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Abstract

This study examines how optimal fare policies are shaped by the need to balance moral values and financial means.
Motivated by the growing interest in fare-free transit (FFT) and the lack of rigorous modeling frameworks to evaluate
its impacts, we develop a joint transit design model that incorporates a means-based step-fare structure encompass-
ing full-fare-free (FFF), partial-fare-free (PFF), and standard-discount-fare (SDF) policies. The model accounts for
behavioral responses such as the zero-price effect, as well as operational and administrative savings from eliminating
fare collection. It is then employed to identify optimal fare policies under both utilitarian and egalitarian objectives
across a range of financial scenarios. Applied to the case of Chicago, our analysis yields several key findings. First,
optimal policies depend critically on funding levels: FFF is both just and utility-maximizing only when robust finan-
cial support is available. Second, contrary to common belief, a utilitarian is more likely than an egalitarian to support
FFF, as equity goals often require targeted benefits. Third, increasing financial flexibility does not always lead to more
publicly acceptable designs. These findings offer guidance for transit agencies navigating the post-pandemic fiscal
landscape and planners pursuing more sustainable, equitable urban mobility.
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1. Introduction

Fare policy plays a central role in shaping the accessibility and financial sustainability of public transportation systems.
In the classical transportation economics literature, optimal fare policy is grounded in the principle of marginal cost
pricing. The seminal “Mohring effect” (Mohring, 1972) shows that higher demand leads to more frequent service,
which in turn reduces passengers’ waiting time. As a result, the marginal social cost of an additional rider is below
the average cost, implying that achieving social optimum requires a fare lower than the average cost and thus, in most
cases, public subsidy. This theoretical result forms the cornerstone of first-best fare policy: the optimal fare equals the
marginal external social cost, with any budget gap covered by subsidy.

The classical fare analysis is explicitly utilitarian in nature. It focuses on maximizing aggregate welfare and, in doing
so, overlooks how costs and benefits are distributed across different groups. In practice, transit fare policy, like other
transportation policies, has ethical as well as economic implications (Lucas et al., 2016). They affect who can afford to
use transit, how frequently they use it, and whether they choose transit over other modes. In particular, the burden of
fare payments tends to fall more heavily on low-income travelers, who rely on transit not by choice but by necessity.
This raises important questions about fairness and calls for integrating equity considerations into fare policy design.

In recent years, these concerns have fueled renewed interest in fare-free transit (FFT) as a strategy to improve access
and reduce disparities. Boston’s progressive mayor, Michelle Wu, has implemented a limited FFT program in the
city. The idea also featured prominently in the platform of Zohran Mamdani, who has launched a closely watched bid
for the New York City mayoralty1. Advocates argue that eliminating fares lowers financial barriers for disadvantaged
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groups, encourages mode shift away from private cars, reduces congestion, and makes transit operation more cost-
effective (Cats et al., 2017; Bull et al., 2021; Cools et al., 2016; Volinski, 2012; Keblowski, 2020). However, FFT is
not without drawbacks. Critics cite the potential for overcrowding, misuse, and safety issues (Hodge et al., 1994), and
question its financial sustainability, especially for large agencies where farebox revenue covers a substantial share of
operating costs (Kirschen et al., 2022). Without an adequate replacement for lost revenue, FFT risks degrading service
quality, which may ultimately harm the very populations it seeks to serve.

This brings us to the second determinant of fare policy: means. Even if one accepts the normative appeal of FFT, its
feasibility depends on the fiscal instruments available to support it. In most cities around the world, transit systems
must be subsidized through some combination of general taxes, dedicated sales taxes, or transportation-related charges
such as congestion tolls or parking fees. Each of these mechanisms carries its own economic and political implications,
and their availability varies widely across jurisdictions. In short, optimal fare policy depends not only on what values
we prioritize but also on the practical means we have to fund them.

While full FFT remains relatively rare, partial or targeted fare relief policies are widespread. Many agencies offer
free or discount fares to specific population groups—such as seniors, students, or low-income riders—while charging
standard fares to others (Darling et al., 2021). This approach enables agencies to retain fare revenue from choice
riders (e.g., peak-hour commuters) while easing the burden on captive riders who depend more heavily on transit
(Keblowski, 2020; Schank and Huang, 2022). If carefully designed, these policies can strike a more sustainable
balance between equity and fiscal responsibility (Harmony, 2018). At the same time, they offer more limited gains in
ridership and congestion mitigation compared to full FFT, and they forgo the savings associated with eliminating fare
collection altogether (Kirschen et al., 2022).

Thus, fare policy is not an all-or-nothing proposition. Rather, it spans a spectrum—from standard fare to full-fare-
free systems, and anything in between—and each option embodies different trade-offs between equity, efficiency, and
financial viability. How is optimal transit fare policy shaped by our values and means?

To address this question, we build on a stylized joint design model originally introduced in Dai et al. (2024). In the
model, the quality of transit service affects its usage—through travelers’ mode choice—and depends on revenue raised
from various sources: transit users (fares), drivers (driver fees), and the general public (dedicated taxes). The present
study generalizes the model in two key ways. First, we introduce a means-based step-fare structure that nests full-fare-
free (FFF), partial-fare-free (PFF), and standard-discount-fare (SDF) policies within a unified framework. Second, we
incorporate several additional features relevant to FFT, including the “zero-price effect” (Shampanier et al., 2007),
administrative savings from eliminating fare collection, and potential operational efficiency gains (Volinski, 2012;
Keblowski, 2020; Kirschen et al., 2022).

Fare policies are differentiated based on income, which serves as a proxy for rider type. The model is solved under two
normative objectives: (i) a utilitarian goal of maximizing average utility across all travelers, and (ii) an egalitarian goal
derived from the difference principle of Rawls (1971), which aims to maximize the welfare of the most disadvantaged
group. We then evaluate which fare policies emerge as “optimal” under a given normative objective and a set of
financial constraints—defined by the ability to raise sales taxes or charge driver fees. We shall refer to a policy that
is optimal under the utilitarian goal as utility-maximizing, and a policy optimal under the egalitarian goal just—since
the difference principle is part of Rawls’ theory of justice.

Our results, obtained from a case study based in Chicago, offer several interesting insights. First, we find that FFF
policy can, under certain conditions, be both utility-maximizing and just. Specifically, when the transit agency has
access to ample financial means FFF emerges as optimal under both normative objectives. In such settings, fare
elimination leads to significant efficiency gains and delivers real benefits to low-income riders. However, this outcome
is contingent on the financial means. When they become more constrained, the optimal policy changes. Taxation
proves to be the more powerful lever: its availability has a more decisive impact on the preferred fare structure than
driver fees.

Importantly, we find that FFF is not always more egalitarian than other policies. When resources are limited, a step-
fare or partial-fare-free (PFF) policy more effectively targets support to disadvantaged riders while preserving enough
revenue to sustain acceptable service levels. This finding serves as a cautionary note for equity-oriented advocates:
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progressive goals may not always align with fare-free proposals, particularly in the absence of strong public funding
mechanisms.

Finally, our analysis also reveals, paradoxically, that lifting all financial constraints can result in more individuals
being worse off—relative to the status quo—than retaining relatively tight controls. This outcome holds regardless of
the moral principle adopted and carries important implications for the viability of such policies, should they require
public approval.

The remainder of the paper is organized as follows: Section 2 reviews related literature; Section 3 presents the model
and formal problem formulation; Section 4 illustrates how the impact of full FFT are captured in the model; Section 5
reports and analyzes the numerical results from the Chicago case study; and Section 6 concludes with a summary of
findings and directions for future research.

2. Related studies

Our work is closely related to the study of transit fare policy and the practice of fare-free transit. In the following, we
review the relevant works in each of these areas.

2.1. Transit fare policy

Transit pricing is a classical problem in transportation economics. Standard theory suggests that the optimal fare
should ensure that the total cost borne by a transit passenger—including both fare and time cost—equals the marginal
external cost of their ride, which includes the costs imposed on other passengers as well as those incurred by the oper-
ator (Turvey and Mohring, 1975). Accordingly, the optimal fare equals the marginal social cost minus the passenger’s
own time cost (Jara-Diaz et al., 2024). Moreover, it is well established that the optimal service frequency—often
jointly determined with fare—is approximately proportional to the square root of demand (i.e., the total number of
passengers) (Jansson, 1980; Jara-Dı́az and Gschwender, 2003). This “square-root law” highlights the economies of
scale inherent in transit operations. Together with the Mohring effect (Mohring, 1972)—where increased demand
justifies more frequent service by reducing waiting times for all users—this provides a strong economic rationale for
subsidizing fares with public funding to achieve socially optimal service levels.

The classical framework has been augmented by practical considerations such as externalities of travel and mode
choice. Parry and Small (2009) analyze the welfare effects of fare adjustments in passenger rail and bus transit. Their
analysis derives optimal transit fares by accounting for temporal variation (peak vs. off-peak), various externalities
(such as congestion and pollution), and economies of scale. Empirical studies of Washington, DC, Los Angeles,
and London demonstrate that transit subsidies are highly efficient: even with a 50% farebox recovery ratio, further
fare reductions are well justified. Using a nested logit model to describe travel decisions (including scheduling and
mode choice), Basso and Silva (2014) analyze the efficiency of transit subsidies and how it interacts with other urban
transport policies, such as congestion pricing and dedicated bus lanes. They find significant substitutability among
these policies; in particular, dedicated bus lanes can generate substantial welfare gains “without requiring additional
public funding.” Building on a similar modeling framework as that of Parry and Small (2009), Börjesson et al. (2017)
examine how Stockholm’s congestion pricing scheme affects the optimal design of its bus system. They find that
congestion pricing reduces the need for transit subsidies, echoing the finding by Basso and Silva (2014). Additionally,
lowering service frequency during off-peak hours and deploying larger buses contribute most significantly to welfare
gains. Asplund and Pyddoke (2020) develop a stylized transit model featuring a radial spatial structure, two zones
(inner and outer), and two time periods (peak and off-peak), to study the welfare effects of optimizing bus fares and
service frequencies in the small Swedish city of Uppsala. They find that bus services are oversupplied in the outer zone
and that fare adjustments, in general, would have limited welfare impact. More recently, Almagro et al. (2024) extend
the model of Parry and Small (2009) to a realistic network setting, calibrated for the City of Chicago using emerging
data sources such as ride-hailing trip records and cellphone location data. They find that, to maximize welfare, current
fares should be reduced by more than 50%, accompanied by substantial cuts in service frequencies—28% for buses
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and 10% for trains. Similar adjustments are observed even when transit policies are jointly optimized with congestion
pricing.

While transit fare policies in practice often pursue a range of goals, the transportation economics literature—such
as the studies discussed above—focuses almost exclusively on system efficiency or aggregate welfare. Some stud-
ies report equity implications of fare policies (e.g., Basso and Silva (2014); Almagro et al. (2024)), but their design
objectives remain fundamentally utilitarian. In contrast, distributional impacts have received more attention in the
transportation planning literature, often explored through empirical case studies (e.g. Nahmias-Biran et al., 2014;
Rubensson et al., 2020; Tiznado-Aitken et al., 2021; Brown, 2018). A central concern is the distinction between flat
fares and alternative pricing schemes (e.g., distance- or time-based), as flat fares are commonly viewed as regres-
sive—placing a disproportionate burden on low-income travelers (Cervero, 1981; Brown, 2018).

A small body of work has examined fare policy optimization beyond the conventional focus on welfare or efficiency.
Borndörfer et al. (2012) formulate an intercity transit network model with O-D-specific fares and explore multi-
ple objectives, including demand, revenue, profit, and welfare maximization. Wang et al. (2021) compare flat and
distance-based fare policies under a profit-maximization framework for a single-line service, finding that distance-
based fares tend to favor short-distance riders—a result that helps explain their regressive nature. Huang et al. (2021)
develop a network-based fare and frequency optimization model that explicitly targets income inequality, using the
Gini coefficient as the objective function. Most recently, Dai et al. (2024) propose a comprehensive transit design
model that jointly determines fares, frequencies, road pricing, and dedicated tax rates under either a utilitarian (av-
erage utility) or egalitarian (utility of the most disadvantaged) objective. Their central aim is to assess whether, and
under what conditions, fare-free transit constitutes a just public policy.

2.2. Fare-free transit in practice

Fare-free transit (FFT), in various forms, has been implemented across many parts of the world, with mixed results
(Prince and Dellheim, 2019; Keblowski, 2020; Saphores et al., 2020; King and Taylor, 2023). Its success has varied
widely depending on social, political, and cultural contexts. This section reviews selected FFT implementations, with
particular emphasis on practices in Europe and the U.S.

Compared to other regions, Europe has been more receptive to large-scale FFT initiatives, often framing them as
part of broader sustainable development goals (Carr and Hesse, 2020; Keblowski, 2020). As early as the 1970s,
Bologna (Italy) launched one of Europe’s first major FFT experiments, offering free peak-hour transit as part of its
travel demand management program known as “Zone a Traffico Limitato” (ZTL), which aimed to “restore the human
dimension of [their] city” (Jäggi et al., 1977, Chapter 3). Similarly, the city of Hasselt (Belgium) implemented full-
scale FFT from 1997 to 2012, in an effort to “reinvent the urban transportation system [and develop] a city for people”
(Brie, 2019). A more recent and widely studied case is Tallinn (Estonia), which made transit free for residents in
2013 to encourage a mode shift from private cars to public transport and to improve mobility for unemployed and
low-income residents (Cats et al., 2017).

Other notable examples include cities in France (Briche et al., 2018; Huré et al., 2025), Poland (Štraub et al., 2023),
and Luxembourg, which implemented fare-free transit nationwide (Carr and Hesse, 2020; Gillard et al., 2024). On the
whole, Europe’s FFT programs have been relatively successful. Tallinn reported a 14% increase in transit ridership
following implementation (Cats et al., 2017), while smaller Polish cities such as Lubin and Żory saw ridership doubled
or even tripled within a year (Lugowski, 2019). In some cases, such as Hasselt, transit usage remained high even after
the FFT program was discontinued—thanks in part to pro-transit land use changes and supportive public policies
established during the FFT period (Brie, 2019).

Although the world’s first full-scale FFT system was launched in Commerce, California—where City of Commerce
Transit remains fare-free to this day2—the U.S. has seen relatively few and largely short-lived FFT experiments,
mostly in medium-sized cities (Keblowski, 2020). While the goals of these programs often echo those pursued in

2https://www.commerceca.gov/city-hall/transportation, accessed on 5/5/2025.
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Europe, their outcomes have been shaped by distinct socio-political and spatial contexts that make sustained commit-
ments to FFT more difficult.

One recurring concern in U.S. implementations is the increase in discretionary or “unnecessary” trips, which con-
tribute to crowding and service degradation without clear social or economic benefit (Vuchic, 2005, Chapter 8). U.S.
transit agencies have also reported challenges with disruptive or all-day passengers, raising safety and security con-
cerns and undermining overall service quality (Cline Jr et al., 2024; Hodge et al., 1994). A prominent example is
Austin, Texas, where a full FFT pilot launched in 1989 was terminated after one year due to a rise in problematic
ridership, vandalism, and system abuse (Perone and Volinski, 2003; Ray, 2019).

Beyond operational concerns, structural factors also constrain FFT viability in the U.S. Compared to Europe, Amer-
ican cities tend to be more car-oriented and less transit-accessible, limiting the potential for modal shift even under
fare-free policies (Conwell et al., 2023). As a result, full FFT has mostly been adopted in smaller cities with low
service densities and modest farebox recovery ratios, where the revenue loss can more easily be offset by alternative
funding sources such as local sales taxes (Perone and Volinski, 2003; Volinski, 2012; Keblowski, 2020; Kirschen
et al., 2022). In these settings, ridership impacts have been broadly similar to European cases, with substantial surges
in demand following FFT implementations (see Kirschen et al., 2022).

More recently, many U.S. transit agencies suspended fare collection during the COVID-19 pandemic, relying on emer-
gency funding to sustain operations (Siddiq et al., 2023). This widespread fare suspension served as a de facto pilot
for FFT. Among the few cities to continue the policy post-pandemic is Kansas City, Missouri, which has committed
to permanent fare-free service3. While the pandemic confounds causal inference, Kansas City experienced smaller
ridership declines and a faster rebound compared to peer agencies, suggesting potential retention benefits associated
with FFT (Kirschen et al., 2022).

Many local governments and transit agencies have struggled to balance affordability with service quality when imple-
menting full FFT, as these goals are often in tension. Eliminating fares means forgoing a crucial source of revenue,
which can threaten service quality unless alternative funding streams are secured (Harmony, 2018). Indeed, finan-
cial sustainability remains one of the primary reasons FFT programs are suspended or never implemented (Doxsey
and Spear, 1981; Dai et al., 2024). Therefore, many agencies have turned to partial FFT or reduced-fare programs.
These initiatives, which constrain fare-free access by time, location, or rider demographics, represent a form of dif-
ferential pricing intended to target specific policy goals (Keblowski, 2020; Cervero, 1990; Brown, 2018; King and
Taylor, 2023). If the aim is to improve access for disadvantaged groups—such as low-income households, older
adults, or people with disabilities—then eliminating or reducing fares for these riders is arguably the most direct and
cost-effective approach (Harmony, 2018). These groups tend to rely more heavily on public transit and spend a higher
share of their income on transportation (Garrett and Taylor, 1999; Darling et al., 2021; Brough et al., 2022).

In the U.S., demographic-based reduced-fare programs are anchored in federal policy. The Federal Transit Law re-
quires federally subsidized transit providers to offer at least a 50% fare discount during off-peak hours for seniors,
people with disabilities, and Medicare recipients4. Income-based programs, by contrast, are far less widespread: only
17 of the 50 largest U.S. transit agencies offer reduced fares based on income, and just one provides fully fare-free
service to very low-income riders (Darling et al., 2021). Eligibility for such programs typically requires proof of
income below a set threshold (e.g., a percentage of the federal poverty level) or enrollment in established assistance
programs such as SNAP. Despite their limited adoption, income-based programs have demonstrated effectiveness and
fiscal viability. For instance, Brough et al. (2022) conducted a controlled experiment in King County, WA, in which
low-income travelers in the treatment group received free transit passes. These riders averaged one additional board-
ing per day relative to the control group, and usage levels dropped back to baseline after the benefit expired. Similarly,
Harmony (2018) reviewed three case studies and found that the revenue forgone through reduced-fare programs con-
stituted only a small share of agency operating budgets. A particularly relevant example is the Regional Transportation
Authority (RTA) in the Chicago metropolitan area, where fare discounts are funded through a combination of state
reimbursements and local sources, including the Motor Fuel Tax (RTA, 2024).

3https://ridekc.org/fares/passes, accessed on 5/6/2025.
4Per Federal Transit Law, section 5307(c)(1)(D), see https://www.transit.dot.gov/sites/fta.dot.gov/files/2022-01/

Chapter-53-as-amended-by-IIJA-redline_0.pdf, accessed on 9/18/2025.
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2.3. Gaps in the literature

In summary, while demographic-based differential pricing has been widely implemented by governments around the
world, it remains underexplored in the transit design literature. Moreover, there is a lack of modeling frameworks
that capture the operational and behavioral impacts of full FFT, including its influence on service provision and
mode choice. Our study addresses these gaps by extending the transit design model of Dai et al. (2024) to explicitly
incorporate a general step-fare structure and the effects of full FFT, and by using it to evaluate how differing means
and social values shape optimal fare policies.

3. Model

3.1. Basic setting

Figure 1: Grid transit network (adopted from Dai et al.,
2024).

Consider a square city of grid streets with uniform
spacing sr. A bus service network is overlaid on the
grid with fixed line spacing S and stop spacing s, as
shown in Figure 1. The operator of the bus service
chooses a homogeneous headway h, and incurs an
operating cost determined by a vector of service vari-
ables xo ≡ {h, s, S }. In this study, only h is treated as
a design variable to simplify analysis5. In addition
to configuring operations, the operator also need to
choose a financial scheme to fund the bus system,
defined by a set of parameters x f . We shall discuss
finance in detail later.

3.1.1. Travelers and Utility

Travelers, distinguished by their income level, are uniformly distributed in space with a density ρ people per km2. We
model their average daily expenditure (ADE, income less tax and savings) as a random variable ẽ with a probability
density function (pdf) f (·) defined on a support Ξ = [e, e], where e and e are the smallest and largest ADEs, and∫ e

e f (e) de = 1. Each traveler makes on average n trips each day and for each trip they choose a mode m ∈ M = {b, d},
where taking bus is labeled as b and driving as d. Travelers always choose the mode that gives them the highest
possible utility, which depends on the benefits derived from (i) the transportation service they receive, or accessibility
Am, and (ii) consuming other goods and services, denoted as Em. Accordingly, the utility function for a traveler with
ADE e choosing mode m is defined as

Um(e) = u(Am, Em, e),m ∈ M. (1)

Following literature (e.g. Parry and Small (2009)), u(·) is assumed to be increasing and quasi-concave in Am and Em.
We further note that Am only depends on transit service xo, but Em depends on both the financial scheme x f and the
traveler’s ADE e:

Am = Am(xo),m ∈ M; (2a)
Em = Em(x f , e),m ∈ M. (2b)

5Including s and S in the analysis is straightforward but expected to yield no material impact on the main findings, see Section 6.4.2 of Dai
et al. (2024) for a discussion.
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3.1.2. Accessibility

In a spatially homogeneous setting as considered herein, mobility can be used as a proxy for accessibility. Mobility
for mode m, denoted as lm, is defined as the furthest distance one can reach using the mode within a given time budget
ta. Both private automobiles and buses share the city streets and are subjected to a network level congestion effect
modeled by a macroscopic fundamental diagram (MFD) (Geroliminis and Daganzo, 2008), which calculates average
speed as a function of the average traffic density in the network. Dai et al. (2024) showed that the average traffic
density (k) can be defined as a function of the share of driver among all travelers, γ, and the average speed for mode
m, vm, during the peak hour is related to k via a speed-density function gm(·):

k(γ) =
sr pρntd

2w
γ, (3)

vm = gm(k), ∀m ∈ M, (4)

where p is the fraction of hourly peak hour traffic in total daily traffic, td is the average trip duration, and gm(·), the
speed-density functions of mode m derived from the MFD, is non-increasing in k. The mobility of bus and driving
can be derived as (see Dai et al., 2024, for detail):

ld = tagd(k(γ)); (5a)

lb =
ta − h − (s + S )/(2vw)

1/gb(k(γ)) + ts/s
+

s + S
2
, (5b)

where vw is the speed of walking (between a passenger’s home/destination and a bus stop) and ts the time lost per stop.
Specifically,

ts = ts0 + Nbts1, (6)

Nb =
ρ(1 − γ)hS 2

2S/s − 1
, (7)

where ts0 is the time lost to acceleration and deceleration at each stop, ts1 is the time lost per passenger boarding,
and Nb is the number of passengers per stop per bus. Hence, ts is also endogenous, affected by both the bus demand
ρ(1 − γ) and the bus supply (as set by the operational variables xo).

The mobility by driving, ld, is non-increasing in γ due to the congestion effect: the more the bus riders (smaller γ),
the less the traffic congestion, hence the greater the mobility by driving. For bus, the relation between lb and γ is
ambiguous. A smaller γ can both enhance lb by lowering congestion and weaken it by increasing bus demand (hence
boarding time). The net effect of γ on the mobility by bus depends on which effect is dominant.

With mode-specific mobility, we define accessibility as

Ab = A(lb(xo, γ)); (8a)
Ad = A(ld(γ)), (8b)

and note that, under the assumption of spatial homogeneity, accessibility always increases with mobility, i.e. ∂Am/∂lm >
0,∀m ∈ M.

3.1.3. Expenditure

Each traveler faces an expenditure constraint

Em = e(1 − t − e0) − ncm, (9)

where t is the tax rate, e0 is the fraction of the expenditure for necessities (therefore not contributing to utility), and
cm represents the per trip monetary cost of using mode m. Without loss of generality, we assume e0 be non-increasing
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in e, indicating that a higher-income traveler would spend a lower share of their income on necessities. The mode-
specific transportation cost may vary with income under a means-based step-fare structure, which takes the following
form:

cd = c0 + τ, (10)

cb =

r1, if e ∈ [e, er);
r2, if e ∈ [er, e],

, (11)

where drivers face a fixed per trip cost c0 and a driver fee τ (a “tax” levied on drivers), while bus riders pay a discount
fare r1 per trip if their ADE is less than er, the discount fare qualification threshold (or discount threshold in short)
and a full fare r2 otherwise.

In summary, the operator can set five financial variables: the tax rate t, the two-tiered fare (r1, r2, er), and the driver
fee τ, collectively represented by x f ≡ {t, r1, r2, er, τ}. Since r1 is a discount fare, we have r1 ≤ r2.

3.1.4. Mode choice

We represent mode choice using an indicator function I(x ≥ y), which returns 1 when x ≥ y and 0 otherwise. For a
given design (xo, x f ), the mode choice of a traveler with e is given by I(Ud(e) ≥ Ub(e)).

Accordingly, the share of drivers is:

γ =

∫ e

e
f (e)I(Ud(e) ≥ Ub(e)) de. (12)

Since the utility of both modes depends on γ through the congestion effect and the boarding delay, the above equation
can be viewed as a fixed-point system, whose solution corresponds to a mode choice equilibrium. Formally,

Definition 3.1. (Mode choice equilibrium) Given transit operation design xo, finance scheme x f , and an ADE distri-
bution f , the mode choice equilibrium is achieved when the share of drivers γ satisfies Equation (12).

3.1.5. Bus budget and operating cost

The hourly operating cost, OC, can be estimated based on operating variables and mode share:

OC =
4πQ

hS
+

4πM

hvbeS
, (13a)

vbe = (1/gb(k(γ)) + ts/s)−1, (13b)

where vbe is also called the effective operating speed. In Equation (13a), the first term represents the fuel cost, where
πQ is the operating cost per vehicle revenue distance, and the second term captures the labor cost, where πM is the
operating cost per vehicle revenue hour. Note that 4/hS is the distance traveled by all buses per unit area per hour,
and 4/hvbeS is the total working hours of all bus drivers per unit area.

The operating budget comes from four revenue streams: fare revenue R, driver fee revenue C, tax revenue T and an
exogenous government funding B0. Due to the step-fare structure, the total fare revenue consists of two parts, namely
the discount fare revenue R1 and the full fare revenue R2, with R = R1 + R2. Denoting the total daily operating budget
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by B, we have

B = B0 + T + R1 + R2 +C, (14a)

T = ρt
∫ e

e
f (e)e de, (14b)

C = γτn = ρτn
∫ e

e
f (e)I(Ud(e) ≥ Ub(e)) de, (14c)

R1 = ρr1n
∫ e

e
f (e) (1 − I(Ud(e) ≥ Ub(e))) I(e < er) de, (14d)

R2 = ρr2n
∫ e

e
f (e) (1 − I(Ud(e) ≥ Ub(e))) I(e ≥ er) de. (14e)

Since the bus service is designed to accommodate peak-hour demand, we assume the budget is allocated proportionally
to the level of demand during this period. Recalling that p is employed to denote the ratio of the peak-hour travel
demand to the total daily demand, the operator must ensure

OC ≤ pB. (15)

3.2. Design model

3.2.1. Step-fare transit design (SFTD)

The step-fare transit design (SFTD) problem aims to set the operating variables xo and the financial variables x f such
that a system objective is maximized while satisfying the mode choice equilibrium and the budget constraint.

Since a chief concern of our study is the fairness of transit fare structure, we consider two objectives informed by
opposing ideologies: (i) a utilitarian objective defined by the total utility of all travelers (or the utility of an average
traveler); and (ii) an egalitarian objective defined by the utility of the least advantaged traveler (i.e. the traveler with
the lowest utility among all). The latter is derived from the difference principle in the theory of justice (Rawls, 1971).
The total and the lowest utility can be defined, respectively, as

Utotal = ρ

∫ e

e
f (e)U(e) de, and Umin = min

e
U(e), (16)

where U(e) = maxm Um(e)—the utility of the chosen mode for ADE level e.

We then define the feasible set of the design variables as

X ≡ {(xo, x f )|h ∈ [h, h], s = ssq, S = S sq, t ∈ [0, t], r1 ∈ [0, r2], r2 ∈ [0, r2], er ∈ [e, e], τ ∈ [0, τ]},

where x and x are the variable bounds for the decision variable x. Note that s and S are fixed at the status quo value
(noted by subscript sq) which will be defined later. The financial variables all have a lower bound of 0, and the
discount fare r1 has an upper bound r2. We formulate the SFTD problem as follows:

max
(xo,x f )∈X

Utotal or Umin (17a)

subject to: (12) and (15). (17b)

3.2.2. Analysis

In this section, we attempt to characterize mode choice equilibrium and its welfare effects, especially regarding the
identification of the most disadvantaged traveler. In addition to useful insights, these properties also greatly simplify
the design formulations. To this end, we need to introduce the following assumption on mode choice preferences.

9



Assumption 3.2. At any level of ADE, extra spending power always adds more utility to driving than to transit, i.e.
∂Ud
∂e >

∂Ub
∂e ,∀e ∈ Ξ.

In other words, a rise in income always leads to a higher marginal gain for driving than for transit. It follows that a
traveler with a sufficiently high income would always prefer driving to transit.

Our first result concerns the mode choice equilibrium for given operational and financial variables. It is an extension
from a similar result given in Dai et al. (2024), which assumes a universal fare structure.

Proposition 3.3. For any (xo, x f ) ∈ X, there always exists a threshold ADE, denoted as ê, such that travelers with
e > ê drive and those with e < ê ride bus. The threshold ADE ê and the transportation cost cm paid by different
travelers could be determined following one of the four scenarios below:

S1: Ud(e) ≥ Ub(e) (everyone chooses driving): ê = e, all travelers pay driver fee τ;
S2: Ud(e) ≤ Ub(e) (everyone chooses bus): ê = e, travelers with e < er pay discount fare r1, and travelers with

e ≥ er pay full fare r2;
S3: both modes are used and r1 = r2 (uniform fare): ê is the unique solution to Ud(e) = Ub(e), travelers with e < ê

pay uniform fare r1 = r2, and travelers with e ≥ ê pay τ;
S4: both modes are used and r1 < r2 (step fare):

i: no feasible e exists such that Ud(e) = Ub(e): ê = er, travelers with e < er pay r1, and travelers with e ≥ er

pay τ;
ii: ê is the unique solution to Ud(e) = Ub(e) and ê < er: travelers with e < ê pay r1, and travelers with e ≥ ê

pay τ;
iii: ê is the unique solution to Ud(e) = Ub(e) and ê > er: travelers with e < er pay r1, travelers with er ≤ e < ê

pay r2, and travelers with e ≥ ê pay τ.

Proof. See Appendix A.1. □

Note that many of the scenarios above are corner cases. Scenario S1 and S2 are not realistic since only one mode
is used. Scenario S3, S4-i and S4-ii are cases where all transit users are charged the same transit fare r1, so the
transportation cost outcome is equivalent to the uniform-fare transit design problem detailed in Dai et al. (2024).
Hereafter, we ignore the nuance of the corner cases by assuming scenario S4-iii, where e < er < ê < e, i.e. travelers
with e ∈ [e, er) ride bus and pay discount fare r1, travelers with e ∈ [er, ê) ride bus and pay full fare r2 and travelers
with e ∈ [ê, e] drive and pay driver fee τ. This is formally stated as Assumption 3.4 below.

Assumption 3.4. The transit service and finance designs (xo, x f ) are such that e < er < ê < e, where ê is the unique
solution to Ud(e) = Ub(e).

Because the traveler with ê is indifferent to the two modes, we shall refer to ê as the indifferent ADE hereafter. Note
that the share of drivers is related to ê through

γ =

∫ e

ê
f (e) de. (18)

This implies that we can also replace γ with ê, which has the benefit of being a variable directly affecting utility.
Moreover, the mode choice equilibrium condition dictates that

Ub(ê) = Ud(ê). (19)

Proposition 3.3 suggests that we can rewrite the utilitarian objective as

Utotal = ρ

(∫ ê

e
Ub(e) f (e) de +

∫ e

ê
Ud(e) f (e) de

)
. (20)
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Accordingly, the utilitarian SFTD (SFTD-U) model can be specified as (excluding the possibility that only one mode
gets used for a given design):

max
(xo,x f )∈X

Utotal = ρ

(∫ ê

e
Ub(e) f (e) de +

∫ e

ê
Ud(e) f (e) de

)
(21a)

subject to: Ub(ê) = Ud(ê), (21b)
4πQ

hS
+

4πM

hvbeS
≤ (T + R1 + R2 +C + B0)p, (21c)

where Constraint (21b) imposes mode choice equilibrium and Constraint (21c) ensures the operating cost does not
exceed the budget allocated to the peak hour. Moreover, the four endogenous components in the budget are computed
by

T = ρt
∫ e

e
f (e)e de,R1 = ρr1n

∫ er

e
f (e) de,R2 = ρr1n

∫ ê

er

f (e) de, and C = ρτn
∫ e

ê
f (e) de. (22)

The egalitarian objective involves identifying the most disadvantaged traveler and maximizing their utility. This can
be framed as a robust optimization problem that maximizes a worst-case outcome (the utility of the least advantaged
traveler in our case). Such a problem is often reformulated as an semi-infinite dimensional problem that turns the inner
minimization problem into a set of constraints. Using this idea, we write the egalitarian SFTD (SFTD-E) problem as
follows:

max
(xo,x f ,z)∈X×R

z (23a)

subject to: z ≤ U(e),∀e ∈ Ξ, (23b)
(21b) and (21c). (23c)

At first glance, Constraint (23b) seems hopelessly intractable. However, it is usually possible to replace it with a finite
number of constraints (known as “cuts”). These cuts may be generated iteratively or ex ante. Our next result clarifies
that, in fact, only two cuts would suffice to ensure optimality for the SFTD-E problem.

Proposition 3.5. For any joint design (xo, x f ) that satisfy Assumption 3.4, the most disadvantaged traveler has an
ADE that is either the lowest ADE e or the discount threshold er. Moreover, they always ride bus. Thus, Umin =

min{Ub(e),Ub(er)}.

Proof. See Appendix A.2. □

Thus, Problem (24) can be equally formulated as

max
(xo,x f ,z)∈X×R

z (24a)

subject to: z ≤ Ub(e), (24b)
z ≤ Ub(er), (24c)
(21b) and (21c), (24d)

4. Impact of full fare-free implementation

When both the discount and full bus fares become zero in Problem (17), i.e. r1 = r2 = 0, several special effects may
arise that warrant careful consideration. Below, we describe how these FFF effects are accounted for in our design
framework.
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The first is the so-called zero-price (ZP) effect, which refers to a sudden increase in price elasticity when a good
becomes completely free. In the literature, ZP effect is often attributed to consumers overestimating the utility of
free goods (Shampanier et al., 2007). To account for this phenomenon, we model the effect by increasing bus riders’
sensitivity to accessibility Ab when fares are set to zero. Specifically, the perceived utility function under the ZP effect
is defined as follows:

U′
m(e) =

u(βZPAm, Em, e), if r1 = r2 = 0,m = b;
u(Am, Em, e), otherwise.

, (25)

where βZP > 1 is a constant inflator. It is worth emphasizing that, while travelers make mode choice decisions based
on their perceived utility U′

m, the bus operator still evaluates the system objective using travelers’ actual utility Um.

Second, boarding may become more efficient when fare collection is eliminated. In bus operations, this allows both
the front and rear doors to be used for boarding, thereby reducing the average boarding time per passenger (ts1). We
incorporate this effect by scaling ts1 with

t′s1 =

βBE ts1, if r1 = r2 = 0,m = b;
ts1, otherwise.

(26)

where βBE ∈ (0, 1) is a constant deflator.

Lastly, switching to a fare free operation may help reduce the operating cost because fare enforcement equipment
and staff are no longer needed. This could be modeled by scaling down both the distance-based and the time-based
operation cost parameters, i.e.,

π′Y =

βCS πY , if r1 = r2 = 0,m = b;
πY , otherwise.

,Y ∈ {Q,M}, (27)

where βCS ∈ (0, 1) is a constant deflator.

The three FFF effects, characterized by the three FFF factors, introduce discontinuities into the design model, which
significantly complicates its analysis. The good news is that Proposition 3.3 and 3.5, as well as Assumption 3.4, still
hold after only minor modifications. Notably, the mode choice equilibrium condition now becomes U′

b(ê) = U′
d(ê),

signifying the fact that users perceive transit utility differently at the zero price point. Due to the discontinuities, it
is difficult to find optimal FFF designs as a solution to the SFTD problem. To overcome the challenge, a separate
optimization problem is needed, referred to as the full fare-free transit design (FFTD) problem. We first define a basic
FFTD problem called the FFTD-NA problem, where none of the FFF features are considered, as the SFTD problem
(17) with an additional constraint r1 = r2 = 0. Then we introduce four variants of of the FFTD problem based on
the FFTD-NA problem. We define the FFTD-ZP problem by replacing the mode choice equilibrium constraint by
U′

b(ê) = U′
d(ê), the FFTD-BE problem by replacing ts1 with t′s1 and the FFTD-CS problem by replacing πQ with π′Q

and πM with π′M . Finally, when all the FFF features are considered all together, we have the FFTD-ALL problem:

max
(xo,x f )∈X

Utotal or Umin (28a)

subject to: U′
b(ê) = U′

d(ê), (28b)
4π′Q
hS
+

4π′M
hv′beS

≤ (T +C + B0)p, (28c)

r1 = r2 = 0, (28d)

where v′be =
(
1/gb (k(γ)) +

(
ts0 + Nbt′s1/s

))−1
is the effective operating speed under improved boarding speed per

passenger, t′s1.
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5. Case study

In this section, we present the results of numerical experiments based on a case study in Chicago. In Section 5.1, we
briefly discuss the solution methods for the SFTD and FFTD problems. This is followed by the specification of the
utility functions and parameters in Section 5.2. We then compare the SFTD-U and SFTD-E designs in Section 5.3 and
the impact of the FFF features in Section 5.4. Lastly, we discuss the moral implications of different fare structures in
Section 5.5.

5.1. Solution methods

To determine the optimal design with full FFF features, we have to compare the solution to the SFTD problem and that
to the FFTD-ALL problem, and choose the one that provides a better objective function value. To rule out the corner
solutions and ensure Assumption 3.4 holds, we impose two additional constraints on indifferent ADE: e ≤ ê ≤ e
and er ≤ ê. For the SFTD problems, infeasibility is reported when no feasible ê is found to satisfy Ud(ê) = Ub(ê) .
Note that it is possible that a uniform-fare design emerge as the optimal solution. Similarly, for the FFTD problem,
infeasibility arises when no feasible ê is found to satisfy U′

d(ê) = U′
b(ê).

Both SFTD and FFTD problems are treated as optimization problems with respect to xo, x f and ê. These problems
are nonlinear and non-convex, due largely to the mode choice equilibrium condition. While finding global solutions to
non-convex problems is generally difficult, our problems are simple enough that we can afford solving each instance
with over-the-shelf local search algorithms many times (each with a different starting point). Our experiments indicate
that this approach effectively mitigates the risk of being stuck at poor local optimums. All models are coded in
MATLAB R2022b and run on a personal computer with Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz and 16 GB
RAM. The optimization solver used in the numerical experiment is MATLAB’s fmincon function, available through
the Optimization ToolboxTM.

5.2. Case study setup

The utility functions employed in the case study take the Cobb-Douglas form:

Um(e) = Aαm
(Em

e

)1−α

=

(
lm
l0

)α (Em

e

)1−α

=

(
lm
l0

)α (
1 − t − e0 −

ncm

e

)1−α
, (29)

where l0 is the mobility of driving under the free-flow travel condition, and α ∈ [0, 1] is the weight of contribution
to utility by accessibility. To facilitate the comparison of utilities across modes and ADE levels, we normalize the
two components by l0 and e, respectively. We leave it to the reader to verify that the utility function (29) satisfies
Assumption 3.2 as well as the following conditions: For m ∈ M,

1. (Um increasing and quasi-concave in Am) ∂Um
∂Am
> 0, ∂

2Um

∂A2
m
≤ 0;

2. (Um increasing and quasi-concave in Em) ∂Um
∂Em
> 0, ∂

2Um

∂E2
m
≤ 0;

3. (Am increasing in lm) ∂Am
∂lm
> 0.

The parameter values were estimated based on the pre-COVID transit demand data in the city of Chicago and the
operation data of the Chicago Transit Authority (CTA). The main data source includes 2019 American community
surveys (ACS), Chicago Metropolitan Agency for planning (CMAP) surveys, Consumer expenditure reports as well as
National Transit Database (NTD) Operation Statistics. The default values of key parameters in our model are adopted
from Dai et al. (2024), summarized in Table 1. The justification for the choice of the default values is provided in
Appendix B. Here, we focus on the FFF factors introduced in Section 4, because they are not included in Dai et al.
(2024).

Recall that each of the three FFF features addresses a different aspect of transit operation. First, the parameter βBE

adjusts downward the boarding time per passenger when fare collection is eliminated. Since CTA has never imple-
mented FFT before, we elect to estimate βBE using empirical evidence collected in other cities. The City of Boston
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Table 1: Default parameter values for the design models.

Variable Description Value
Supply

q key flow coordinates on the MFD {200, 320, 330, 280} veh/h
k key density coordinates on the MFD {5, 10, 17, 22} veh/mile-lane
vw walking speed 4 km/h
sr road spacing 0.4 km
ts0 time lost per stop due to deceleration and acceleration 12 s
ts1 time lost added per boarding passenger 1 s
w number of lanes 4 lanes
πQ maintenance and fuel cost per vehicle revenue km $1.5/veh-km
πM labor cost per vehicle revenue hour $117/veh-hour

Demand
ta travel time budget 30 min
td average trip duration 21 min
ρ traveler density 2400 travelers/km2

e boundaries of ADE distribution ${31.4, 44.4, 58.1, 78.0, 133.2}
c0 driving cost per trip $5.4

Decision (status quo)
hsq status quo headway 10 min
ssq status quo stop spacing 0.223 km
S sq status quo line spacing 0.4 km
tsq status quo local option sales tax 1.0%
rsq status quo fare per trip $1.25
τsq status quo driver fee per trip $0

Calibrated parameters
B0 daily government subsidy per square kilometer $1320
α weight factor in utility function 0.35
n number of trips per person per day 2.65 trips
p fraction of daily trips in one peak hour 0.085

FFF factors
βZP Zero-price effect factor on perceived utility 1.12
βBE Boarding time reduction factor 0.77
βCS Operation cost reduction factor 0.96

and the Massachusetts Bay Transportation Authority (MBTA) have implemented FFT on three high-ridership routes
recently. It was reported that, in the initial pilot period, the boarding time per passenger has decreased by 23%6. Given
CTA and MBTA are both large metropolitan transit operators (with similar service areas, populations and fares, see
NTD, 2021), it is reasonable to expect a similar reduction in boarding time in Chicago should FFT be implemented.
Accordingly, we estimate βBE = 0.77 in our model.

Second, βCS measures the operating cost savings associated with fare collection staff labor and equipment. For bus
operation, the magnitude of these savings vary significantly across agencies (ranging from 0.5% to 22%), depending
on, among other factors, how much was spent on fare collection efforts before the introduction of FFT (Volinski,
2012). In our study βCS is set to 0.96, because large bus agencies on average save about 4% on fare collection when
they implement FFT according to Volinski (2012).

Finally, βZP gauges the extra benefit of free transit as perceived by travelers. As this effect has a direct impact on mode
choice, it can be estimated from the change in the ridership before and after the fare-free implementation. Roughly
speaking, we search for a βZP that induces a relative ridership increase in our model similar to what was observed in
reality. In Boston, the fare-free routes see an average ridership increase of about 38%7. Following the trends observed

6https://www.boston.gov/sites/default/files/file/2022/03/Route28_Report_FINAL.pdf, accessed on 4/6/2025.
7ibid.
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in Boston, we estimate the increase in ridership that can be attributed to the fare-free implementation is 38%. Using
our model and setting βBE and βCS at the values set above, we find when βZP = 1.12, a 38% ridership jump is achieved
when fare is reduced from the status quo to zero.

5.3. Step-fare transit designs

We test step-fare transit design using three experiments collectively labeled as Experiment 1. In Experiment 1-i, the
operator is allowed to collect as much taxes and driver fees as required by the optimization of a given objective. In
1-ii, the tax rate is capped at 1% and the driver fee is capped at $1. The third set mimics the financial situation at
the status quo by capping the tax rate at 1% while eliminating the driver fee. For each set, we solve both SFTD-U
(utilitarian objective) and SFTD-E (egalitarian objective) problems.

5.3.1. Benefits of step-fare designs

To gauge the benefits of step-fare designs, we solve a uniform-fare version of the design model (where an additional
constraint r1 = r2 is enforced when solving the SFTD) as a benchmark. This means for each experiment set we create
four designs, labeled as E0 (uniform-fare egalitarian), E (step-fare egalitarian), U0 (uniform-fare utilitarian), and U
(step-fare utilitarian).

Table 2 reports all twelve solutions, as well as the conditions at the status quo (SQ). Each solution specifies the
headway h, the fares (r1, r2), the tax rate (t), the driver fee (τ), the total utility (Utotal), the utility of the least advantaged
traveler (Umin), the transit share (for the step-fare designs, the two percentages reported correspond to the shares of
travelers charged discount fare r1 and full fare r2 respectively) and the Gini coefficient. Note that the Gini coefficient
is a measure of distributive impact8.

Table 2: Uniform-fare vs. Step-fare designs.

Scenario h t r1 r2 τ Umin Utotal Transit% Gini
SQ 0.167 1.0% 1.25 0.00 0.2884 950.1 29% 0.1219
1-i-E0 0.063 4.3% 0.00 3.49 0.3783 977.9 80% 0.0427
1-i-E 0.061 3.3% 0.00 0.89 4.26 0.3847 978.8 61% 20% 0.0363
1-i-U0 0.074 3.7% 0.00 1.59 0.3779 1008.1 67% 0.0639
1-i-U 0.070 0.0% 0.00 2.35 3.17 0.3540 1012.5 47% 20% 0.0672
1-ii-E0 0.125 1.0% 0.25 1.00 0.3470 986.7 51% 0.0913
1-ii-E 0.111 1.0% 0.29 0.71 1.00 0.3540 990.7 30% 21% 0.0881
1-ii-U0 0.099 1.0% 0.70 1.00 0.3433 991.3 52% 0.0914
1-ii-U 0.099 1.0% 0.00 1.03 1.00 0.3434 992.7 17% 34% 0.0899
1-iii-E0 0.174 1.0% 1.17 0.00 0.2886 948.9 28% 0.1220
1-iii-E 0.170 1.0% 1.08 1.34 0.00 0.2939 946.9 10% 18% 0.1215
1-iii-U0 0.155 1.0% 1.42 0.00 0.2867 951.1 29% 0.1222
1-iii-U 0.155 1.0% 1.42 1.42 0.00 0.2867 951.1 29% 0.1222

We first observe that step-fare designs outperform their uniform-fare counterparts in all experiments. This is expected
since the uniform-fare version has an additional constraint r1 = r2, which could not improve the solution. However,
the improvements due to the added flexibility in the fare policy are modest even without any financial constraints (Set
1-i), where the objective function is improved by 1.7% for the egalitarian design and 0.4% for the utilitarian design.
As the financial constraints tighten up, the improvement diminishes. In Set 1-iii, where the driver fee is forbidden,
using a step-fare design makes no difference at all for the utilitarian objective.

When financial constraints are non-existent (Set 1-i), a partial-fare-free (PFF) design (i.e., r1 = 0, r2 > 0) is both just
and utility-maximizing. For an egalitarian, the bus system should be made free for low-income riders and funded by

8Gini coefficients falls between 0 (perfect equality) and 1 (inequality). Smaller Gini coefficients indicate more equal distribution.
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high taxes (t), high driver fees (τ), and a modest full fare (r2). Since the bottom 60% of the travelers qualify for free
ride, a greater burden of financing the bus system falls onto drivers and higher-income bus riders. This significant
redistribution of resources produces a more egalitarian outcome than the status quo and the uniform-fare egalitarian
design. For a utilitarian, the bus system is funded by a high full fare (nearly doubling the current fare) and high driver
fees, while completely avoiding taxation and keeping the fare free for low-income riders. In this case, nearly half of all
travelers are qualified for fare-free transit, implying that the utility gained from waiving the fare for them outweighs
the utility lost to higher fare and driver fees paid by the others.

When the financial constraint tightens (Set 1-ii), uniform-fare designs no longer admit an fare-free solution regardless
of the objective. Clearly, the limited tax and driver fee revenue cannot sustain a reasonable service level in the absence
of fare revenue. With a step-fare structure, the result is somewhat unexpected. Whereas the egalitarian design offers
low-income travelers a discount fare slightly less than half of the full fare, the utilitarian design gives them a free ride,
electing instead to have the wealthier bus riders bear all the burdens. In other words, a PFF design is not just (in the
Rawlsian sense) but utility-maximizing. Of course, the tightened financial conditions mean that the share of travelers
who can enjoy free rides plummeted from 47% in 1-i-U to 17% in 1-ii-U. Moreover, for the egalitarian design, the
step-fare solution actually collects significantly higher farebox revenues than the uniform-fare solution—in fact, even
the discount fare ($0.29) is higher than the $0.25 optimal uniform fare. A higher budget leads to a better level of
service, which more than compensates the utility lost to a mild fare increase for the most disadvantaged traveler.

Under the financial austerity of the status quo (Set 1-iii), an egalitarian design still favors a step-fare solution, which
sets the discount fare at about 80% of the full fare. On the other hand, fare discount no longer moves the needle in a
utilitarian design. Indeed, the four solutions in this set, despite the minor variations in fare and headway, all lead to
transit shares and Gini indexes quite similar to those achieved at the status quo.

5.3.2. Distributive effects

Figure 2 visualizes the distributive effects of optimal step-fare and uniform-fare designs in the three sets of experi-
ments. Shown on the left column were the utility profiles—the utility as a function of ADE—achieved under different
designs. The right column reports corresponding Lorenz curves and Gini indices. To plot the Lorenz curve for a given
utility profile, we rank the utilities for all ADE levels, and obtain the share of travelers at each utility level. The curve
represents the ranked cumulative utilities against the cumulative share of travelers. Following the relation between
Gini coefficients and Lorenz curves, we calculate the Gini coefficient of any distribution as twice the area between the
45 degree “perfect equality” line and the corresponding Lorenz curve.

Let us begin with the results of Set 1-i (the first row from Figure 2), where the operator is given the greatest financial
freedom. Figure 2(a) indicates that under the step-fare egalitarian designs (blue solid curves), the utility of the traveler
with the lowest ADE equals the utility of the traveler at the discount threshold e∗r . This means both constraints (24b)
and (24c) are active at optimality. Clearly, the discontinuity manifested in the utility profiles of step-fare designs
results from the fare structure. Comparing to the egalitarian uniform-fare designs (blue dashed lines), the step-fare
designs improves the utility of the low income bus riders, while sacrificing the utility of the others. As a result, the
Lorenz curve for the egalitarian step-fare design (see the blue solid curve in Figure 2(b)) is the closest to the perfect
equality line (with the lowest Gini index of 0.036).

From Figures 2(a) and 2(c) we can see that the utilitarian designs (red solid lines) leverage the step-fare structure
to offer the low income bus riders a free transit service. While the policy lifts the utility of low income travelers
significantly above the level at the status quo, it comes at a steep cost for those who are stuck with transit but now
have to pay more to access the service (observe that the utility drops sharply when the fare jumps at e∗r ). Another
group that benefits from the utilitarian design is the drivers on the opposite end of the income spectrum: they too are
better off than at the status quo. Taken together, the step-fare utilitarian design is more efficient than the uniform-fare
counterpart but less equal in the distribution of benefits when the financial constraints are loose (as reflected by the
red Lorenz curves and Gini indices in Figures 2(b) and 2(d)).

With tighter financial constraints, the trends observed above fade away. In Figures 2(e) and 2(f), the differences
between the curves associated with different designs are barely noticeable. The implication is clear: without the
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flexibility to raise revenues from other sources, optimizing the fare structure and operation has limited impact on the
distribution of benefits, regardless of the moral principle adopted.
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(c) Set 1-ii, utility profiles.
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(d) Set 1-ii, Lorenz curves.
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(e) Set 1-iii, utility profiles.
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(f) Set 1-iii, Lorenz curves.

Figure 2: Distributive effects of the step-fare and uniform-fare designs across
three experimental settings. A perfectly equal distribution corresponds to a
Lorenz curve that coincides with the 45-degree line. Greater inequality is
indicated by a more pronounced “bowing” or convexity of the Lorenz curve
away from this line.

Finally, a comparison of Figures
2(a) and 2(c) reveals a striking
and somewhat paradoxical find-
ing: when more financial re-
sources are available, the opti-
mally designed policies end up
making more travelers worse off
relative to the status quo. This
outcome holds regardless of the
moral principle adopted, though it
is more pronounced under egal-
itarianism: any traveler with an
ADE above $60 experiences a
lower utility under the optimal
egalitarian policy than under the
status quo. A closer look shows
that without financial constraints
(Set 1), the egalitarian and utili-
tarian policies make 45.46% and
43.69% of travelers worse off, re-
spectively. These figures drop to
37.52% and 37.69% under mild
financial restrictions (Set 2). In
other words, spending more does
not necessarily improve condi-
tions for more people. The reason
is that greater financial flexibility
gives the planner more power to
redistribute, but also reduces the
incentive to account for those ad-
versely affected by the policy. If
we assume each individual votes
against policies that leave them
worse off, then policies devel-
oped under mild financial con-
straints may face less opposition
in a democratic process than those
designed without any budgetary
limits.

5.4. Full fare free design

The results from the previous section suggest that a full-fare-free (FFF) policy is rarely justified, regardless of the
moral principle applied. However, up to this point, we have not accounted for any potential benefits of the FFF
policy, including the zero-price (ZP) effect, the boarding efficiency (BE) effect, and the cost reduction (CR) effect.
Could incorporating one or more of these features alter our conclusions? To explore this question, we revisit the
setting without financial constraints (scenario i in Experiment 1) and solve four variants of the FFTD problem: (1)
ZP—incorporating only the zero-price effect; (2) BE—incorporating only the boarding efficiency effect; (3) CR—
incorporating only the cost reduction effect; and (4) ALL—incorporating all three effects. These experiments are
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labeled as Experiment 2.

5.4.1. Benefits of full-fare-free designs

Table 3 compares the four FFF designs (ZP, BE, CR and ALL) against two benchmarks: an optimal step fare design
from Experiment 1-i and a basic FFF design (NA). Note that none of the three FFF features are considered in the
benchmark designs. It includes similar metrics as Table 2 except (i) U′

min specifies the minimum perceived utility due
to the ZP effect; and (ii) The transit fares are omitted because they are fixed at 0 in all FFF designs.

Table 3: Impact of FFF features.

Scenario h t τ Umin U′
min Utotal Transit% Gini

2-i-E-NA 0.063 4.3% 3.49 0.3783 0.3783 977.9 80% 0.0427
2-i-E-ZP 0.063 4.7% 3.03 0.3757 0.3909 975.7 81% 0.0460
2-i-E-BE 0.065 3.7% 3.58 0.3856 0.3856 993.8 81% 0.0405
2-i-E-CR 0.061 4.1% 3.49 0.3803 0.3803 982.4 81% 0.0423
2-i-E-ALL 0.064 4.0% 3.11 0.3848 0.4004 995.6 82% 0.0434
1-i-E 0.061 3.3% 4.26 0.3847 0.3847 978.8 81% 0.0363
2-i-U-NA 0.074 3.7% 1.59 0.3779 0.3779 1008.1 67% 0.0639
2-i-U-ZP 0.074 4.3% 1.10 0.3743 0.3895 1008.3 67% 0.0692
2-i-U-BE 0.077 3.3% 1.53 0.3843 0.3843 1022.8 67% 0.0624
2-i-U-CR 0.072 3.6% 1.57 0.3797 0.3797 1012.4 67% 0.0635
2-i-U-ALL 0.076 3.8% 1.02 0.3823 0.3978 1026.8 67% 0.0673
1-i-U 0.070 0.0% 3.17 0.3540 0.3540 1012.5 67% 0.0672

The impacts of the BE and CR effects are relatively straightforward, as both unequivocally enhance operational effi-
ciency. The BE effect alone leads to improvements in both Umin and Utotal by 1.9% and 1.5%, respectively, under the
egalitarian and utilitarian designs. In contrast, the CR effect has a more modest impact, yielding a 0.5% improvement
in the egalitarian design and a 0.4% improvement in the utilitarian design. The ZP effect is more nuanced because it
only increases the appeal of transit by manipulating its perceived utility. Whereas the perceived utility for the most
disadvantaged bus rider is increased by 3.3% under the egalitarian design, their actual utility fell by 0.7%. This dis-
crepancy seems to highlight the peril of misperception, as the designer is compelled to offer a sub-optimal service
to cope with an irrational response to a free good. However, this risk does not seem to generalize to the utilitarian
design, for which the ZP effect is in fact a positive influence on the total actual utility, albeit the gain (about 0.02%) is
negligible. In other words, travelers’ irrationality may sometimes benefit, rather than hinder, system-wide objectives.
When all three effects are incorporated, the resulting designs outperform the benchmark by 1.9% and 1.7% under the
egalitarian and utilitarian objectives, respectively.

Moreover, the BE and CR effects are both equity-enhancing, since they help close the mobility gap between bus riders
and drivers. This is confirmed by the decrease in the Gini indexes for both egalitarian and utilitarian designs. On
the other hand, by inducing more travelers to use transit, the ZP effect actually worsens the gap in the actual utility
between bus riders and drivers. This has an adversarial impact on equity, as evidenced in a slight increase in the
Gini index—measured based on the distribution of actual utility. When considering all FFF effects together, the net
impact on equity is generally indeterminate. However, in our numerical study, the adverse influence of the ZP effect
outweighed the equity gains from BE and CR: the Gini indices increased by 1.6% and 5.3% under the egalitarian and
utilitarian objectives, respectively.

Comparing the FFTD-ALL outcome and the optimal SFTD outcome (2-i-ALL vs. 1-i), we observe that, for both the
egalitarian and utilitarian objectives, FFF designs outperform the optimal SFTD ones (which prescribe PFF policies).
Under the utilitarian objective, the total actual utility increases by 1.4%. Additionally, the FFF policy improves the
utility of the most disadvantaged traveler by a drastic 8.0%, since under the setting 1-i-U, the PFF was discriminatory
to those who have to pay for the full fare. For the egalitarian designs, although the objective functions are comparable
under the FFF policy and the PFF policy (Umin of FFF policy is only 0.03% higher than that of PFF policy), the total
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utilities and distributive effects are quite different. While the PFF policy is more equitable (as evidenced by a Gini
index that is 16% lower), the FFF policy yield a total utility that is 1.7% higher.

5.4.2. Distributive effects
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Figure 3: Utility profiles of FFTD solutions, with and with-
out the FFF features.

Figure 3 compares the utility profiles of the egali-
tarian and utilitarian FFF designs with and without
the three FFF features. We can see that these fea-
tures consistently increase utility under the utilitar-
ian design: the red solid line (with the features) re-
mains above the red dashed line (without the fea-
tures) across all traveler types. A similar pattern
holds under the egalitarian design, except for a sub-
set of travelers who experience nearly identical util-
ity under both settings (where the blue solid line and
the blue dashed line intersect). A closer inspection
reveals that transit users with ADE values near the
indifference point (just left of the discontinuity on
the blue solid line) experience a slight decrease in
utility when FFF features are added. The discontinu-
ity in the solid lines can be attributed to the ZP ef-
fect, which causes travelers to overestimate the util-
ity of transit due to its perceived “free” nature. As
a result, some travelers who would otherwise drive
choose transit instead. Notably, this discontinuity disappears in the perceived utility profiles (dotted lines), as travel-
ers make choices based on perceived rather than actual utilities.

Figure 3 also shows that, while the FFF features disproportionately benefit drivers under the utilitarian design, this
imbalance is mitigated in the egalitarian design. In the former, driver fees drop by 36% (which exclusively benefits
drivers), accompanied by a 3% increase in taxes—in the end, although transit users benefit from a better service, this
modest gain is canceled out by a higher tax burden. In contrast, under the egalitarian design, incorporating the FFF
features results in a 7% reduction in the tax rate and an 11% reduction in driver fees. Thus, transit users not only enjoy
better service quality but also face a lower tax burden.

5.5. Moral implications of fare structures

In this section we attempt to address the following question: are there correlations between the moral principle adopted
in the design and the optimal fare structure, and if so, to what extent do the financial constraints affect them? To this
end, we create a large number of experiment sets by varying the financial caps (t, τ) ∈ [0, 0.05] × [0, 5], i.e., the tax
rate cap varies between 0% and 5% and the driver fee cap varies between $0 and $5. For each experiment set, we
solve both the SFTD problem and the FFTD-ALL problem with the utilitarian and egalitarian objectives, and report
the optimal solutions.

5.5.1. Optimal fare structures

This section reports the optimal fare structure under various financial caps (t, τ). For each experiment set, if the
FFTD-ALL outcome is better than the optimal SFTD outcome, the optimal fare structure is full-fare-free (FFF);
otherwise, the optimal fare structure could be classified as one of the following:(i) uniform-fare: r∗1 = r∗2 , 0 or
r∗2 > 0, e∗r = e or r∗1 > 0, e∗r = ê, (ii) partial-fare-free (PFF): 0 = r∗1 < r∗2, e

∗
r ∈ (e, ê), or (iii) standard-discount-

fare (SDF): 0 < r∗1 < r∗2, e
∗
r ∈ (e, ê). Figure 4 delineates the optimal fare-structure regions under utilitarianism and

egalitarianism.
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(a) Egalitarian design.
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(b) Utilitarian design.

Figure 4: Optimal fare structures under different financial restrictions and moral principles.

We begin with the egalitarian design (Figure 4(a)). The findings from Sections 5.3 and 5.4 suggest that maximizing
the utility of the most disadvantaged traveler may be achieved through (i) revenue redistribution from higher income
riders and drivers (corresponding to either SDF or PFF policy), or (ii) eliminating fare altogether (corresponding to
FFF policy). However, all three policies require the authority to tax or charge travelers. Consequently, under extremely
tight financial constraints (the left bottom corner, where both tax rate and driver fee caps are close to zero), the just
fare policy is in fact a uniform fare for everyone.

As the financial restrictions loosen up, we first notice that SDF dominates the other two policies as long as the tax
cap is very low (t < 0.3%). In other words, even if the operator is free to charge drivers at will, the poorest travelers
are still better off paying fare to preserve service quality. This is because the revenue generated from driver fees does
not necessarily increase with the charge rate. The finding underscores a key limitation of driver fees as a funding
mechanism for achieving equitable outcomes.

The boundary separating the FFF policy from the PFF and SDF policies is complicated. In the region with low driver
fee caps (the left periphery), a more relaxed financial condition favors FFF over SDF, and the line dividing them
slopes downward, indicating that tax and driver fee revenues act as substitutes. However, as long as the driver fee
cap is below a certain threshold (roughly $1.6), PFF is never preferred. Apparently, with limited contributions from
drivers, medium-income travelers who must pay fare under PFF are potentially worse off than the poorer traveler who
do not have to. Under loose financial conditions (the top right quadrant), FFF and PFF policies deliver similar optimal
utility for the most disadvantaged traveler(as we have compared 1-i-E and 2-i-E-ALL in Table 3). As a result, FFF
dominates in some sub-areas whereas PFF dominates in others, both marginally.

For the utilitarian, Figure 4(b) reveals a somewhat surprising result: the FFF policy is preferred under all but the
most financially constrained conditions. Specifically, it becomes the utility-maximizing policy as long as the tax cap
exceeds approximately 1.8%—a level sufficient to support decent transit service without fare collection. Under tighter
financial constraints (the red region in the lower-left corner), the uniform-fare policy becomes optimal. However,
judging by the size of this red area, the utilitarian is far more likely to favor the uniform-fare policy than the egalitarian.
Zooming in on the lower part of the plot, particularly around t = 0.5%, we observe that as the driver fee cap increases
from $0 to $5, the utility-maximizing policy shifts sequentially from uniform-fare to PFF, then to FFF, and eventually
back to PFF. The boundary between FFF and PFF initially slopes downward until the driver fee cap reaches $2.4, after
which it briefly slopes upward before leveling off. This behavior reflects the natural limitations of raising revenue
through driver fees—namely, that drivers may shift modes in response to higher charges. Once the driver fee cap
exceeds $2.4, additional utility gains are more effectively achieved by charging fares (as permitted under PFF but
not under FFF). After the cap surpasses $3.17, the total utility cannot further improved without changing the tax
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cap—hence the flattening of the boundary on the far right.

Another interesting result is that, when both tax and driver fee caps are low, the PFF region abruptly transition into a
uniform-fare region, without passing through an SDF regime. This absence can be explained as follows: facing tighter
budget constraints, the utilitarian prefers to lower the share of travelers receiving free rides by decreasing the discount
threshold er, rather than increasing the discount fare. Although er never reaches its lower bound e, the transition
between the PFF and the uniform-fare policies occurs at a sufficiently low value for er. Below that level, providing
free rides for the small group of travelers at the expense of high fare for the rest of bus riders no longer outperform
charging all bus riders a moderate and uniform fare.

In summary, for the egalitarian, the SDF policy is most suitable when the tax cap is low, while the FFF policy is
preferred when the tax cap is high and the driver fee cap is low. In other cases, the FFF and PFF policies perform
comparably and are both superior to the SDF policy. On the other hand, the utilitarian prefers a uniform-fare policy
when financial constraints are tight. Yet, under a low tax cap and a higher driver fee cap, the PFF is the best option
for them. Finally, with a greater leeway for taxation, FFF is always the dominant utilitarian policy. Table 4 offers an
overview of the relationships.

Table 4: Relationship between moral principles, fare structures and financial conditions.

Policy Egalitarian Utilitarian
Uniform-fare very low tax and driver fee caps low tax and driver fee caps
FFF high tax cap, or medium tax cap and low

driver fee cap
high tax cap, or medium tax cap and high
driver fee cap

PFF medium tax cap and high driver fee cap low tax cap and high driver fee cap
SDF low tax cap NA

5.5.2. Justification of the full-fare-free policy
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(a) Step-fare structure, with FFF features.
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(b) Uniform-fare structure, without FFF features (Dai et al., 2024).

Figure 5: Moral justification of the FFF policy.

Figure 5 summarizes the conditions under which an FFF policy can be justified by the egalitarian, the utilitarian, or
both. The left plot is derived by juxtaposing the FFF frontiers from Figure 4, which assume a step-fare structure with
all FFF features, whereas the right plot is taken from Dai et al. (2024), which assumes a uniform-fare structure and
ignores all FFF features.

Figure 5(a) highlights three subareas in which: (i) FFF is neither just nor utility-maximizing (the black area); (ii) FFF
is not just but utility-maximizing (the brown area); or (iii) FFF is both just and utility-maximizing (the white area).
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Similarly, Figure 5(b) shows three distinctive subareas, including subareas (i) and (iii), but not (ii). Instead, it contains
an area that is just but not utility-maximizing (the gray area).

A common pattern in both plots is that the justification for the FFF policy depends critically on the severity of financial
constraints. The less restrictive the constraints, the easier it is to justify FFF—regardless of the moral principle applied.
This observation has also been noted in (Dai et al., 2024). However, the differences between the two plots offer some
new insights.

First, the black region—where the FFF policy is neither just nor utility-maximizing—shrinks significantly when fare
structures are relaxed and FFF features are incorporated. This trend is expected, as both changes increase design
flexibility and enhance the general appeal of the FFF policy.

Second, and more unexpectedly, it becomes more difficult for the egalitarian to justify the FFF policy once FFF
features are included. This is evident from the smaller “just” region in Figure 5(a) compared to Figure 5(b). At first
glance, this seems counterintuitive—after all, making the FFF policy more attractive would appear to benefit the most
disadvantaged travelers.

This result can be explained in two ways. First, while the FFF policy eliminates fares for all transit users, SDF and PFF
policies allow for more targeted support, which may better align with egalitarian goals. Second, the benefits of FFF
features—such as system-wide cost savings—are broadly distributed and not specifically reserved for disadvantaged
travelers, thereby diluting their equity-enhancing effect.

6. Conclusion and future directions

We have examined how optimal fare policies are shaped by moral values and financial means. Motivated by the
growing interest in fare-free transit (FFT) and the lack of rigorous modeling frameworks to evaluate its impacts,
we developed a generalized joint design model building on Dai et al. (2024). Our model introduces a means-based
step-fare structure that encapsulates full-fare-free (FFF), partial-fare-free (PFF), and standard-discount-fare (SDF)
policies. It also incorporates behavioral responses known to influence FFF ridership and accounts for operational and
administrative cost savings associated with eliminating fare collection. These extensions allow us to systematically
identify optimal fare policies—under a broad range of financial conditions—according to either a utilitarian objective
(maximizing total utility) or an egalitarian one (promoting distributive justice).

The case study based on the City of Chicago reveals several important findings with broader policy implications.

First, optimal fare policies critically depend on financial means, regardless of the moral principle applied. With
unlimited access to financial resources, FFF emerges as both utility-maximizing and just. At the other end of the
spectrum, a uniform fare for all is preferred. Among the two alternative funding instruments we consider, dedicated
taxation proves far more effective than a driver fee. This is expected: while drivers can avoid the fee by switching to
transit, no one can evade a broad-based tax. In addition, while differentiated pricing schemes such as SDF and PFF
are often favored by an egalitarian, a utilitarian rarely finds them attractive.

Second, a utilitarian is far more likely to endorse FFF than an egalitarian. Under loose financial constraints, FFF
dominates all other policies from a utilitarian perspective but performs on par with PFF under egalitarianism. This
result may seem counterintuitive—if not outright shocking—to FFT advocates who often associate fare-free policies
with egalitarian ideals. Yet a moment’s reflection reveals that the logic is sound. Promoting equity typically requires
targeted redistribution based on individual attributes, which FFF by design cannot offer. Thus, those aiming to advance
distributive justice should consider fare discounts for specific demographics rather than abolishing fares altogether.

Third—and also surprisingly—we find that increasing financial resources does not necessarily lead to more socially
acceptable outcomes. In fact, unconstrained funding can empower planners to adopt policies that inadvertently leave a
larger share of the population worse off relative to the status quo. This paradox arises because greater redistributional
freedom may reduce the incentive to safeguard the welfare of marginally affected groups. As a result, policies de-
veloped under moderate financial constraints may attract broader democratic support, even if they fall short of being
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“optimal” under either egalitarian or utilitarian criteria. This finding underscores the limitations of design models
driven by a single normative objective.

For the Chicago case specifically, we find that FFF can be both just and utility-maximizing if the operator has access
to a $1-per-trip driver fee in addition to the existing 1% dedicated sales tax. Without the driver fee, however, neither
FFF nor PFF is recommended. Under an egalitarian objective, the optimal policy involves a discount fare set at 80%
of the full fare, with eligibility restricted to the bottom 10% of travelers by income. In contrast, a utilitarian would opt
for a uniform fare that is higher than the current baseline and applied to all travelers.

Looking ahead, transit agencies in the U.S. are likely to face significant fiscal challenges. Since the COVID-19
pandemic, ridership has yet to return to pre-pandemic levels; in many regions, it remains 20–25% below normal9.
While federal relief funds10 have so far prevented major service cuts, those resources are temporary and will soon
be exhausted. As agencies seek alternative funding mechanisms to compensate for sustained ridership losses, the
modeling framework presented in this paper could serve as a useful foundation. Substantial extensions, however, will
be needed to reflect structural shifts such as the growing prevalence of telework as a substitute for commuting.

Several additional avenues of future research are also worth pursuing. First, extending the model to more realistic
network settings—incorporating spatial and temporal heterogeneity, richer mode choices (e.g., ride-hailing, commuter
rail), and variable service quality—would enhance its practical relevance. Second, future work should explore the
interaction between fare policy and other transportation strategies such as congestion pricing and transit-oriented
development. Although our model includes a stylized driver fee, it is not designed to manage congestion. A more
integrated approach that combines fare policy with initiatives like dedicated bus lanes or coordinated pricing of road
and transit use could offer a more comprehensive framework for advancing sustainable urban mobility.
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Appendix A. Proof of main results

Appendix A.1. Proof of Proposition 3.3

If a traveler choose driving, then their ADE must satisfy ∆U(e) = Ud(e) − Ub(e) ≥ 0. Based on Assumption 3.2,
∆U(e) strictly increases with e.

We first deal with two special cases:

1. Single mode choice: When ∆U(e) ≥ 0, i.e., everyone chooses driving, we have ê = e and everyone pays driver
fee τ, which corresponds to scenario S1. Similarly, When ∆U(e) < 0, i.e., nobody chooses driving, we have
ê = e. Travelers with e < er pay discount fare r1 and other travelers pay full fare r2, which corresponds to
scenario S2.

2. Single fare: When ∆U(e) < 0 < ∆U(e) and r1 = r2, i.e., both modes are chosen by some travelers and the
reduced fare equals full fare and er becomes irrelevant, Ub(e) is a continuous function. Since Ud(e) is also
continuous, ∆U(e) is continuous. The continuity and monotonicity of ∆U(e) imply that there must exist an e1
such that e < e1 < e,∆U(e1) = 0,∆U(e) < 0 ∀e ∈ [e, e1) and ∆U(e) > 0 ∀e ∈ (e1, e]. So we have ê = e1. This
corresponds to scenario S3 where travelers with e < ê pays uniform fare r1 = r2, and others pay driver fee τ.

Per Equation (10), the expenditure function and the utility function for bus riders are discontinuous at er when r1 < r2.
As such, ∆U(e) has a discontinuity at er. To facilitate the proof, we introduce two auxiliary functions representing the
utility difference between driving and bus for different e:

∆U1(e) = Ud(e) − Ub1(e), e ∈ [e, er]; (A.1a)
∆U2(e) = Ud(e) − Ub2(e), e ∈ [er, e]. (A.1b)

where Ub1 and Ub2 are the utility function for riding bus when the fare is r1 and r2 respectively, i.e. Ub(e) = Ub1(e) if
e ∈ [e, er) and Ub(e) = Ub2(e) if e ∈ [er, e]. Because r1 < r2, we have ∆U1(er) < ∆U2(er). Since ∆U1(e) and ∆U2(e)
also strictly increase with e, we have ∆U1(e) < ∆U1(er) < ∆U2(er) < ∆U2(e). Excluding the special case 1, we have
∆U1(e) < 0 < ∆U2(e). In addition, ∆U(e) is a piece-wise continuous function:

∆U(e) =

∆U1(e) = Ud(e) − Ub1(e), if e ∈ [e, er);
∆U2(e) = Ud(e) − Ub2(e), if e ∈ [er, e].

(A.2)

The location of ê depends on the location of value 0 within (∆U1(e),∆U2(e)):

1. if ∆U1(e) < 0 < ∆U1(er), there exists a unique e2 ∈ (e, er) such that ∆U1(e2) = 0, corresponding to S4-ii, i.e.,
ê = e2, which is also the unique solution to Ub(e) = Ud(e). Travelers with e < ê pay discount fare r1 and others
pay driver fee τ;

2. if ∆U1(er) ≤ 0 < ∆U2(er), only those who are qualified for the reduced fare will ride bus, leading to scenario
S4-i where no solution exists for Ub(e) = Ud(e) due to discontinuity of ∆U(e) at er. In this case, we have ê = er,
travelers with e < ê pay discount fare r1 and others pay driver fee τ;

3. if ∆U2(er) ≤ 0 < ∆U2(e), there exists a unique e3 ∈ [er, e) such that ∆U2(e3) = 0, corresponding to scenario
S4-iii where ê = e3, which is also the unique solution to Ub(e) = Ud(e). Travelers with e < er pay discount fare
r1, travelers with er ≤ e < ê pay regular fare r2 and others pay driver fee τ.

Appendix A.2. Proof of Proposition 3.5

We continue to use Ub1 and Ub2 as defined in Appendix A.1. For any joint design x = (xo, x f ) that does not admit a
corner solution, we have e < er < ê < e, U(e) = Ub1(e) and U(er) = Ub2(er) according to Proposition 3.3. Hence, the
travelers with the lowest ADE and the travelers with the threshold ADE er always ride bus.
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Next, we show that although U(e) is not entirely monotonically increasing on Ξ, Ub1 and Ub2 are monotonically
increasing on their respective domains by inspecting the partial derivatives:

∂Ub1

∂e
=
∂Ub1

∂Eb1

∂Eb1

∂e

=
∂Ub1

∂Eb1

(
1 − t − e0(e) − e

∂e0

∂e

)
> 0,∀e ∈ [e, er], (A.3)

∂Ub2

∂e
=
∂Ub2

∂Eb2

∂Eb2

∂e

=
∂Ub2

∂Eb2

(
1 − t − e0(e) − e

∂e0

∂e

)
> 0,∀e ∈ [er, e], (A.4)

where Eb1 and Eb2 are the expenditure functions for riding bus when the fare is r1 and r2 respectively. Both partial
derivatives are positive on their domains because ∀m = b1, b2,

∂Um
∂Em
> 0, 1− t−e0(e) > 1− t−e0(e)−ncm/e = Em/e > 0

and −e ∂e0
∂e > 0. Therefore, we have

U(e) = Ub1(e) ≤ Ub1(e) = U(e),∀e ∈ [e, er), (A.5)
U(er) = Ub2(er) ≤ Ub2(e) = U(e),∀e ∈ [er, ê), (A.6)

U(er) = Ub2(er) ≤ Ub2(e) ≤ Ud(e) = U(e),∀e ∈ [ê, e]. (A.7)

It follows from the above that the utility for travelers with ADE e is the lowest among the utilities for travelers with
e ∈ [e, er), and the utility for travelers with ADE er is the lowest among the utility for travelers with e ∈ [er, e], i.e.
mine∈[e,er) U(e) = U(e) and mine∈[er ,e] U(e) = U(er). We leave it to the reader to verify that the relation between U(er)
and U(e) is indeterminate. Thus, Umin = mine∈Ξ U(e) = min{U(e),U(er)} = min{Ub(e),Ub(er)} .

Appendix B. Justification of the parameter values in Table 1

Appendix B.1. Demand

Chicago Transit Authority (CTA) covers a service area of 803 square kilometers (km2) and serves a population of
3,240,768. Thus the demand density in the service area is estimated to be about 4,000 travelers per km2. The most
recent travel survey conducted by the Chicago Metropolitan Agency for Planning (CMAP) (Comeaux, 2021) suggests
about 60% of all travelers take transit or drive, with a split of about 30%:70% between them. Thus, for our model, the
population density is estimated as 0.6 × 4000 = 2, 400 travelers/km2, i.e., ρ = 2400 travelers/km2.

Appendix B.2. Expenditure

A piece-wise uniform distribution is fitted using annual household expenditure quintile data. The average annual
household expenditure for the five income quintiles are $28,672, $40,472, $53,045, $71,173 and $121,571 respec-
tively11. With an average household size of 2.5 (USBLS, 2020), we convert the annual averages to ADE: e =
$31.4, eq1 = $44.4, emed = $58.1, eq3 = $78.0, e = $133.2. Let e ≡ {e, eq1, emed, eq3, e} represent the set of ADE
quintile averages. Then, these quintile averages are used as boundary values to create four population segments.
Within each segment income is assumed to be uniformly distributed. As such, we have the following PDF for the
ADE (also see Figure B.6):

f (e) =



1/4
eq1−e , e ∈ [e, eq1),

1/4
emed−eq1

, e ∈ [eq1, emed),
1/4

eq3−emed
, e ∈ [emed, eq3),

1/4
e−eq3
, e ∈ [eq3, e],

0, otherwise.

(B.1)

11https://data.bts.gov/stories/s/Transportation-Economic-Trends-Transportation-Spen/ida7-k95k/, accessed on
2023/11/01.
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Figure B.6: PDF of the piece-wise uniform ADE (e)
distribution.

The mandatory spending takes up about 50% of ADE for
the lowest income quintile, and about 40% of ADE for the
highest income quintile (Duly, 2003). For simplicity, the
following linear function is used to represent how e0 varies
with e:

e0 = 0.5 − 0.1
e − e
e − e

. (B.2)

Appendix B.3. Cost of driving

The cost of driving per trip is derived from the annual ex-
penditure on driving. In 2019, an average household’s ex-
penditure on driving is $9,972, and a household owns on
average 1.9 cars (USBLS, 2020). Therefore, the cost of
driving per trip is estimated as $cd = 9972/365/1.9/n =
$14.4/n, where n, the number of trips per day, is to be cal-
ibrated.

Appendix B.4. Operation parameters

From literature, the speed of walking (vw) is taken as 4 km/h, the budget travel time ta is set to 30 min (Dai et al.,
2023), the time lost per stop due to acceleration and deceleration is ts0 = 12s and the time lost per stop per boarding
passenger is ts1 = 1s/pax (Chen and Nie, 2017).

CTA’s operating cost is represented both in a per hour measure and a per km measure: $146.5 per revenue hour or
$7.5 per revenue km (NTD, 2020). To properly account for πQ and πM without double counting, we consider the split
of the operating cost between labor (πQ) and fuel (πM). As labor takes up about 80% of transit operating cost (NTD,
2020), we have πQ = $146.5 × 0.8 = $117/h and πM = $7.5 × 0.2 = $1.5/km.

The average trip duration in Chicago is td = 21 min (Comeaux, 2021). Each road in the road system has two lanes
in each direction (w = 4) and the average block length is a quarter of a mile (or 400 meters) (ChicagoStudies, 2020),
which gives s0 = 0.4km.

The speed-density function in Chicago is estimated based on existing network fundamental diagrams (NFD) devel-
oped by Mahmassani et al. (2013), see Figure 7(a). Since the CTA service area constitutes the core of the Chicago
metropolitan area (CMA) region, we assume that the NFD is the same as the CMA NFD. We further approximate the
NFD by a piece-wise linear function (B.3) for the ease of implementation. Buses are assumed to run at 80% of the
average car speed at the same traffic density. See Figure 7(b) for the linearized NFD for cars and buses—note that the
lower part of the original NFD (the post flow-breakdown regime) is left out to avoid unnecessary complications. In
2019, the travel time during peak hour is on average about 31% higher compared to free-flow travel time in Chicago,
which means the peak hour travel speed is about 77% of free-flow speed FHWA (2019). We refer to this ratio as con-
gestion index, and ensure that our model produces a similar congestion index under the status quo conditions when
we calibrate the parameters. The speed-density functions for cars and buses are, respectively

gd(k) =



q1
k1
, 0 ≤ k ≤ k1,

q2−q1
k2−k1

(1 + k1
k ) + q1

k , k1 < k ≤ k2,
q3−q2
k3−k2

(1 + k2
k ) + q2

k , k2 < k ≤ k3,
q4−q3
k4−k3

(1 + k3
k ) + q3

k , k3 < k ≤ k4,

0, k > k4,

and gb(k) = 0.8gc(k). (B.3)

The parameters used to specify the above NFD are represented by q ≡ {q1, q2, q3, q4} and k ≡ {k1, k2, k3, k4}. Their
values are reported in Table 1.
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(a) NFD of CMA (Mahmassani et al., 2013). (b) Linearized NFD of CTA service area.

Figure B.7: Actual and linearized network fundamental diagrams (NFD).

Appendix B.5. Status quo service and policy

The average headway of the current CTA transit system is hsq = 0.167 hours (CMAP, 2017) and the average stop
spacing is ssq = 0.223 km (Pandey et al., 2021). While the single trip ticket prices for CTA “L” trains and buses are
$2.50 and $2.25 respectively, Almagro et al. (2024) suggests that the actual per trip cost ranges from $1.09 to $1.33.
For simplicity, we use rsq = $1.25 in our study.

Chicago does not charge drivers a fee for the purpose of funding transit so τsq = $0. The Regional Transportation Au-
thority (RTA), the state-level transit authority in Illinois, imposes a 1.0% sales tax dedicated to fund transit projects12.
Hence, tsq = 1%.

Appendix B.6. Calibration results

In total, four parameters, including the available subsidy (B0), the exponent in the utility function (α), the number of
trips per day (n), as well as the peak hour factor (p), are “calibrated” from the model itself. This means that we search
for the values for these parameters such that they reproduce the status quo conditions, including the observed mode
split, farebox recovery ratio, congestion index, total budget, and total daily transit ridership. We found that when the
subsidy B0 = $1320/day/km2, the exponent in the utility function α = 0.35, the average number of daily trips n = 2.65
trips and the peak hour factor p = 0.085, the model produces aggregate outcomes that well match observations, as
reported in Table B.5. To verify the price elasticity, a 1% increase in the transit fare (from $1.25 to $1.2625) reduces
the transit market share by about 0.23% (from 28.72% to 28.65%). This gives a fare elasticity of about -0.23, which
is within the range established in literature (see e.g., Baum, 1973; Litman, 2004).

Table B.5: Key statistics produced by the calibrated model vs. data.

Data Calibrated model
Transit mode share 30% (Comeaux, 2021) 29%
Daily ridership 1.47 million (NTD, 2020) 1.46 million
Farebox 43% (NTD, 2020) 44%
Peak hour budget $441/km2 (NTD, 2020) $441/km2

Congestion index 0.77 (FHWA, 2019) 0.74

12https://tax.illinois.gov/localgovernments/masstransit.html, accessed on 2025/05/01.
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