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The Spectral Difference with Divergence Cleaning Method for 3D
Simulations of Solar Magnetic Cycles
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The spectral difference method is a versatile high-order method that has shown its high-order
accuracy and robustness to predict compressible viscous flows on structured multidomain and
unstructured grids [1-3]. The spectral difference method can also be massively parallelized to
solve nonlinear MHD problems [4, 5]. In this study, the Spectral Difference with Divergence
Cleaning (SDDC) method is further developed to solve several three-dimensional kinematic
dynamo problems. The first kinematic dynamo problem is solved in a cubic periodic box, where
the SDDC method is successfully verified to capture the ’Cigar’ structures published in the
literature [6]. The second kinematic dynamo problem adopts a spherical shell geometry [7] and
perfectly conducting and perfectly radial boundary conditions [8, 9] to solve three-dimensional
induction equations. Finally, the SDDC method is employed to model Sunspot cycles.

I. Introduction

Fully three-dimensional magnetohydrodynamics (MHD) models of the solar dynamo are computationally expensive
and can not yet capture the full complexity of flux emergence and the Babcock—Leighton (BL) mechanism. To capture
the effects of emerging flux tubes and the evolution of the resulting bipolar magnetic regions (BMRs), Yeates and Mufioz
[9] adopted a kinematic framework in which the flow field is specified and only the induction equation is simulated. In
their work, Yeates and Mufioz designed a "lift and twist" algorithm for modeling the emerging flux tubes. Miesch and
his collaborators [8, 10, 11] developed a 3D Babcock-Leighton / flux transport dynamo model in which the source of the
poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMR) that was supported
by a "SpotMaker" algorithm. Since Yeates and Mufioz’s work, different prescribed flow fields have been explored in an
attempt to match the evolution of observed BMRs [11].

Yeates and Mufioz’s work uses finite differences in a spherical shell to solve the magnetic potential equation,
which requires a structured grid, is difficult to parallelize, and requires additional work to extend to higher orders.
Miesch’s STABLE code [8] is again structured but is based on the Spherical Harmonics method, which has high-order
accuracy. Application of the spectral difference method to this problem would allow the use of unstructured grids,
easy parallelization for high-performance computers with heterogeneous architectures, and simple extension to higher
orders. The spectral difference divergence cleaning algorithm (SDDC) was proposed and applied to the magnetic
induction equation in Chen and Liang [4] using a divergence cleaning technique to keep V - B close to zero. The Spectral
Difference method was also integrated with a transfinite mapping algorithm and cubed-sphere grids in Chen et al. [7] to
predict interior convection for some solar benchmark problems. To the best knowledge of the authors, our research is
the first time SDDC has been applied to 3D induction equations. In this paper, a three-dimensional Spectral Difference
Solar Dynamo (SD?) code is developed by integrating the spectral difference method with the same cubed-sphere mesh
generator and transfinite mapping for massively parallel solutions of kinematic dynamo equations on GPUs.

This paper is organized as follows. Section II presents the equations that are used to simulate the kinematic dynamo
for this work. Section III introduces the spectral difference method. Section IV presents the solar dynamo problem
studied in this work.
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I1. Governing Equations

A. The Induction Equation
The magnetic induction equation used in kinematic dynamo models is written as

0B
E:Vx(UxB)—Vx(n,VxB), )
where B = (Bx, By, Bz)T is the magnetic field, U = (u, v, w)T is the velocity profile, and 7 is the magnetic resistivity.
The spectral difference method requires the governing equations to be written in divergence form
9Q
—+V-F=M, 2
5 (2)
where Q = B is the vector of conserved variables and M = 0 is vector of non-conservative terms. The total flux
F =F;,,, — F,,;5 consists of the inviscid fluxes minus the viscous fluxes. The inviscid flux vector (F;,,) and viscous flux
vector (F, ;) are

Fin(Q =UeB-BaU, F\(VQ) =1 ((VB)" - VB). 3)

B. Divergence Cleaning
The following generalized Lagrange multiplier (GLM) approach used is introduced in [12] and implemented by
Chen & Liang (2022) in [4] for the resistive MHD equations, although we are only using the induction equation
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where I is the identity matrix. In these equations, Q = (B, ¥)*, M = (V-B)U, (V¢) - U+ ay)T, F;,,,(Q) =
(U®B-B®U+cpyl, ¢,B)T, and F,;5(VQ) = (1, (VB)T - VB), 0)T.

The new scalar i couples the divergence-free condition with the induction equation. The hyperbolic divergence
cleaning speed cj, is chosen to be a multiple of the maximum velocity c; = wgpq maxg (Vu? +v2 + w?), where wy pd
is a problem-specific constant. The first non-conservative source term is the induction portion of the Powell source
vector [13] that arises naturally in the derivation of the induction equation if V - B is not assumed to be zero, and the
second non-conservative term, —aiy, ensures that ¢ decays in the region where V - B ~ 0. « is another problem-specific
constant defined as the parabolic diffusion rate which controls the damping of the field .

II1I. Numerical Methods

A. The Spectral Difference Method

We use the spectral difference method to solve the equations spatially. Each hexahedral element is mapped from
the physical domain to the standard cube element in the computational domain (0 < ¢ <1,0<7<1,0<{<1). A
two-dimensional representation of this mapping is shown in Fig. 1a where quadrilateral elements are shown instead of
hexahedral elements for simplicity. The transformation is represented by

X K Xi
y|= ) Mi(&n 0|yl ©)
Z =1 Zi

where K is the number of nodes used to define an element, (x;, y;, z;) are the nodal coordinates, and M;(&,n, () is the
shape function for node i. We use the transfinite mapping explored in section 4A of [7] to reduce the error generated by
the mapping. After the transformation, the conservation law takes the form

0Q oF oG oH
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Fig. 1 Panel (a) shows the transformation between physical and computational domains for a quadrilateral
element. Panel (b) shows the solution points (circles) and flux points (triangles) for N = 3 in an element, where
right-pointing triangles are FPs in the ¢ direction and upward-pointing triangles are FPs in the 7 direction.

with Q = |J|Q, M = |J|M, and
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Solution points (SPs) and flux points (FPs) are defined in the standard computational element, where N SPs are used
in each dimension to generate a polynomial of (N — 1) order in that dimension. A two-dimensional representation of this
is shown for N = 3 SPs in Fig. 1b. The positions of the SPs (X;) are the Chebyshev-Gauss points, which are defined as

Xy ==

2s — 1
l—cos( N ﬂ)}, s=1,2,...,N. ®)

The positions of the FPs (X¢) are chosen to be the (N — 1) roots of the Nth order Legendre polynomial plus the two
boundaries, resulting in (N + 1) total FPs. In the computational domain our boundaries are Xy—; = 0 and Xy-n41 = 1,
and an N'th order Legendre polynomial can be generated by

Pa(e) =2 — )P (€) - ”%Pn_z(@ )

where P_;(£) = 0 and Py(&) = 1 are the starting polynomials.
Polynomials representing the conserved quantities are constructed over the SPs and FPs through the application of

Lagrange bases

N N+l

X-X X-Xy

hi(X) = | | ( S), li(X) = | | ( ) (10)
s=1, s#i Xi = X f=1, f#i Xi = Xf

The reconstructed solution to the conserved quantities is then found through the tensor products of the three one-
dimensional Lagrange bases
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The values of the conserved quantities at the FPs are used to calculate the fluxes at the FPs. The reconstructed flux



Downloaded by 2603:7081:c00:cf:29ef:923b:bfbd:bf63 on January 4, 2026 | http:/arc.aiaa.org | DOIL: 10.2514/6.2025-97508

polynomials are then found by

_ N N N+1~

F= "3 D 0 ja X L&) x hj(m) X he(£), (12)
k=1 j=1 i=1

. N N+1 N .

G=>" 3> Gijux hi(€) x L;(m) X hi(0), (13)
k=1 j=1 i=1

_ N+1 N N ~

A=) 3" 3 My x hi(€) x hy(n) x L (£). (14)
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Reconstructing the solution and fluxes this way produces polynomials that are continuous in each element but
discontinuous at element interfaces. We use the Rusanov solver [14] (also called the local Lax-Friedrichs solver [15])
to compute common inviscid fluxes at the element interfaces in the normal direction in the computational domain.
To compute gradients of conserved variables, we need the interpolated conserved quantities to be continuous across
element interfaces as well, which is accomplished through the application of the BR1 [16] scheme that takes the average
between the left and right cells. The gradients of the conserved variables are then calculated following the method
proposed by Sun et al. [2] using the FPs and are stored on the SPs, then extrapolated to the FPs for the computation of
the viscous fluxes. The derivatives of the fluxes are then calculated using the derivative of the Lagrange basis [

= N+1
oF N
v = > F. i xI.(&), (15)
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B. Temporal Solver
After computing the spatial derivatives, the governing equations become ODE:s in residual form

(@

_ IF G H
0 oG 0 ) ’ (18)
dt ik
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where R; ; « is the residual at a specific SP. The physical quantities of the conserved variables are related to the quantities

in the computational domain by 3

d d

(D) =l () (19)
U )ik U)ijk

Now, ODEs can be treated as standard initial value problems and solved with a generic time-stepping method. In this
work, we use a four-stage 3rd-order Strong Stability Preserving Runge-Kutta (SSPRK) method whose coefficients are
reported in [17].

IV. The Solar Dynamo Problem

The goal of this paper is to simulate the solar magnetic cycles using a kinematic dynamo model and the 3D spectral
difference with divergence cleaning method to allow the use of unstructured grids, straightforward parallelization, and
simple extension to higher orders. To simulate the solar dynamo problem, we need the following

* A spherical or oblate spherical shell mesh to model the solar convective zone.

* A high order mapping algorithm between the physical and computational spaces, where we choose transfinite

mapping.
* A flow field for the solar convective zone.
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* Method for producing bipolar magnetic regions (BMRs).
* Boundary conditions at the surface of the Sun and the base of the convective zone for the induction and GLM
V - B correction equations.
We name the resulting code the Spectral Difference Solar Dynamo (SD?) code.

A. Solar Dynamo Setup

The first things we need in order to start simulations on solar kinematic dynamos are a mesh for the convective region
of the Sun and a way to map curved cells in physical space to computational space. Fortunately, both of these have been
studied in [7] where a cubed sphere mesh is created for cells with more isotropic volumes than the more standard UV
spheres, and the transfinite method is used to map the curved elements from physical space to computational space.

Next, we need to generate a flow field for the solar convective zone. We particularly appreciated section 3 in [18] for
generating the meridional circulation profile correctly, and many other profiles have been studied [8-11, 18, 19]. We
used the profile for differential rotation from Miesch and Tweldebirhan [8] and the profile for meridional circulation in
Karak and Miesch [11].

The velocity field can be written as

U= Upol +Usor = Uy (r,0)8, + Ug(r,0)€9 + Uqb (r, 9)é¢ (20

where U, is the poloidal velocity (also called meridional circulation), Uy, is the toroidal velocity (also called
differential rotation), U, is the radial component of velocity (r = Ry = 695.7 x 108cm is the top boundary and
r = 0.69R, is the bottom boundary), Uy is the § component of velocity (6 is the latitudinal coordinate where 6 = 0
is the north pole and 6 = r is the south pole), and U (r, 0) = r sin Q(r, 6) is the ¢ component of velocity (¢ is the
longitudinal coordinate). We convert spherical velocity to Cartesian velocity by

u sinfcos¢ cosfcos¢ —sing\ (U,
v |=|sinfsing cosfsing cos¢d ||Ug 21
w cos 6 —sinf 0 Ug

The differential rotation is given in [8] as

1 -
Qr,0) =+ 3 [1 +erf (2r fe )] (Q(6) — Q) (22)

where Q. = 27y, is the differential rotation of the core and
Q(0) =27 (veg + a»c08°0 + ascos*o) (23)

where v, = 432.8nHz, v, = 460.7nHz, a, = —62.9nHz, a4 = —67.13nHz, r. = 0.7R, and d = 0.05R,. We use a
rotating reference frame at the rotational speed of the core with the mesh to reduce the maximum flow velocity, so the
differential rotation is implemented as

r

1 _
Q(r.6) = 3 [1 +erf (2 drc )] (Q,(0) — Q). 24)
The Uy (r, 0) that results is shown in Fig. 2c.
The meridional circulation is given in [20] for s such that pU,o = V X [Y 10w (7, 0)€4], where p =
3/2
C (% -095)" and

- R — 02

Y flow? sin @ = Wflowi)(r_Rp) sin H] (1-exp[-B16°)) (1 —exp [ﬂz (9 - g)]) exp [_ (’" Fro) ] (25)

The constants are C = 1, 8; = 1.5, 8> = 1.3, € = 2.0000001, rg = 0.45R /3.5, =3.47 x 10'%m, and R, =0.69R..

The value of ¢ f1ow,0/C = —1.9 X 10'3 so that the amplitude of meridional circulation at mid-latitudes becomes 18?.
We then follow [11] in applying a downward magnetic pumping term to the flow field defined as

Ycz r— 0.725R@ Vs r— O.9R@
F(r)=—-—=11 fl—|| - = |1 f| —— 26
() === [ Ter ( 0.01R, 2 | T 0.02R, (26)
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(a) Radial velocity component. (b) Latitudinal velocity component.  (c) Longitudinal velocity component.

Fig.2 Components of the velocity profile.
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Fig.3 Comparison between the resistivity profile we are using and the resistivity profile in [11].

such that Eqn. 20 becomes
U= (Ur(r,0) +y,)& +Ug(r,0)&9 + Uy(r,0)e4. 27

The resulting U, (r, 8) + y, profile is shown in Fig. 2a and the Uy (r, 6) profile is shown in Fig. 2b.

Our resistivity profile is based on that provided in [11], but flattened within the cells touching the lower boundary, as
shown in Fig. 3. This mitigates the necessity of many cells to resolve the resistivity gradient within the depth spanned
by the first cell. The equation we use to produce our resistivity profile is

—0.956R
r]t(r)zncz+n75 1+erf(%)] (28)

0.025Ro

where ncz = 5 x 10109 and g = 3 x 101242,

After the basic flow field has been defined, we need a way to produce BMRs. Yeates and Muoz [9] use a "lift and
twist" perturbation of the flow to emulate the effects of magnetic buoyancy, while the STABLE code used in [8, 10, 11]
places BMRs on the photosphere. For this paper, we implement the "lift and twist" flow from [9]. To implement the "lift
and twist" flow, we need a center for the perturbation that gradually moves upward through the convective zone and
velocity components that modify the existing flow field as if an emerging spot was present.

Working in spherical coordinates, we can say that the center of an emerging spot is given by (7, 8, ) and the distance
between the center and an arbitrary point (r, 6, ¢) is

£ =r2+72 = 2ri(sin@sinfcos (¢ — @) + cos 6 cos ). (29)

The center is prescribed to move radially and longitudinally, but effects of meridional circulation are assumed to be
negligible during the emergence of the spot. The equations for the velocity of the center of the spot are then

dr dé d¢ _

—=uy, —=0, —=Q(,60 30
ar " dr ar =20 G0
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where uy is set so that each spot takes 25 days to travel from 0.7R, to the photosphere and Q(F, ) is the differential
rotation as defined above. When the center of the spot reaches the photosphere, the spot is removed.

To apply the changes to the components of velocity, we first need to define the size of the emerging spot. As in [9],
we define the radius of the spot as

_ Ro /7o — 0.95
0(F) =00 | 5——= 31
(7) = 00\ R /7 =005 .

where ¢ is the initial radius of the perturbation caused by the spot when it is at ¥ = 7y = 0.7Rg, set as dy =
(57/180)(0.7R) for all our simulations. The outward radial component of the velocity perturbation can then be
defined as

52
Us = up exp (—E)ér (32)

and the vortical component of the velocity perturbation can be defined as

2 2
U, = —% exp (—f;—z) sin @ sin (¢ — @)&q + % exp (—i—z)(sinecos 0 —cos@sinfcos (¢ — ¢))es  (33)
where w; = —wq cos 8 and wy is calibrated to tilt the spots according to the latitude they emerge at, which is found to
be wo = 0.08 x 1077571 in [9]. There is also a diverging component of the flow included in the velocity perturbation,
given as
&)1 §-0)\)\4 uo
U, = =— | =|1—-erf|Z=—]| &g, = , 34
p = Hp0 (R@ 2\ T 026 )% "0 T 2(7/Ro)2(Ro/F - 0.95) (34)

where & is a radial unit vector centered at (7, 8, ¢) and u, is chosen to match the tube expansion rate in [9].

The final component we need to add to SD? is the definition of the boundary conditions at the photosphere and
the base of the convective zone. Commonly, the lower boundary of the convective zone is assumed to be perfectly
conducting, and the top boundary (the photosphere) is assumed to be either perfectly radial or matched to a potential
field outside of the boundary. In this work, the bottom boundary is assumed to be perfectly conducting and the top
boundary is taken to be perfectly radial. The perfectly conducting boundary is specified as

6(}"39) :() 8(rB¢) =0

B, =0, , 35
" or or (35)
The perfectly radial boundary condition is specified as

Bg=0, Bys=0, (36)
which implies that % = 0 to maintain the V - B = 0 condition.

For initialization, we slightly modify the initial conditions specified in section 5 of [9] to match our domain as

By ( .(r—0.7Rs r—0.74Ro ) . A sing | r—0.7Ro
B =20 ferf[ L0 _gpp( L2 Vx (Agky). Ag=B 37
2 (er (0.004R@) o ( 0.004R, || GtV X (Aoke) Ao =Ba5m | g ©7

where By = 250G, By = —0.008By, and Ay is set to O when » < 0.7R,. We generate velocity perturbations
according to the positions listed in the "Solar Region Summary" data archived by the NOAA National Centers
for Environmental Information (NCEI) (https://www.ngdc.noaa.gov/stp/space-weather/swpc-products/
daily_reports/solar_region_summaries/). We use the positions for bipolar regions with maximum solar area
larger than 300 millionths of the solar photosphere. In an attempt to generate results similar to those in section 5 of [9],
we take spots from August of 1996 to December of 2008. We set the wg,q = 2 and @ = 0.01.

B. Solar Dynamo Results

We validate SD? by running a simulation of Solar Cycle 23, from August 1996 to December 2008. The results we
present first are the isosurfaces and Mollweide plots shown in Fig. 4. The panels at the top of Fig. 4 show the magnetic
field at 1 year into the simulation, when there is little emergence activity. The panels on the bottom of Fig. 4 show the
magnetic field at 5.4 years, which is around the maximum activity. We can see in Fig. 4a that the initial conditions are
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Fig. 4 Visualizations of B near the cycle minimum (1 year, panels a-c) and near cycle maximum (5.4 years,

panels d-f). Panels (a) and (d) show B4 between -125 and 125 G. Panels (b) and (e) show B2 + Bze, also between

-125 and 125 G, where the sign of B, is indicated by the color (red is positive, blue is negative). Panels (c) and (f)
show B, at the photosphere on a Mollweide equal-area projection, saturated at 25 G.
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Fig.5 Longitude-averaged components of B at 1 year (panels a-c) and 5.4 years (panels d-f). All color axes are
in Gauss.

still largely present, with disruptions where spots have emerged. Those spots can be seen in Fig. 4b as the poloidal
components of the magnetic field, and their radial components are shown in Fig. 4c, which is a Mollweide projection at
the photosphere. At maximum activity, the toroidal field in 4d shows multiple belts created by the many spots that have
emerged, whose effects on the poloidal magnetic field can be seen in 4e and on the radial field at the photosphere in 4f.

Next, we assess the longitudinally averaged magnetic fields in Fig. 5, which better represent what is happening in
the full domain. Again, the top row of panels shows results at 1 year and the bottom row shows results at 5.4 years of
simulation. We can see the new toroidal field forming from Fig. 5a to Fig. 5d as an opposite-polarity field squishing
the initial field against the lower boundary. The polar (By) and radial (B,) components of magnetic field also show
the generation of new polarities of their fields, but the magnitude of the fields at the poles looks to be much higher
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Fig. 6 Panel (a) shows longitude-averaged B at r = 0.7R;, while panel (b) shows longitude-averaged B, at
r = Ry in Gauss.

4 g
Time, Years

(@) Eror (b) Epor

Fig.7 Panels (a) and (b) show the radial distributions of toroidal and poloidal magnetic energy density (BiS /(8m)
and (B? + Bzg) /(87) respectively), averaged over 6 and ¢, as a function of time. A logarithmic color scale is used
and units are ergs cm™.

than expected. We expect to see the polarity of the field in Fig. 5b stay at the poles for longer, but in Fig. 5e we see
that the opposite polarity has already pushed the initial field away from the photosphere, and the transition between
polarities does not look as smooth as we expect. In Fig. Sc the polarities of the radial field at the poles show the initial
condition, but at the maximum activity shown in Fig. 5f the polarity at the poles is supposed to have almost finished
flipping. Whitbread et al. [21] reports that adding a decay term to the induction equation makes a very small difference
in the total unsigned surface flux but acts as a sink for the polar flux. Future tests should be conducted to see whether
including this decay term will make the simulation SD? more realistic.

Butterfly diagrams are another common way to compare simulations with observations of solar activity, so we
include butterfly diagrams in Fig. 6. Figure 6a shows the butterfly diagram of the toroidal magnetic field at 0.7R, very
close to our bottom boundary and the base of the convection zone. This figure is included to show that the toroidal field
at the base of the convection zone starts to change at around the time of maximum activity and then tapers off as the solar
cycle ends. Figure 6b shows the radial component of the magnetic field at the photosphere, from which it is obvious that
the polarity of the radial magnetic field changes much later than observed (the polarity of the poles of the Sun was
observed to change at about 5 years, while we simulated it changing at about 9 years), as we had suspected from Fig. 5f.

We also show radial averages of the toroidal (E;,,) and poloidal (E,;) components of magnetic energy in Fig. 7,
which are calculated as ) , ,
ﬁ o B; + B,
8r> P 8
Figure 7a shows that the simulation starts with very little toroidal energy - mostly at the bottom of the convective zone -
then additional toroidal energy is observed at larger radii. We expect to see two distinct belts in Fig. 7a, which would be
belts of toroidal magnetic field of opposite signs as seen in Fig. 5d. Some reasons we cannot see these two belts could
be that the radial resolution in the simulation is not fine enough to show the transition from one belt to the next, and/or
because the bottom boundary does not allow the lower belt to fall below the tachocline, therefore making the distance
between the belts too small to be seen in Fig. 7a. Comparing Fig. 7a with Fig. 7b, we can see that the toroidal energy
starts to increase at about the same time that poloidal energy starts to get generated, as we expect from the Babcock
Leighton (BL) mechanism. We can also see in Fig. 7b that poloidal energy is generated in the middle of the convective

Eior = (38)
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Fig. 8 Panel (a) shows surface fluxes (normalized to the maximum value) against time for the simulation and
from observations. Panel (b) shows a longitude and time average of the poloidal magnetic energy density (in ergs
cm3, logarithmic scale).

zone. These are good signs that the SD? simulation is working, as these results have been seen before in Yeates and
Muiioz [9].

Finally, we have data on the unsigned surface flux and the time-averaged longitude-averaged poloidal energy, both
shown in Fig. 8. We can see in Fig. 8a that the shape of the time history of the unsigned surface flux mostly matches
what has been observed, although the peak is simulated to be 2 years before it was observed. This is likely because we
are only taking spots of a certain size that are bipolar, so the effects of smaller spots are neglected in the simulation,
although we would like to simulate the peak unsigned flux at the same time as it was observed. In Fig. 8b, we can see
that the poloidal energy is generated at the latitudes where the spots emerge, which shows that the emergence of the
spots is responsible for the generation of poloidal energy, as we suspected from Fig. 7b.

V. Conclusions
The spectral difference method with divergence cleaning can be used to simulate kinematic solar-dynamo problems,
though there are some issues that should be resolved before it can be relied on. Generally, the structures and magnitudes
produced by the spectral difference solar dynamo (SD?) code are reasonable, so we believe that in time SD? can be
tuned to produce solar cycles closer to those that have been simulated and observed. The biggest issue with the SD?
code at the moment is that the poles have a lot more activity than other simulations suggest (such as the one in Section 5
of Yeates and Munoz [9]), and that the poles do not change polarity when we expect them to.

VI. Future Work

The next step for the SD? code is the addition of a magnetic decay term as proposed by Whitbread et al. [21], which
is reported to mostly dampen activity at the poles. Other work that should be done is the creation of a mesh that can
resolve the magnetic diffusivity profile, which will hopefully allow for more realistic simulations and use of higher
order methods. We intend to apply the experience gained from designing the SD? code to full MHD simulations of the
solar dynamo, although kinematic dynamo simulations will always be more efficient and therefore more practical for
real-world use.
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