist sampling rate. For a fair comparison, the
OFDM signal employs the same signaling scheme as illus-
trated in Fig. 3(b). Figures 9 and 10 present the range and
velocity estimation results versus varying SNR, respectively.
It is observed that reducing the sampling rate in both OTFS
and OFDM systems degrades sensing performance by approx-
imately four times, aligning with the CRLB analysis provided
in Section VI-E. Specifically, OTFS demonstrates a slightly
better performance in delay estimation but slightly inferior
performance in Doppler estimation compared to OFDM; overall,

—e— OFDM reduced sample rate

—aA-- OFDM full sample rate
0 | —& - OTFS full sample rate
10 —e— OTFS reduced sample rate

—a&~-_ OTFS full sample rate CRLB
OTFS reduced sample rate CRLB

RMSE(m/s)

0 5 10 15 20 25 30
SNR(dB)

Fig. 10: RMSE of velocity estimations of OTFS/OFDM with
full/sub-Nyquist sampling rate versus SNR.
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Fig. 11: Convergence of radar parameter estimation.

their performances are very similar. Furthermore, our proposed
method closely approaches the CRLB. For range estimation,
sub-Nyquist OTFS achieves an RMSE of less than 0.01 for SNR
values above 3 dB, and for velocity estimation, it achieves an
RMSE below 1 m/s at SNR values exceeding 9 dB, highlighting
the robust performance of our proposed system.

Fig. 11 depicts the convergence behaviour of the proposed
radar-parameter-estimation algorithm. Approximately ten itera-
tions are sufficient for convergence across all tested SNRs. At
an SNR of 10 dB, the range-estimation RMSE decreases by
a factor of about 30 after eight iterations, while the velocity-
estimation RMSE is reduced by roughly 40 times. Ultimately,
the range-estimation error converges to below 0.01 m and the
velocity-estimation error to below 1 m/s, confirming the rapid
convergence and high accuracy of the iterative algorithm.

2) Synchronization & Channel Estimation Performance: We
first evaluate the performance of synchronization. In the sim-
ulation, a linear-chirp preamble spanning 0-20 MHz (20 MHz
bandwidth) is used, and 10* Monte Carlo trials are conducted
under the following settings. The normalized carrier frequency
offset (CFO) is randomly generated from a uniform distribution
within the range [—e€max, €max], Where emax is the maximum
CFO, which is selected to be half of the sub carrier spacing.
For each trial, the signal delay is randomly generated from a
uniform distribution within the range [0, 0.25us]. Timing error
is measured by the RMSE; frequency-synchronization error is
reported as a normalized RMSE (NRMSE) with respect to the
sub-carrier spacing. Fig. 12 plots timing and CFO NRMSE
versus SNR, comparing the proposed sub-Nyquist receiver with
a conventional full-rate design. The sub-Nyquist architecture
incurs roughly a three-fold performance loss relative to full-
rate sampling, yet still delivering good performances: at 0 dB
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Fig. 13: Performance of channel estimation.

SNR the fine estimator achieves < 10~% second timing RMSE
and < 0.01 CFO NRMSE.

We then present the performance of channel estimation in
Fig. 13. The channel estimation error is quantified using nor-
malized mean square error (NMSE), defined as NMSE; =
”ﬁ;hg“z. In the simulations, the averaged pilot energy is set
as I, = 0.04 and the averaged data energy as Iy = 1. Due
to the interference between data symbols and the pilot symbol,
coarse channel estimation, which treats all interference as noise,
exhibits significant performance degradation. With an increasing
SNR, the additive noise is reduced, thus alleviating interference
in pilot estimation. The convergence behavior of the channel
estimation algorithm is illustrated in Fig. 13(a), indicating that
three iterations are sufficient to achieve convergence across
various SNR levels. Specifically, at a high SNR of 20 dB, the
NMSE is reduced approximately threefold after the first iteration
and further decreased by around 1.5 times after the second
iteration. We also compare our proposed approach with the
conventional embedded pilot-aided channel estimation method
presented in [45]. In [45], zero-padding guard intervals around
the pilot are used to prevent interference from data symbols.
Fig. 13(b) demonstrates that despite the presence of interference
from data and noise, the coarse estimation performance signifi-
cantly improves after three iterations of our iterative algorithm,
approaching the performance of the zero-padding embedded
pilot scheme from [45]. Our iterative estimator achieves an
NMSE below 0.01 at an SNR of 10 dB and below 1073 at
an SNR of 20 dB, highlighting the effectiveness of our channel
estimation method.

3) Communication Performance: We further simulate and
analyze the communication performance. The simulation em-
ployed a Rician channel model, accompanied by a randomized
channel impulse response (CIR) generation. Specifically, we

In-Phase

Fig. 14: QAM 64 constellation diagram.

simulated 1 x 10* distinct channel realizations for each SNR
level within the Monte Carlo analysis framework. To evalu-
ate the system performance, we considered three modulation
schemes, including QPSK, 16-QAM, and 64-QAM.

In the first simulation, we compared the performance of
the original full-bandwidth OTFS communication system with
that of a reduced-sampling-rate system. The evaluation was
conducted using 64-QAM modulation under a fixed SNR of
35 dB, assuming perfect channel knowledge. The resulting
constellation diagrams, depicted in Fig. 14, demonstrate that the
communication performance of the reduced-sampling system
closely matches that of the full-sampling system. This result
validates the theoretical analysis presented in Section VI-C.

In the second simulation, we evaluated the performance of
the reduced sampling rate system under three different channel
assumptions: 1) with integer delay and Doppler shifts, and
perfect channel knowledge; 2) with integer delay and Doppler
shifts, and imperfect channel knowledge; 3) with fractional
delay and Doppler shifts, and imperfect channel knowledge. As
shown in Fig. 15, the BER performance for different modulation
orders as the SNR increases from 0 to 30 dB under these
three channel conditions is presented. In scenario (a), QPSK
achieves the lowest BER, reaching 10~% at approximately 15
dB, while 16-QAM and 64-QAM achieve similar BER values
at higher SNRs of 20 dB and 25 dB, respectively. In scenario
(b), the BER degrades due to imperfect channel knowledge,
with QPSK maintaining better noise tolerance and requiring
around 17 dB to achieve 10~% BER, compared to 22 dB for
16-QAM and 28 dB for 64-QAM. Scenario (¢) introduces the
most severe degradation due to both imperfect synchronization
and channel knowledge. Under these conditions, QPSK still
performs relatively well, requiring 20 dB to reach a 10~
BER, whereas 16-QAM and 64-QAM exhibit significant a BER
degradation, requiring SNR values exceeding 25 dB and 30 dB,
respectively.

We further benchmark our system against a full-sampling-
rate OTFS baseline and a conventional OFDM system. First,
we compared OTFS operating at sub-Nyquist and full sampling
rates under imperfect synchronization and channel estimation.
To ensure a fair comparison, both OTFS configurations employ
the same superimposed pilot scheme. As depicted in Fig. 16(a),
the two configurations achieve nearly identical BER curves; the
sub-Nyquist receiver exhibits only a marginal loss, attributable
to the slight deterioration in channel-estimation accuracy. These
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Fig. 15: Simulation results of communication performance with different modulation orders.

findings are consistent with the constellation results in Fig. 14
and the analysis in Section VI-C, confirming that a reduced
sampling rate diminishes raw throughput in proportion to the
downsampling factor x while preserving the QoS.

We finally compare the communication performance of OTFS
and OFDM, each operating at either the nominal (full-rate)
or a sub-Nyquist sampling rate, under two mobility regimes,
namely high velocity condition and low velocity condition.
QPSK modulation is used. The channel Doppler spreads are set
to 3 kHz and 180 kHz for low and high mobility, respectively,
which correspond to approximately 20 m/s and 1,000 m/s at a
28 GHz central frequency. Our sub-Nyquist OFDM baseline
follows the implementation in [24]; additional details match
that reference. The existing solutions for sub-Nyquist OFDM
communication system suffer from a x-fold increase in noise
because aliasing folds independent noise bands onto the signal.
As a result, the BER degrades rapidly as the downsampling
factor grows, in agreement with the trends reported in [24], [26].
In contrast, the spreading code presented in Fig. 5 preserves
the SNR after folding in our OTFS design; only the user data
rate is reduced. The results are presented in Fig. 16(b). We
can observe that OFDM with full sampling rate under low
mobility condition has the best BER performance because it
is free of interference from superimposed pilots. However, with
k = 16 times downsampled OFDM system, the BER degrades
severely and cannot maintain a link. In our OTFS architecture,
the curves for full-rate and sub-Nyquist sampling are almost
identical, and both remain robust even in the high-mobility
scenario. Conversely, OFDM, whether full rate or sub-Nyquist,
fails completely at high mobility. These findings validate the
proposed sub-Nyquist OTFS design and underlines its suitability
for high-mobility ISAC applications.

B. Experimental Results

In this section, we further present experimental results to
evaluate the performance of our system using an ISAC testbed.

1) Hardware Implementation: Our ISAC testbed, as shown
in Figures 17(a) and 17(b), consists of two main components.
The first component is the monostatic radar system, which
also functions as the communication transmitter, as depicted
in Fig. 17(a). The second component is the communication
receiver, as illustrated in Fig. 17(b). For the operation of the
system, two USRP X410 devices are deployed for generating
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Fig. 16: Communication performance of BER of OTFS/OFDM
with different sampling and mobility settings versus SNR.

radar.

(c) Radar estimation setup.

(d) Communication setup.

Fig. 17: Hardware and experimental setup.

and capturing the baseband OTFS signals. Additionally, up-
down converters are integrated on both the transmitter and
receiver sides to enable the conversion between the baseband
and the 28 GHz radio frequency band. The radar system’s front-
end transceiver features dedicated beamformers for transmission
(TX) and reception (RX). A horn antenna is deployed on the
communication receiver side. The transmitter operates at the full
sampling rate of 200 MHz, while the sampling rate for both the
radar and communication receivers is reduced by a factor of 16.

2) Radar Sensing Performance: In the experiment, two RF
reflectors are placed at a fixed distance of 0.8 m from each
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Fig. 19: BER versus different modulation orders with SDR

testbed.

other, as shown in Fig. 17(c). Fig. 18 illustrates the range-
velocity estimation under the previously described experimental
conditions. Notably, even with the reduced sampling rate, the
two closely located targets, A and B, can still be distinguished.
This result demonstrates that our proposed method enables
accurate target estimation with a reduced sampling rate, without
compromising the sensing resolution.

3) Communication performance: We also evaluated the com-
munication performance of our proposed system in a practical
indoor environment. As illustrated in Fig. 17(d), the transmitter
and receiver were positioned approximately 5 meters apart. By
adjusting the transmission power at the transmitter side, we are
able to manually control SNR to evaluate system performance
under varying conditions.

The BER performance is depicted in Fig. 19. The results
demonstrate that the system performs well with QPSK mod-
ulation, achieving a BER of zero at an SNR of 25 dB under
an uncoded scheme. For 16-QAM modulation, a BER of zero
was observed at an SNR of approximately 30 dB. However, for
64-QAM modulation, the performance slightly degrades, likely
due to hardware imperfections and potential signal distortion
in the physical system. These practical experiments confirm
the effectiveness of our system, highlighting its capability to
maintain reliable communication performance under real-world
conditions.

VIII. CONCLUSION

This paper presents a novel OTFS-based ISAC system that
addresses the challenges of high sampling rates and storage re-

quirements in high-resolution radar estimation while simultane-
ously enabling effective communication. By strategically plac-
ing pilot symbols in the delay-Doppler domain and leveraging
aliasing effects, our approach enables accurate radar estimation
and efficient data transmission at sub-Nyquist sampling rates. A
code-based spreading technique ensures the unambiguous sens-
ing range, while an iterative interference cancellation algorithm
enhances radar accuracy by mitigating data-induced interfer-
ence. Furthermore, we developed a comprehensive transceiver
pipeline optimized for reduced sampling rates, incorporating
synchronization, iterative channel estimation, and data detection
to ensure reliable communication. Experimental validation using
an SDR-based ISAC testbed confirms that our system signifi-
cantly lowers sampling requirements while maintaining sensing
resolution and communication performance. This work provides
a cost-effective solution for advancing integrated sensing and
communication technologies, paving the way for practical de-
ployment in next-generation wireless networks.
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