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Abstract

Charging remains an obstacle to the mass adoption of electric vehicles (EVs), especially
for long-distance travel. If many EV drivers take to the road around the same time, their
“range anxiety” may create a self-fulfilling prophecy. As drivers anticipate uncertainty and
congestion at charging stations, they tend to make decisions about when and where to charge
that could collectively lead to chaos and inefficiency. Here, we show that information design
can persuade drivers to adopt decisions that are better for the system while being consistent
with their self-interest as defined by the Bayesian Nash equilibrium. Our stylized model in-
corporates a congestion effect into drivers’ payoffs and assumes that the information designer
can leverage its private knowledge about the charging condition to influence heterogeneous
drivers whose type is defined by their vehicle’s remaining range. We consider both public
and private information designs. The former does not depend on the driver type, while the
latter does. For the private design problem, we propose a novel cutoff structure that enables
us to reformulate an infinite-dimensional problem as a finite one. Our analysis shows that, in
a one-station, two-state model equipped with a linear cost function, the optimal public design
reduces to full information revelation. Moreover, the optimal private design yields signifi-
cantly better outcomes and, in some cases, can even attain the system optimum. The model is
further extended to a corridor setting to examine the impact of different information release
schedules. Numerical results show that the private design with sequential release consistently
yields the best performance. Under public design, however, the relative effectiveness of dif-
ferent release schedules depends on the spatial configuration of the corridor, among other
factors.

Keywords: Information design; EV charging; Bayesian Nash equilibrium; Information
release schedule

1 Introduction

The adoption of electric vehicles (EVs) has grown substantially in recent years. In 2023, EVs
accounted for 37%, and 24%, of all new car sales in China and Europe, respectively (Pontes 2024,
Kane 2024). Even in the U.S., where the growth of EV sales has lagged behind, 7.2% of new
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car sales were electric in 2023 (Ewing 2024). The strong growth of the EV market is expected
to continue, with the International Energy Agency projecting that by 2035 “every other car sold
globally” will be electric (IEA 2024). The current generation of EVs, with a typical range up to
300 miles, are well-suited for intracity travel, especially when their owners have access to home
charging. For long-distance intercity travel, however, the need for en-route charging remains a
significant obstacle, physically and psychologically. The problem becomes especially acute when
big crowds are expected at public charging stations, due to holiday traffic or other special events.
For example, many Chinese EV drivers heading home for the Spring Festival in 2024 found
themselves spending more time at charging stations than driving (News 2024, Andrews 2024).
During the 2024 total solar eclipse in the U.S., many Tesla owners were similarly caught off guard
by the long queues at charging stations (Skinner 2024).

The (unknown) possibility of getting stuck in a queue for charging could worsen the so-called
“range anxiety” — note that in winter, an EV cannot afford to wait in line for too long because
heating can quickly drain an already depleted battery (Jaguemont et al. 2016, Zhang et al. 2018).
Anxious EV drivers who seek protection from the peril of running out of fuel may end up going
to charge stations more often than needed. This defense charging behavior is bound to exacerbate
the shortage of charging capacity relative to the surging demand, creating a vicious cycle that
can spin out of control. Our study is inspired by the need to mitigate such chaos.

How do we help drivers trapped between the anxiety about the range of their vehicle on the
one hand and the uncertainty in the availability of charging on the other? For many, the first idea
that comes to mind may be to eliminate the uncertainty by making real-time information about
the charging condition available to all drivers. Indeed, smartphone apps already exist in China
that promise to do just that (State Grid Smart Internet of Vehicles Co. 2024). Yet, the question is
whether being perfectly transparent is “optimal,” in the sense that the system as a whole suffers
the least delays and disruptions associated with charging. Plenty of evidence suggests that
the answer may be “No.” Research in transportation have shown that the benefits gained from
providing real-time travel information diminish when the fraction of informed drivers exceeds
a certain threshold (Mahmassani and Jayakrishnan 1991, Koutsopoulos et al. 1994, Emmerink
et al. 1995), that providing “low-quality” information can be counterproductive (Arnott et al.
1991), and that more information, even when it is of high quality, is not always better (Acemoglu
et al. 2018). Similar phenomena have been observed in other application domains (Bergemann
and Morris 2019, Wu et al. 2021, De Véricourt et al. 2021). The fundamental insight here is that
information provision can be strategically designed to maximize impact on user behaviors for a
more desirable system outcome. This study aims to examine information design for inducing EV
drivers to make charging decisions better aligned with a system objective.

Information design provides a framework for developing and analyzing an information struc-
ture — what information should be revealed, to whom, and how — to achieve desirable system
outcomes such as improved efficiency, better resource allocation, or enhanced welfare (Kamenica
and Gentzkow 2011, Kamenica 2019, Bergemann and Morris 2019). In the past decade, it has at-
tracted much attention in economics and beyond (see Section 2 for details). When adapted to our
context, information is transmitted to EV drivers through coded “signals” that indirectly shape
their beliefs about the random charging condition through Bayesian updating. These signals are
produced according to an information structure that maps each realization of this random vari-
able — referred to as state — to a distribution over signals. Having received a particular signal,
the drivers then settle for a Bayesian Nash equilibrium (BNE) as they make a charging decision. A
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charging information designer can tweak the information structure to influence the BNE, hence
the system outcome. Because all drivers know the information structure beforehand, they are
persuaded rather than coerced or deceived into complying with the designer’s goal. Persuasion is
a key advantage of information design.

In our base model, EV drivers with different remaining ranges face a trade-off between two
options: (i) making a detour to visit a charging station and waiting in a queue for an uncertain
amount of time, and (ii) skipping the station to risk enduring a much higher cost later if their
remaining range proves insufficient and a detour to a more distant charging facility is necessary.
Importantly, the waiting time depends on the collective choices of the drivers: the more drivers
choose to charge, the longer the waiting time. Such a congestion effect means each driver’s
decision has an externality. The designer has exclusive knowledge of the charging state, which
affects the waiting time. This information asymmetry provides the lever by which the designer
persuades drivers to adjust their choices for the good of the system.

Information design can be either public or private. A public design cannot differentiate
drivers while a private one can. Intuitively, a private design has greater potential because it gives
the designer more freedom. However, because a private design implies sending different signals
to different drivers, it has to be justified properly — otherwise, drivers may suspect deception
or unfairness, defeating the purpose of persuasion. Existing studies on private information
design in congestion games typically impose an i.i.d. information structure across drivers. This
means, while information delivery may be “randomized” following a certain population-wide
distribution, they are not tied to driver types. In this study, we classify drivers and design
information structures based on the remaining range of their vehicles, which naturally introduces
heterogeneity through a continuous attribute. Accordingly, the information delivered to drivers
depends on this property (type).

We analyze and formulate both public and private information design problems for our base
model. To deal with the challenge arising from the infinite number of user types in private
design, we propose an information structure based on the concept of cutoff thresholds, which
leads to an equivalent mixed integer nonlinear formulation. For a special case with two states and
a linear charging cost function, we show that (i) the optimal public design requires full revelation
(signal always reveals the true state) and (ii) the optimal private design not only outperforms the
full-information scheme in most cases but can achieve the system optimal outcome under certain
conditions.

We further extend the base public and private information design models to a two-station
corridor. In this setting, drivers’ choices include not only whether but also where to charge. We
study two information release schedules: (i) sequential release, in which signals are revealed
before reaching each station; and (ii) simultaneous release, in which information about both
stations is disclosed at the first station. We analyze how different release schedules influence
drivers’ beliefs about downstream uncertainty and, in turn, their charging decisions. The results
show that full information remains optimal under public design. Moreover, while private design
consistently favors sequential over simultaneous release, public design does not — its relative
performance depends on problem inputs, including the spatial configuration.

Our contributions can be summarized as follows.

• We explore a new class of information design in games where the payoffs of the players (EV
drivers in our problem) are influenced by a congestion effect, and their type is represented
by a continuous variable. While both aspects have been studied individually, few works,
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to the best of our knowledge, have combined them. Although motivated by EV charging,
this framework has applications in other domains that involve both externalities and user
heterogeneity.

• To address the challenge posed by combining an infinite number of types with externality,
we propose a special private information structure that makes recommendations based on a
cutoff threshold tied to the state of the system. This approach effectively reduces an infinite
dimensional problem to a finite one and, by further simplifying information dissemination
and obedience requirements, leads to a formulation that is amenable to analysis.

• We extend the base model to a more realistic corridor setting that allows for both simul-
taneous and sequential information release. Accordingly, we examine how the outcomes
of information design interact with release schedules and the spatial configuration of the
corridor.

For the remainder, Section 2 reviews relevant studies. Section 3 first outlines the settings
of our base EV charging problem and then formulates the corresponding public and private
information design models. Section 4 provides analytical results in a special case and Section 5
further extends the base model to a two-station corridor setting. Numerical results are reported
in Section 6. The last section concludes the study and comments on the directions for future
research.

2 Related studies

Our review of related studies covers three areas. It begins with the research on EV charging be-
havior and decision-making problems. Then, an overview of the burgeoning field of information
design (ID) is provided, along with a few typical applications. In the final part, we examine the
application of ID in congestion games, to which our EV charging problem is closely related.

2.1 EV charging behavior and decision-making

Charging has been identified as a key issue in the push for transportation electrification from
early on, with much of the attention being paid to the planning of charging infrastructure (Mak
et al. 2013, He et al. 2013, Nie and Ghamami 2013). Given infrastructure planning is not our
focus, the reader is referred to Mohammed et al. (2024) and Cui et al. (2023) for recent reviews
on the subject. Below we mainly discuss the aspects that concern EV drivers’ behaviors and
decision-making processes.

Sun et al. (2015) studied EV drivers’ choice of when to charge after the last trip of the day. The
results, estimated using panel data extracted from a two-year field trial in Japan, suggest that this
decision depends on the remaining range, as well as the timing and intensity of the next trip. In
a sequel, Sun et al. (2016) considered the choice of fast-charging stations for longer trips (though
only one charge per trip is permitted). They found EV drivers prefer charging stations requir-
ing a shorter detour and located at gas stations. Moreover, they confirmed that the remaining
range upon approaching a charging station affects the decision to charge there significantly and
negatively. Ge and MacKenzie (2022) focused on long-distance trips and allowed for multiple
charges per trip, though they relied on stated preference data. Their estimation results identified
the remaining range and the ability to reach the next station without changing the original plan
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as the most critical factors affecting charging decisions. Wolbertus et al. (2018) explored how the
length of charging sessions is affected by factors not directly related to charging. They found that
for slower chargers (e.g., level-2), EV drivers tend to leave their vehicles parked at the charging
station longer than necessary for a full charge. However, this behavior is much less pronounced
at fast-charging facilities.

Recognizing the potential impact of delay caused by a surge in demand on charging time,
Hassler et al. (2021) proposed to coordinate the EV drivers’ choices of charging stations through
vehicle-to-infrastructure communications (V2X). The idea is to make the information on the an-
ticipated delay at charging stations available in real-time to all drivers so that they can choose
and announce their best charging plan. In essence, the proposed scheme facilitates the achieve-
ment of a Nash equilibrium, which may well be sub-optimal from the perspective of the system.
Chakraborty et al. (2022) described a futuristic Peer-to-Peer Car Charging (P2C2) solution that
employed high-battery-capacity vehicles to charge other EVs while they are all in motion. To
account for uncertainty inherent to the use of EVs, Iversen et al. (2014) modeled EV driving pat-
terns as a Markov process and developed a stochastic dynamic programming model that makes
optimal charging decisions using the driving patterns as inputs. Yi and Shirk (2018) adopted
an approach similar to that of Iversen et al. (2014), although their application is focused on con-
nected and autonomous EVs and provides the capability to incorporate real-time information
into driving patterns for energy consumption prediction. Futalef et al. (2023) studied a version of
the electric vehicle routing problem (E-VRP) that accounts for several relevant operational factors,
such as nonlinear/partial charging, station capacity, and mass-dependent energy consumption.
Their model, solved using a metaheuristic algorithm, updates predetermined routes (obtained
by an offline E-VRP variant) according to real-time traffic and charging conditions. Liu et al.
(2023) formulated the problem of optimally selecting charging stations and charging duration in
a long-distance trip as a finite-horizon Markov decision process. They showed that the optimal
charging duration monotonically decreases with the remaining range and increases with travel
distance.

2.2 Information design

Information design is a relatively new branch of game theory that addresses the situation where
players’ payoff in a game depends on system states and a “designer” has an information ad-
vantage that he can exploit to achieve a desired outcome (see Bergemann and Morris 2019, for
a review). Unlike mechanism design, which focuses on the design of the game’s rules, infor-
mation design focuses on its information structure, specifically how the information about the
states is communicated to the players. Another unique feature of information design is that the
designer is committed to the information structure ex-ante, which can be chosen to ensure the
best response of the players aligns with the outcome desired by the designer, per the revelation
principle (Myerson 1979). Appendix A summarizes the basic settings of information design. For
a more detailed exposition, the reader is referred to Kamenica (2019), Bergemann and Morris
(2019).

When the game has only one receiver, information design is often called Bayesian persuasion,
where the designer (or sender), is seen as designing an information structure and sending signal
accordingly to persuade the player (or receiver) to do his bidding. For a basic setting of such a
problem, Kamenica and Gentzkow (2011) characterized the information structure deemed “opti-
mal” by the sender, and provided the conditions under which the optimal information structure
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strictly benefits the sender. Despite its simplicity, Bayesian persuasion offers a powerful tool
to understand and analyze many social-economic phenomena. The motivating example in Ka-
menica and Gentzkow (2011) is quite striking: a prosecutor (the sender) may persuade a judge
(the receiver) to convict a defendant with a much higher probability than her prior belief, by
designing an investigation that slightly overstates the likelihood of the defendant being guilty
when they are actually innocent. Rayo and Segal (2010) considered the optimal information dis-
closure of the sender who randomly draws a “prospect” defined by its profit to the sender and
its value to the receiver. In their application, the sender is an internet advertising platform, the
receiver an internet user, and the prospect an advertisement. In Ostrovsky and Schwarz (2010),
the sender is a school that chooses a grading policy to optimize the job placement of its students,
and the receiver is an employer trying to hire the best students from that school.

When the game has multiple players, Bergemann and Morris (2016) demonstrated that the
outcomes achievable through information design coincide with Bayesian correlated equilibrium
(BCE) — a version of incomplete information equilibrium. These outcomes can be characterized
by the players’ obedience — they are “obedient” because no better options are available given
what they know — to the designer’s recommendations. Accordingly, the constraints from the
obedience requirement form the feasible set from which the designer selects the most desirable
outcome. Bergemann and Morris (2019) highlighted three general insights from information de-
sign: (i) it is often optimal to “selectively obfuscate information”, (ii) the more prior information
the players possess, the less “persuasive” the designer becomes, and (iii) private information de-
sign is preferred to public information as long as “perfect correlation between players’ actions”
is not desired.

Information design and Bayesian persuasion have found numerous applications in under-
standing and managing socio-technical systems involving strategic agents. Lingenbrink and Iyer
(2019) considered the revenue management problem for a service provider, who must decide
how to price the service while sharing with potential customers the stochastic state of a queue
offering the service. They proved that combining pricing and information design cannot further
improve the optimal revenue achievable when the designer only controls price and customers
are given full information about the state of the queue. In a follow-up study, Anunrojwong et al.
(2023) introduced need-based user heterogeneity into the queuing system. Specifically, high-need
users always wait for service due to their lack of alternative options, while low-need users can be
persuaded to use their fallback options more frequently than they would if the state of the queue
were perfectly observable. They confirmed that information design yields benefits — and can
even achieve the system optimum at times — provided that neither class of users dominates the
population. Ashlagi et al. (2024) examined the allocation of non-monetary objects (such as organs
or public housing) to agents with private preferences over these objects. They demonstrated that,
through information design, the optimal mechanism can be implemented via a simple first-come,
first-served queue with deferrals, where agents are only informed of a range of an object’s quality
at the time of the offer. By adjusting this range, a social planner can achieve the desired trade-off
between allocative efficiency (which depends on who receives which object) and social welfare
(which is negatively impacted by deferrals).

An active strand of information design research concerns the dynamics in decision making.
In some applications, the dynamic game unfolds between a manager and a single user through
repeated or long-term interactions (Ely 2017, Farhadi and Teneketzis 2022, Gan et al. 2022b). In
others, there are multiple users, but in each round only one is engaged, often modeled within a
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queuing framework (Renault et al. 2017, Wu et al. 2022, Best and Quigley 2024).

2.3 Information design in congestion games

In transportation, congestion games have been studied since the 1950s (Wardrop 1952, Beckmann
et al. 1955). The rise of intelligent transportation systems (ITS) in the late 1980s brought the
question of how traffic information promised by ITS can actually benefit drivers (Ben-Akiva et al.
1991, Mahmassani and Jayakrishnan 1991). Using a bottleneck model with stochastic capacities,
Arnott et al. (1991) showed that, while providing full and accurate information is always bet-
ter than not providing information at all, “low-quality” information that affects drivers’ beliefs
about stochastic capacities may in fact harm efficiency and welfare. Interestingly, the “signal”
spoken of in Arnott et al. (1991) plays a similar role as information structures in information
design, though they treat this signaling process as given and do not consider designing the in-
formation structure itself, nor whether an optimally chosen structure could outperform full and
perfect information revelation. Lindsey et al. (2014) considered a similar setting as in Arnott et al.
(1991) but focused only on route choice (hence a simpler traffic model). They examined how the
adverse effects of full information provision vary depending on factors such as travel cost func-
tions and the stochasticity of traffic states. Instead of exploring how the quality of information
provision affects its effectiveness, as done in Arnott et al. (1991), Liu et al. (2016) examined the
impact of market penetration. They found that there is a threshold for the market penetration
of high-quality information access, beyond which further expansion becomes ineffective and, in
some cases, even socially harmful. Like Liu et al. (2016), Acemoglu et al. (2018) also studied the
impact of information coverage, focusing specifically on spatial coverage. They assumed that
travelers would only use routes for which they had full information. Their analysis revealed that
expanding travelers’ spheres of knowledge can generally be harmful — what they termed the In-
formational Braess Paradox — although certain network topologies may prevent this undesirable
effect. Wu et al. (2021) studied a Bayesian congestion game with multiple traveler types. In their
model, link travel costs in a transportation network are influenced by a stochastic state with a
known prior distribution. Travelers, depending on their type (interpreted as the route guidance
system they subscribe to), receive private information to update the prior and then settle into a
Bayesian Wardrop equilibrium (BWE). By characterizing the BWE, they showed that information
benefits a group of travelers relative to others if, and only if, the group’s share among all travelers
is below a certain threshold.

The studies cited above can largely be seen as sensitivity analyses on information provi-
sion. However, they did not address the design question — namely, which information structure
and delivery mechanism can maximize benefits. Research aimed at tackling this question has
only begun to emerge in recent years. Das et al. (2017) was among the first to investigate both
public and private information design in routing games, though they focused on homogeneous
travelers. Tavafoghi and Teneketzis (2019) examined information design in a Bayesian conges-
tion game, where homogeneous travelers compete to reach an equilibrium based on their beliefs
about uncertain travel times in a road network. They demonstrated that the information designer
can enhance social welfare — reducing expected travel time — by tailoring information structures
to individual travelers. However, it is unclear whether the differences in information structures
are publicly known. If not, the scheme can hardly be called “persuasion.” But if the differences
are public, the designer may struggle to justify why travelers are treated unequally. Building
on this work, Tavafoghi et al. (2019) explored how a profit-driven private designer — such as a
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firm like Waze — operates its information provision business. They concluded that competitive
pressure would compel such firms to be fully transparent, ultimately leading them to adopt an
ad-based rather than a subscription-based business model. Yang et al. (2019) adopted a Bayesian
congestion game framework with atomic and homogeneous agents (e.g., Uber drivers) deciding
whether to relocate from one zone to another in search of a “resource” (e.g., Uber riders) with a
random return. The study considered both private and public information designs, although the
authors acknowledged the difficulty of justifying private design for homogeneous agents. Their
numerical analysis confirmed that both designs can improve social welfare compared to the no-
information and full-information benchmarks. Zhou et al. (2022) studied an atomic and slightly
generalized version of the Bayesian congestion game considered by Tavafoghi and Teneketzis
(2019). In their setting, all travelers have access to a fixed set of non-overlapping parallel routes,
referred to as “resources.” Their focus is on developing exact solution algorithms for the optimal
public and private information design problems. In Zhu and Savla (2022), the Bayesian con-
gestion game has an identical configuration as Zhou et al. (2022), but with non-atomic agents.
They demonstrated that the information design in their setting can be formulated as a convex
optimization problem (hence computationally tractable), and that with optimally configured pri-
vate designs, social welfare is not negatively impacted by the increase in market penetration.
For general non-atomic Bayesian congestion games, Griesbach et al. (2022) provided analytical
results characterizing the networks where full information provision always aligns with the opti-
mal public information design — note that full information revelation is a special case of public
information design. In a follow-up study, Griesbach et al. (2024) explored a different variant of
the game, where uncertainty arises from the demand side. They proposed a polynomial-time
algorithm to find the optimal public information design and proved that in this setting, full in-
formation revelation coincides with the optimal public information design only on series-parallel
networks. Building on Das et al. (2017), Matsushita (2024) developed a deep learning–based ap-
proximation algorithm applicable to general networks. They also derived lower bounds on the
performance of the full-information scheme for specific forms of route cost functions. However,
similar to Das et al. (2017), their framework does not explicitly address user heterogeneity — an
aspect that is central to the basic setting of the present study.

3 Model

3.1 Basic settings

Our base model of information design for EV drivers is set as a one-shot static game over
a simple highway network mimicking a long-distance travel scenario, see Figure 1 for an il-
lustration. EV drivers travel from their home town (the O town) to their destination town
(the D town) through a highway. There exists a decision point on the highway where an
EV driver has the opportunity to choose an action a ∈ A, which in our model comprises
two options: take a detour to charge (Route C), or continue on the highway so as to skip
charging (Route M). Thus, A = {C, M}. If the driver takes Route M, then the length of
their remaining journey is l; otherwise, the total length increases by ∆l to l + ∆l . The ex-
istence of the detour highlights that charging is not a default option: the driver will take
Route C only if the expected utility gain from charging justifies the additional detour cost.
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Figure 1: Illustration of the EV charging problem.

For simplicity, we shall assume
that the travel speed is indepen-
dent of the drivers’ choices. How-
ever, the charging time is sub-
ject to a congestion effect: the
more drivers choosing Route C,
the longer the charging time. The
driver’s decision is affected by,
among other factors, the remain-
ing range of their vehicle at the
decision point and the anticipated
charging time at the charging sta-
tion — the latter in turn depends
on the state of the charging station.

We next discuss these two crucial factors.
The condition of the charging station (hereafter referred to as its charging condition) is modeled

as an exogenous discrete random variable. A realization of the condition, called a state, is denoted
by w ∈ W where W is a set of all possible states and µ0 is the publicly known prior belief. The
charging condition may depend on the supply-demand conditions of the local electrical grid,
weather, and other contingencies. The information designer (referred to as the designer hereafter)
can observe the state, whereas EV drivers cannot. This grants the designer an informational
advantage whose exploitation is central to our study.

The remaining range of an EV is assumed to be estimated by the vehicle’s on-board computer.
This estimate, referred to as the remaining range estimate (RRE) and denoted by r, determines the
probability of completing the journey without charging, i.e. using Route M, through a function
p(r). Note that p(r) should be an increasing function of RRE r. The driver can access their
own vehicle’s RRE at the decision point (i.e. before they make the charging decision), and the
designer is assumed to have information on the distribution of all vehicles’ RRE either through
historical data or a vehicle-to-vehicle and vehicle-to-infrastructure (V2X) system. The probability
density function (PDF) and the cumulative distribution function (CDF) of the RRE distribution
are denoted as g(·) and G(·), respectively, over support Ξ = [R, R̄], where R and R̄ represent the
minimum and maximum values of the distribution. Throughout the study, we shall assume the
distributional information about RRE is public knowledge.

Assumption 1 (RRE distribution). The distributional information about RRE, represented by the PDF
g(r), is common knowledge.

We posit that EV drivers should have access to the RRE distribution for two reasons. First,
such information may be easily obtained through crowdsourcing, prior experience, or historical
data. Second, given the goal is persuasion rather than deception, the designer has an incentive
to be as transparent as possible.

To define the cost associated with the charging choice, we normalize the total demand for the
highway network to 1 unit and let f ∈ [0, 1] be the flow on Route C. Thus, the flow on Route M
is (1 − f ) per flow conservation. At each state w ∈ W and with a charging flow f , an EV driver
with RRE r incurs a non-negative cost depending on their route choice. These costs are regulated
by the following conditions.
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Assumption 2 (Cost functions). The cost of choosing Route C is an increasing function of the charging
flow f , but independent of the RRE r; the cost of choosing Route M is a decreasing function of p(r) but is
independent of the charging flow.

As mentioned earlier, the charging time is congestible, which contributes to the increase in
the cost of choosing Route C when more drivers use Route C. On the other hand, choosing not
to charge (Route M) is associated with an inherent risk of not being able to complete the journey,
imposing an expected cost that increases as r (hence p(r)) decreases. Moreover, both costs are
contingent upon the state. Thus, we denote the cost functions associated with Route C and M as
JC( f |w) and JM(p(r)|w), respectively.

A driver always attempts to minimize their own expected cost, according to their belief about
each state and the choices of the other drivers. This brings the system to a Bayesian Nash
equilibrium (BNE), from which no one has an incentive to deviate. When drivers’ belief is µ0

(the prior), for example, the expected costs on the two routes can be illustrated in Figure 2. The
green dotted line, representing Route M’s expected cost, decreases with p(r) (cf. Assumption 2),
hence also with the RRE r. In contrast, the solid blue line representing Route C’s expected cost
is horizontal since it is not a function of r (cf. Assumption 2). The intersection of these two lines
identifies a threshold RRE r̄. Seeking to minimize expected cost, EV drivers with r < r̄ prefer
charging (Route C), while those with r > r̄ prefer to skip charging (Route M). The driver with
r = r̄ is indifferent between the two options. As such, the indifferent RRE r̄ corresponds to a flow
assigned to Route C, i.e, f = G(r̄) =

∫ r̄
R g(r)dr. When the EV drivers reach BNE, the flow on

Route C is denoted as f ∗, which, assuming the intersection between the two lines always exists
(i.e., excluding the corner solutions), can be solved from the following equilibrium condition:

∑
w∈W

µ0(w)JC ( f ∗|w) = ∑
w∈W

µ0(w)JM (p(r̄∗)|w) . (1)

(Expected) cost

Choosing
Route

Choosing
Route

RRE

Figure 2: Route choice and Bayesian Nash
equilibrium illustration.

The designer can try to move f ∗ by shifting
the drivers’ belief away from µ0 if this equilib-
rium is deemed undesirable. The designer may
always inform the drivers of the true state, hop-
ing that full information leads to a better sys-
tem outcome. Another option, which is the chief
concern in this study, is to shape the drivers’ be-
lief to benefit the system as much as possible, by
designing an information structure and sharing
it with the drivers. Public and private informa-
tion designs differ in whether all drivers receive
the same signal in any given state and thus share
the same posterior belief. In our settings, the pri-
vate design allows the information structure to
be differentiated based on drivers’ type (i.e., the

RRE). In what follows, we first discuss the public option.

3.2 Public information design

In the public design, the designer commits to an information structure π = {π(s | w)}w∈W,s∈S

where π(s | w) represents the probability of sending signal s given the state w, and ∑s∈S π(s |
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w) = 1 (∀w ∈ W). Then, after the state w is observed, the designer draws a signal s ∈ S according
to the information structure π and sends it to all drivers. Upon receiving the signal, EV drivers
update their beliefs and derive posterior probabilities µs = {µs(ẇ) = µ0(ẇ)π(s|ẇ)

∑w′∈W µ0(w′)π(s|w′)}ẇ∈W

using the Bayesian rule. Then, the BNE can be determined as in Equation (1), by simply replacing
the prior belief µ0 with the posterior belief µs. The equilibrium charging flow and the indifferent
RRE, both now dependent on the signal s, are denoted f ∗s and r̄∗s respectively, with f ∗s = G (r̄∗s ) =∫ r̄∗s

R g(r)dr and r̄∗s = G−1 ( f ∗s ).
The total expected cost of all EV drivers is employed as a measure of the system performance,

which is given in (2).

Z(π) = ∑
w∈W

µ0(w) ∑
s∈S

π(s | w)
∫

r∈Ξ
Ja∗(µs) ( f ∗s , p(r)|w) g(r)dr

= ∑
w∈W

µ0(w) ∑
s∈S

π(s | w)

(
f ∗s · JC( f ∗s |w) +

∫ R̄

G−1( f ∗s )
JM(p(r)|w)g(r)dr

)
.

(2)

When both routes receive positive flows for all s ∈ S, the designer’s problem can be formu-
lated as follows (Kamenica and Gentzkow 2011):

min Z(π) (3a)

subject to: ∑
s∈S

π(s | w) = 1, ∀w ∈ W; π(s | w) ≥ 0, ∀s ∈ S, w ∈ W, (3b)

∑
w∈W

µ0(w)π(s | w)JC ( f ∗s |w) = ∑
w∈W

µ0(w)π(s | w)JM (p(r̄∗s )|w) , ∀s ∈ S, where r̄∗s = G−1 ( f ∗s ) .

(3c)

3.3 Private information design

In public information design, the information structure π specifies the likelihood of a particular
signal s ∈ S being sent by the designer to everyone given w. In this section, we explore a
private design, whereby the information structure π specifies the possibility that action a ∈ A

is recommended to a driver with RRE r given w per the revelation principle (Gibbard 1973,
Dasgupta et al. 1979, Myerson 1979, Bergemann and Morris 2019). As a prerequisite for such a
design, we shall assume the designer knows each driver’s RRE r through a V2X network.

Assumption 3 (Accessibility of private information). The designer has access to any EV driver’s
remaining range estimate r.

We next impose a specific class of information structures to restrict the design space. The
proposed structure has two main features. First, at each state, the recommendation is determin-
istic rather than probabilistic. Instead of suggesting that a driver with 150 miles of remaining
range has an 80% chance of receiving a charge recommendation, for example, the structure sim-
ply guarantees that such a driver will receive the recommendation to charge. Second, it follows a
cutoff rule: at each state, any driver with a remaining range r below a certain threshold is recom-
mended to charge, while those above the threshold are advised to skip charging. This structure
is inspired by the characteristics of the Bayesian Nash Equilibrium (BNE) in our problem and
aims to improve the practicality of information design. Notably, it eliminates the need for a ran-
dom draw for each individual driver according to w. A formal statement about the information
structure follows.
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Assumption 4 (Information structure). For a given w ∈ W, the designer makes a route recommenda-
tion based on the following rule, which is known by all drivers: pick r̄w ∈ Ξ such that{

π(C | w, r) = 1, π(M | w, r) = 0, for r ≤ r̄w;

π(C | w, r) = 0, π(M | w, r) = 1, otherwise,
(4)

where π(a | w, r) denotes the probability of sending recommendation action a given state w and RRE r.

Assumption 4 implies that private information design can be fully specified by a vector of
cutoff RRE r̄ = {r̄w}w∈W, which, per the property of the BNE, also corresponds to a vector of
state-dependent charging flows f = { fw}w∈W. When drivers have no incentive to unilaterally
deviate from the designer’s recommendation, they reach a Bayesian correlated equilibrium (BCE)
(Bergemann and Morris 2019, Goldstein and Leitner 2018). Accordingly, the private information
design problem is translated into inducing the BCE by ensuring the obedience of the drivers (i.e.,
the recommendation matches their best response under posterior beliefs). The formulation reads

min Z (f ) = ∑
w∈W

µ0 (w)
∫

r∈Ξ
[π (C|w, r) JC ( fw|w) + π (M|w, r) JM (p(r)|w)] g(r)dr, (5a)

subject to: ∑
w∈W

µ0 (w)π (C|w, r) [JC ( fw|w)− JM (p(r)|w)] ≤ 0, ∀r ∈ Ξ, (5b)

∑
w∈W

µ0 (w)π (M|w, r) [JM (p(r)|w)− JC ( fw|w)] ≤ 0, ∀r ∈ Ξ, (5c)

fw ∈ [0, 1] , r̄w = G−1 ( fw) , ∀w ∈ W; and π satisfies (4). (5d)

Similar to the public design problem, the objective here is to minimize the expected total system
cost given the private information structure, assuming all EV drivers follow the recommenda-
tions. Constraints (5b)-(5c) are the obedience constraints. For example, Constraints (5b) dictate
that an EV driver who receives recommendation C has no desire to switch to M because C offers
a lower posterior expected cost. Note that the denominator of the posterior belief is omitted here
because it appears in both terms on the left hand side of the inequality. Importantly, Constraints
(5b)-(5c) must hold for all r ∈ Ξ. Constraints (5d) ensure the feasibility of the charging flow.

1 unit flow

Figure 3: Illustration of type formation in private
information design.

The cutoff vector r̄ divides the demand
into at most |W|+ 1 intervals. Drivers within
each interval can be regarded as the same type
since they should receive the same recommen-
dation for any given w. The challenge is that,
for any two states w1 and w2, the order be-
tween r̄w1 and r̄w2 — i.e., whether r̄w1 > r̄w2

— cannot be predetermined. This order, how-
ever, is needed to specify the obedience con-
straint. Thus, we introduce an indicator vari-
able ν = {νw

i }i=1,...,|W|,w∈W, where νw
i equals

1 if r̄w is the i-th smallest among all cutoff
thresholds and 0 otherwise. With a slight
abuse of notation, we introduce another vector

r̂ = {R, r̄1, . . . , r̄i, . . . , r̄|W|, R̄} to denote the sorted RRE thresholds (r̄i, ∀i = 1, . . . , |W|) augmented
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with the lower and upper bounds on RRE. This enables us to define type k drivers as those with
RRE r ∈ Rk ≡ (r̂k−1, r̂k], ∀k = 1, . . . , |W| + 1. Note that r̂k := r̄i for k = i ∈ {1, . . . , |W|}, and
r̂0 := R, r̂|W|+1 := R̄. For a given ν and r̂, the recommendation received by all drivers of the
same type is set for each w, see Figure 3 for an illustration.

Another difficulty associated with Problem (5) has to do with the dependency of the obe-
dience constraint on r, which renders the problem infinite-dimensional. However, a close look
reveals that for any interval, it suffices to require (i) the compliance with a charge recommenda-
tion by the driver with the highest RRE among all who receive the same recommendation — for
that driver is the least likely to charge; and (ii) the compliance with a skip recommendation by
the driver with the least RRE, again because that driver is the most likely to charge.

In light of the above observations, Problem (5) can be reformulated as follows:

min Z (f ,ν) = ∑
w∈W

µ0 (w)

(
fw · JC ( fw|w) +

∫ R̄

G−1( fw)
JM (p(r)|w) g(r)dr

)
, (6a)

subject to:
|W|

∑
i=1

νw
i = 1, ∀w ∈ W, (6b)

∑
w∈W

νw
i = 1, i = 1, . . . , |W|, (6c)

∑
w∈W

(
νw

i − νw
i+1
)

fw ≤ 0, i = 1, . . . , |W| − 1, (6d)

r̄i = G−1

(
∑

w∈W

νw
i fw

)
, i = 1, . . . , |W|, (6e)

∑
w∈W

µ0(w)

(|W|

∑
j=k

νw
j

)
[JC( fw|w)− JM(p(r̂k)|w)] ≤ 0, k = 1, . . . , |W|, (6f)

∑
w∈W

µ0(w)

(
k−1

∑
j=1

νw
j

)
[JM(p(r̂k−1)|w)− JC( fw|w)] ≤ 0, k = 2, . . . , |W|+ 1, (6g)

fw ∈ [0, 1] , ∀w ∈ W, (6h)

νw
i = 0 or 1, ∀w ∈ W, i = 1, . . . , |W|. (6i)

This is a mixed integer nonlinear program (MINLP) with |W|2 binary variables and |W| contin-
uous variables. Constraints (6b)-(6c) ensure the indicator variables are feasible. Constraints (6d)
link the order of RRE to that of the charging flow for each state. Constraints (6e) represent the
ith ranked RRE threshold as a function of the charging flow.

Constraints (6f) and (6g) are the obedience constraints rewritten with the new variables. As
discussed earlier, for each type and recommendation, we need at most one obedience constraint.
In Constraint (6f), the recommendation is charge for type k = 1, . . . , |W|; the obedience is ensured
for everyone in type k if the driver with the highest RRE of that type (i.e., r = r̂k) is obedient. Note
that type k = |W|+ 1 does not need this constraint because the recommendation is to skip charge
regardless of the state (in other words, this type will never receive a charge recommendation).
Similarly, Constraint (6g) states that to ensure a skip recommendation is needed by all drivers of
type k = 2, . . . , |W|+ 1, we only need to impose the obedience constraint on the driver with the
lowest RRE among all drivers of type k (i.e., r = r̂k−1). Again, there is no need to impose this
constraint for type k = 1 drivers as they will never receive a skip recommendation.

Theorem 1. Problem (6) and Problem (5) are equivalent.

Proof. See Appendix C for details.
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4 Analytical results

In this section, we attempt to draw useful insights by analyzing the proposed model in finer
detail. We first describe a simplified model setting that enables a meaningful analysis, and then
provide analytical results for both the public and the private design problems.

4.1 Setting

To maintain tractability, we assume W = {H, L}. The state H may indicate the electrical grid
experiences high loads or other adverse conditions, making it more difficult to maintain the
voltage at the charging station at the normal level. On the other hand, the state L signifies
normal operation. For simplicity, we shall assume that EV drivers endure an extra wait time
β when w = H. Moreover, RRE follows a uniform distribution between [l, nl], i.e., g(r) =

1
(n−1)l if l ≤ r < nl; and 0 otherwise; as depicted in Figure 4(a), where n > 1 is a real number.

The probability of completing the journey without charging using Route M is denoted as
p(r). For any Route M taker, there is a probability of failing to complete the journey (1 − p(r)),
which comes with a penalty. For simplicity, we further assume (i) 1 − p(r) = nl−r

(n−1)l if l ≤ r <

nl; 1 if r < l; and 0 if r ≥ nl, as illustrated in Figure 4(b); and (ii) the range of any vehicle, when
fully charged, is greater than nl. It follows that any Route C taker is guaranteed to complete their
journey, regardless of their initial RRE.

(a) PDF of the RRE distribution g(r). (b) Probability of failing to complete the journey on
Route M.

Figure 4: Common knowledge for the designer and EV drivers.

Per Assumption 2, we define the cost functions as follows:

JC ( f |H) =
l + ∆l

v
+(α f + β) , JC ( f |L) = l + ∆l

v
+ α f , JM (p(r)|H) = JM (p(r)|L) = l

v
+ ζ (1 − p (r)) , (7)

where v is a constant travel speed. The cost of choosing Route C consists of the travel time with
detour ∆l , and the state-dependent charging time — with the abnormal state H imposing an extra
β ≥ 0. For convenience, we introduce ∆t ≡ ∆l/v to denote the detour in the unit of travel time
hereafter. The cost of selecting Route M includes the travel time without detour and a failure
penalty, modeled as the product of a failure penalty coefficient ζ ≥ 0 and the failure probability.
Moreover, these charging costs are assumed to be linear functions of the flow f on Route C,
where the coefficient α ≥ 0 represents the congestion effect. Given Equations (7), the relationship
between the charging flow f and the threshold RRE r̄ is given as follows: f =

∫ r̄
R g(r)dr = r̄−l

(n−1)l

and r̄ = G−1( f ) = l + (n − 1)l f . Also, 1 − p(r̄) = 1 − r̄−l
(n−1)l = 1 − f .

For convenience, we summarize the above setting as follows:
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Assumption 5 (Simplified single-station settings). In the simplified single-station model, W = {H, L};
the RRE distribution g(r) and the failure probability function 1 − p(r) are specified as illustrated in Fig-
ures 4(a) and 4(b), respectively; and the cost functions associated with each state-action pair are defined in
Equations (7).

4.2 Public information design (PBI)

Given Assumption 5, the detailed analytical results for the public information design (PBI) and
benchmark schemes — no information (NI), system optimum (SO), and full information (FI)
— are provided in Appendix D.1.1. Importantly, the relationship between the optimal public
information design and other information schemes can be stated as follows.

Proposition 1 (Optimal public information design). Given Assumption 5, disclosing the state truth-
fully, i.e., providing full information, is optimal under public information design.

Proof. See Appendix D.3 for details.

4.3 Private information design (PVI)

Building on the analysis presented in Appendix D.1.2, we summarize the main results of private
information design (PVI) in the following proposition.

Proposition 2. Given Assumption 5, if ζ ≥ ∆t + β, the optimal private design outperforms the FI policy,
but is always outperformed by the SO policy; otherwise when ζ < ∆t + β:

(1) if µ0 ≤ µ0(H) ≤ µ0, the optimal private design (PVI) policy performs as well as the SO policy;

(2) else if µ0(H) ≥ max (µ0, µ̂0) the PVI policy performs worse than the FI policy;

(3) else, the PVI policy outperforms all other policies except the SO policy;

where µ0 ≡ α(ζ−∆t)
−α(ζ−∆t)+β(2α+ζ)

and µ0 ≡ (α+ζ)(ζ−∆t)
−α(ζ−∆t)+β(2α+ζ)

and µ̂0 ≡ (α2+(α+ζ)2)(ζ−∆t)

−αζ(ζ−∆t)+β(2α+ζ)(α+ζ)
.

Proof. See Appendix D.6 for details.

Proposition 2 enables us to draw useful insights. When ζ < ∆t, all threshold values (µ0, µ0,
and µ̂0) are negative, corresponding to Case (2), where an exceedingly small penalty coefficient
causes private design to perform worse than full revelation. When ζ ∈ (∆t, ∆t + β], as ζ → ∆t + β,
we have µ0 → α

α+ζ , µ0 → 1, µ0 − µ0 → ζ
α+ζ , µ̂0 → 1. Thus, Case (2) becomes unlikely. In this

circumstance, the larger ζ is relative to α, the greater the µ0 − µ0, the more likely the private
information design achieves SO.

In summary, private information design is the preferred strategy under a wide range of
conditions. It is likely to fall behind the full revelation policy only when the failure penalty
coefficient is low and the probability of anomaly is high. It performs the best, with a high
probability of rivaling the SO policy, when the failure penalty coefficient is less than but close to
the extra cost of charging and the probability of anomaly is neither too high nor too low.
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5 Two-station corridor model

In this section, we extend our model to analyze a corridor with multiple charging stations. To
retain tractability, the extended model is limited to a minimal configuration with two stations
(Figure 5), which we believe captures the essential trade-offs that arise from sequential decision-
making, while avoiding unnecessary complexity. Models with more than two stations can be
formulated similarly.

EV drivers now encounter two charging stations sequentially, each corresponding to a deci-
sion point, denoted as D1 and D2. At Di(i = 1, 2), the driver chooses an action ai from the action

Charging Station

Decision point Decision point

Charging Station

Figure 5: Illustration of a two-station EV charging
problem.

set Ai, where A1 = A2 = {C, M}. Here,
C denotes choosing to charge at the cur-
rent station, while M denotes choosing to
move on without charging. A driver’s
overall charging strategy across the two
stages is represented as an action vector
a = a1a2 ∈ A = {CC, CM, MC, MM},
where each element in A is a shorthand
notation for a specific sequence of deci-
sions at the two stations. We denote the
distance between the two stations as l1,
and the distance from Station 2 to the final destination as l2.

As before, travel on the corridor is assumed to be uncongested. Congestion arises only at
charging stations, where the cost depends on the charging demand. At the first station, waiting
time depends on the total mass of drivers who choose to charge there — that is, those with
action a1 = C. At the second station, however, drivers who charge there may have taken different
paths: some charged at Station 1 (a = CC) while others deferred charging (a = MC). These two
groups may not compete for charging capacity at Station 2, since their earlier choices at Station
1 assign them to disjoint queues. In addition, the cost at each station is further affected by its
charging state iw ∈ Wi with prior µ0

iw, and for tractability the two stations’ charging conditions
are assumed independent.

As EVs travel along the corridor, their remaining range decreases. We assume that each
mile traveled reduces the range by a random amount drawn from a distribution with PDF u(·)
supported on

[
δ, δ̄
]
. Let p(r̂, l) denote the probability that an EV with a remaining range r̂

successfully covers distance l, given by p (r̂, l) = 1 −
∫ δ̄

r̂/l u(δ)dδ. The expected penalty for
attempting to traverse li (i = 1, 2) with r̂ is then denoted as Jp

i (r̂) which decreases as r̂ (hence
p (r̂, li)) increases. It represents the expected cost associated with seeking emergency charging or
other remedial measures. To characterize the evolution of drivers’ RRE as they proceed along the
corridor, we generalize the previous single-station setting. As before, the initial RRE of drivers
upon arriving at D1 follows a probability density function g(·) with cumulative distribution G(·)
over support Ξ = [R, R̄]. Each charging action increases the remaining range, while each traveled
segment depletes it. Therefore, for a driver with initial RRE r ∈ Ξ, the resulting RRE at each
decision point Di (i = 1, 2) depends on the sequence of actions taken up to that point. To capture
these dynamics in a general and policy-adaptive form, we define a set of functions describing the
RRE outcomes under different action sequences. Specifically, at Station 1 (D1), the driver’s RRE
after making the first decision is represented by r̂C

1 (r) and r̂M
1 (r), corresponding to actions a1 = C
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and a1 = M, respectively. At Station 2 (D2), the driver’s RRE further become r̂CC
2 (r), r̂CM

2 (r),
r̂MC

2 (r), and r̂MM
2 (r), associated with each action sequence a ∈ A = {CC, CM, MC, MM}.

We distinguish two information release schedules: sequential versus simultaneous. In the
sequential schedule, the information about each charging station is withheld until the driver
is close enough to the station, whereas in the simultaneous schedule all signals are disclosed
before the driver arrives at the first station, which mimics the single-station model. For each
approach, we consider both public and private information design. In the public informa-
tion design, let the set of signals for two stations as S1 and S2. The information structure is
specified by a pair of signal policies π = {π1,π2}, where π1 = {π1 (1s | 1w)}1s∈S1,1w∈W1

and
π2 = {π2 (2s | 2w)}2s∈S2,2w∈W2

. By Carathéodory’s theorem (Tyrrell Rockafellar 1970, Berge-
mann and Morris 2016), we can, without loss of generality, assume that the number of signals
equals that of states, i.e., |S1| = |W1|, |S2| = |W2|. In the private design, we continue to group
drivers with identical action recommendations across all states into the same information type.
However, a more flexible specification is needed, since a natural ranking of actions does not exist.

5.1 Sequential information release

We begin by assuming information release is sequential. A sequential schedule leads to a multi-
stage decision-making process, where the equilibrium is defined recursively across stages. Below,
we first discuss public information design.

5.1.1 Public information design

A public information design corresponds to a two-stage decision process. At D1, drivers observe
a public signal 1s ∈ S1 drawn from π1, update their belief about Station 1, and choose the action
sequence minimizing expected cost from that point to the destination. At D2, they observe a new
signal 2s ∈ S2 from π2, update their belief about Station 2, and revise their choice by minimizing
the remaining expected cost.

Each signal may induce an action sequence for different drivers depending on their initial
RRE before D1. The drivers who choose the same action sequence have RREs within a certain
range. For example, upon receiving a signal 1s ∈ S1, drivers choose subsequent actions a =

a1a2 ∈ A = {CC, CM, MC, MM}, and their RRE is defined by a range Ra1a2
1s . Noting that both CC

and CM involve charging at Station 1, while MC and MM do not, we define: RC
1s ≡ RCC

1s ∪ RCM
1s

and RM
1s ≡ RMC

1s ∪ RMM
1s , where RC

1s ∪ RM
1s = Ξ for any 1s ∈ S1. At D2, upon receiving signal

2s ∈ S2, drivers take action a2 ∈ {C, M} conditional on their earlier choice a1 ∈ {C, M} after
receiving 1s. The range corresponding to these drivers (who follow the full “action path” a

under the signal pair (1s, 2s)) is denoted Ra
1s2s. Thus, the decision structure across stages and

signals can be represented by a set of ranges R =
{

RC
1s, RM

1s , RCC
1s2s, RCM

1s2s, RMC
1s2s, RMM

1s2s
}

1s∈S1,2s∈S2
,

where

RC
1s = RCC

1s2s ∪ RCM
1s2s, RM

1s = RMC
1s2s ∪ RMM

1s2s , ∀1s ∈ S1, 2s ∈ S2, RC
1s ∪ RM

1s = Ξ, ∀1s ∈ S1. (8)

Note that R is endogenous and represents the collective decisions of all drivers in response to an
information structure, hence also corresponding to the equilibrium of the congestion game.

We further denote the charging cost function at Station 1 in state 1w ∈ W1 after receiving
signal 1s ∈ S1 as Jg,1s

1C,1w and that at Station 2 in state 2w ∈ W2 after receiving signal 2s ∈ S2 given
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signal 1s and first-stage choice a1 as Jg,1s2s
a1C,2w. Moreover, the former depends on the charging flow

f C
1s =

∫
r∈RC

1s
g(r)dr and the latter on f a1C

1s2s =
∫

r∈Ra1C
1s2s

g(r)dr.

At D1, after receiving signal 1s ∈ S1, a driver evaluates the expected cost associated with each
of the four possible action sequences. The cost of charging at Station 1 is computed based on
the posterior belief µ1s

1w, which is updated upon observing 1s. In contrast, the cost of charging
at Station 2 is evaluated using the prior belief µ0

2w, since no information about Station 2 has yet
been received. For Station 2, the expected cost under each possible state 2w ∈ W2 is further
weighted by the probability of receiving each signal 2s ∈ S2, as specified by the information
structure π2. The expected costs of the four action sequences — denoted as e1s

ĊC, e1s
ĊM, e1s

ṀC, and
e1s

ṀM — are defined as follows, where the dot accent indicates the location at which the expected
cost is incurred:

e1s
ĊC = ∑

1w∈W1

µ1s
1w · Jg,1s

1C,1w + Jp
1

(
r̂C

1 (r)
)
+ ∑

2w∈W2

µ0
2w ·

(
∑

2s∈S2

π2 (2s | 2w) · Jg,1s2s
CC,2w

)
+ Jp

2

(
r̂CC

2 (r)
)

,

e1s
ĊM = ∑

1w∈W1

µ1s
1w · Jg,1s

1C,1w + Jp
1

(
r̂C

1 (r)
)
+ Jp

2

(
r̂CM

2 (r)
)

,

e1s
ṀC =Jp

1

(
r̂M

1 (r)
)
+ ∑

2w∈W2

µ0
2w ·

(
∑

2s∈S2

π2 (2s | 2w) · Jg,1s2s
MC,2w

)
+ Jp

2

(
r̂MC

2 (r)
)

,

e1s
ṀM =Jp

1

(
r̂M

1 (r)
)
+ Jp

2

(
r̂MM

2 (r)
)

, ∀1s ∈ S1, where µ1s
1w =

µ0
1wπ1 (1s | 1w)

∑1w′∈W1
µ0

1w′π1 (1s | 1w′)
.

Note that the expected penalty Jp
i (·), i = 1, 2 is state independent and its inputs are the remaining

range functions at each decision point we defined earlier.
After arriving at D2 and observing the second signal 2s ∈ S2, given that the first-stage signal

1s has been received, the driver updates their belief over the state of Station 2 and re-evaluates
the expected cost conditional on their prior first-stage decision. The charging cost at Station 2 is
now computed using the posterior belief µ2s

2w. The second-stage expected costs, denoted as e1s2s
CĊ ,

e1s2s
CṀ , e1s2s

MĊ , and e1s2s
MṀ, are given by:

e1s2s
CĊ = ∑

2w∈W2

µ2s
2w · Jg,1s2s

CC,2w + Jp
2

(
r̂CC

2 (r)
)

, e1s2s
MĊ = ∑

2w∈W2

µ2s
2w · Jg,1s2s

MC,2w + Jp
2

(
r̂MC

2 (r)
)

,

e1s2s
CṀ =Jp

2

(
r̂CM

2 (r)
)

, e1s2s
MṀ = Jp

2

(
r̂MM

2 (r)
)

, ∀1s ∈ S1, 2s ∈ S2, where µ2s
2w =

µ0
2wπ2 (2s | 2w)

∑2w′∈W2
µ0

2w′π2 (2s | 2w′)
.

Then, in the public information design with sequential information release, for any given
information structure π, a solution R∗ is said to be a BNE, denoted as R∗ ∈ ε (π), if no driver
has incentives to deviate from their chosen action at either stage. Mathematically, this condition
can be stated as:

Any driver taking action a∗ ∈ arg mina∈{ĊC,ĊM,ṀC,ṀM} e1s
a , ∀1s ∈ S1 at D1 must have

RRE r ∈ Ra∗
1s . Similarly, for any driver who has received 1s ∈ S1 and chosen action

a1 ∈ A1 at D1 and decides at D2 to take action a∗ ∈ arg mina∈{a1Ċ,a1 Ṁ} e1s2s
a , ∀2s ∈ S2,

their RRE r must fall in Ra∗
1s2s.

Any BNE solution R∗ also satisfies the conservation condition (8).
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The system’s total expected cost achieved at a given information structure π and the corre-
sponding BNE solution R∗ is denoted as Zb (R∗,π). This cost aggregates outcomes across both
decision stages. Since the second-stage cost depends on the first-stage signal, it is weighted by
the probability of observing each first-stage signal 1s, which is given by p1s ≡ ∑1w∈W1

µ0
1w ·

π1 (1s | 1w). This gives rise to:

Zb (R
∗,π) = ∑

1w∈W1

∑
1s∈S1

µ0
1w · π1 (1s|1w) ·

(
Jg,1s
1C,1w ·

∫
r∈RC

1s

g(r)dr + ∑
a1∈{C,M}

∫
r∈Ra1

1s

Jp
1
(
r̂a1

1 (r)
)

g(r)dr
)

+ ∑
1s∈S1

[
p1s · ∑

2w∈W2

∑
2s∈S2

µ0
2w · π2 (2s|2w) ·

(
∑

a′∈{CC,MC}
Jg,1s2s
a′ ,2w ·

∫
r∈Ra′

1s2s

g(r)dr + ∑
a∈A

∫
r∈Ra

1s2s

Jp
2 (r̂a2 (r)) g(r)dr

)]
.

We are now ready to formulate the sequential public information design problem as follows:

min Zb (R∗,π) (9a)

subject to: ∑
is∈Si

πi(is | iw) = 1, ∀iw ∈ Wi, i = 1, 2; (9b)

πi(is | iw) ≥ 0, ∀is ∈ Si, iw ∈ Wi, i = 1, 2; (9c)

R∗ ∈ ε (π) , (9d)

where Constraints (9b)–(9c) specify the information structure and Constraint (9d) specifies the
BNE condition.

5.1.2 Private information design

In the two-station scenario, the cutoff rule used in the single-station setting — where a single
threshold at each state separates charging from skipping — no longer applies. Below, we propose
a more general modeling framework.

Let T denote the space of private information types. Each element t ∈ T consists of a
series of state–action pairs, representing a state-dependent recommendation profile. For instance,
an element t = (1w1 : C, 1w2 : C, 2w1 : M, 2w2 : C) indicates that the driver is recommended to
charge in states 1w1, 1w2, and 2w2 but to skip in state 2w1. The total number of possible types is
|T| = 2(∑i |Wi |). Further, let constant ηt,w = 1 if information type t ∈ T receives recommendation
C at state w ∈ W = ∪iWi, and 0 if recommendation is M.

The assignment of a driver with RRE r to an information type is endogenous. To avoid the
challenge posed by the infinite dimension, the RRE support Ξ is divided into a set of intervals
K = {1, . . . , K}, with r̄k, k ∈ K denoting the upper bound of the kth interval. For each interval
k ∈ K, a binary variable ιk,t, t ∈ T is introduced to indicate that drivers whose RRE falls into kth
interval are of information type t. Accordingly, r̄ = [. . . , r̄k, . . .] and ι = [. . . , ιk,t, . . .] are treated
as the decision variables.

The cost function at Station 1 in state 1w ∈ W1 is denoted by Jg
1C,1w, which depends on the

corresponding charging flow f 1C
1w = ∑k∈K ∑t∈T

∫ r̄k
r̄k−1

ιk,t · ηt,1w · g(r)dr. At Station 2 and given
state (1w, 2w), charging flows are distinguished: (i) f CC

1w2w representing drivers who charge at
both stations and (ii) f MC

1w2w representing those who only charge at Station 2. These, defined as,
for 1w ∈ W1, 2w ∈ W2,

f CC
1w2w = ∑

k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t · ηt,1w · ηt,2w · g(r)dr, and f MC
1w2w = ∑

k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t · (1 − ηt,1w) · ηt,2w · g(r)dr,

(10)
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Table 1: Stage-wise cost of an action in the two-station sequential private information design
problem.

Action a Ea1
1w (r) Ea

1w2w (r)

CC Jg
1C,1w + Jp

1
(
r̂C

1 (r)
) Jg

CC,1w2w + Jp
2
(
r̂CC

2 (r)
)

CM Jp
2
(
r̂CM

2 (r)
)

MC
Jp
1
(
r̂M

1 (r)
) Jg

MC,1w2w + Jp
2
(
r̂MC

2 (r)
)

MM Jp
2
(
r̂MM

2 (r)
)

determine, respectively, Jg
CC,1w2w and Jg

MC,1w2w, the cost experienced by the two distinctive co-
horts.

The system’s total expected cost for the two-station charging problem can then be expressed
as

Zv (r̄, ι) = ∑
1w∈W1

µ0
1w ·

[
Jg
1C,1w · f 1C

1w + ∑
k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t ·
[
ηt,1w · Jp

1

(
r̂C

1 (r)
)
+ (1 − ηt,1w) · Jp

1

(
r̂M

1 (r)
)]

· g(r)dr

]

+ ∑
1w∈W1

µ0
1w · ∑

2w∈W2

µ0
2w ·

[
Jg
CC,1w2w · f CC

1w2w + Jg
MC,1w2w · f MC

1w2w + ∑
k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t ·
[
ηt,1wηt,2w Jp

2

(
r̂CC

2 (r)
)
+

+ ηt,1w (1 − ηt,2w) Jp
2

(
r̂CM

2 (r)
)
+ (1 − ηt,1w) ηt,2w Jp

2

(
r̂MC

2 (r)
)
+ (1 − ηt,1w) (1 − ηt,2w) Jp

2

(
r̂MM

2 (r)
)]

g(r)dr
]

.

To simplify the definition of obedience constraints, let us first introduce Ea1
1w (r) and Ea

1w2w (r),
which denote, respectively, the first stage cost at state 1w given action a1 at D1, and the second
stage cost at state (1w, 2w) given action sequence a, for each driver with intial RRE r, as summa-
rized in Table 1. At D1, the obedience constraints ensure that drivers follow the recommended
action based on posterior beliefs for Station 1 and prior beliefs for Station 2. The charging obedi-
ence constraints at D1 are

∑
1w∈W1

µ0
1w · ιk,t · ηt,1w ·

[
E1C

1w (r̄k) + ∑
2w∈W2

µ0
2w ·

(
ηt,2wECC

1w2w (r̄k) + (1 − ηt,2w) ECM
1w2w (r̄k)

)
−
(

E1M
1w (r̄k) + ∑

2w∈W2

µ0
2w ·

(
ηt,2wEMC

1w2w (r̄k) + (1 − ηt,2w) EMM
1w2w (r̄k)

))]
≤ 0; ∀k ∈ K, t ∈ T.

(11)

Note that the term µ0
1w · ιk,t · ηt,1w can be interpreted as the (non-normalized) posterior belief for

state 1w when information type t is recommended to choose action C at Station 1 in interval k.
These constraints state that, for each interval–type pair (k, t) that receives a recommendation to
charge at Station 1 (i.e., ηt,1w = 1 for some 1w ∈ W1), the expected total cost of complying with
the recommendation must not exceed the cost of skipping. If no charge recommendation is given
(i.e., ηt,1w = 0 for all 1w ∈ W1), the constraint holds trivially as an equality.

Similarly, the skipping obedience constraints at D1 are:

∑
w∈W

µ0
1w · ιk,t · (1 − ηt,w) ·

[
E1M

1w (r̄k−1) + ∑
2w∈W2

µ0
2w ·

(
ηt,2wEMC

1w2w (r̄k−1) + (1 − ηt,2w) EMM
1w2w (r̄k−1)

)
−
(

E1C
1w (r̄k−1) + ∑

2w∈W2

µ0
2w ·

(
ηt,2wECC

1w2w (r̄k−1) + (1 − ηt,2w) ECM
1w2w (r̄k−1)

))]
≤ 0; ∀k ∈ K, t ∈ T.

(12)

At D2, after the state of Station 1 is revealed and a signal about Station 2 is received, the belief
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about Station 2 is updated to posterior. The charging and skipping obedience constraints are

∑
2w∈W2

µ0
2w · ιk,t · ηt,2w ·

[
ηt,1w · ECC

1w2w (r̄k) + (1 − ηt,1w) · EMC
1w2w (r̄k)

−
(

ηt,1w · ECM
1w2w (r̄k) + (1 − ηt,1w) · EMM

1w2w (r̄k)
)]

≤ 0, ∀k ∈ K, t ∈ T, 1w ∈ W1,
(13)

and

∑
2w∈W2

µ0
2w · ιk,t · (1 − ηt,2w) ·

[(
ηt,1w · ECM

1w2w (r̄k−1) + (1 − ηt,1w) · EMM
1w2w (r̄k−1)

)
−
(

ηt,1w · ECC
1w2w (r̄k−1) + (1 − ηt,1w) · EMC

1w2w (r̄k−1)
)]

≤ 0, ∀k ∈ K, t ∈ T, 1w ∈ W1.
(14)

As before, obedience needs only be checked at the boundary types (r̄k for charging, r̄k−1 for
skipping), since monotonicity guarantees compliance for all interior types.

We formulate the two-station sequential private information design problem as follows:

min Zv (r̄, ι) (15a)

subject to: ∑
t∈T

ιk,t = 1; ∀k ∈ K, ιk,t = 0 or 1; ∀k ∈ K, t ∈ T, (15b)

(11) − (14), (15c)

r̄0 = R, r̄K = R̄; r̄k − r̄k−1 ≥ 0; ∀k ∈ K. (15d)

Constraints (15b) ensure that each interval is assigned to exactly one information type. Con-
straints (15c) enforce obedience — requiring that drivers prefer the recommended actions. Con-
straints (15d) ensure the feasibility of the interval boundaries. As a mixed-integer program with
nonlinear obedience constraints (11)–(14) and a nonlinear objective function, Problem (15) is
difficult to solve. Adding to the challenge is the fact that we also need to choose the “hyperpa-
rameter” K through some iterative process. In numerical experiments, we solve the problem by
heuristics that leverage commercial solvers.

5.2 Simultaneous information release

For simultaneous release, the states of all stations are assumed to remain fixed throughout the
decision process, and the information about both stations is disclosed at the first decision point.
Accordingly, drivers form posterior beliefs about both stations before making their first decision.
This means that, even at Station 1, a driver’s expectation about the state at Station 2 is based on
posterior rather than prior beliefs.

5.2.1 Public information design

We only need to redefine the BNE condition, as well as the expected system cost. Let us first
define the action-based range set R̂ =

{
R̂CC

1s2s, R̂CM
1s2s, R̂MC

1s2s, R̂MM
1s2s , ∀1s ∈ S1, 2s ∈ S2

}
. The expected
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Table 2: Expected cost conditional on recommendation in simultaneous release private informa-
tion design.

Received a Expected cost Vk,t
a,a′(r)

CC ∑1w∈W1

µ0
1w ·ιk,t ·ηt,1w

∑1w′∈W1
µ0

1w′ ·ιk,t ·ηt,1w′

(
Ea′1

1w (r) + ∑2w∈W2

µ0
2w ·ιk,t ·ηt,2w

∑2w′∈W2
µ0

2w′ ·ιk,t ·ηt,2w′
· Ea′

1w2w (r)
)

CM ∑1w∈W1

µ0
1w ·ιk,t ·ηt,1w

∑1w′∈W1
µ0

1w′ ·ιk,t ·ηt,1w′

(
Ea′1

1w (r) + ∑2w∈W2

µ0
2w ·ιk,t ·(1−ηt,2w)

∑2w′∈W2
µ0

2w′ ·ιk,t ·(1−ηt,2w′)
· Ea′

1w2w (r)
)

MC ∑1w∈W1

µ0
1w ·ιk,t ·(1−ηt,1w)

∑1w′∈W1
µ0

1w′ ·ιk,t ·(1−ηt,1w′)

(
Ea′1

1w (r) + ∑2w∈W2

µ0
2w ·ιk,t ·ηt,2w

∑2w′∈W2
µ0

2w′ ·ιk,t ·ηt,2w′
· Ea′

1w2w (r)
)

MM ∑1w∈W1

µ0
1w ·ιk,t ·(1−ηt,1w)

∑1w′∈W1
µ0

1w′ ·ιk,t ·(1−ηt,1w′)

(
Ea′1

1w (r) + ∑2w∈W2

µ0
2w ·ιk,t ·(1−ηt,2w)

∑2w′∈W2
µ0

2w′ ·ιk,t ·(1−ηt,2w′)
· Ea′

1w2w (r)
)

cost for each action profile is given by:

ρ1s2s
CC = ∑

1w∈W1

µ1s
1w · Ĵg,1s2s

1C,1w + Jp
1

(
r̂C

1 (r)
)
+ ∑

2w∈W2

µ2s
2w · Ĵg,1s2s

CC,2w + Jp
2

(
r̂CC

2 (r)
)

,

ρ1s2s
CM = ∑

1w∈W1

µ1s
1w · Ĵg,1s2s

1C,1w + Jp
1

(
r̂C

1 (r)
)
+ Jp

2

(
r̂CM

2 (r)
)

,

ρ1s2s
MC =Jp

1

(
r̂M

1 (r)
)
+ ∑

2w∈W2

µ2s
2w · Ĵg,1s2s

MC,2w + Jp
2

(
r̂MC

2 (r)
)

,

ρ1s2s
MM =Jp

1

(
r̂M

1 (r)
)
+ Jp

2

(
r̂MM

2 (r)
)

, ∀1s ∈ S1, 2s ∈ S2,

(16)

where the charging cost function at Station 1 after receiving signals (1s, 2s) in state 1w ∈ W1 is
denoted by Ĵg,1s2s

1C,1w, which depends on the corresponding charging flow f̂ 1s2s
1C,1w =

∫
r∈R̂CC

1s2s∪R̂CM
1s2s

g(r)dr.
Similarly, the charging cost function at Station 2 after receiving (1s, 2s) in state 2w ∈ W2 under
action sequence a1C (a1 ∈ {C, M}) is denoted by Ĵg,1s2s

a1C,2w, which depends on the charging flow
f̂ 1s2s
a1C,2w =

∫
r∈R̂a1C

1s2s
g(r)dr.

A solution R̂∗ is a BNE, written as R̂∗ ∈ ε̂(π), if any driver taking action
a∗ ∈ arg mina∈{CC,CM,MC,MM} ρ1s2s

a , ∀1s ∈ S1, 2s ∈ S2 has RRE r ∈ R̂a∗
1s2s.

The system’s total expected cost under the simultaneous public information structure is:

Ẑb
(
R̂∗,π

)
= ∑

1w∈W1

∑
1s∈S1

∑
2w∈W2

∑
2s∈S2

µ0
1w · π1 (1s | 1w) · µ0

2w · π2 (2s | 2w) ·
[(

Ĵg,1s2s
1C,1w ·

∫
r∈R̂CC

1s2s∪R̂CM
1s2s

g(r)dr+

∑
a1∈{C,M}

∫
r∈R̂a1C

1s2s∪R̂a1 M
1s2s

Jp
1
(
r̂a1

1 (r)
)

g(r)dr

+

 ∑
a1∈{C,M}

Ĵg,1s2s
a1C,2w ·

∫
r∈R̂a1C

1s2s

g(r)dr + ∑
a∈A

∫
r∈R̂a

1s2s

Jp
2 (r̂a2 (r)) g(r)dr

].

5.2.2 Private information design

Similarly, we only need to redefine the obedience constraints and the objective function. To
simplify the exposition of the former, we introduce an expected cost function Vk,t

a,a′(r) to represent
the expected cost for a driver of type t with RRE r falling into interval k, when she receives the
action recommendation a and chooses to take the action a′ — see Table 2 for details.

Using the expected cost function we can write the obedience constraints simply as

Vk,t
a,a(r̄k) ≤ Vk,t

a,a′(r̄k), Vk,t
a,a(r̄k−1) ≤ Vk,t

a,a′(r̄k−1), ∀k ∈ K, t ∈ T,a,a′ ∈ A. (17)
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The expected system cost in the simultaneous private information structure is given by

Ẑv (r̄, ι) = ∑
1w∈W1

∑
2w∈W2

µ0
1w · µ0

2w ·
[

Jg
1C,1w2w f 1C

1w2w + Jg
CC,1w2w f CC

1w2w + Jg
MC,1w2w f MC

1w2w

+ ∑
k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t ·
(

ηt,1w Jp
1

(
r̂C

1 (r)
)
+ (1 − ηt,1w)Jp

1

(
r̂M

1 (r)
))

g(r) dr

+ ∑
k∈K

∑
t∈T

∫ r̄k

r̄k−1

ιk,t ·
(

ηt,1wηt,2w Jp
2

(
r̂CC

2 (r)
)
+ ηt,1w(1−ηt,2w)Jp

2

(
r̂CM

2 (r)
)

+ (1−ηt,1w)ηt,2w Jp
2

(
r̂MC

2 (r)
)
+ (1−ηt,1w)(1−ηt,2w)Jp

2

(
r̂MM

2 (r)
) )

g(r) dr
]
,

(18)

where the definition of f CC
1w2w, f MC

1w2w, Jg
CC,1w2w, and Jg

MC,1w2w follow those in the private informa-
tion design with sequential release (see Equation (10)). The charging flow at Station 1 under
states (1w, 2w) is given by f 1C

1w2w = ∑k∈K ∑t∈T

∫ r̄k
r̄k−1

ιk,t · ηt,1w · g(r)dr, which determines Jg
1C,1w2w,

the charging cost at Station 1.
By replacing the obedience constraints (15c) with (17) and the objective function with (18),

Problem (15) can be employed to obtain private information designs with a simultaneous release
schedule.

6 Numerical results

Section 6.1 presents the results of the experiments for the single-station model. In Section 6.1.1,
we specify a base instance based on the setting presented in Section 4, solve the general formula-
tion numerically, and compare the results with those given by the analysis. Section 6.1.2 conducts
a sensitivity analysis on several key input parameters. In Section 6.1.3, by increasing the number
of random states from 2 to 3, we create and solve more general instances for which analytical
solutions are not available. We also discuss the computational challenge related to the number
of states and how to address it in special cases.

Section 6.2 addresses the two-station corridor model. Recall that the public design problem
(9) is a bilevel program, where the lower-level BNE constraint represents drivers’ best response
to a given information structure. To solve it, the lower-level equilibrium is obtained by either the
Method of Successive Averages (MSA) — which requires discretizing the support Ξ into a finite
number of intervals and can obtain solutions that are arbitrarily close to the true equilibrium
provided that the discretization is sufficiently fine — or approximating driver choices using a
softmax rule, which trades off solution quality for computational convenience. The upper-level
problem is then solved by either a grid search (if MSA is used to solve the lower-level BNE), or
a gradient descent via automatic differentiation (if softmax approximation is employed) (Li et al.
2020, 2022). Both methods (MSA + grid search vs. softmax+gradient descent) are implemented,
tested, and shown to consistently identify full revelation as the optimal information scheme.
For the private design, we employ a two-stage heuristic: (i) Remove the obedience constraints
(11)–(14) from Problem (15) and enumerate all unique (ι, K) pairs that optimally solve the relaxed
problem, which equals the system optimal problem given K. Effectively, this means that we solve
the relaxed problem many times, each corresponding to a K value chosen between 1 to a preset
upper bound, to obtain the optimal ι; (ii) Solve Problem (15) for each (ι, K) pair identified in Stage
1 and return the best solution as the “optimal” design. While this approach does not guarantee
optimality, we note that it consistently yields much better solutions than directly solving Problem
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(15) with commercial solvers for the amount of computing time considered reasonable in our
study (up to four hours). In our numerical experiment, this two-stage heuristic is implemented
using both COIN-OR BONMIN solver (Bonami et al. 2008) and Artelys Knitro solver (Byrd et al.
2006).

6.1 Base model

6.1.1 Base case

Per Assumption 5, we set the safe range factor n = 2, the prior belief µ0(H) = 0.5, the remaining
travel distance l = 100 mile, the detour ∆l = 50 mile, the travel speed v = 100mile/h, and for the
coefficients needed to define the cost functions: the coefficient for failure penalty ζ = 3 (hours),
the congestion coefficient α = 3 (hours per unit flow), and extra delay β = 2 (hours).
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Figure 6: Feasible obedience-
compliant region and different
solutions.

For the parameters chosen here, the obedience-
compliant region for the private information design and
the corresponding solutions are illustrated in Figure 6.
From the figure, we observe the following solutions and
objective function values — the percentages in parenthe-
ses after the objective function value show the degree
of improvement relative to the no-information solution,
with the SO solution capping the improvement:
•
(

f NI∗
∅ , f NI∗

∅
)
= (1/4, 1/4), Z∗ (fNI∗) = 2.406 (+0%);

•
(

f SO∗
H , f SO∗

L
)
= (1/18, 5/18), Z∗ (fSO∗) = 2.319 (+100%) ;

•
(

f FI∗
H , f FI∗

L
)
= (1/12, 5/12), Z∗ (fFI∗) = 2.365 (+48%);

•
(

f PVI∗
H , f PVI∗

L
)
= (1/12, 11/36), Z∗ (fPVI∗) = 2.323 (+96%).

In the base case, the optimal private design not only
significantly outperforms the optimal public information
design (which equals the full-information solution, as in-
dicated in Proposition 1), but closely tracks the perfor-
mance of the SO policy (with about 4% efficiency loss).

6.1.2 Sensitivity analysis

We next perform sensitivity analysis over six key parameters: the failure penalty coefficient ζ,
the speed v, the extra delay β, the congestion coefficient α, the detour ∆l , and the prior µ0. In
all cases, the objective function value of the SO policy serves as a benchmark (the lower bound
of the system cost), with the deviation from that lower bound being plotted in Figure 7 in all
scenarios. Thus, the smaller the deviation, the closer an information design is to the SO policy,
the better.

A general trend that holds across all plots is that the blue diamond line (for the NI policy)
always lies above the yellow triangle line (for the FI policy), which, with rare exceptions (see
the left ends in Figures 7(a) and 7(b)), lies above the red circle line (for the PVI policy). This is
expected because our analysis indicates that, in general, private information design is better than
full-information revelation, which in turn outperforms the no-information scheme.

The sensitivity results on ζ (Figure 7(a)) and v (Figure 7(b)) are similar. This is because an
increase in either parameter tends to favor the charging option (Route C). We can see that the
FI policy is preferred to the PVI policy when either parameter takes a sufficiently low value
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(a) Failure penalty coefficient ζ. (b) Speed v.

(c) Extra delay β at state H. (d) Congestion coefficient α.

(e) Detour length ∆l of Route C. (f) Prior belief µ0(H) of state H.

Figure 7: Sensitivity analysis of key model parameters in information design. The y-axis reports
the deviation of the system cost from SO.
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(ζ < 1.58, or v < 26.5). Thus, when the charging option is unattractive (due to a small failure
penalty or a low speed), it is better to disclose the information fully and publicly than partially
and privately. In the intermediate range (1.75 < ζ < 2.4 or 28 < v < 55), the PVI policy performs
as well as the SO policy, highlighting the power of personalized persuasion. When ζ ≥ 2.4 or
v ≥ 55, the PVI policy enjoys a significant advantage over the FI policy, with the gap between the
two slightly enlarging as ζ and v increase.

As shown in Figure 7(c), an increase in the extra delay associated with the abnormal state
(β) pushes the PVI policy toward SO. The FI policy also becomes more effective as β increases,
though the gain is more modest. Evidently, as the abnormal state imposes a higher cost, infor-
mation becomes more valuable and there is greater maneuvering room for the designer. For all
β values, the PVI policy consistently outperforms the FI policy. When β ≤ 2.5, the PVI policy
begins to deviate from the SO policy (the obedience-compliant region begins to shrink), causing
all information designs to slowly converge to the same solution at β = 0 (where information no
longer makes any difference).

Figure 7(d) indicates that the congestion coefficient α, which affects the cost at both states, has
a relatively small but positive impact on the effectiveness of information provision. For small α,
the NI scheme performs much worse than the other two schemes. In other words, if the waiting
at the station is insensitive to the charging flow, there is much to lose by not telling the drivers
what is going on. As α increases, however, the gap between the three shrinks quickly. For very
large α, the PVI policy still holds a small edge while disclosing information fully or not at all
makes no difference whatsoever. This indicates that the benefit of information, regardless of
design, diminishes when the waiting time at the charging station is too high.

From Figure 7(e), we can see that increasing the detour length ∆l brings both FI and PVI
policies closer to SO. This suggests that a longer detour, which worsens the charging option,
enhances the effectiveness of information provision in general. However, the relative advantage
of the PVI policy over other policies is slightly eroded as ∆l grows.

Figure 7(f) shows that prior belief has a rather dramatic impact on the effectiveness of all three
policies, as well as on their effectiveness relative to each other. When nobody initially believes the
charging station would operate abnormally (µ0(H) = 0), information design makes no difference
and all three policies perform poorly compared to SO. On the other extreme, where everyone is
predisposed to believe the state is abnormal, information design also matters little. Improvements
achieved by either the FI or the PVI policy over the NI policy peak at roughly µ0(H) = 0.4 ∼ 0.6,
highlighting the fact that information design works best when drivers perceive a high level of
uncertainty.

6.1.3 Multiple states

In this section, we first conduct experiments with three states to validate the formulation given
in Section 3 and to compare the results with analytical results. We then discuss the challenge
to deal with an arbitrary number of states. The parameter values in Section 6.1.1 are retained,
except (i) ζ is set to 2.35, and (ii) the cost function (7) is slightly generalized to allow both α and
β to be state-dependent, i.e., JC( f |w) = (l + ∆l)/v + (αw · f + βw).

The state set of the charging condition is set to W = {H, D, L} with equal prior probabilities
µ0(H) = µ0(D) = µ0(L) = 1/3. We consider two scenarios, each corresponding to a different set
of values for αw and βw. In the first (Scenario A), αH = 5, αD = 3, αL = 1, and βH = βD = βL = 0.
Under this setting, for any given charging flow f , the charging costs satisfy JC( f |H) ≥ JC( f |D) ≥
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JC( f |L). The results are presented in Table 3. We can see that the PBI and the FI policies are still
equivalent. Both the PBI and PVI policies are better than the NI policy, though they are still quite
far from the SO policy, with a gain of 48.1% and 67.6% respectively.

In Scenario B, we retain all parameter values from Scenario A except that βD is increased
from 0 to 1, thereby changing the cost structure across states. As shown in Table 3, somewhat
unexpectedly, the PBI policy outperforms the FI policy by pooling states H and D (i.e., the
designer issues signal d when the world state is either H or D). Thus, a public information
design can still outperform full revelation, even though we have proven this to be impossible per
Assumption 5. Under the PVI policy, fD < fH, confirming that the threshold values cannot be
predetermined and that the order indicator ν in formulation (6) is necessary.

Table 3: Numerical results for the three-state example.

Policy
Scenario A Scenario B

fH fD fL Z(f ) (+%) fH fD fL Z(f ) (+%)

NI 0.346 0.346 0.346 2.035 (+0%) 0.283 0.283 0.283 2.081 (+0%)

SO 0.150 0.222 0.425 1.929 (+100%) 0.150 0.102 0.425 1.983 (+100%)

FI 0.252 0.346 0.552 1.984 (+48.1%) 0.252 0.159 0.552 2.021 (+61.4%)

PVI 0.252 0.317 0.425 1.963 (+67.6%) 0.229 0.159 0.425 2.001 (+82.0%)

PBI fh =0.252 fd =0.346 fl =0.552 1.984 (+48.1%) fd=0.213 fl=0.552 2.020 (+62.1%)

π(s | w) s = h s = d s = l π(s | w) s = h s = d s = l
w = H 1 0 0 w = H 0 1 0
w = D 0 1 0 w = D 0 1 0
w = L 0 0 1 w = L 0 0 1

Note that (+%) denotes
(
Z
(
fNI∗)− Z (f )

)
/
(
Z
(
fNI∗)− Z

(
fSO∗)). In optimal public information design (PBI) policy, the charging

flow is determined based on each signal (s = h, d, l in our example) rather than each state, as indicated in the table. fh is not reported
in Scenario B because the states w = H and w = D are pooled together, corresponding to signal s = d, with s = h never being sent.

With further increase in the number of states |W|, the posterior belief space in the public
design problem (3) expands at a rate faster than exponential and the complexity of (6) grows
exponentially, rendering both Problems (3) and (6) computationally intractable. The concavifica-
tion approach (Kamenica and Gentzkow 2011), while elegant, is effective only in low-dimensional
settings (up to |W| = 3). For public design, the duality approach proposed by Dworczak and
Martini (2019) offers a workaround when |W| → ∞, i.e., the charging condition is represented
by a one-dimensional random variable with continuous support on a bounded interval. By con-
sidering the designer’s problem as finding Walrasian equilibria of a persuasion economy, we can
show that the optimal information structure consists of disjoint intervals of the state space that
are either fully disclosed or polled as a single signal. To the best of our knowledge, however, the
duality approach is not applicable to private design. Thus, addressing the scalability issue asso-
ciated with the state set remains an open question for private design, even with a finite number
of user types.

6.2 Two-station corridor model

We set Wi = {H, L}(i = 1, 2), and the distance between the two stations l1 = 60 miles. The charg-
ing cost function at each state iw ∈ Wi (i = 1, 2) is given by αiw f + βiw (i.e., the constant travel
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times are normalized to zero for simplicity), where f is the corresponding charging flow defined
in Section 5. Congestion coefficients are fixed at α1H = α1L = α2H = α2L = 3, while congestion in-
tercepts β1H = β2H = 2 and β1L = β2L = 0. The support of the remaining range estimation (RRE)
is Ξ = [R, R̄] = [60, 120], with a uniform distribution over the interval. The prior probabilities of
the station states are symmetric: µ0

1H = µ0
1L = µ0

2H = µ0
2L = 0.5. The expected penalty for attempt-

ing to traverse li(i = 1, 2) with r̂ is given by Jp
i (r̂) = ζ · (1 − p (r̂, li)). The penalty coefficient ζ is

set to 3. We assume the per-mile range reduction δ follows a distribution over
[
δ, δ
]
= [1, 2] with a

probability density function given by u(δ) = 3/
(

δ4 · (δ−3 − δ
−3
)
)

, which is a monotonically de-
creasing convex function. This results in the probability of successfully covering distance l with
remaining range r̂ p (r̂, l) = max

(
min

(
1 −

(
8 (r̂/l)−3 − 1

)
/7, 1

)
, 0
)

, which is monotonically
increasing and concave over the interior of its domain (i.e., when p(r̂, l) ∈ (0, 1)). Accordingly,
the average range reduction when traveling from D1 to D2 is δ1 = l1 ·

∫ δ̄
δ δ · u(δ)dδ = 1.2857 · l1.

In reality, a driver may decide not only whether to charge but also how much to charge.
However, the latter decision has to be simplified here since modeling it explicitly would render
the current framework intractable. Here, we assume that drives gain a fixed mileage ∆ per
charge and that their EVs have an identical maximum range Rmax, which is sufficiently large so
that max (R̄ + ∆, R̄ + 2∆ − δ1) ≤ Rmax. This gives us r̂C

1 (r) = r + ∆, r̂M
1 (r) = r, and r̂CC

2 (r) =

r + 2∆ − δ1, r̂CM
2 (r) = r + ∆ − δ1, r̂MC

2 (r) = r − δ1 + ∆, r̂MM
2 (r) = r − δ1. Unless otherwise

specified, we set ∆ = 70 miles.
Unlike in the single-station case, drivers’ preferences over actions do not follow a predeter-

mined ranking, as these preferences now depend on the spatial configuration. To show this,
consider the no-information scenario, fix l1 and vary l2. Figure 8 plots the expected cost associ-
ated with each action at BNE. We observe that there is no consistent order among the choices.
For drivers with lower RRE, charging only at the first station tends to outperform charging only
at the second station, and charging at both stations tends to outperform skipping both. However,
the relative preferences change as l2 increases from 20 to 100.

We find that full information consistently yields the best public design outcome in both se-
quential and simultaneous release schedules — this is in line with the findings from a single-
station case. Hence, we report all optimal public information design results simply as full infor-
mation in this section.

As expected, the relative performance of the two release schedules for public design also
depends on the spatial configuration. As shown in Figure 10, when l2 increases from 10 to 110,
simultaneous release leads in two intervals (10 to 25 and 55 to 110) while sequential release leads
in the other two. Moreover, as l2 rises above 110 (not reported in the figure), the discrepancy
between the two gradually diminishes. For greater details, the left panel of Figure 9 reports
the full information solutions at l2 = 40 for both release schedules. We can see that sequential
release directs more drivers to charge at Station 1 when [1w = H, 2w = L], but fewer when
[1w = L, 2w = H] than simultaneous release. This shows how sequential release helps mitigate
excessive concentration in response to revealed information. The upper-right panel of Figure 9
reveals how information received at Station 2 affects choices. For example, when drivers learned
that Station 1 is at H (the top row in the panel), they are more likely to skip at Station 1 and
charge at Station 2 (the green bar). However, upon learning Station 2 is also at H, these same
drivers change their mind, choosing instead to skip charging again (the second row in the panel).
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(b) l2 = 40.
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(c) l2 = 70.
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(d) l2 = 100.

Figure 8: Equilibrium without information in the corridor model: optimal choices, as represented
by the colored bars at the bottom, and expected costs (colored curves) for different distances
between the second charging station to the destination (l2).
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Figure 9: Comparison of optimal choices under different information schemes (l2 = 40).
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Figure 10: Comparison of simultaneous (simu) and sequential (seq) public information designs in
the two-station corridor under different distance l2.
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Figure 11: Objective function gap across different information design schemes in the two-station
corridor.
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The bottom panel of Figure 9 compares the two information release schedules under private
information design. For sequential release, the optimal recommendation is primarily driven by
the state at Station 2: when that station is in state H, a substantial share of drivers are advised
to skip charging at both stations, and none are advised to charge at both; the opposite pattern
emerges when Station 2 is in state L. Under simultaneous release, the overall choice pattern
appears similar, but fewer drivers can be persuaded to skip charging at both stations when
2w = H, with a correspondingly larger proportion opting to charge at the first station. As we
shall see below, this small difference contributes to the loss of efficiency in private design with
simultaneous release.

Figure 11 reports the excess cost ratio relative to that achieved at the system optimum of
the four information design schemes (public design with sequential release, public design with
simultaneous release, private design with sequential release, and private design with simultane-
ous release) and the no-information baseline for four values of l2. First and foremost, all four
information schemes outperform the no-information baseline, though the relative benefits vary
significantly with l2. Second, the private information design with sequential release consistently
delivers the best performance and, when l2 is sufficiently large, tends to achieve outcomes that
closely resemble the system optimum. However, with simultaneous release, the performance of
private information design degrades below that of the public designs in nearly all cases. This
is not surprisingly when we recall that the private design with simultaneous release introduces
much more obedience constraints than that with sequential release. The additional constraints
both reduce the feasible region (hence the likelihood of achieving a better system outcome) and
make it even harder to find high-quality solutions.

7 Conclusions

The rapid adoption of electric vehicles (EVs) has put in the spotlight the inadequacy of charging
capacities and the unique challenges it brought to EV drivers, especially for long-distance travel.
Recent events have shown that range anxiety, combined with uncertain availability and delays
at charging facilities, induce behaviors that can harm the efficiency of the system. In this study,
we assume that a designer, who has exclusive knowledge of the state of the charging condition,
can guide EV drivers towards a socially desirable outcome, by designing a suitable scheme to
disseminate the information.

Building on information design theory, we developed optimization models for designing both
public and private information structures. The public model delivers uniform information to all
drivers, whereas the private model offer personalized recommendations based on a driver’s es-
timated remaining range. Either way, EV drivers are Bayesian compliant, in that they have no
incentive to deviate from the recommendation or the outcome desired by the designer, as their
posterior belief, which they form through the Bayesian rule, tells them to take exactly the same ac-
tion. While the public information design model is largely a direct adaptation of existing Bayesian
persuasion models within the specific context that motivates our study, the private information
design problem introduces noteworthy methodological innovations that may be generalized to
applications beyond the EV charging problem considered herein. First, our private design model
simultaneously allows for a congestion effect on the players’ payoffs and a representation of their
types based on an attribute represented by a continuous variable (the remaining range). Second,
we devised a special information structure that reduces an infinite-dimensional problem to a
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finite one, which is subsequently formulated as a mixed integer nonlinear program. Last but
not least, we extend the framework to a corridor with multiple charging stations, allowing us to
analyze, among other things, the impact of information release schedules on information design
outcomes.

Our analysis of a single-station two-state model with a linear cost function yields several
interesting findings. First, when the information structure is public, consistently revealing the
true state of the system fully is the optimal strategy. However, if information can be delivered
based on a player’s type (represented here by the remaining range of the EV), significantly better
outcomes can often be achieved. Under favorable conditions — such as high uncertainty and
comparable costs among competing options — even the system-optimal outcome may be attained
through strategic persuasion.

Our numerical experiments not only validated the proposed formulation and analytical re-
sults, but also yielded more insights. The congestion effect negatively impacts the value of
information: if the waiting time at the station is sensitive to the number of drivers choosing to
charge, information design is less useful. This occurs because congestion-related delays dilute
the impact of the uncertain charging condition. Also, the value of information tends to increase
with the level of uncertainty and the cost of charging relative to the other option.

In the multi-state numerical experiments, when the cost function does not render a clear
ordering among the states, we find that the optimal public information design tends to obfuscate
certain states rather than fully disclose them. This implies that the full-information policy is
optimal only under highly restrictive conditions. Experimenting with the corridor model further
shows that the private design strongly favors sequential release, which consistently yields the
best performance. In contrast, under public design, the effect of the release schedule interacts
with the spatial configuration, and no definitive preference appears to exist.

We anticipate that the new private information design model, with both continuous types
and congestion externality, will find additional applications in transportation and other domains,
such as operating shared mobility platforms, managing traffic, and allocating scarce resources
in medical systems or data centers. To broaden its applicability, the current framework could
be extended in several ways. For instance, if knowing each player’s private type is too restric-
tive in certain contexts, we might instead assume that drivers are incentivized to share their
type. Additionally, the current model considers the congestion effect only on one of the two op-
tions; however, in reality, both skipping and charging options may experience congestion. While
adding congestion-related costs to both options might seem a straightforward extension, initial
analysis suggests this could significantly complicate the model, particularly with a nonlinear
congestion function. Extending information design to more general spatial contexts — such as
network settings — represents another promising direction for future research. However, such
extensions may require a fundamental rethinking not only of the problem formulation and solu-
tion algorithms, but also of the underlying modeling structure. Finally, the current cutoff-based
obedience constraints were introduced to obtain a restricted version of the original problem. An
important open question is under what conditions this structure ensures optimality and, more
broadly, what a truly optimal structure may look like. We leave these intriguing questions also
for future investigation.
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A Preliminaries

As the application of information design in transportation is relatively new, we cover in this
section its basics, through an illustrative scenario with two players: a Sender (he) and a Receiver
(she). The game is set in a world characterized by a state w ∈ W, where W is a finite set. We
assume µ0 = {µ0(w)}w∈W ∈ ∆(W) is a vector that represents the Receiver’s prior belief about
each possible world state. Note that ∆ denotes a probability simplex, i.e., the sum of vector
elements is 1. The Receiver has a utility function u(a, w) that depends on her action a ∈ A and
the world state w ∈ W. The Sender has his own utility function v(a, w) that also depends on the
Receiver’s a and w. We assume both u(a, w) and v(a, w) are continuous in a.

The Receiver’s action depends on her belief about the world, and the Sender can try to
manipulate that belief to maximize his own utility. To do so, the Sender may choose among a
finite set of signals S, according to an information structure π : S × W → [0, 1], where π(s | w)

gives the probability that a world state w corresponds to a signal state s. Clearly, we have
∑s∈S π(s | w) = 1 (∀w ∈ W). The Sender shares π = {π(s | w)}s∈S,w∈W, with the Receiver, and
commits to it before the world state w is realized. Then, for each realized world state, the Sender
sends to the Receiver a signal state s rendered based on the information structure π.

A.1 General information structure

Under a general information structure, upon receiving s, the Receiver forms a posterior belief
µs = {µs(w)}w∈W using the Bayesian rule and chooses an action to maximize her expected utility.
Specifically, the probability of the world state w, as perceived by the Receiver upon receiving a
signal state s, is µs(w) = µ0(w)π(s|w)

∑w′∈W µ0(w′)π(s|w′) (∀w ∈ W, s ∈ S). The optimal action(s) of the Receiver
can be written as a set a∗(µs) = arg maxa∈A Ew∼µs(u(a, w)) = arg maxa∈A ∑w∈W µs(w)u(a, w).
For notational convenience, let âs be the best response action from a∗(µs) that is preferred by the
Sender. Accordingly, the Sender’s objective is the maximization of his expected utility

V(π) = Ew∼µ0Es∼π(·|w)v(âs, w) = ∑
w∈W

µ0(w) ∑
s∈S

π(s | w)v(âs, w). (19)

Equation (19) indicates that the information structure π affects the Sender’s payoff directly as
well as indirectly, by influencing the Receiver’s best response action âs ∈ a∗(µs) (which depends
on the posterior belief µs). Accordingly, the Sender’s optimization problem can be formulated as
follows, with π as the decision variable:

max V(π) subject to: ∑
s∈S

π(s | w) = 1, ∀w ∈ W; π(s | w) ≥ 0, ∀s ∈ S, w ∈ W. (20)

A.2 Direct information structure

Before solving Problem (20), the Sender must choose an appropriate signal set S. For this task,
according to the revelation principle (Myerson 1979, 1986, Bergemann and Morris 2019, Gan
et al. 2022a), the Sender may focus on direct signaling schemes. A direct information struc-
ture assumes S = A so that each signal now corresponds to an action recommendation. More
specifically, π (a | w) specifies the probability of sending an action recommendation a according
to the realized state w. The Receiver will always follow the recommendation a if it is optimal
under the posterior belief, i.e., ∑w∈W µ0 (w)π (a | w) [u (a, w)− u (a′, w)] ≥ 0, ∀a′ ∈ A, which are

37



known as the persuasive or obedience constraints. Thus, the Sender’s optimization problem can
be formulated as follows (Dughmi and Xu 2016):

max
π

∑
w∈W

∑
a∈A

µ0(w)π(a | w)v(a, w) (21a)

subject to: ∑
w∈W

µ0 (w)π (a | w)
[
u (a, w)− u

(
a′, w

)]
≥ 0, ∀a, a′ ∈ A, (21b)

∑
a∈A

π (a | w) = 1, ∀w ∈ W; π (a | w) ≥ 0, ∀a ∈ A, w ∈ W. (21c)

Here, the objective is the Sender’s expected utility, Constraints (21b) enforce the Receiver’s obedi-
ence to recommendation and Constraints (21c) ensure the feasibility of the information structure.

B Table of notations

Table 4: Notations.

Notation Definition

— Base models general settings. —
a ∈ A An action a from the action set A.
A = {C, M} Action set A consisting of Route C (charging) and Route M (non-charging).
w ∈ W A state w from the state set W.
µ0 = {µ0(w)}w∈W Prior belief over all possible state w ∈ W.
l The length of the remaining journey from the decision point.
∆l The detour length for using the charging station.
v The travel speed of the drivers.
∆t ≡ ∆l/v Detour expressed in travel time units.
r The remaining range estimate (RRE) at the decision point.
p(r) The probability of completing the journey without charging.
g(·) The probability density function (PDF) of the RRE distribution across the population.
G(·) The cumulative distribution function (CDF) of the RRE distribution across the population.
Ξ = [R, R̄] The support of the RRE distribution.
f Flow of drivers choosing Route C, also referred to as the charging flow.
1 − f Flow of drivers choosing Route M.
f ∗ Bayesian Nash equilibrium (BNE) flow choosing Route C.
JC( f |w) The cost function associated with Route C at charging flow level f at state w.
JM(p(r)|w) The cost function associated with Route M for driver with RRE r at state w.
r̄ Threshold RRE that makes the driver indifferent between C and M under charging flow f .
r̄∗ BNE threshold RRE indifferent between choosing Route C and M.

— Public information design base model. —
s ∈ S A signal s from the signal set S.
π = {π(s | w)}s∈S,w∈W Information structure specifying the probability of sending signal s given state w.
µs = {µs(w)}w∈W Posterior belief over states after receiving signal s.
f ∗s BNE flow choosing Route C after receiving public signal s.
r̄∗s BNE threshold RRE under public signal s, indifferent between C and M under posterior µs.
Z(π) Expected total system cost for the public information design given π.

— Private information design base model. —
π = {π(a | w, r)}a∈A,w∈W,r∈Ξ An information structure specifying the probability to recommend action a for r at w.
r̄ = {r̄w}w∈W A vector of state-dependent cutoff RRE thresholds for private information design.
{r̄i}i=1,...,|W| A vector of sorted state-dependent cutoff RRE thresholds for private information design.
f = { fw}w∈W A vector of state-dependent charging flows for private information design.
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ν = {νw
i }i=1,...,|W|,w∈W Indicator νw

i = 1 if r̄w is the i-th smallest cutoff; 0 otherwise.
Z(f ) or Z(f ,ν) Expected total system cost for the private information design given f (and indicators ν).
r̂ = {R, r̄1, . . . , r̄i, . . . , r̄|W|, R̄} The sorted RRE thresholds augmented with the lower and upper bounds on RRE.
≡ {r̂0, r̂1, . . . , r̂k, . . . , r̂|W|, r̂|W|+1}

Rk = ( r̂k−1, r̂k ] RRE interval of type k travelers.

— Parameters used in the base models for analytical results and numerical experiments. —
W = {H, L} State H denotes high grid load / adverse conditions; State L denotes normal operation.
α Coefficient capturing the congestion effect.
β Additional delay on Route C when w = H.
ζ Penalty coefficient for Route M.
n Safe range factor defining the RRE distribution.
Superscript NI Refers to no information benchmark.
Superscript FI Refers to full information benchmark.
Superscript SO Refers to system optimal benchmark.
Superscript PVI Refers to the private information design.
µ0 Constant given by (α (ζ − ∆t))/(−α (ζ − ∆t) + β (2α + ζ)).
µ0 Constant given by ((α + ζ) (ζ − ∆t))/(−α (ζ − ∆t) + β (2α + ζ)).
µ̂0 Constant given by ((α2 + (α + ζ)2)(ζ − ∆t))/(−αζ (ζ − ∆t) + β(2α + ζ)(α + ζ)).
αw Congestion coefficient associated with state w (used in numerical experiments).
βw Additional delay associated with state w (used in numerical experiments).

— Two-station corridor extension general settings: i = 1, 2. —
Di Decision point Di on the two-station corridor.
ai ∈ Ai Action ai taken at decision point Di, where ai ∈ Ai.
a = a1a2 ∈ A Driver’s overall action sequence a = a1a2, where a ∈ A.
A = {CC, CM, MC, MM} Set of all possible action sequences.
iw ∈ Wi A state iw in state set Wi for Station i.
µ0

iw Prior belief of each state iw for Station i.
l1 The distance between the two charging stations.
l2 The distance from Station 2 to the final destination.
g(·) PDF of the initial RRE distribution.
G(·) CDF of the initial RRE distribution.
u(·) PDF of random range reduction per mile traveled, with support

[
δ, δ̄
]
.

p(r̂, l) = 1 −
∫ δ̄

r̂/l u(δ)dδ Probability that a vehicle with RRE r̂ can successfully cover distance l.
Jp
i (r̂) Expected penalty for attempting to traverse li (i = 1, 2) with RRE r̂.

r̂a1
1 (r), a1 ∈ {C, M} Resulting RRE at D1 after choosing the first action a1 with the initial RRE r.

r̂a2 (r),a ∈ A Resulting RRE at D2 after choosing the action sequence a ∈ A with the initial RRE r.

— Two-station corridor public information design with sequential release. —
is ∈ Si A signal is at decision point Di from the set of signals Si.
π = {π1,π2} Information structure vector for two stations.
πi = {πi (is | iw)}is∈Si ,iw∈Wi

Public information structure at decision point Di.
Ra1a2

1s RRE range of drivers who choose actions a1a2 after receiving signal 1s.
RC

1s RRE range of drivers who choose to charge at Station 1 after receiving signal 1s.
RM

1s RRE range of drivers who choose to skip at Station 1 after receiving signal 1s.
Ra

1s2s RRE range of drivers who choose action sequence a after receiving signals 1s and 2s.
R R =

{
RC

1s, RM
1s , RCC

1s2s, RCM
1s2s, RMC

1s2s, RMM
1s2s

}
1s∈S1,2s∈S2

A set of ranges.

Jg,1s
1C,1w Charging cost at Station 1 in state 1w ∈ W1 after receiving signal 1s ∈ S1.

Jg,1s2s
a1C,2w Charging cost at Station 2, conditional on (1s, a1), given signal 2s and state 2w.

αiw The congestion coefficient related to state iw at Station i.
βiw The extra delay related to state iw at Station i.
µ1s

1w Posterior belief about state 1w for Station 1 after receiving signal 1s.
µ2s

2w Posterior belief about state 2w for Station 2 after receiving signal 2s.
e1s

ȧ1a2
The expected costs for action sequence a1a2 at D1 after receiving signal 1s.

e1s2s
a1 ȧ2

The expected costs for action a2 at D2, conditional on (1s, a1), after receiving signal 2s.
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ε(π) BNE set for public information structure π for sequential release.
Zb(R∗,π) The system’s total expected cost (in sequential release public design) achieved at π and R∗.
p1s The probability of observing each first-stage signal 1s: p1s ≡ ∑1w∈W1

µ0
1w · π1 (1s | 1w).

— Two-station corridor private information design with sequential release. —
t ∈ T A private design information type t belongs to T where |T| = 2(∑i |Wi |).
ηt,w Type-state recommendation indicator, = 1 if type t receives C at state w, and 0 otherwise.
K = {1, . . . , K} A set of intervals the range support Ξ is divided into.
k ∈ K The kth interval.
r̄k The upper bound of the kth interval.
r̄ = [. . . , r̄k, . . .] The upper bound vector of all intervals.
ιk,t Binary variable indicating whether drivers in the kth range interval are information type t.
ι = [. . . , ιk,t, . . .] All interval-type indicating binary variables.
f 1C
1w The charging flow at Station 1 under state 1w.

f CC
1w2w The flow of charging at both stations given state (1w, 2w).

f MC
1w2w The flow of only charging at Station 2 given state (1w, 2w).

Jg
1C,1w The charging cost at Station 1 under state 1w which depends on f 1C

1w .
Jg
CC,1w2w Charging cost at Station 2 under action CC and states (1w, 2w), dependent on f CC

1w2w.
Jg
MC,1w2w Charging cost at Station 2 under action MC and states (1w, 2w), dependent on f MC

1w2w.
Zv(r̄, ι) The system’s total expected cost (in sequential release private design) achieved at r̄ and ι.
Ea1

1w (r) The expected cost for RRE r at D1 given state 1w and action a1.
Ea

1w2w (r) The expected cost for RRE r at D2 given states (1w, 2w) and action sequence a.

— Two-station corridor public information design with simultaneous release. —
R̂ R̂ =

{
R̂CC

1s2s, R̂CM
1s2s, R̂MC

1s2s, R̂MM
1s2s

}
1s∈S1,2s∈S2

A set of ranges for simultaneous release.
ε̂(π) BNE set for public information structure π for simultaneous release.
ρ1s2s
a The expected cost for simultaneous release given public signals (1s, 2s) and action sequence a.

Ĵg,1s2s
1C,1w The charging cost at Station 1 given state 1w and public signals (1s, 2s).

Ĵg,1s2s
a1C,2w The charging cost at Station 2 given state 2w and public signals (1s, 2s) and action a1.

Ẑb
(
R̂∗,π

)
The system’s total expected cost (in simultaneous release public design) achieved at π and R∗.

— Two-station corridor private information design with simultaneous release. —
Vk,t
a,a′ (r) Expected cost for a type-t driver with RRE r in interval k, receiving recommendation a

and choose to take action a′.
Ẑv (r̄, ι) The system’s total expected cost (in simultaneous release private design) achieved at r̄ and ι.
f 1C
1w2w The flow of charging at Station 1 under states (1w, 2w).

Jg
1C,1w2w Charging cost at Station 1 under states (1w, 2w), dependent on f 1C

1w2w.

— Parameters for two-station corridor extension. —
∆ The fixed mileage gains from charging at each station.

δ1 = l1 ·
∫ δ̄

δ δ · u(δ)dδ The expected range reduction from traveling between the two stations.

C Proof of Theorem 1

To establish the equivalence between Problems (6) and (5), we first demonstrate the equivalence
of their objective functions. Plugging the proposed information structure (4) into (5a), we have
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the following which equals (6a).

∑
w∈W

µ0 (w)
∫

r∈Ξ
[π (C|w, r) JC ( fw|w) + π (M|w, r) JM (p(r)|w)] g(r)dr

= ∑
w∈W

µ0 (w)

(∫ G−1( fw)

R
JC ( fw|w) g(r)dr +

∫ R̄

G−1( fw)
JM (p(r)|w) g(r)dr

)

= ∑
w∈W

µ0 (w)

(
fw · JC ( fw|w) +

∫ R̄

G−1( fw)
JM (p(r)|w) g(r)dr

)
.

Figure 12: Illustration of the order thresholds and the corresponding information structure.

Recall that the ordered cutoff threshold values are denoted as r̄i, i ∈ 1, . . . , |W| and a binary
variable νw

i (see (6i)) is used to indicate whether the rank of the cutoff threshold for state w
is i (i.e., the i-th smallest among all cutoff thresholds). In Problem (5), Constraint (5d) estab-
lishes a one-to-one correspondence between the charging flow fw and an RRE threshold r̄w at
state w. This relationship is defined in Constraints (6e) using the order indicator variables as
r̄i = G−1 (∑w∈W νw

i fw
)

, i = 1, . . . , |W|, with the order being enforced in Constraints (6d), i.e.,
∑w∈W νw

i fw ≤ ∑w∈W νw
i+1 fw, i = 1, . . . , |W| − 1.

We next demonstrate the equivalence between the obedience constraints in Problems (6), i.e.,
Constraints (6f)-(6g), and those in Problem (5), i.e., Constraints (5b)-(5c). The reader is referred
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to Figure 12 for illustration. First of all, recall that the RRE of the type k drivers, who receive the
same recommendation at each state, falls into Rk, k = 1, . . . , |W|+ 1, per the information structure
imposed by (4). For any type k driver, only the cost associated with Route M, JM (p (r) |w) (see
(5b)-(5c)), depends on r. Since p (r) is an increasing function of r, and the cost of Route M is a
decreasing function of p (r), it suffices to check the compliance with a charging recommendation
(Constraint (5b)) for the driver with the highest RRE in Rk (i.e., the upper bound, or r = r̂k), and
the compliance with a no-charge recommendation (Constraint (5c)) for the driver with the lowest
RRE in Rk (i.e., the lower bound or r = r̂k−1). For types 1 and |W|+ 1, the recommendation is
charge and skip, respectively, for all states. Therefore, the obedience to charge can be ensured
for everyone in type k = 1, . . . , |W| by enforcing the obedience on the driver with r = r̂k, while
the obedience to skip can be ensured for all type k = 2, . . . , |W|+ 1 drivers by enforcing it on the
driver with r = r̂k−1.

We proceed to show how the orders of the cutoff thresholds are enforced in the obedience
constraints (6f)-(6g). The information structure (4) dictates that, at a given state w, everyone with
an r ≤ r̄w is recommended to charge, while others are recommended to skip. This means that
π(C | w, r ∈ Rk) = 1 for any type k ∈ [1, l] where νw

l = 1, and π(M | w, r ∈ Rk) = 1 for any type
k ∈ (l, |W|+ 1] where νw

l = 1, see Figure 12. Since ν is endogenous, we set π(C | w, r ∈ Rk) =

∑|W|
j=k vw

j , ∀k = 1, . . . , |W|, and π(M | w, r ∈ Rk) = ∑k−1
j=1 vw

j , ∀k = 2, . . . , |W|+ 1.
As a result, by capturing obedience at the cutoff points and replacing the information struc-

ture with the elements derived in the “state-interval” matrices, Constraints (5b)-(5c) are trans-
formed into Constraints (6f)-(6g). This process is illustrated in a three-state example in Figure 12.
This completes the proof.

D Analytical results and proof for the single-station model

D.1 Analytical results

Assumption 6. The failure penalty coefficient ζ ≥ ∆t + βµ0(H), which ensures that at least the EV
driver with a 100% failure probability chooses Route C based on prior belief.

D.1.1 Public information design (PBI)

Plugging the cost functions (7) into the BNE condition (3c) and noting f ∗s ∈ [0, 1], the equilibrium
flow corresponding to a public signal s is given by

f ∗s = f ∗s (µs) = max
(

0,
ζ − ∆t − βµs(H)

α + ζ

)
, ∀s ∈ S, (22)

where S = W. Thus, π(s | w) states the probability of reporting state s ∈ {H, L} when the
realized state is w ∈ {H, L}. According to Equation (2), the system’s total expected cost can be
represented as (see Appendix D.2 for details.)

Z(f ) = Z(π) = ∑
w∈W

µ0(w) ∑
s∈W

π(s | w)

[
f ∗s

(
l + ∆l

v
+ α f ∗s + βµs(H)

)
+ (1 − f ∗s )

l
v
+ 0.5ζ (1 − f ∗s )

2
]

.

The first term within the bracket denotes the total cost associated with charging when the
public signal is s, the second term represents the total travel time incurred on Route M, and the
third term is the penalty incurred due to running out of power on Route M.
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No information (NI) Without any information, i.e., implementing no information policy (NI),
EV drivers act on their prior belief, i.e. µs(w) = µ0(w), w ∈ W, s = ∅. Thus, per (22), the BNE
dictates the charging flow f NI∗

∅ = ζ−∆t−βµ0(H)
α+ζ .

System optimum (SO) If the designer has a coercive power over the EV drivers, he can direct
them to achieve a system optimum (SO) charging flow at each state, f SO*

H and f SO*
L , without

relying on persuasion. It is easy to show that, to minimize the expected system cost, the designer
should set f SO∗

H = max
(

0, ζ−∆t−β
2α+ζ

)
, f SO∗

L = ζ−∆t
2α+ζ . We leave it to the reader to verify that f NI∗

∅ ≥ f SO∗
H ,

which implies that the decision to withhold information from drivers leads to more EV drivers
choosing charging when the station is at an abnormal state than what is deemed optimal for the
system.

Full information (FI) Under a full information policy (FI), the designer always reveals the true
state to all EV drivers, i.e. π (s = H | H) = 1, π (s = H | L) = 0. Thus, µs=H(H) = 1 and
µs=L(H) = 0. Consequently, we have from (22): f FI∗

H = max
(

0, ζ−∆t−β
α+ζ

)
, f FI∗

L = ζ−∆t
α+ζ .

By comparing the solutions, we can show that f FI∗
H ≤ f NI∗

∅ ≤ f FI∗
L . That is, as expected,

providing full information alerts the drivers so that fewer of them would choose to charge in the
abnormal state and more would do so in the normal state, compared to the situation when they
receive no information. We can also show (details omitted for brevity) that f FI∗

H ≥ f SO∗
H and f FI∗

L ≥
f SO∗
L , which indicates that disclosing full information may not be the best for the system. In

the private information design part, we shall show a designer relying on a private information
structure can hope to achieve SO in many (if not all) cases.

D.1.2 Private information design (PVI)

We begin by demonstrating that, under our assumptions, the ranking indicator variables ν in
Program (6) are constant — in other words, the cutoff thresholds follow a fixed order.

Lemma 1 (Ranking of cutoff thresholds). Let r̄PVI
H and r̄PVI

L be the cutoff thresholds for states H and L.
We have r̄PVI

H ≤ r̄PVI
L .

Proof. We prove the result by contradiction. Assume that r̄PVI
H > r̄PVI

L , which implies f PVI
H > f PVI

L .
It follows that there must exist a driver who would receive a recommendation to skip charging
in state H but to charge in state L. Let the driver’s RRE be r, their obedience constraints read

µ0(H)
[

JC( f PVI
H |H)− JM(p(r)|H)

]
≤ 0, µ0(L)

[
JC( f PVI

L |L)− JM(p(r)|L)
]
≥ 0.

Since JM(p(r)|H) = JM(p(r)|L), the above constraints lead to JC( f PVI
H |H) ≤ JC( f PVI

L |L), or (plug-
ging the cost function) α fH + β ≤ α fL, a contradiction with f PVI

H > f PVI
L since α, β ≥ 0.

Thus, there is no need to introduce the ranking indicator ν in this simplified setting. Accord-
ingly, the two cutoff thresholds divide Ξ into three intervals, as identified by R1, R2, and R3 in
Figure 3. This allows us to write the information structure:

π (C|H, r ∈ R1) = 1, π (C|L, r ∈ R1) = 1, π (M|H, r ∈ R1) = 0, π (M|L, r ∈ R1) = 0;

π (C|H, r ∈ R2) = 0, π (C|L, r ∈ R2) = 1, π (M|H, r ∈ R2) = 1, π (M|L, r ∈ R2) = 0;

π (C|H, r ∈ R3) = 0, π (C|L, r ∈ R3) = 0, π (M|H, r ∈ R3) = 1, π (M|L, r ∈ R3) = 1.
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Specifically, EV drivers with r ∈ R1 are always recommended to take Route C, and those with
r ∈ R3 are always recommended to take Route M. For drivers with r ∈ R2, the recommendation
is Route M when w = H and Route C when w = L. This approach is equivalent to revealing true
information for drivers in R2, while withholding information from drivers in R1 and R3. Without
the ranking indicator, the private information design problem can be simplified as:

min Z
(

f PVI
H , f PVI

L

)
= µ0(H)

(
f PVI
H

(
l + ∆l

v
+ α f PVI

H + β

)
+
(

1 − f PVI
H

) l
v
+ 0.5ζ(1 − f PVI

H )2
)

+ µ0(L)
(

f PVI
L

(
l + ∆l

v
+ α f PVI

L

)
+
(

1 − f PVI
L

) l
v
+ 0.5ζ(1 − f PVI

L )2
)

(23a)

subject to:

µ0 (H)
[
∆t − ζ

(
1 − f PVI

H

)
+
(

α f PVI
H + β

)]
+ µ0 (L)

[
∆t − ζ

(
1 − f PVI

H

)
+
(

α f PVI
L

)]
≤ 0, (23b)

µ0 (L)
[
∆t − ζ

(
1 − f PVI

L

)
+
(

α f PVI
L

)]
≤ 0, (23c)

µ0 (H)
[
−∆t + ζ

(
1 − f PVI

H

)
−
(

α f PVI
H + β

)]
≤ 0, (23d)

µ0 (H)
[
−∆t + ζ

(
1 − f PVI

L

)
−
(

α f PVI
H + β

)]
+ µ0 (L)

[
−∆t + ζ

(
1 − f PVI

L

)
−
(

α f PVI
L

)]
≤ 0,

(23e)

f PVI
H , f PVI

L ∈ [0, 1] . (23f)

Problem (23) is a convex optimization problem with linear constraints. Constraints (23b) -
(23e) each represent a half space in R2. For convenience, let b1, b2, b3 and b4 denote the hyper-
plane bounding the half space for, respectively, Constraints (23b), (23c), (23d), and (23e). The
next result characterizes the feasible set.

Lemma 2. The set bounded by bi, i = 1, 2, 3, 4 (see Figure 13(a)), referred to as the obedience-compliant
region, is a quadrilateral in R2, with a right angle at the top left corner, a right or obtuse angle at the lower
left and upper right corners, and a right or acute angle at the lower right corner. Moreover,

1. The hyperplane b2 is a horizontal line and b3 is a vertical line. They intersect at
(

ζ−∆t−β
α+ζ , ζ−∆t

α+ζ

)
,

marked as A in Figure 13(a). When ζ ≥ ∆t + β, point A corresponds to the solution under the FI
policy.

2. The hyperplanes b1 and b4 both have non-positive slopes. In terms of absolute values, the slope and
intercept of b1 are greater than or equal to those of b4. Also, b1 and b4 intersect at

(
ζ−∆t−βµ0(H)

α+ζ , ζ−∆t−βµ0(H)
α+ζ

)
,

marked as B in Figure 13(a). Point B corresponds to the NI policy.

Proof. See Appendix D.4 for details.

With Lemma 2, Problem (23) can be solved analytically by enumerating all possible realiza-
tions of the feasible set. Because the solution process is tedious, we report it in Appendix D.5 as
Theorem 2. A key driver behind the analysis is the magnitude of ζ, the coefficient of failure on
Route M, relative to the sum of ∆t and β, the extra marginal cost on Route C when the state is
abnormal (H). If ζ ≥ ∆t + β — i.e., the driver with a 100% failure probability prefers Route C
to Route M even when the state is always abnormal — Constraints (23f) is never activated even
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(h) Case 2-(iv).

Figure 13: (a) Obedience-compliant region in private information design (x-axis represents fH

and y-axis represents fL). (b)-(d): three cases of optimal solutions when ζ ≥ ∆t + β; (e)-(h): four
possible cases of optimal solutions when ζ < ∆t + β.

with full information. As a result, the feasible set may manifest as one of three cases shown in
Figure 13(b)-13(d).

1-(i): When µ0(H) ≥ α(α+ζ)(ζ−∆t)
α2(ζ−∆t)+βζ(2α+ζ)

, the optimal private design occurs on the boundary defined

by b3, giving
(

f FI∗
H , f SO∗

L

)
as the optimal charging flows.

1-(ii) and 1-(iii): Otherwise, the optimal private design either occurs on the boundary defined
by b4, or at the intersection of boundaries defined by b3 and b4.

Note that, since f FI∗
H ≥ f SO∗

H and f FI∗
L ≥ f SO∗

L , i.e., the point corresponding to FI policy (the yellow
triangle) must lie above and to the right of the SO point (the green star), the optimal solution can
never occur on either boundary b1 or boundary b2.

If the failure coefficient is not large enough to meet the above condition, the obedience-
compliant region will be cut by f PVI

H ≥ 0 — in other words, no one should be directed to charging
in the abnormal state because of the relatively low failure coefficient. This condition leads to one
of the four cases visualized in Figure 13(e)-13(h).

2-(i): SO lies in the obedience-complaint region, thus the private information design coincides
with SO solution.

2-(ii): SO lies outside the obedience-complaint region and the optimal private design occurs on
the boundary defined by b1. In this case, the optimal private design may be worse than the
FI policy.

2-(iii) and (iv): SO lies outside the obedience-complaint region and the optimal private design is
achieved on boundary defined by b4 with f PVI

H > 0 and f PVI
H = 0, respectively.
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D.2 Derivation for public information design

The total expected system cost, as defined in (2), is:

Z(µ) = ∑
s∈S

τsEw∼µs (−v(a∗(µs), w)) = ∑
s∈S

τs ∑
w∈W

µs(w)

(
f ∗s · JC( f ∗s |w) +

∫ R̄

G−1( f ∗s )
JM(p(r)|w)g(r)dr

)
= ∑

w∈W

∑
s∈S

µ0(w)π(s | w)

(
f ∗s · JC( f ∗s |w) +

∫ R̄

G−1( f ∗s )
JM(p(r)|w)g(r)dr

)
,

where τs = ∑w′∈W µ0(w′)π(s | w′) is the probability of receiving signal s given the information
structure π. The last equality holds by substituting the definition of the posterior belief µs(w), in
which the denominator is τs. Specifically,

Z(π) = ∑
w∈W

µ0(w) ∑
s∈W

π(s | w)

[
f ∗s · JC( f ∗s |w) +

∫ R̄

G−1( f ∗s )
JM(p(r)|w)g(r)dr

]
= ∑

w∈W

µ0(w) ∑
s∈W

π(s|w)

[
f ∗s ·

(
l + ∆l

v
+ α f ∗s

)
+ (1 − f ∗s )

l
v
+
∫ R̄

G−1( f ∗s )
ζ (1 − p (r)) g(r)dr

]
+ ∑

s∈W

µ0(H)π(s | H) · f ∗s · β

= ∑
w∈W

µ0(w) ∑
s∈W

π(s | w)

[
f ∗s ·

(
l + ∆l

v
+ α f ∗s + βµs(H)

)
+ (1 − f ∗s )

l
v
+ 0.5ζ (1 − f ∗s )

2
]

,

where the last equation holds because

∑
s∈W

µ0(H)π(s | H) · f ∗s · β = ∑
s∈W

∑
w∈W

µ0(w)π(s | w)
µ0(H)π(s | H)

∑w′∈W µ0(w′)π(s | w′)
· f ∗s · β

= ∑
w∈W

µ0(w) ∑
s∈W

π(s | w)
µ0(H)π(s | H)

∑w′∈W µ0(w′)π(s | w′)
· f ∗s · β = ∑

w∈W

µ0(w) ∑
s∈W

π(s | w) · µs(H) · f ∗s · β,

and∫ R̄

G−1( f ∗s )
ζ (1 − p (r)) g(r)dr =

ζ

(n − 1)l

∫ R̄

G−1( f ∗s )
(nl − r)g(r)dr =

ζ

(n − 1)l

[
nl(1 − f ∗s )−

∫ R̄

G−1( f ∗s )
rg(r)dr

]

=
ζ(n(1 − f ∗s ))

n − 1
−

ζ
∫ nl

G−1( f ∗s )
rdr

(n − 1)2l2 =
ζ(n(1 − f ∗s ))

n − 1
− ζ(n2l2 − (l + (n − 1)l f ∗s )2)

2(n − 1)2l2
n=2
= 0.5ζ (1 − f ∗s )

2 .

D.3 Proof of Proposition 1

Our proof builds on the Bayesian persuasion framework proposed by Kamenica and Gentzkow
(2011). We first briefly introduce the concavification method we used for proof. In Corollary 1 of
Kamenica and Gentzkow (2011), the designer’s problem is formulated as

max
τ

∑
s∈S

τsv̂(µs) subject to: ∑
s∈S

τsµs(w) = µ0(w), ∀w ∈ W, (24a)

where τs = ∑
w′∈W

µ0(w′)π(s | w′), s ∈ S; v̂(µs) = Ew∼µs (v(a∗(µs), w)) . (24b)

Problem (24) has a geometric interpretation if |W| ≤ 3. When |W| = 2, only one of the two
world states, call it w1, is needed to specify the design objective, as visualized by the µs(w1)−
v̂(µs(w1)) plot in Figure 14. In the plot, the thick black line illustrates v̂(µs(w1)) for a given
s. Since the objective of the designer problem is the linear combination of v̂(µs(w1)), ∀s, the
decision problem is translated to maximizing that linear combination while ensuring the same
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linear combination of µs(w1), ∀s is Bayesian plausible, i.e., the post and prior beliefs match each
other.

Suppose the signal set S = {s1, s2}, then an information structure π maps w1 to µsi(w1), i =
1, 2. The line segment connecting v̂(µs1(w1)) and v̂(µs2(w1)) (visualized as the dotted red line in
Figure 14) thus represents the designer’s objective function corresponding to all possible choices
of τs1 and τs2 with τs1 + τs2 = 1. Bayesian plausibility implies that τsi must be selected to reach
point A, the intersection between that line segment and the dashed vertical line denoting µ0(w1),
i.e. ∑2

i=1 τsi µsi(w1) = µ0(w1). When π contains no useful information, µsi(w1) = µ0(w1), ∀i., i.e.,
the posterior beliefs equals the prior belief. Thus, the intersection between the dashed vertical
line and the thick black curve, denoted as point B, gives the designer’s objective function value
without information. Accordingly, the vertical distance between A and B represents the value of
information for π.

Concave closure

Value of (best) 
information

Figure 14: Illustration of the concavification method Kamenica and Gentzkow (2011).

In general, the set of all possible objective values is {z|(µ0, z) ∈ co(v̂(µs))}, where co(v̂(µs))

is the convex hull of the graph v̂(µs), highlighted as the green shaded area in Figure 14. Clearly,
z is maximized on the concave closure of v̂(µs(w1)), defined as V(µs(w1)) ≡ sup{z|(µs(w1), z) ∈
co(v̂(µs))}, which gives the maximum objective function value the designer can achieve for any
µ0(w1) and π. For a given µ0(w1), the optimal value of information is (V(µ0)− v̂(µ0)). Thus,
Bayesian persuasion benefits the designer if and only if V(µ0) > v̂(µ0).

We next apply the analysis to our problem. From (2), the expected persuasion utility for
sending s is

v̂(µs) = Ew∼µs (v(a∗(µs), w)) = − ∑
w∈W

µs(w)

[
f ∗s · JC( f ∗s |w) +

∫ R̄

G−1( f ∗s )
JM(p(r)|w)g(r)dr

]
= −

(
f ∗s

(
l + ∆l

v
+ α f ∗s + βµs(H)

)
+ (1 − f ∗s )

l
v
+ 0.5ζ (1 − f ∗s )

2
)

.

Thus, v̂(µs) is expressed as a function of µs(H). When f ∗s ∈ (0, 1), the second order derivative is
positive:

∂2v̂(µs)

∂ (µs(H))2 =

[
(2α + ζ)

(
−β

α + ζ

)
+ β

] (
β

α + ζ

)
+

β2

α + ζ
=

β2

α + ζ

(
2 − 2α + ζ

α + ζ

)
> 0. (25)
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Considering the corner solutions (see Equation (22)), we analyze the following three cases
separately: (i) f ∗s = 0 for any µs(H) ∈ [0, 1]; (ii) f ∗s > 0 when µs(H) = 0, and f ∗s = 0 when
µs(H) = 1; (iii) f ∗s > 0 for any µs(H) ∈ [0, 1]. From (22), we know that f ∗s (µs(H) = 0) ≥
f ∗s (µs(H) = 1), and f ∗s linearly decreases with µs(H) until reaching 0. Therefore, we can easily
rule out the case where f ∗s = 0 when µs(H) = 0, but f ∗s > 0 when µs(H) = 1. Similarly, it
is impossible to have f ∗s = 1 for all µs(H), since under our assumptions, there are always EV
drivers choosing to skip charging.

In Case (i), v̂(µs) does not change with µs(H), the convex hull is reduced to a line, suggesting
the value of information is always 0, see Figure 15(a). In Case (ii), v̂(µs) monotonically decreases
with µs(H) until it reaches the point after which f ∗s = 0 and v̂(µs) remains constant. Until that
point (i.e., f ∗s > 0), the function is strictly convex per (25), see Figure 15(b). In Case (iii), the
function v̂(µs) is always strictly decreasing and convex, see Figure 15(c). In Cases (ii) and (iii),
thanks to the convexity of v̂(µs), the value of information, given by the distance between the
function v̂(µs) (the purple solid line) and the concave closure (the red dash line for prior µ0(H),
is always positive. It is easy to see that, in all three cases, the concave closure is the line segment
connecting v̂(µs=L(H) = 0) and v̂(µs=H(H) = 1). In other words, the optimal information
structure π∗ must render a posterior belief such that for w = H, µL(H) = 0 and µH(H) = 1. This
means π∗ effectively equals the full revelation. This completes the proof.

(a) Case (i). (b) Case (ii). (c) Case (iii).

Figure 15: Illustration of concave closure and value of information for public information design.

D.4 Proof of Lemma 2

Proof. We first note that the slope of a hyperplane in R2 is the negative ratio of the coefficient
of the x-coordinate ( fH in our case) to that of y-coordinate ( fL in our case) in the corresponding
constraint. From (23c), b2 has a slope of 0 (hence it manifests as a horizontal line), while (23d)
shows b3 must be a vertical line. Moreover, the feasible region lies below b2 and to the right
of b3. Point A, which is where b2 and b3 intersect, is given by µ0 (L) [∆t − ζ (1 − fL) + (α fL)] =

0 ⇒ f A
L = ζ−∆t

α+ζ , µ0 (H) [−∆t + ζ (1 − fH)− (α fH + β)] = 0 ⇒ f A
H = ζ−∆t−β

α+ζ . This proves the first
statement.

For the second statement, note that b1 can be rearranged into (αµ0(H) + ζ) f PVI
H + αµ0(L) f PVI

L +

(∆t − ζ + βµ0(H)) = 0, with a slope k1 ≡ − αµ0(H)+ζ
αµ0(L)

≤ 0. Similarly, b4 is arranged into −αµ0(H) f PVI
H +

(αµ0(L) + ζ) f PVI
L − (∆t − ζ + βµ0(H)) = 0 with a slope k4 ≡ − αµ0(H)

αµ0(L)+ζ
≤ 0. The difference in

the absolute value of the slopes of b1 and b4 is |k1| − |k4| = ζ(α+ζ)
αµ0(L)(αµ0(L)+ζ)

≥ 0. The feasible
region lies below and to the left of b1, and above and to the right of b4. By solving the above two
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and and or or

Figure 16: Geometric illustration for the proof of Lemma 2.

equations simultaneously, we find the intersection of b1 and b2 as f B
H = f B

L = ζ−∆t−βµ0(H)
α+ζ which

is the same as the NI policy. Since f A
H − f B

H = −βµ0(L)
α+ζ ≤ 0 and f A

L − f B
L = βµ0(H)

α+ζ ≥ 0, we know
point A is to the upper left of point B.

Combining the above properties implies three possible shapes for the feasible region, as
enumerated in Figure 16. To ensure the shape is a quadrilateral as depicted in the lemma
(rather than the triangles shown in the figure), we only need to prove that the absolute value

of the slope of the line connecting points A and B, which equals |kAB| ≡
∣∣∣ f B

L − f A
L

f B
H− f A

H

∣∣∣ = µ0(H)
µ0(L)

,

satisfies |k4| ≤ |kAB| ≤ |k1|. This is indeed the case because |kAB|/|k4| = αµ0(L)+ζ
αµ0(L)

≥ 1 and

|k1|/|kAB| = αµ0(H)+ζ
αµ0(H)

≥ 1. This completes the proof.

D.5 Optimal private information design

For notational convenience, we introduce the following constants.

Λ ≡
(

ζ − ∆t − βµ0 (H) +
αµ0 (H) (∆t − ζ + β)

2α + ζ
+

(αµ0 (L) + ζ) (∆t − ζ)

2α + ζ

)(
µ0 (L) (2α + ζ)

α2µ0 (H) µ0 (L) + (αµ0 (L) + ζ)2

)
> 0,

µ̃0 ≡ α (α + ζ) (ζ − ∆t)

α2 (ζ − ∆t) + βζ (2α + ζ)
, µ0 ≡ α (ζ − ∆t)

−α (ζ − ∆t) + β (2α + ζ)
, µ0 ≡ (α + ζ) (ζ − ∆t)

−α (ζ − ∆t) + β (2α + ζ)
, Ω ≡ Λα + (ζ − ∆t − β)

2α + ζ
.

Theorem 2. The optimal solution of (23) can be described as follows.

1. When ζ ≥ ∆t + β, the optimal solution is achieved in one of the following ways:

1-(i) When µ0(H) ≥ µ̃0, we have
(

f PVI∗
H , f PVI∗

L

)
=
(

ζ−∆t−β
α+ζ , ζ−∆t

2α+ζ

)
, and f SO∗

H ≤ f PVI∗
H = f FI∗

H ,

and f PVI∗
L = f SO∗

L ≤ f FI∗
L .

1-(ii) When µ0(H) < µ̃0 and Ω > f FI∗
H = ζ−∆t−β

α+ζ , we have
(

f PVI∗
H , f PVI∗

L

)
=
(

Ω, Ω + β
2α+ζ +

Λζ
µ0(L)(2α+ζ)

)
,

and f PVI∗
H ≥ f SO∗

H , and f PVI∗
L ≥ f SO∗

L .

1-(iii) When µ0(H) < µ̃0 and Ω ≤ f FI∗
H = ζ−∆t−β

α+ζ , we have
(

f PVI∗
H , f PVI∗

L

)
=
(

ζ−∆t−β
α+ζ , ζ−∆t−βµ0(H)−αµ0(H) f PVI∗

H
αµ0(L)+ζ

)
.

2. When ζ < ∆t + β, the feasible region is cut by f PVI
H ≥ 0 in (23f). Accordingly, the optimal solution

is achieved in one of the following ways.

2-(i) When µ0 ≤ µ0(H) ≤ µ0, we have
(

f PVI∗
H , f PVI∗

L
)
=
(

f SO∗
H , f SO∗

L
)
=
(

0, max
(

0, ζ−∆t
2α+ζ

))
.

2-(ii) When µ0(H) > µ0, we have
(

f PVI∗
H , f PVI∗

L

)
=
(

0, ζ−∆t−βµ0(H)
αµ0(L)

)
, and f PVI∗

H = f SO∗
H = f FI∗

H =

0, and f NI∗
∅ ≤ f PVI∗

L ≤ f SO∗
L ≤ f FI∗

L .
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2-(iii) When µ0(H) < µ0 and Ω ≥ 0, the solution is the same as in 1-(ii).

2-(iv) When µ0(H) < µ0 and Ω < 0, we have
(

f PVI∗
H , f PVI∗

L

)
=
(

0, ζ−∆t−βµ0(H)
αµ0(L)+ζ

)
.

Proof. Let λi, i = 1, . . . , 4 be the Lagrangian multiplier for Constraints (23b)-(23e), respectively.
Based on the shape of the compliant region and the assumption that ζ − ∆t − βµ0(H) ≥ 0, point
B must lie on the line segment fH = fL, where fL ∈ [0, 1]. To determine whether the compliant
region is within [0, 1]× [0, 1], it is sufficient to check whether f A

H ≥ 0. This requirement leads to
the condition ζ ≥ ∆t + β.

1. When ζ ≥ ∆t + β, from f FI∗
H ≥ f SO∗

H and f FI∗
L ≥ f SO∗

L , we know the SO solution cannot locate
inside the compliant region, and either Constraint (23d), or Constraint (23e), or both may
be be binding.

1-(i) When only Constraint (23d) is binding, i.e. µ0 (H)
[
ζ − ∆t − β − (α + ζ) f PVI∗

H

]
= 0, we

have f PVI∗
H = ζ−∆t−β

α+ζ . Applying the KKT condition leads to µ0 (L)
[
∆t − ζ + (2α + ζ) f PVI∗

L

]
+

λ3 · 0 = 0, which gives f PVI∗
L = ζ−∆t

2α+ζ . It is straightforward to verify that f PVI∗
H = f FI∗

H

and f PVI∗
L = f SO∗

L .
1-(ii) When only Constraint (23e) is binding, applying the KKT condition leads to

µ0 (H)
(

∆t − ζ + β + (2α + ζ) f PVI∗
H

)
+ λ4 (−αµ0(H)) = 0,

µ0 (L)
(

∆t − ζ + (2α + ζ) f PVI∗
L

)
+ λ4 (−αµ0(L)− ζ) = 0.

Adding the binding Constraint (23e) and solving the resulting equation system yields
f PVI∗
L = Ω + β

2α+ζ +
Λζ

µ0(L)(2α+ζ)
, f PVI∗

H = Ω where

λ4 =

(
ζ − ∆t − βµ0 (H) +

αµ0 (H) (∆t − ζ + β)

2α + ζ
+

(αµ0 (L) + ζ) (∆t − ζ)

2α + ζ

)(
µ0 (L) (2α + ζ)

α2µ0 (H) µ0 (L) + (αµ0 (L) + ζ)2

)
≡ Λ,

1-(iii) When both Constraints (23d) and (23e) are binding, f PVI∗
H is the same as in 1-(i), and

f PVI∗
L is obtained by plugging f PVI∗

H into the equation −αµ0(H) f PVI∗
H − (αµ0(L) + ζ) f PVI∗

L +

(ζ − ∆t − βµ0(H)) = 0.

To derive the conditions for each case, we note first that the solution obtained for Case 1-(i),(
f FI∗
H , f SO∗

L

)
, is optimal if and only if it lies above b4. The condition is necessary because if it

is not satisfied, the solution would fall out of the feasible region; it is sufficient because from
geometry, b3 is the closest boundary to the optimal solution, see Figure 13(b). Requiring(

f FI∗
H , f SO∗

L

)
lies above b4 leads to µ0(H) ≥ α(α+ζ)(ζ−∆t)

α2(ζ−∆t)+βζ(2α+ζ)
= µ̃0. To obtain the additional

condition that separates Case 1-(ii) from 1-(iii), we check whether the solution in Case 1-(ii)
lies to the right of b3, i.e., Ω > f FI∗

H = ζ−∆t−β
α+ζ . If it does, then the solution does not fall on

b3, which corresponds to Case 1-(ii), see Figure 13(c); otherwise, it is Case 1-(iii), see Figure
13(d).

2. When ζ < ∆t + β, the compliant region is cut by f PVI
H ≥ 0, thus f SO∗

H = f FI∗
H = 0 in this case.

2-(i) When the SO solution is feasible, it is evident that
(

f PVI∗
H , f PVI∗

L

)
=
(

f SO∗
H , f SO∗

L

)
, see

Figure 13(e).
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2-(ii) When the SO solution is infeasible and Constraint (23b) is binding, we must have
f PVI∗
H = f SO∗

H = 0, see Figure 13(f). Then, solving (αµ0(H) + ζ) · 0 + αµ0(L) f PVI∗
L −

(ζ − ∆t − βµ0(H)) = 0, we obtain f PVI∗
L = ζ−∆t−βµ0(H)

αµ0(L)
. From Figure 13(f) we can easily

infer f NI∗
∅ ≤ f PVI∗

L ≤ f SO∗
L .

2-(iii) When the SO solution is infeasible and only (23e) is binding, the proof follows 1-(ii),
omitted here for brevity.

2-(iv) When the SO solution is infeasible, and both f PVI∗
H ≥ 0 and Constraint (23e) are binding

(see Figure 13(h)), we have f PVI∗
H = 0. Then, from −αµ0(H) · 0 − (αµ0(L) + ζ) f PVI∗

L +

(ζ − ∆t − βµ0(H)) = 0, we obtain f PVI∗
L = ζ−∆t−βµ0(H)

αµ0(L)+ζ
.

It is worth noting that Constraint (23c) can never be active at optimum, when the SO
solution is infeasible. This is because activating it requires f PVI∗

L = f FI∗
L < f SO∗

L . However,
we have shown f FI∗

L ≥ f SO∗
L in Section D.1.1.

To derive the conditions for each case, we note that Case 2-(i) arises when
(

f SO∗
H , f SO∗

L

)
lies

below b1 and above b4. The former condition leads to µ0(H) ≤ µ0 and latter to µ0(H) ≥ µ0.
Case 2-(ii) occurs when

(
f SO∗
H , f SO∗

L

)
lies above both b1 and b4, which leads to µ0(H) ≥ µ0.

Case 2-(iii) and (iv) occurs when
(

f SO∗
H , f SO∗

L

)
lies below both b1 and b4, which leads to

µ0(H) ≤ µ0. The difference between 2-(iii) and 2-(iv) is Ω = f PVI∗
H ≥ 0 in 2-(iii) and

Ω < f PVI∗
H = 0 in 2-(iv).

This completes the proof.

D.6 Proof of Proposition 2

Proof. We need to show the following (the cases are defined in the proof for Theorem 2):

(a) The FI policy always outperforms the NI policy.

(b) In Cases 1-(i), 1-(ii), 1-(iii), the optimal private design (PVI) policy outperforms the FI policy.

(c) In Cases 2-(iii), 2-(iv), the PVI policy outperforms the FI policy.

(d) In Case 2-(ii), when µ0(H) ≥ µ̂0, the FI policy outperforms the PVI policy, while when
µ0 ≤ µ0(H) < µ̂0 the PVI policy outperforms the FI policy.

Only in Case 2-(i), the SO solution lies in the obedience-complaint region, thus the PVI policy
works as well as the SO policy. In all other cases, the SO policy outperforms the PVI policy.

To prove (a), we need to show that δ = Z
(

f NI∗
∅ , f NI∗

∅

)
− Z

(
f FI∗
H , f FI∗

L

)
≥ 0, where Z(·) is

defined in (23a). When f FI∗
H > 0, δ = β2ζµ0(H)µ0(L)

2(α+ζ)2 ≥ 0. Otherwise, i.e., when f FI∗
H = 0, δ =

−ζµ0(H)

2(α+ζ)2

[
(ζ − ∆t − β)2 − β2µ0(L)

]
, which is non-negative as

−ζµ0(H)

2 (α + ζ)2︸ ︷︷ ︸
≤0

(
ζ − ∆t − β

(
1 −

√
µ0(L)

))
︸ ︷︷ ︸

≥ζ−∆t−βµ0(H)≥0

(
ζ − ∆t − β

(
1 +

√
µ0(L)

))
︸ ︷︷ ︸

≤ζ−∆t−β≤0

≥ 0.

To prove (b) and (c), we show that the designer’s objective function must strictly improves as
the solution moves from the FI policy fFI∗ =

(
f FI∗
H , f FI∗

L

)
to the PVI policy fPVI∗ =

(
f PVI∗
H , f PVI∗

L

)
.
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Let d = fPVI∗ − fFI* and F = {f |f = sfFI∗ + (1 − s)fPFI∗, ∀s ∈ [0, 1]} We proceed to prove that
for any f ∈ F we have ⟨d,−∇Z(f )⟩ ≥ 0.

To begin, we note that

∇Z(f ) =

 ∂Z(f )
∂ f PVI

H
∂Z(f )
∂ f PVI

L

 =

[
µ0 (H)

(
(ζ − ∆t − β)− (2α + ζ) f PVI

H
)

µ0 (L)
(
(ζ − ∆t)− (2α + ζ) f PVI

L
) ]

.

It is easy to verify that − ∂Z(f )
∂ f PVI

H
decreases with f PVI

H and − ∂Z(f )
∂ f PVI

L
decreases with f PVI

L .

• In Case 1-(i), 1-(ii), and 1-(iii),

−∇Z(f ) =

[
− αµ0(H)(ζ−∆t−β)

α+ζ

− αµ0(L)(ζ−∆t)
α+ζ

]
≤ 0

at
(

f FI∗
H , f FI∗

L

)
, since ζ ≥ ∆t + β. At

(
f PVI∗
H , f PVI∗

L

)
,

1-(i) we have

−∇Z(fPVI∗) =

[
− αµ0(H)(ζ−∆t−β)

α+ζ

0

]
.

Thus, as the solution moves along d from the FI policy to the PVI policy, − ∂Z(f )
∂ f PVI

H

remains a constant while − ∂Z(f )
∂ f PVI

L
increases from a non-positive value to zero. Moreover,

d can be written as τ[−1, 0]T for τ ∈ R+. Thus, we have ⟨d,−∇Z(f )⟩ ≥ 0. From
Figure 17 we can see that this means d and −∇Z(f ) always form an acute angle until
f reaches fPVI∗.

1-(ii) we have
−∇Z(fPVI∗) =

[
−Λαµ0(H)
−Λ (αµ0(L) + ζ)

]
≤ 0,

which, per the KKT condition, must be perpendicular to b4. Since f PVI∗
H ≥ f FI∗

H , f PVI∗
L ≤

f FI∗
L (see Figure 13(c)), we can show that − ∂Z(f )

∂ f PVI
H

decreases and − ∂Z(f )
∂ f PVI

L
increases while

the solution moves from the FI policy to the PVI policy. Consequently, the angle
between d and −∇Z(f ) also increases. However, since d has a greater absolute slope
than that of b4 and −∇Z(f ) is perpendicular to b4 at the PVI policy, the angle between
the vectors at the terminal point of d can not be obtuse, again see Figure 17. Thus,
⟨d,−∇Z(f )⟩ ≥ 0 for any f ∈ F.

1-(iii) it is difficult to derive the closed-form expression for −∇Z(f ). However, the result is
similar to Case 1-(i): − ∂Z(f )

∂ f PVI
H

remains unchanged, while − ∂Z(f )
∂ f PVI

L
increases monotonically

as the solution moves along d. Since this means the angle between d and −∇Z(f ) will
grow along d, we only need to show that the angle cannot be an obtuse one at the PVI
policy. Per the KKT condition, −∇Z(f ) must lie in the normal cone of the feasible set
at the intersection between b3 and b4 (formed by the two vectors perpendicular to b3

and b4, see Figure 17. Its angle with d, which points downward vertically and overlaps
with b3, must be acute.

• In Case 2-(iii), the proof is identical to Case 1-(ii), hence omitted for brevity. For Case 2-(iv),
since f SO∗

H = f PVI∗
H = f FI∗

H = 0 and f SO∗
L ≤ f PVI∗

L ≤ f FI∗
L , it follows that Z(fPVI∗) ≤ Z(fFI∗)

— note that Z(·) is a quadratic function with respect to fL, which peaks at f SO∗
L and have

both f PVI∗
L and f FI∗

L lie at the same side of the peak.
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To prove (d), note tht in Case 2-(ii), f SO∗
H = f PVI∗

H = f FI∗
H = 0 and f PVI∗

L ≤ f SO∗
L ≤ f FI∗

L .
Whether the FI policy is better than the PVI policy depends on the distance between the cor-
responding fL and f SO∗

L , where the quadratic function Z(·) peaks. The FI policy is better
than the PVI policy when f FI∗

L − f SO∗
L < f SO∗

L − f PVI∗
L , which leads to the following condition

µ0(H) ≥
(

α2 + (α + ζ)2
)
(ζ − ∆t) / [−αζ (ζ − ∆t) + β (2α + ζ) (α + ζ)] = µ̂0. This completes the

proof.

The vector FI*  PVI*
Negative gradient

Case 1-(i) Case 1-(ii) Case 1-(iii)

At FI*

At PVI*

Figure 17: Illustration of the proof of Proposition 2.
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