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The spectral difference method is a versatile high-order method that has shown its high-order

accuracy and robustness to predict compressible viscous flows on structured multidomain and

unstructured grids [1–3]. The spectral difference method can also be massively parallelized to

solve nonlinear MHD problems [4, 5]. In this study, the Spectral Difference with Divergence

Cleaning (SDDC) method is further developed to solve several three-dimensional kinematic

dynamo problems. The first kinematic dynamo problem is solved in a cubic periodic box, where

the SDDC method is successfully verified to capture the ’Cigar’ structures published in the

literature [6]. The second kinematic dynamo problem adopts a spherical shell geometry [7] and

perfectly conducting and perfectly radial boundary conditions [8, 9] to solve three-dimensional

induction equations. Finally, the SDDC method is employed to model Sunspot cycles.

I. Introduction
Fully three-dimensional magnetohydrodynamics (MHD) models of the solar dynamo are computationally expensive

and can not yet capture the full complexity of flux emergence and the Babcock–Leighton (BL) mechanism. To capture

the effects of emerging flux tubes and the evolution of the resulting bipolar magnetic regions (BMRs), Yeates and Muñoz

[9] adopted a kinematic framework in which the flow field is specified and only the induction equation is simulated. In

their work, Yeates and Muñoz designed a "lift and twist" algorithm for modeling the emerging flux tubes. Miesch and

his collaborators [8, 10, 11] developed a 3D Babcock-Leighton / flux transport dynamo model in which the source of the

poloidal field is the explicit emergence, distortion, and dispersal of bipolar magnetic regions (BMR) that was supported

by a "SpotMaker" algorithm. Since Yeates and Muñoz’s work, different prescribed flow fields have been explored in an

attempt to match the evolution of observed BMRs [11].

Yeates and Muñoz’s work uses finite differences in a spherical shell to solve the magnetic potential equation,

which requires a structured grid, is difficult to parallelize, and requires additional work to extend to higher orders.

Miesch’s STABLE code [8] is again structured but is based on the Spherical Harmonics method, which has high-order

accuracy. Application of the spectral difference method to this problem would allow the use of unstructured grids,

easy parallelization for high-performance computers with heterogeneous architectures, and simple extension to higher

orders. The spectral difference divergence cleaning algorithm (SDDC) was proposed and applied to the magnetic

induction equation in Chen and Liang [4] using a divergence cleaning technique to keep ∇ ·B close to zero. The Spectral

Difference method was also integrated with a transfinite mapping algorithm and cubed-sphere grids in Chen et al. [7] to

predict interior convection for some solar benchmark problems. To the best knowledge of the authors, our research is

the first time SDDC has been applied to 3D induction equations. In this paper, a three-dimensional Spectral Difference

Solar Dynamo ((�2) code is developed by integrating the spectral difference method with the same cubed-sphere mesh

generator and transfinite mapping for massively parallel solutions of kinematic dynamo equations on GPUs.

This paper is organized as follows. Section II presents the equations that are used to simulate the kinematic dynamo

for this work. Section III introduces the spectral difference method. Section IV presents the solar dynamo problem

studied in this work.
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II. Governing Equations

A. The Induction Equation

The magnetic induction equation used in kinematic dynamo models is written as

mB

mC
= ∇ × (U × B) − ∇ × ([C∇ × B), (1)

where B = (�G, �H, �I)T is the magnetic field, U = (D, E, F)T is the velocity profile, and [ is the magnetic resistivity.

The spectral difference method requires the governing equations to be written in divergence form

mQ

mC
+ ∇ · F = M, (2)

where Q = B is the vector of conserved variables and M = 0 is vector of non-conservative terms. The total flux

F = F8=E − FE8B consists of the inviscid fluxes minus the viscous fluxes. The inviscid flux vector (F8=E) and viscous flux

vector (FE8B) are

F8=E (Q) = U ⊗ B − B ⊗ U, FE8B (∇Q) = [C
(
(∇B)T − ∇B

)
. (3)

B. Divergence Cleaning

The following generalized Lagrange multiplier (GLM) approach used is introduced in [12] and implemented by

Chen & Liang (2022) in [4] for the resistive MHD equations, although we are only using the induction equation

m

mC

[
B

k

]
+ ∇ ·

[
U ⊗ B − B ⊗ U − [C

(
(∇B)T − ∇B

)
+ 2ℎkI

2ℎB

]
= −

[
(∇ · B)U

(∇k) · U + Uk

]
, (4)

where I is the identity matrix. In these equations, Q = (B, k)T, M = ((∇ · B)U, (∇k) · U + Uk)T, F8=E (Q) =

(U ⊗ B − B ⊗ U + 2ℎkI, 2ℎB)T, and FE8B (∇Q) = ([C
(
(∇B)T − ∇B

)
, 0)T.

The new scalar k couples the divergence-free condition with the induction equation. The hyperbolic divergence

cleaning speed 2ℎ is chosen to be a multiple of the maximum velocity 2ℎ = FB?3 maxΩ (
√
D2 + E2 + F2), where FB?3

is a problem-specific constant. The first non-conservative source term is the induction portion of the Powell source

vector [13] that arises naturally in the derivation of the induction equation if ∇ · B is not assumed to be zero, and the

second non-conservative term, −Uk, ensures that k decays in the region where ∇ · B ≈ 0. U is another problem-specific

constant defined as the parabolic diffusion rate which controls the damping of the field k.

III. Numerical Methods

A. The Spectral Difference Method

We use the spectral difference method to solve the equations spatially. Each hexahedral element is mapped from

the physical domain to the standard cube element in the computational domain (0 ≤ b ≤ 1, 0 ≤ [ ≤ 1, 0 ≤ Z ≤ 1). A

two-dimensional representation of this mapping is shown in Fig. 1a where quadrilateral elements are shown instead of

hexahedral elements for simplicity. The transformation is represented by

©­­«
G

H

I

ª®®¬
=

 ∑
8=1

"8 (b, [, Z)
©­­«
G8

H8

I8

ª®®¬
, (5)

where  is the number of nodes used to define an element, (G8 , H8 , I8) are the nodal coordinates, and "8 (b, [, Z) is the

shape function for node 8. We use the transfinite mapping explored in section 4A of [7] to reduce the error generated by

the mapping. After the transformation, the conservation law takes the form

mQ̃

mC
+ mF̃

mb
+ mG̃

m[
+ mH̃

mZ
+ M̃ = 0, (6)
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(a) (b)

Fig. 1 Panel (a) shows the transformation between physical and computational domains for a quadrilateral

element. Panel (b) shows the solution points (circles) and flux points (triangles) for # = 3 in an element, where

right-pointing triangles are FPs in the b direction and upward-pointing triangles are FPs in the [ direction.

with Q̃ = |� |Q, M̃ = |� |M, and

©­­«
F̃

G̃

H̃

ª®®¬
= |� |�−1

©­­
«
F

G

H

ª®®
¬
, where � =

m (G, H, I)
m (b, [, Z) =


Gb G[ GZ

H b H[ HZ

Ib I[ IZ


. (7)

Solution points (SPs) and flux points (FPs) are defined in the standard computational element, where # SPs are used

in each dimension to generate a polynomial of (# − 1) order in that dimension. A two-dimensional representation of this

is shown for # = 3 SPs in Fig. 1b. The positions of the SPs (-B) are the Chebyshev-Gauss points, which are defined as

-B =
1

2

[
1 − cos

(
2B − 1

2#
c

)]
, B = 1, 2, . . . , #. (8)

The positions of the FPs (- 5 ) are chosen to be the (# − 1) roots of the #th order Legendre polynomial plus the two

boundaries, resulting in (# + 1) total FPs. In the computational domain our boundaries are - 5 =1 = 0 and - 5 =#+1 = 1,

and an #th order Legendre polynomial can be generated by

%= (b) =
2= − 1

=
(2b − 1)%=−1 (b) −

= − 1

=
%=−2 (b) (9)

where %−1 (b) = 0 and %0 (b) = 1 are the starting polynomials.

Polynomials representing the conserved quantities are constructed over the SPs and FPs through the application of

Lagrange bases

ℎ8 (-) =
#∏

B=1, B≠8

(
- − -B
-8 − -B

)
, ;8 (-) =

#+1∏
5 =1, 5≠8

(
- − - 5
-8 − - 5

)
. (10)

The reconstructed solution to the conserved quantities is then found through the tensor products of the three one-

dimensional Lagrange bases

Q =

#∑
:=1

#∑
9=1

#∑
8=1

Q̃8, 9 ,:���8, 9 ,: �� ℎ8 (b) × ℎ 9 ([) × ℎ: (Z). (11)

The values of the conserved quantities at the FPs are used to calculate the fluxes at the FPs. The reconstructed flux
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polynomials are then found by

F̃ =

#∑
:=1

#∑
9=1

#+1∑
8=1

F̃8, 9 ,: × ;8 (b) × ℎ 9 ([) × ℎ: (Z), (12)

G̃ =

#∑
:=1

#+1∑
9=1

#∑
8=1

G̃8, 9 ,: × ℎ8 (b) × ; 9 ([) × ℎ: (Z), (13)

H̃ =

#+1∑
:=1

#∑
9=1

#∑
8=1

H̃8, 9 ,: × ℎ8 (b) × ℎ 9 ([) × ;: (Z). (14)

Reconstructing the solution and fluxes this way produces polynomials that are continuous in each element but

discontinuous at element interfaces. We use the Rusanov solver [14] (also called the local Lax-Friedrichs solver [15])

to compute common inviscid fluxes at the element interfaces in the normal direction in the computational domain.

To compute gradients of conserved variables, we need the interpolated conserved quantities to be continuous across

element interfaces as well, which is accomplished through the application of the BR1 [16] scheme that takes the average

between the left and right cells. The gradients of the conserved variables are then calculated following the method

proposed by Sun et al. [2] using the FPs and are stored on the SPs, then extrapolated to the FPs for the computation of

the viscous fluxes. The derivatives of the fluxes are then calculated using the derivative of the Lagrange basis ;

mF̃

mb

����
8, 9 ,:

=

#+1∑
A=1

F̃A , 9,: × ;′A (b8), (15)

mG̃

m[

����
8, 9 ,:

=

#+1∑
A=1

G̃8,A ,: × ;′A ([ 9 ). (16)

mH̃

mZ

����
8, 9 ,:

=

#+1∑
A=1

H̃8, 9 ,A × ;′A (Z:). (17)

B. Temporal Solver

After computing the spatial derivatives, the governing equations become ODEs in residual form

(
3Q̃

3C

)
8, 9 ,:

= R8, 9 ,: , R8, 9 ,: = −
(
M̃ + mF̃

mb
+ mG̃

m[
+ mH̃

mZ

)
8, 9 ,:

, (18)

where R8, 9 ,: is the residual at a specific SP. The physical quantities of the conserved variables are related to the quantities

in the computational domain by (
3Q̃

3C

)
8, 9 ,:

= |�8, 9 ,: |
(
3Q

3C

)
8, 9 ,:

. (19)

Now, ODEs can be treated as standard initial value problems and solved with a generic time-stepping method. In this

work, we use a four-stage 3rd-order Strong Stability Preserving Runge-Kutta (SSPRK) method whose coefficients are

reported in [17].

IV. The Solar Dynamo Problem
The goal of this paper is to simulate the solar magnetic cycles using a kinematic dynamo model and the 3D spectral

difference with divergence cleaning method to allow the use of unstructured grids, straightforward parallelization, and

simple extension to higher orders. To simulate the solar dynamo problem, we need the following

• A spherical or oblate spherical shell mesh to model the solar convective zone.

• A high order mapping algorithm between the physical and computational spaces, where we choose transfinite

mapping.

• A flow field for the solar convective zone.
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• Method for producing bipolar magnetic regions (BMRs).

• Boundary conditions at the surface of the Sun and the base of the convective zone for the induction and GLM

∇ · B correction equations.

We name the resulting code the Spectral Difference Solar Dynamo ((�2) code.

A. Solar Dynamo Setup

The first things we need in order to start simulations on solar kinematic dynamos are a mesh for the convective region

of the Sun and a way to map curved cells in physical space to computational space. Fortunately, both of these have been

studied in [7] where a cubed sphere mesh is created for cells with more isotropic volumes than the more standard UV

spheres, and the transfinite method is used to map the curved elements from physical space to computational space.

Next, we need to generate a flow field for the solar convective zone. We particularly appreciated section 3 in [18] for

generating the meridional circulation profile correctly, and many other profiles have been studied [8–11, 18, 19]. We

used the profile for differential rotation from Miesch and Tweldebirhan [8] and the profile for meridional circulation in

Karak and Miesch [11].

The velocity field can be written as

U = U?>; + UC>A = *A (A, \)êA +*\ (A, \)ê\ +*q (A, \)êq (20)

where U?>; is the poloidal velocity (also called meridional circulation), UC>A is the toroidal velocity (also called

differential rotation), *A is the radial component of velocity (A = '⊙ = 695.7 × 108cm is the top boundary and

A = 0.69'⊙ is the bottom boundary), *\ is the \ component of velocity (\ is the latitudinal coordinate where \ = 0

is the north pole and \ = c is the south pole), and *q (A, \) = A sin \Ω(A, \) is the q component of velocity (q is the

longitudinal coordinate). We convert spherical velocity to Cartesian velocity by

©­­
«
D

E

F

ª®®
¬
=
©­­
«
sin \ cos q cos \ cos q − sin q

sin \ sin q cos \ sin q cos q

cos \ − sin \ 0

ª®®¬
©­­«
*A

*\

*q

ª®®¬
(21)

The differential rotation is given in [8] as

Ω(A, \) = Ω2 +
1

2

[
1 + erf

(
2
A − A2
3

)]
(ΩB (\) −Ω2) (22)

where Ω2 = 2cE2 is the differential rotation of the core and

ΩB (\) = 2c(E4@ + 02cos2\ + 04cos4\) (23)

where E2 = 432.8nHz, E4@ = 460.7nHz, 02 = −62.9nHz, 04 = −67.13nHz, A2 = 0.7'⊙ and 3 = 0.05'⊙ . We use a

rotating reference frame at the rotational speed of the core with the mesh to reduce the maximum flow velocity, so the

differential rotation is implemented as

Ω(A, \) = 1

2

[
1 + erf

(
2
A − A2
3

)]
(ΩB (\) −Ω2). (24)

The*q (A, \) that results is shown in Fig. 2c.

The meridional circulation is given in [20] for k 5 ;>F such that dU?>; = ∇ × [k 5 ;>F (A, \)êq], where d =

�
(
'⊙
A

− 0.95
)3/2

and

k 5 ;>FA sin \ = k 5 ;>F,0 (A−'?) sin

[
c(A − '?)
('⊙ − '?)

]
(1 − exp [−V1\

n ])
(
1 − exp

[
V2

(
\ − c

2

)] )
exp

[
−
( A − A0

Γ

)2
]
. (25)

The constants are � = 1, V1 = 1.5, V2 = 1.3, n = 2.0000001, A0 = 0.45'⊙/3.5, Γ = 3.47 × 1010cm, and '? = 0.69'⊙ .

The value of k 5 ;>F,0/� = −1.9 × 1013 so that the amplitude of meridional circulation at mid-latitudes becomes 18m
s
.

We then follow [11] in applying a downward magnetic pumping term to the flow field defined as

WA (A) = −W�/
2

[
1 + erf

(
A − 0.725'⊙

0.01'⊙

)]
− W(

2

[
1 + erf

(
A − 0.9'⊙
0.02'⊙

)]
(26)
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(a) Radial velocity component. (b) Latitudinal velocity component. (c) Longitudinal velocity component.

Fig. 2 Components of the velocity profile.

Fig. 3 Comparison between the resistivity profile we are using and the resistivity profile in [11].

such that Eqn. 20 becomes

U = (*A (A, \) + WA )êA +*\ (A, \)ê\ +*q (A, \)êq . (27)

The resulting*A (A, \) + WA profile is shown in Fig. 2a and the*\ (A, \) profile is shown in Fig. 2b.

Our resistivity profile is based on that provided in [11], but flattened within the cells touching the lower boundary, as

shown in Fig. 3. This mitigates the necessity of many cells to resolve the resistivity gradient within the depth spanned

by the first cell. The equation we use to produce our resistivity profile is

[C (A) = [�/ + [(
2

[
1 + erf

(
A − 0.956'⊙

0.025'⊙

)]
(28)

where [�/ = 5 × 1010 cm2

s
and [( = 3 × 1012 cm2

s
.

After the basic flow field has been defined, we need a way to produce BMRs. Yeates and Muoz [9] use a "lift and

twist" perturbation of the flow to emulate the effects of magnetic buoyancy, while the STABLE code used in [8, 10, 11]

places BMRs on the photosphere. For this paper, we implement the "lift and twist" flow from [9]. To implement the "lift

and twist" flow, we need a center for the perturbation that gradually moves upward through the convective zone and

velocity components that modify the existing flow field as if an emerging spot was present.

Working in spherical coordinates, we can say that the center of an emerging spot is given by (Ā , \̄, q̄) and the distance

between the center and an arbitrary point (A, \, q) is

b =

√
A2 + Ā2 − 2AĀ (sin \ sin \̄ cos (q − q̄) + cos \ cos \̄). (29)

The center is prescribed to move radially and longitudinally, but effects of meridional circulation are assumed to be

negligible during the emergence of the spot. The equations for the velocity of the center of the spot are then

3Ā

3C
= D0,

3\̄

3C
= 0,

3q̄

3C
= Ω(Ā , \̄) (30)
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where D0 is set so that each spot takes 25 days to travel from 0.7'⊙ to the photosphere and Ω(Ā , \̄) is the differential

rotation as defined above. When the center of the spot reaches the photosphere, the spot is removed.

To apply the changes to the components of velocity, we first need to define the size of the emerging spot. As in [9],

we define the radius of the spot as

X(Ā) = X0

√
'⊙/Ā0 − 0.95

'⊙/Ā − 0.95
(31)

where X0 is the initial radius of the perturbation caused by the spot when it is at Ā = Ā0 = 0.7'⊙ , set as X0 =

(5c/180) (0.7'⊙) for all our simulations. The outward radial component of the velocity perturbation can then be

defined as

Ug = D0 exp

(
−b

2

X2

)
êA (32)

and the vortical component of the velocity perturbation can be defined as

Ul = −l1A

2
exp

(
−b

2

X2

)
sin \̄ sin (q − q̄)ê\ +

l1A

2
exp

(
−b

2

X2

)
(sin \ cos \̄ − cos \ sin \̄ cos (q − q̄))êq (33)

where l1 = −l0 cos \̄ and l0 is calibrated to tilt the spots according to the latitude they emerge at, which is found to

be l0 = 0.08 × 10−5B−1 in [9]. There is also a diverging component of the flow included in the velocity perturbation,

given as

Ud = Dd0

(
b

'⊙

)
1

2

(
1 − erf

(
b − X
0.2X

))
êb , Dd0 =

D0

2(Ā/'⊙)2 ('⊙/Ā − 0.95)
, (34)

where êb is a radial unit vector centered at (Ā , \̄, q̄) and Dd0 is chosen to match the tube expansion rate in [9].

The final component we need to add to (�2 is the definition of the boundary conditions at the photosphere and

the base of the convective zone. Commonly, the lower boundary of the convective zone is assumed to be perfectly

conducting, and the top boundary (the photosphere) is assumed to be either perfectly radial or matched to a potential

field outside of the boundary. In this work, the bottom boundary is assumed to be perfectly conducting and the top

boundary is taken to be perfectly radial. The perfectly conducting boundary is specified as

�A = 0,
m (A�\ )
mA

= 0,
m (A�q)
mA

= 0. (35)

The perfectly radial boundary condition is specified as

�\ = 0, �q = 0, (36)

which implies that
m(A2�A )
mA

= 0 to maintain the ∇ · B = 0 condition.

For initialization, we slightly modify the initial conditions specified in section 5 of [9] to match our domain as

B =
�0

2

(
erf

(
A − 0.7'⊙
0.004'⊙

)
− erf

(
A − 0.74'⊙
0.004'⊙

))
êq + ∇ × (�q êq), �q = �3

sin \

A3

(
A − 0.7'⊙
'⊙ − 0.7'⊙

)
(37)

where �0 = 250G, �3 = −0.008�0, and �q is set to 0 when A < 0.7'⊙ . We generate velocity perturbations

according to the positions listed in the "Solar Region Summary" data archived by the NOAA National Centers

for Environmental Information (NCEI) (https://www.ngdc.noaa.gov/stp/space-weather/swpc-products/

daily_reports/solar_region_summaries/). We use the positions for bipolar regions with maximum solar area

larger than 300 millionths of the solar photosphere. In an attempt to generate results similar to those in section 5 of [9],

we take spots from August of 1996 to December of 2008. We set the FB?3 = 2 and U = 0.01.

B. Solar Dynamo Results

We validate (�2 by running a simulation of Solar Cycle 23, from August 1996 to December 2008. The results we

present first are the isosurfaces and Mollweide plots shown in Fig. 4. The panels at the top of Fig. 4 show the magnetic

field at 1 year into the simulation, when there is little emergence activity. The panels on the bottom of Fig. 4 show the

magnetic field at 5.4 years, which is around the maximum activity. We can see in Fig. 4a that the initial conditions are
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Visualizations of B near the cycle minimum (1 year, panels a-c) and near cycle maximum (5.4 years,

panels d-f). Panels (a) and (d) show �q between -125 and 125 G. Panels (b) and (e) show

√
�2
A + �2

\
, also between

-125 and 125 G, where the sign of �A is indicated by the color (red is positive, blue is negative). Panels (c) and (f)

show �A at the photosphere on a Mollweide equal-area projection, saturated at 25 G.

(a) �q (b) �\ (c) �A

(d) �q (e) �\ (f) �A

Fig. 5 Longitude-averaged components of B at 1 year (panels a-c) and 5.4 years (panels d-f). All color axes are

in Gauss.

still largely present, with disruptions where spots have emerged. Those spots can be seen in Fig. 4b as the poloidal

components of the magnetic field, and their radial components are shown in Fig. 4c, which is a Mollweide projection at

the photosphere. At maximum activity, the toroidal field in 4d shows multiple belts created by the many spots that have

emerged, whose effects on the poloidal magnetic field can be seen in 4e and on the radial field at the photosphere in 4f.

Next, we assess the longitudinally averaged magnetic fields in Fig. 5, which better represent what is happening in

the full domain. Again, the top row of panels shows results at 1 year and the bottom row shows results at 5.4 years of

simulation. We can see the new toroidal field forming from Fig. 5a to Fig. 5d as an opposite-polarity field squishing

the initial field against the lower boundary. The polar (�\ ) and radial (�A ) components of magnetic field also show

the generation of new polarities of their fields, but the magnitude of the fields at the poles looks to be much higher
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(a) �q (A = 0.7'⊙) (b) �A (A = '⊙)

Fig. 6 Panel (a) shows longitude-averaged �q at A = 0.7'⊙ , while panel (b) shows longitude-averaged �A at

A = '⊙ in Gauss.

(a) �C>A (b) �?>;

Fig. 7 Panels (a) and (b) show the radial distributions of toroidal and poloidal magnetic energy density (�2
q/(8c)

and (�2
A + �2

\
)/(8c) respectively), averaged over \ and q, as a function of time. A logarithmic color scale is used

and units are ergs cm-3.

than expected. We expect to see the polarity of the field in Fig. 5b stay at the poles for longer, but in Fig. 5e we see

that the opposite polarity has already pushed the initial field away from the photosphere, and the transition between

polarities does not look as smooth as we expect. In Fig. 5c the polarities of the radial field at the poles show the initial

condition, but at the maximum activity shown in Fig. 5f the polarity at the poles is supposed to have almost finished

flipping. Whitbread et al. [21] reports that adding a decay term to the induction equation makes a very small difference

in the total unsigned surface flux but acts as a sink for the polar flux. Future tests should be conducted to see whether

including this decay term will make the simulation (�2 more realistic.

Butterfly diagrams are another common way to compare simulations with observations of solar activity, so we

include butterfly diagrams in Fig. 6. Figure 6a shows the butterfly diagram of the toroidal magnetic field at 0.7'⊙ , very

close to our bottom boundary and the base of the convection zone. This figure is included to show that the toroidal field

at the base of the convection zone starts to change at around the time of maximum activity and then tapers off as the solar

cycle ends. Figure 6b shows the radial component of the magnetic field at the photosphere, from which it is obvious that

the polarity of the radial magnetic field changes much later than observed (the polarity of the poles of the Sun was

observed to change at about 5 years, while we simulated it changing at about 9 years), as we had suspected from Fig. 5f.

We also show radial averages of the toroidal (�C>A ) and poloidal (�?>;) components of magnetic energy in Fig. 7,

which are calculated as

�C>A =
�2
q

8c
, �?>; =

�2
A + �2

\

8c
. (38)

Figure 7a shows that the simulation starts with very little toroidal energy - mostly at the bottom of the convective zone -

then additional toroidal energy is observed at larger radii. We expect to see two distinct belts in Fig. 7a, which would be

belts of toroidal magnetic field of opposite signs as seen in Fig. 5d. Some reasons we cannot see these two belts could

be that the radial resolution in the simulation is not fine enough to show the transition from one belt to the next, and/or

because the bottom boundary does not allow the lower belt to fall below the tachocline, therefore making the distance

between the belts too small to be seen in Fig. 7a. Comparing Fig. 7a with Fig. 7b, we can see that the toroidal energy

starts to increase at about the same time that poloidal energy starts to get generated, as we expect from the Babcock

Leighton (BL) mechanism. We can also see in Fig. 7b that poloidal energy is generated in the middle of the convective
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(a) (b)

Fig. 8 Panel (a) shows surface fluxes (normalized to the maximum value) against time for the simulation and

from observations. Panel (b) shows a longitude and time average of the poloidal magnetic energy density (in ergs

cm-3, logarithmic scale).

zone. These are good signs that the (�2 simulation is working, as these results have been seen before in Yeates and

Muñoz [9].

Finally, we have data on the unsigned surface flux and the time-averaged longitude-averaged poloidal energy, both

shown in Fig. 8. We can see in Fig. 8a that the shape of the time history of the unsigned surface flux mostly matches

what has been observed, although the peak is simulated to be 2 years before it was observed. This is likely because we

are only taking spots of a certain size that are bipolar, so the effects of smaller spots are neglected in the simulation,

although we would like to simulate the peak unsigned flux at the same time as it was observed. In Fig. 8b, we can see

that the poloidal energy is generated at the latitudes where the spots emerge, which shows that the emergence of the

spots is responsible for the generation of poloidal energy, as we suspected from Fig. 7b.

V. Conclusions
The spectral difference method with divergence cleaning can be used to simulate kinematic solar-dynamo problems,

though there are some issues that should be resolved before it can be relied on. Generally, the structures and magnitudes

produced by the spectral difference solar dynamo ((�2) code are reasonable, so we believe that in time (�2 can be

tuned to produce solar cycles closer to those that have been simulated and observed. The biggest issue with the (�2

code at the moment is that the poles have a lot more activity than other simulations suggest (such as the one in Section 5

of Yeates and Munoz [9]), and that the poles do not change polarity when we expect them to.

VI. Future Work

The next step for the (�2 code is the addition of a magnetic decay term as proposed by Whitbread et al. [21], which

is reported to mostly dampen activity at the poles. Other work that should be done is the creation of a mesh that can

resolve the magnetic diffusivity profile, which will hopefully allow for more realistic simulations and use of higher

order methods. We intend to apply the experience gained from designing the (�2 code to full MHD simulations of the

solar dynamo, although kinematic dynamo simulations will always be more efficient and therefore more practical for

real-world use.
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