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ABSTRACT The metabolic intimacy of symbiosis often demands the work of specialists.
Natural products and defensive secondary metabolites can drive specificity by ensuring
infection and propagation across host generations. But in contrast to bacteria, little is
known about the diversity and distribution of natural product biosynthetic pathways
among fungi and how they evolve to facilitate symbiosis and adaptation to their host
environment. In this study, we define the secondary metabolism of Escovopsis and
closely related genera, symbionts in the gardens of fungus-farming ants. We ask how
the gain and loss of various biosynthetic pathways correspond to divergent lifestyles.
Long-read sequencing allowed us to define the chromosomal features of representa-
tive Escovopsis strains, revealing highly reduced genomes composed of seven to eight
chromosomes. The genomes are highly syntenic with macrosynteny decreasing with
increasing phylogenetic distance, while maintaining a high degree of mesosynteny. An
ancestral state reconstruction analysis of biosynthetic pathways revealed that, while
many secondary metabolites are shared with non-ant-associated Sordariomycetes, 56
pathways are unique to the symbiotic genera. Reflecting adaptation to diverging ant
agricultural systems, we observe that the stepwise acquisition of these pathways mirrors
the ecological radiations of attine ants and the dynamic recruitment and replacement
of their fungal cultivars. As different clades encode characteristic combinations of
biosynthetic gene clusters, these delineating profiles provide important insights into
the possible mechanisms underlying specificity between these symbionts and their
fungal hosts. Collectively, our findings shed light on the evolutionary dynamic nature of
secondary metabolism in Escovopsis and its allies, reflecting adaptation of the symbionts
to an ancient agricultural system.

IMPORTANCE Microbial symbionts interact with their hosts and competitors through
a remarkable array of secondary metabolites and natural products. Here, we highlight
the highly streamlined genomic features of attine-associated fungal symbionts. The
genomes of Escovopsis species, as well as species from other symbiont genera, many
of which are common with the gardens of fungus-growing ants, are defined by
seven chromosomes. Despite a high degree of metabolic conservation, we observe
some variation in the symbionts’ potential to produce secondary metabolites. As the
phylogenetic distribution of the encoding biosynthetic gene clusters coincides with See the funding table on p. 19.
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M ost symbionts are specialists. At broad scales, most symbionts can associate with
some host species and not others. At finer scales, many strains may be specialized
on particular host genotypes within a species (1). While host range is constrained by
different evolutionary processes, including tradeoffs and coevolutionary dynamics (2,
3), the molecular mechanisms underlying specialization and the evolutionary ecology
of specificity have yet to be clearly linked. Similarly, little is known about the genomic
architecture underlying the evolution of symbiont specialization, the genomic conse-
quences of host shifts, and the genetic basis of shifts along the parasitism to mutualism
continuum that underlies most symbioses.

Fungal symbionts are genetically tractable models for the study of host fidelity due to
their diverse lifestyles and the occurrence of very closely related species that differ from
each other primarily in their host range (4). Secondary metabolites, small molecules that
are not necessary for the growth of an organism but aid in survival, play essential roles
during fungal infection (5) and are known to affect the niche breath of fungal patho-
gens (4, 6, 7). Typically, specialists harbor a contracted array of specialized metabolites
relative to generalists (4), reflecting the metabolic constraints that they experience in
attempting to exploit different hosts. However, this is not always the case. Broad host
range mutualists such as mycorrhizal fungi, associated with most land plants, have a
limited ability to produce toxins (8). This likely reflects their biotrophic lifestyle, where
the production of toxins may compromise the survival of their host, which they require
alive (9, 10). Given their role in mediating species interactions, secondary metabolites are
central to arms-races dynamics in antagonistic interactions (11, 12). Thus, their origin and
distribution can reflect adaptation to specific host environments (7).

Escovopsis (Hypocreales: Hypocreaceae) is a specialized (13-15), diverse group of fungi
found in the gardens of fungus-farming ants (Hymenoptera: Attini) (16). Currently, there
are 25 described species (17), some of which have been well-studied for their ability to
parasitize the ants’ fungal cultivars (13-15). Escovopsis strains can be virulent parasites
of fungus-growing ant agriculture, causing garden biomass loss and colony decline
(16, 18, 19). While it is presumed that most species in the group are similarly virulent,
infection by certain species appears to be not as lethal, suggesting that the ecological
role and evolutionary implications of these symbionts are not fully understood (20-23).
In recognition of their morphological and ecological diversity, a recent study split the
Escovopsis genus into multiple genera (i.e., Escovopsis, Luteomyces, and Sympodiorosea)
(24). Here, we sometimes refer to all members of the group with the common name
escovopsis symbionts for simplicity, restricting the use of Escovopsis to those strains
within the genus.

Fungus-farming ants are a monophyletic group of obligate agriculturalists (25).
Attines feed their cultivated fungi ("cultivars") with plant material, and in turn, the
cultivar represents the ants’ primary food source. Different attine lineages practice
different modes of agriculture, exhibiting a high degree of specificity toward their
cultivars (26, 27), and these different agricultural systems are generally associated with
different Escovopsis, Sympodiorosea, and Luteomyces species (28). The ancestral system,
lower agriculture, is practiced by a group of ants that cultivate fungi in the Agaricales.
While most of the ant species in this system grow their cultivars in the form of mycelium,
some ants in the lower agriculture system subsist on Agaricales that grow in yeast
form, giving rise to the name of yeast agriculture. While Sympodiorosea and Luteomy-
ces infections of mycelial-growing lower attine ant gardens are common, infection of
yeast gardens has never been found (25). The third agricultural system is known as
coral agriculture, in which a group of ants within the Apterostigma genus exploits
fungus in the Pterulaceae family. Infections of coral gardens are also common, and
include infection by Escovopsis, Luteomyces, and other related taxa (13, 24). While lower
attines, practicing lower, yeast, and coral agriculture, are characterized by providing their
cultivars with dead vegetative material, higher attines (practicing generalized higher
agriculture and leaf-cutter agriculture) provide their fungal mutualists with freshly cut
plant material (25). The two agricultural systems of higher attines are characterized by
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the obligate lifestyle of the cultivar, which cannot survive without association with the
ants. Generalized higher agriculture is practiced by ants cultivating a derived clade of
agaricaceous fungi, whereas in the most derived agricultural system, that of leaf-cutter
agriculture, a single fungal species Leucoagaricus gongylophorus is responsible for ant
survival. Higher agriculture gardens are commonly infected with Escovopsis, most of
which are Escovopsis spp. closely related to the best studied species, Escovopsis weberi
(29).

Escovopsis symbionts show a high degree of host fidelity, being able to infect some
cultivars but not others. This degree of partner specificity suggests a long history
of coevolution, as demonstrated by the phylogenetic congruence between attines,
their cultivars, and escovopsis symbionts, particularly at the broad interspecific scale
(13). To manage infections, ants actively weed infected portions of garden, and many
attine species associate with actinomycete Pseudonocardia that synthesize antifungal
compounds that inhibit escovopsis symbiont growth (30).

Despite consistent patterns of co-diversification across the tripartite interaction
between the ants, their cultivars, and escovopsis symbionts (13), and the outsized
role of natural products in mediating fungal specialization, the secondary metabolism
of these microbes remains relatively unexplored relative to the evolutionary ecology
of attine ants and their cultivars. Only a few Escovopsis-derived compounds have
been identified (31, 32), though recent genome annotation indicates the potential to
produce many more (33). Here, we performed a combination of long- and short-read
genome sequencing, assembly, and annotation to describe the chromosomal archi-
tecture, conservation, and organization of escovopsis symbionts, which will facilitate
future annotation of the biosynthetic machinery. After defining the secondary metab-
olism across the group and spanning representative host ranges, we contextualize
the distribution of biosynthetic gene clusters relative to patterns of specialization and
fidelity. Through comparative genomics, extensive manual curation of biosynthetic gene
clusters, and ancestral state reconstruction, we outline a group of symbionts whose
secondary metabolism broadly reflects the dynamic patterns of cultivar recruitment and
replacement by attine ants.

MATERIALS AND METHODS
Sample collection, isolation, DNA extraction, and genome sequencing

Strains of Escovopsis (six), Luteomyces (two), Sympodiorosea (three), and one undescribed
genus (three) were obtained from the Emory collection (Table S1). To obtain DNA, fungi
were grown on potato dextrose agar (PDA) plates at room temperature. Genomic DNA
was extracted by crushing fungal tissue with liquid nitrogen and subsequently isolating
the DNA using a phenol-chloroform protocol (34, 35). Sequencing was performed
on a HiSeq 2500 Sequencing system from lllumina, utilizing the paired-end 150 bp
technology. Both library preparation and DNA sequencing were carried out at Novo-
gene. Additionally, DNA from strains NGL095 (E. weberi), NGLO70 (Escovopsis multiformis),
and NGLO057 (Luteomyces sp.) were also sequenced with PacBio Technology by Omega
Bioservices.

Genome assembly and annotation

Strains sequenced with PacBio Technology were assembled with Canu v.1.8 (36) and
polished with their corresponding lllumina reads using Pilon v.1.23 (37). The strains
sequenced with lllumina alone were quality checked with FastQC (38), trimmed with
Trimmomatic (39), and subsequently assembled with Spades v.3.13.0 (40). Genome
assembly quality was evaluated using Benchmarking Universal Single-Copy Orthologs
(BUSCO) v.3 (41). GC content was calculated with the script GC_content.pl by Damien
Richard [https://github.com/DamienFr/GC_content_in_sliding_window/ (last accessed
July 2023)], using default parameters. The genomic data set was completed with the
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addition of 24 previously sequenced Escovopsis genomes (31, 33), as well as 14 closely
related species from the Hypocreales obtained from JGI Mycocosm (Table S1). The highly
contiguous hybrid assemblies NGL070, NGL095, and NGL057 were screened for stretches
of telomeric repeats (TTAGGG)n at the end of contigs, and contigs harboring these
repeats at both ends were considered complete chromosomes.

To compare genomic architecture conservation, a synteny analysis was performed
on the proteome sets of the most unfragmented assemblies in our data set employ-
ing GENESPACE v.0.9.3 (42) as implemented in R. This data set comprised the three
hybrid assemblies belonging to strains NGL095, NGL0O70 and NGL057, as well as EACOL,
EAECHC, EAECHR, EPCORN, and EATTINE.

All assemblies were subjected to gene prediction and annotation using the Funan-
notate v.1.8.3 pipeline (43, 44). Repeats were identified with RepeatModeler and soft
masked using RepeatMasker (45). Protein evidence from a UniprotKB/Swiss-Prot-cura-
ted database (46) and the proteomes from Trichoderma sp., Cladobotryum sp., Hypomy-
ces rosellus, and Hypomyces perniciosus were aligned to the genomes using TBlastN
and Exonerate (47). Three gene prediction tools were used: AUGUSTUS v.3.3.3 (48),
snap (49), and GlimmerHMM v.3.0.4 (50). tRNAs were predicted with tRNAscan-SE (51).
Consensus gene models were found with EvidenceModeler (52). Functional annotation
was conducted using BlastP to search the UniprotKB/Swiss-Prot protein database.
Protein families and Gene Ontology terms were assigned with InterProScan 5 (53).
Additional predictions were inferred by alignments to the eggnog orthology database
(54), using emapper v.3 (55). The secretome was predicted using Phobius v.1.01 (56),
which identifies proteins carrying a signal peptide. Carbohydrate active enzymes were
identified using HMMER v.3.3 (57) and family-specific HMM profiles of the dbCAN2 server
(58). Proteases and protease inhibitors were predicted using the MEROPS database (59),
and biosynthetic gene clusters were annotated using fungiSMASH v.6 (60) with relaxed
parameters. Gene density was calculated for the highly contiguous strain NGL070 with
the R package Rldeogram in R (61, 62), as the number of genes per 1 Mb window, and
was visualized in an ideogram highlighting the number of genes per 100 Kb window,
employing the same software.

Phylogenetic reconstruction

Phylogenetic relationships were reconstructed using the BUSCO_phylogenomics
pipeline (63). In short, single-copy orthologs for each genome were identified by running
BUSCO v.5 (41) with the Ascomycota_odb10 lineage database. This analysis identified
660 single-copy orthologs shared by all 34 strains in the data set. Gene sequences were
aligned with MUSCLE (64), and the alignment was trimmed with TrimAl (65). Output
alignments were concatenated into a supermatrix. A maximum likelihood tree was built
with IQ-TREE (66), allowing ModelFinder (67) to predict the best evolutionary model for
partitioning the alignment. The resulting tree was rooted using Trichoderma spp. and
visualized with iTol v.6 (68).

To place the genome-sequenced strains in a broader phylogenetic context, we
performed a multi-locus analysis using three molecular markers: Internal Transcribed
Spacer, Transcription Elongator Factor, and Large Subunit of the rRNA (ITS, TEF, and
LSU, respectively). Sequences of each molecular marker were aligned in MAFFT v.7 (69)
separately, and concatenated using Winclada v.1.00.08 (70). We reconstructed the final
tree using Bayesian inference in MrBayes v.3.2.2 (71). Two separate runs, each consisting
of three hot chains and one cold chain, were carried out using the GTR model (General
Time-Reversible model) for each partition independently. The nucleotide substitution
model was selected using jModelTest2 (72) with the Akaike information criterion and
95% confidence intervals. Five million generations of the Markov Chain Monte Carlo
were necessary to reach convergence (standard deviation of split frequencies <0.01), and
the first 25% of trees were discarded as burn-in to generate the best tree. Lecanicillium
antillanum (CBS 35085) was used as the outgroup, and the final tree was edited in FigTree
v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) and Adobe lllustrator 2023 v.28.0.
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To estimate the evolutionary distance between strains, we performed a percentage
of conserved proteins analysis (POCP) (73), using as input (i) the total number of
proteins per species, and (ii) the Orthogroups_SpeciesOverlaps table obtained from an
OrthoFinder (74) analysis, which contains the number of orthogroups shared between
each species pair. The percentage of conserved proteins between two genomes was
calculated with the following formula: [(C1 + C2) / (T1 + T2)] * 100, where C1 and C2
are the number of shared proteins in the two genomes being compared, respectively;
and T1 and T2 are the total number of proteins in the two genomes being compared,
respectively (73).

Gene cluster family (GCF) identification

Biosynthetic gene clusters (BGCs) of all fungal strains were identified using fungiSMASH
6.1 (60) with relaxed parameters, utilizing as input the GenBank files obtained after
genome annotation. With the aid of cblaster v.1.3.12 (75), BGCs split onto different
contigs, especially those located on contig edges, were manually assembled based on
homology with other BGCs in the data set. Likewise, fused BGCs were manually split into
separate BGCs. The final BGC set was analyzed using BiG-SCAPE v.1.0.1 (76) to identify
homologous BGCs across all strains and to cluster related BGCs into GCFs. BGCs from the
MIBIG database 2.0 (77) were included in the analysis with the -mibig flag to identify
already described BGCs. The scikit-learn package was downgraded to v.0.19.1, and the
following parameters were enabled: —mix, --hybrids-off, and -include_singletons. The
program was run in “glocal” alignment mode with edge-length cutoffs from 0.1 to 0.9,
with step increments of 0.1. After inspection, networks at thresholds 0.5-0.6 were found
to be similar and further analyses were based on a cutoff of 0.5. The resulting sequence
similarity matrixes were visualized using Cytoscape v.3.9.0 (78). A presence/absence
matrix was built to evaluate BGC distribution, with 1 representing presence and 0
representing absence of a GCF in a fungal strain and was visualized as a heatmap
using R (62). To compare escovopsis’ BGCs to those already described and present in the
MIBIG database, we employed cblaster (75). Using “cblaster makedb,” we created a local
database consisting of GenBank files of all escovopsis BGCs. We subsequently employed
“cblaster search” using the MIBIG clusters with homologous BGCs in our data set as
queries to perform BLAST searches against the local database.

To assess whether BGC profiles can delineate groups of escovopsis symbionts, a
Jaccard distance matrix was computed using the presence/absence table. The dis-
tance matrix was then used to construct nonmetric multidimensional scaling (NMDS)
ordination plots to detect grouping patterns and subjected to an analysis of similar-
ity (ANOSIM) and a permutational multivariate analysis of variance (PERMANOVA) to
identify significant factors underlying observed groupings. To assess the adequacy of our
sampling, and to provide an estimate of GCF richness for the given sequencing effort,
rarefaction curves were built at the genus level, and at both levels of attine agricultural
systems (i.e., lower and higher agriculture, as well as lower, coral, general higher, and
leaf-cutter agriculture).

Co-cladogenesis analyses

The GCF presence/absence was subjected to a hierarchical clustering analysis using
a correlation-centered similarity metric with the complete linkage clustering method.
A tanglegram was built in R (62) to evaluate the congruency between the symbiont
phylogeny and strain BGC profiles using the package “dendextend” v.1.17.1.

Ancestral state reconstruction

To assess the evolutionary history of the GCFs, the ancestral node for each GCF was
inferred in the species tree using the trace character history function implemented
in Mesquite (79). In some cases, BiG-SCAPE split BGCs into multiple GCFs that were
highly similar, sharing many homologous genes, suggesting they may be involved in the
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biosynthesis of related compounds. Data exploration with different BiG-SCAPE similarity
cutoffs did not resolve these relationships, prompting the manual grouping of GCFs into
pathways (80, 81). GCFs were considered to belong to the same pathway if (i) the BGCs
shared similar architecture (i.e., genes and other features arranged in similar ways), (ii)
the majority of the genes in the cluster had the same function, albeit not necessarily
in the same order, and (iii) the majority of genes in the BGC had a BLAST similarity of
more than 50% over 80% coverage rate (81). A pathway presence/absence table was
used as a character matrix, and likelihood calculations were performed using the Mk1
model. Likelihood scores >50% were used to infer the points of pathway acquisition in
the species tree.

Statistical analyses

All statistical analyses were carried out in R. v.4.1.1 (62). Differences in genome size across
escovopsis strains were analyzed using a general linear model after data transformation
and validation of a normal distribution, as well as a phylogenetic ANOVA. A non-para-
metric Wilcoxon rank sum test and phylogenetic ANOVAs were employed to assess
differences in gene, transposable elements, and BGC content. The correlation between
gene content and genome size was analyzed employing a phylogenetic generalized
least square model (PGLS) in which we assumed a strict Brownian model of gradual
evolution for strains, with branch lengths being proportional to the amount of evolution-
ary change (82). The phylogenomic tree employed for this analysis was built using a
proteome data set comprised of single-copy genes of 112 fungal strains [including all
strains in our analysis and other Sordariomycetes (Table S2)]. Protein sequences were
aligned with MUSCLE (64), and the alignment was trimmed with TrimAl (65). Output
alignments were concatenated into a supermatrix. The phylogeny was built with FastTree
(83). Further statistical details for each test can be found in the main text and in Table S3.
For every statistical analysis, significance was defined as P < 0.05.

RESULTS AND DISCUSSION

To characterize the genomic features and secondary metabolism potential of this
diverse group of specialized symbionts, we sequenced the genomes of 14 strains
across the symbiont phylogeny, spanning all ant agriculture ecologies (Table S1) (25),
with the exception of yeast agriculture, where escovopsis symbionts have never been
found. Three strains (NGLO57, NGL070, and NGL095) belonging to different clades were
sequenced with PacBio and lllumina Technologies, whereas the rest were sequenced
with [llumina alone (Table S1). We expanded our data set with the addition of genomes
of 24 strains previously classified as Escovopsis, that were publicly available (31, 33), and
genomes of a number of other closely related fungal species from the Hypocreaceae
(Table S1).

The quality of the genomic assemblies generated in this study was high, with an
average BUSCO score of 94.7% for the Ascomycota lineage data set (Table S1). GC content
ranged from 47.2% to 56.4%, with an average of 52.3% (Table S1), consistent with recent
reports (29, 33) and other Pezizomycotina fungi (84).

Phylogenetics of Escovopsis and relatives

To infer a genome-scale phylogeny of representative Escovopsis, Sympodiorosea,
Luteomyces, and relatives, we employed a concatenation approach using single-copy
genes. The inferred proteomes of all 52 species in our data set were subjected to
an orthology analysis, resulting in 2,314 single-copy orthologous genes that were
subsequently utilized to infer a phylogeny. The resulting phylogeny reveals that the
attine-associated symbionts form a monophyletic group, sister to a clade composed of
Cladobotryum sp. and Hypomyces rosellus, both mycoparasites (Fig. 1A). The evolutionary
history of the attine-associated symbionts suggested by this phylogeny generally reflects
that of the ants (25). As such, strains infecting gardens of lower attines appear as a
sister group to the rest, whereas most recently diverging lineages are associated with
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FIG 1 Genomic features of Escovopsis and allies. (A) Phylogenomic tree constructed with a supermatrix approach on 2,314 single-copy orthologous genes.

Black dots represent bootstrap support higher than 90%. Branch colors describe different attine agricultural systems: green, leaf-cutter agriculture; yellow,

general higher agriculture; blue, coral agriculture (divided into dark blue and light blue to represent distinct clades, respectively); and red, lower agriculture. Side

colored bars represent taxonomical affiliations based on reference (14). (B) Heatmap depicting the percentage of conserved proteins across strains. Lighter colors

represent high levels of shared proteins, whereas dark colors depict fewer shared proteins. The dendrogram on the right represents a hierarchical clustering

analysis. (C) Ideogram representing the chromosomal level assembly of an Escovopsis sp. strain isolated from an Apterostigma dentigerum nest (NGL070). Light

and dark green colored bands represent regions with low and high gene density (ranging from 1 to 43 genes per 100 Kb window). Orange dots represent areas

harboring telomeric repeats. (D) Synteny plot depicting the collinearity between the seven most continuous Escovopsis genomes (EACOL to NGL070) and one

Luteomyces genome (NGLO057) available across attine agriculture. Highly syntenic regions are connected by colored bands. Contigs in black boxes represent

complete chromosomes, whereas those in gray harbor telomeric repeats just at one chromosomal end.

higher attine agriculture and leaf-cutter ants (Fig. TA). The shift experienced by some
lower attines to cultivating Pterulaceae fungi is also mirrored by the phylogeny, with an
intermediate clade exploiting coral agriculture, represented by strains NGL070, ICBG726,
ICBG1054, ICBG1065, and ICBG1075. Highlighting the diversity of symbionts associated
with coral agriculture, a clade including four strains associated with coral fungi (ICBG712,
ICBG721, NGLO57, and NGL216) appears within the basal members of this monophy-
letic group (Fig. 1A). The presence of these two distinct coral agriculture-associated
clades, therefore, break congruence of the ant and symbiont phylogenies. Recent studies
have split the genus Escovopsis intro three different genera (Escovopsis, Sympodiorosea,
and Luteomyces) based on key morphological differences and phylogenetics using five
fungal molecular markers (24). To assess whether these two coral agriculture-associated
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clades may in fact represent two putative distinct taxonomical genera, we inferred the
phylogenetic position of the escovopsis symbionts in this study among those from
previous studies (24). Our results (Fig. S1) suggest that strains within these two clades
indeed belong to different genera. Together with strains exploiting higher agriculture
(E. weberi, Escovopsis moelleri, and Escovopsis aspergilloides), the intermediate clade
exploiting coral agriculture are true Escovopsis (E. multiformis). However, its sister clade
contains strains closely related to the newly described Sympodiorosea. Interestingly, the
sister clade to that containing Escovopsis and Sympodiorosea comprises strains most
closely related to Luteomyces and to strains belonging to a yet undescribed genus
(Fig. S1). Overall, these results highlight the need for further work to fully resolve the
taxonomical diversity within this symbiont group.

To estimate the evolutionary distance between strains, we performed a POCP analysis
(73). As expected, with increased phylogenetic distance, POCP values decrease. For
instance, Escovopsis spp. infecting leaf-cutter agriculture share, on average, 96% of their
proteins among each other, whereas only around 88% are shared with Luteomyces spp.,
Sympodiorosea spp., and strains within the newly undescribed genus (Table S4; Fig. 1B).
Despite appearing in the same clade in our phylogeny, Luteomyces and the undescribed
genus share as many proteins between each other (88%) as each of these genera do
with strains infecting any other agricultural system. This suggests that there is as much
phylogenetic divergence between these two groups as there is between them and
any other clade, supporting the notion that what has been traditionally considered
Escovopsis is in fact at least three, and possibly four, different genera. Furthermore,
POCP values lower than 91% segregate our data set into the recently proposed genera,
whereas values above 91% and 95% delineate distinct species and strains within a
species, respectively (Table S4). Mirroring our phylogenetic placement of Mycetomoeller-
ius zeteki-associated Escovopsis, in POCP analysis, NGL179 shares more proteins (95.1%)
with strains infecting leaf-cutter agriculture than with those exploiting general higher
agriculture (92%). POCP analyses have been useful to resolve bacterial groups at genus
level, which correlate with POCP values <50%. While some studies have implemented
the method in fungi at the family level (POCP values <70%) (70), this strategy cannot
be widely employed yet for delineating fungal groups, as genome sampling in fungi
remains scarce. However, our POCP analysis reveals a significant degree of genetic
diversity between escovopsis clades and suggests a protein similarity threshold of 87%-—
91% to delineate different genera in this group of symbionts. Further efforts are required
to elucidate whether the POCP differences can delineate distinct genera in a diversity of
fungi.

Genomes are organized into highly syntenic chromosomes

To elucidate the genomic organization of these symbionts, we screened the genomes
of the four most contiguous assemblies for telomeric repeats. In Escovopsis sp. NGL070,
stretches of (TTAGGG)n were detected at both ends of six contigs, representing complete
chromosomes (Fig. 1C). The two remaining contigs harbored telomeric repeats only at
one end, constituting either two fragments of the same chromosome, or two distinct
incomplete chromosomes. A similar pattern was observed for the highly contiguous
Escovopsis sp. EACOL, Escovopsis sp. NGL095, and Luteomyces sp. NGLO57 genomes
assemblies, harboring six, four, and two complete chromosomes and two, five, and
seven fragmented ones with telomeric repeats at one end, respectively (Fig. 1D).
These observations suggest that these symbionts have seven to eight chromosomes,
in agreement with other members of the Hypocreales order, such as Trichoderma reesei,
Neurospora crassa (85), and Metarhizium brunneum (86), which organize their genomes in
seven chromosomes.

To assess the conservation of genomic architecture across this diverse group of
symbionts, we performed a synteny analysis of the eight most continuous genomes
available. Our ortholog-based analysis reveals that strains share a high degree of
collinearity, with 87.83% of the genes appearing in the same chromosome and in the
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same order (Fig. 1D). This is particularly apparent among strains of the same clade, as
evidenced by Escovopsis spp. associated with leaf-cutter agriculture (EACOL, NGL095,
EATTINE, EAECHC, and EAECHR). As expected, collinearity has a positive correlation with
phylogenetic relatedness, with distant strains exhibiting increasingly different genomic
organization. Chromosomes 1, 2, 3, 4, and 5 (nhomenclature relative to strain EACOL) are
extremely well conserved, extending beyond Escovopsis spp. infecting leaf-agriculture
and including those involved in general higher agriculture. Chromosome 6, although
well conserved in Escovopsis spp. affiliated with general higher agriculture and coral
agriculture-associated NGL070, has experienced recent rearrangements, as evidenced
by its fusion with a fragment of chromosome 1 occurring in the clade represented
by EAECHC and EAECHR. Previous reports revealed a high degree of microsynteny
and mesosynteny between genomes of Escovopsis and Trichoderma (29), suggesting
that both genomes are organized in genome segments with similar gene content but
rearranged in order and orientation.

Symbionts have reduced genomes

Fungi vary extensively in genome size, spanning three orders of magnitude and ranging
from the small genomes of some Microsporidia (2 Mb) to the large ones in Pucciniales
fungi (2 Gb). Some of the smallest genomes are found in obligate parasites (87).
Escovopsis symbiont genome sizes range between 21.4 Mb and 38.3 Mb (40.7 Mb),
with an average of 28.7 Mb, corroborating previous studies (29, 33) that estimated their
genome sizes around 24.7 Mb-27.2 Mb. These genomes are reduced in size relative to
those of closely related Sordariomycetes (Fig. 2A and B; Fig. S2A and B and Table S3).
Interestingly, escovopsis symbionts represent three of the five smallest genomes from all
Sordariomycetes strains publicly available in Mycocosm (https://mycocosm.jgi.doe.gov)
(Fig. 2A). The other two belong to Ophiocordyceps camponoti-rufipedis and Ophiocordy-
ceps australis strain 1348a, both highly specific parasites of ants (88). Within the attine-
associated symbionts, lower attine Luteomyces spp. strains harbor significantly smaller
genomes than those infecting higher attine nests (Fig. 2B; Table S3). No differences in
genome size were detected across the other clades (Fig. 2B; Table S3), though, notably,
Escovopsis spp. infecting higher agriculture vary greatly in genome size.

Gene number in escovopsis symbionts ranged between 6477 and 7693 (Table S1),
representing 9 out of the 10 species in Mycocosm with the fewest genes within
the Sordariomycetes (Table S2). Unlike other fungi in the family, where gene content
positively correlates with genome size (* = 0.32, P < 0.0001; PGLS, P < 0.0001, Table S3),
gene number in escovopsis symbionts is stable and does not associate with genome
size (* = 0.06, P = 0.07; PGLS P = 0.21, Table S3) (Fig. 2A). While escovopsis symbionts
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harbor fewer genes than their relatives (Kruskal-Wallis rank sum test, x> = 30.11, df. =
1, P < 0.001; phyloANOVA P < 0.001, Fig. S3A; Table S3), there is no difference in gene
content between symbionts exploiting the nests of lower and higher attines (Table S3;
Fig. S3B). However, those Escovopsis spp. associated with coral agriculture (“Coral clade
A”) have a slightly lower gene content than other Escovopsis spp., Sympodiorosea spp.,
and species of an undescribed genus (Fig. 2C; Table S3). These results are congruent with
a recent survey (33) revealing that total coding sequences length and intron number in
escovopsis symbiont genomes are low in comparison to free-living relatives, consistent
with reduced gene content. Escovopsis symbionts present an average gene density of
292 genes per Mb, only slightly higher than that of other ascomycete fungal symbionts
of insects such as Metarhizium acridum (259), Metarhizium anisopliae (271), Cordyceps
militaris (257), and the palm aphid YLS (274) (89).

In addition to gene number, we investigated two drivers of fungal genome size:
repeat content and repeat-induced point mutation (RIP). First, while transposable
elements are often associated with fungal pathogens (90, 91), their number in esco-
vopsis symbiont genomes is significantly lower than in non-ant-associated relatives
(Kruskal-Wallis, ¥ = 14.19, d.f. = 1, P < 0.001), which in part explains the symbionts’
small genomes. Second, fungi have evolved a genome defense mechanism to mitigate
the potentially detrimental consequences of transposable elements and other repea-
ted genomic regions (92). By altering nucleotide ratios, RIP can inactivate duplicated
genes that can be subsequently purged through selection, potentially contributing to
genome reduction. Deactivation of RIP, therefore, can lead to genome expansion due
to retrotransposon proliferation (93). Previous reports based on the analysis of a single
strain of E. weberi suggested that it may have lost genes involved in RIP (29). BLAST
analyses with the sequences of the two canonical genes known to mediate the RIP
pathway (94, 95) revealed that all attine-associated symbiont genomes in our data set
harbored orthologs for one gene essential to the RIP process (RID, RIP deficient) but
lacked orthologs to the other RIP canonical gene (DIM2, defective in methylation) (Tables
S5 and S6). Genome-wide RIP analyses using the RIPper’s sliding window approach
revealed that all escovopsis symbiont strains show hallmarks of RIP (Table S7), although
they vary greatly in the proportion of their genomes that are affected by it. While some
strains harbored little evidence of RIP (ICBG1096, 1.01%), others are highly affected by
it, with the most extreme case being ICBG1075, where 23.26% of its genome present
hallmarks of RIP. This variation across genomes of similar size indicates that RIP is not
solely responsible for genome reduction in this group of symbionts, but it may play
some role in some species. While RIP processes require sexual recombination (96),
most escovopsis symbiont genomes lack complete fungal mating-type loci (Table S8),
suggesting they cannot undergo sexual reproduction and may therefore be uncapable
of carrying out RIP.

These symbionts’ small genomes and the genomic traces of RIP, together with the
presence of RID, support previous studies (29) that proposed RIP as a genomic defen-
sive mechanism that limited transposon proliferation in Escovopsis spp. in the past. A
consequence of RIP is the relative absence of duplicated genes (92). Therefore, the loss
of this defense mechanism may represent an opportunity for these symbionts to evolve
new metabolic functions through gene duplication and subfunctionalization.

Ascomycota with genome sizes between 25 and 70 Mb, and in particular Sordariomy-
cetes, often exhibit positive correlations between genome size and gene content (87,
97, 98). These attine-associated symbionts evade this trend (Fig. 2A), suggesting that
different evolutionary processes may be affecting this group. Symbiosis often leads
to the streamlining of microbial genomes through genome reduction and gene loss,
as epitomized by the tiny genomes of many bacterial endosymbionts of insects (99).
Genome streamlining in bacteria can be explained by the loss of redundant genes
with drift (100), or by selection against non-essential genes (101). Similar dynamics can
occur in fungal mutualists and parasites (102). In particular, fungal parasites associated
with insects have been shown to be particularly prone to gene loss (98). Within the
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Sordariomycetes, the smallest genomes belong almost exclusively to endosymbionts,
endoparasites, or fungal parasites vectored by insects (98). In other eukaryotic microbes
such as Microsporidia obligate parasites, genome reduction and gene loss correlate with
accelerated rates of molecular evolution (103, 104). It is still unknown whether similar
processes are occurring in escovopsis symbionts, as suggested by longer branches in the
phylogenetic tree relative to those in their close relatives (Fig. 1A).

BGC diversity and distribution

Secondary metabolites in fungi can define ecological niches (105), delimit host ranges
(4, 106, 107), and provide selective advantages under specific ecological conditions
(108). The metabolic pathways responsible for the synthesis of microbial toxins and
other secondary metabolites are typically encoded by BGCs. BGCs encode for backbone
enzymes responsible for the synthesis of the core structure of a metabolite, as well
as tailoring enzymes that modify this assembly, along with transcription factors and
transporters (109). To assess the biosynthetic potential of these symbionts, we performed
a computational genome mining analysis using the program fungiSMASH (60). The most
common backbone enzymes in fungi include polyketide synthases (PKSs), nonribosomal
peptide synthetases (NRPSs), terpene synthases, and dimethylallyltransferases (110). All
genomes analyzed harbored a diversity of BGCs belonging to the major biosynthetic
classes (Table S9). The symbionts’ chemical potential contents ranged from 16 BGCs in
Sympodiorosea sp. NGL197, to 33 in Luteomyces sp. NGLO57. On average, each genome
featured 23 BGCs, and an average metabolic diversity of 28.7% NRPs, 25.6% PKS, 21.3%
terpenoids, 16.3% hybrids, 2.4% betalactones, and 3.6% others. There was no correlation
between the number of BGCs and the number of contigs or scaffolds per genome (R? =
0.03, P =0.13), suggesting that our data set was robust and that the different sequencing
technologies employed did not bias our BGC survey. In addition, no correlation was
found between the number of BGCs in each strain and genome size (R* = 0.004, P = 0.7).

While fungi within the Hypocreales are prolific secondary metabolite producers, with
an average of 43 BGCs per genome, escovopsis symbionts have significantly fewer
BGCs than their non-fungus-farming ant-associated relatives (Kruskal-Wallis x* = 28.17,
df =1, P < 0.001, Fig. S4A), corroborating recent findings using fewer escovopsis
symbiont genomes (33). We found no statistical differences in BGC abundance between
strains infecting higher or lower attine nests (Fig. S4B), nor between the majority of
strains associated with different agricultural systems (Kruskal-Wallis P = 0.67, Fig. 3A),
with the exception of small differences in BGC number in strains infecting general
higher agriculture and leaf-cutter agriculture. Upon graphical inspection, we observed
a clear bimodal distribution in BGC abundance in strains infecting lower agriculture
(Fig. 3A) that unequivocally divided the data set into distinct phylogenetic taxa. We
therefore explored whether there is a correlation between BGC content and phylogeny
by assessing differences in BGC number across clades (Fig. S4C). All clades harbored
significantly different number of BGCs, with the exception of Luteomyces spp. and the
undescribed genus, both composed of strains infecting lower agriculture, which were
similar to each other (Kruskal-Wallis, x> = 47.91, d.f. = 6, P < 0.001). Strains within
Luteomyces and the undescribed genus (i.e., NGL195, NGL196, NGL049, NGL057, NGL216,
ICBG712, and ICBG721) harbor more BGCs than more derived strains. Within Escovopsis
spp., there is an increase in BGC abundance from those strains associated with lower
agriculture (coral A) to those associated with the more derived (leaf-cutter agriculture)
(Fig. S4C). As escovopsis groups within our data set strongly correlate with genetic
distance, phylogenetic ANOVAs are not significant (Table S3, phyloANOVA P > 0.05).
These patterns suggest that relatedness shapes differences in BGC content.

The reduction in BGC abundance in these symbionts relative to other non-ant-asso-
ciated Hypocreales is consistent with a shift in lifestyle to being obligate symbionts
of ant gardens. Transitions from free-living states to obligate symbioses can often
be accompanied by gene loss due to relaxed selection on genes that are no longer
necessary in a stable, predictable environment (29, 111). Additionally, some specialist
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confidence intervals. Colors denote agricultural systems: green, leaf-cutter agriculture; yellow, general higher agriculture; blue, coral agriculture A; red, lower

agriculture; and light blue, coral agriculture B.

parasites are known to harbor a narrower suite of BGCs relative to generalist ones. For
instance, Metarhizium strains that acquired the dtx biosynthetic gene cluster, responsible
for the synthesis of a diversity of toxins, have broader host ranges (infecting hundreds
of insect species) compared with non-toxigenic strains (lacking the BGC), which have
much narrower host ranges, infecting only locusts and grasshoppers (4). Correlating with
a higher content of biosynthetic gene clusters, Escovopsis spp. strains infecting higher
agriculture (e.g., E. weberi) are thought to be more virulent than the symbionts infecting

lower agriculture (22).

To compare BGC composition across all strains (including all escovopsis symbiont
strains and other Hyypocreaceae strains), we grouped BGCs into GCFs based on sequence

Month XXXX  Volume 0

10.1128/msystems.00576-2412

Downloaded from https:/journals.asm.org/journal/msystems on 24 June 2024 by 136.55.26.35.


https://doi.org/10.1128/msystems.00576-24

Research Article

homology and cluster architecture employing the BiG-SCAPE algorithm. The resulting
sequence similarity network built with a similarity score cutoff of 0.5, clustered 1,595
BGCs into 415 GCFs. We visualized the GCF distribution across the symbionts through
the construction of a presence/absence table (Fig. 3B). One hundred twenty-eight GCFs
were present in the sampled escovopsis symbionts, and 102 of them were unique to
the attine-associated symbionts relative to non-attine-associated fungi. Only 26 GCFs
were shared between the symbionts and other Hypocreales species (Table S10; Fig. 3B).
A rank-abundance curve demonstrates that 27 GCFs occur only once in the escovopsis
symbionts, and an additional 27 are present in just two strains (Fig. S5). Surprisingly,
no GCF as defined by Big-SCAPE was ubiquitous across all the symbiont strains, and
therefore characteristic of the group of symbionts as a whole. Rarefaction curves provide
an assessment of GCFs richness for the given sequencing effort and reveal that although
our sampling was largely adequate, additional chemical diversity is yet to be discovered,
especially within the undescribed genus infecting lower attine gardens (Fig. 3C). Further
sequencing efforts in strains from this group may reveal additional GCFs.

To distinguish novel BGCs from already described ones, we supplemented our data
set with characterized gene clusters from the MIBIG database as a reference, which
at the date of analysis contained 1,923 BGCs, out of which 207 were of fungal origin.
Given that recent surveys reveal that less than 3% of the biosynthetic space represented
by fungal genomes has been linked to metabolites (110, 112), it is not surprising that
only five GCFs in our symbiont data set are homologous to BGCs in the database.
Three families comprising highly similar BGCs group together with the MIBIG cluster
BGC0001585, responsible for the synthesis of melinacidin IV, suggesting they represent
slightly different variants of the same biosynthetic pathway. The other two GCFs are
homologous to BGC0001583 and BGC0001777, which potentially encode for emodin
and shearinines, respectively. The similarity between escovopsis symbionts’ genes within
BGCs and their homologs in the MIBIG database range between 50.1% and 100%, with
an average of 87% (Table S11). Likewise, the majority of the symbionts’ BGCs harbors
all the genes present in the MIBiG BGCs (Table S11). The distribution of all three GCFs
is discrete. While most attine-associated symbiont strains harbor the BGC responsible
for the production of melinacidin IV, those encoding for shearinine and emodin are
restricted to more derived clades (i.e., Escovopsis spp. for shearinine, and Escovopsis spp,
with the exception of those exploiting coral agriculture, for emodin).

Fermentation experiments using E. weberi have led to the detection and elucidation
of the potential functional role of all three metabolites and some derivatives (31). E.
weberi-produced shearinine derivatives can deter ants and are lethal at high concentra-
tions, preventing insect workers from weeding their garden, thus allowing the parasite
to persist in the nest (31). The production of epipolythiodiketopiperazine melinacidin IV
inhibits the growth of the ant-defensive mutualist Pseudonocardia, whereas the synthesis
of emodin has detrimental effects on the cultivar (31) and other co-occurring Actinobac-
teria, such as Streptomyces. While the production of these metabolites has been detected
in Escovopsis strains parasitizing leaf-cutter ant gardens, our results demonstrate that
the distribution of these BGCs is broader than previously thought and extends to
strains exploiting other agricultural systems. Whereas shared GCFs with other fungal
genera suggest that they may play a general role in fungal physiology, the presence
of GCFs characteristic of specific clades correlating with different attine agricultural
systems likely reflects the distinct selective pressures exerted on the symbionts by these
different ecosystems. These results are consistent with an ongoing arms-race in which
these symbionts must constantly evolve new adaptations to overcome not only cultivar
defenses but also, very likely, ant defenses, those exerted by protective symbionts such
as Pseudonocardia and those exerted by other microbes that inhabit these complex
microbial communities. For example, the defensive symbiont of beewolves, Streptomyces
spp., produces different antibiotic cocktails (both in composition and concentration)
in association with each insect species, but also in distinct geographical regions (113),
presumably as an adaptation to defend their hosts against different local pathogen
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communities. Furthermore, the varied metabolic profiles of these symbionts could be
a reflection of them having different impacts on the agriculture system; while some
(e.g., E. weberi) have been shown to be highly virulent parasites of the ants’ cultivars,
experimental tests of the impacts of other species suggest low to no virulence (13-15,
21-23, 114, 115). More experimental work is required to assess the specific roles that
individual metabolites may play in the ecology of this diverse group of symbionts.

GCFs delineate groups of symbionts

To assess differences in biosynthetic profiles between symbiont strains associated with
different attine agricultural systems, we performed a non-metric multidimensional
scaling analysis. Our results demonstrate that the attine-associated symbionts harbor
very different GCF profiles than related non-ant-associated fungi, and that these profiles
differ between symbionts infecting higher and lower agriculture (Fig. 4A, ANOSIM, R =
0.68, P < 0.001, 999 permutations). Likewise, GCF profiles are sufficient to cluster strains
into separate groups based on phylogenetic lineage (Fig. 4B, ANOSIM, R = 0.81, P <
0.001, 999 permutations). A PERMANOVA reveals that most of the variation (95%) is
explained by the interaction between symbiont genus and ant species (Fig. 4B, adonis2,
999 permutations, R* = 0.952, P = 0.001).

Based on the presence/absence matrix of GCFs across strains, we constructed a
hierarchical clustering analysis. The symbiont genome phylogeny, based on all orthologs,
and the GCF dendrogram are highly congruent (Fig. 5), with the exception that the clade
comprising strains associated with coral agriculture and lower agriculture are paraphy-
letic in the GCF dendrogram. An entanglement analysis gives a visual approximation
of the level of agreement between two dendrograms (116). A score of zero means no
entanglement, or congruence, while one means full entanglement, or no congruence.
Our analysis yielded a score of 0.02, suggesting a high degree of congruence between
the symbiont genome phylogeny and the GCF dendrogram.

These results suggest that the symbionts’ biosynthetic potentials are phylogenetic
traits and can be employed to delineate groups, particularly at broad taxonomical levels.
Christopher et al. (115) demonstrated that phylogenetic analyses based on chemical
profiles of escovopsis symbionts resulted in similar tree topologies to gene-based
phylogenies, confirming that chemical profiles can be considered phylogenetic traits.
Additionally, the congruency between the species phylogeny (Fig. S1) and the BGC
profile dendrogram suggests that BGCs are evolving in parallel with the symbiont
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species, and that pathway gains and subsequent vertical inheritance, as well as losses,
are the main forces driving BGC diversification, given that horizontal transfer of
BGCs between escovopsis symbionts or with other fungi would result in incongruent
topologies.

To further explore the possibility of vertical inheritance of BGCs in escovopsis
symbionts, we evaluated whether strains missing a particular BGC still harbored
orthologs to most genes in that BGC for a subset of five representative GCFs (Tables
S12 through S16; Data sets S1 through S5). Our results suggest BGCs in escovopsis
evolve vertically from standing genetic variation, given that lineage-specific GCFs such
as BGCs potentially encoding for shearinine or emodin harbor genes with orthologs
in species without that BGC (Tables S12 and S13, and Data sets 1 and 2, respectively).
Often, the orthologs in BGC-lacking strains occur more dispersed in the genome relative
to those in the BGC harboring strains and are not flanked by similar genes, suggesting
that genomic rearrangements may have facilitated the evolution of such BGCs (Tables
S12 through S16). Likewise, our analysis of single-gene phylogenies revealed that while
genes within a BGC often evolved from ancestral gene duplications already present
in the last common ancestor of all the strains present, they can also sometimes be a
lineage-specific innovation. For example, while the majority of strains in our data set
contain orthologs to most genes in the gene cluster family FAM_02655 (Table S10),
the complete BGC only evolved after the lineage-specific acquisition of three genes,
including the backbone gene, a terpene synthase (Table S15; Data set S5).

Pathway evolution: ancestral state reconstruction

To explore the evolutionary history of the symbionts’ biosynthetic pathways relative
to their encoding strains, we performed an ancestral state reconstruction analysis. We
clustered GCFs into pathways (Ps) based on the assumption that they produce related
compounds (see Materials and Methods, Table S17). The 415 GCFs detected in our
data set were clustered into many different pathways. Their distribution was overlaid
onto a simplified symbiont phylogeny, generated by collapsing certain branches on
the species tree, resulting in eight lineages (A-H), which correspond with the newly
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FIG 6 Phylogeny depicting the inferred ancestry of secondary metabolite biosynthetic pathways. A simplified species phylogenomic tree depicts eight major

lineages (A-H), which correspond to the newly proposed taxonomical divisions. The number of strains in each group is indicated in black adjacent to branch

nodes. Circles indicate the number of pathways originating at various points in the species tree, whereas filled boxes indicate pathways next to the point of

acquisition. Transparent boxes represent pathway losses in all strains within a clade (continuous outline) or more than 50% of the strains in the clade (dashed

outline). Branches are colored according to the following: gray, pathways shared with the sister clade; red, shared with the common ancestor of the genus;

indigo, present in the clade comprising an undescribed genus and Luteomyces; light blue, present in the monophyetic clade comprising Sympodiorosea and

Escovopsis; yellow; shared between Escovopsis strains infecting coral agriculture and general higher agriculture; green, shared by all higher agriculture Escovopsis;

purple, shared by derived general higher agriculture and leaf-cutter agriculture Escovopsis; dark blue, clade-specific pathways; light gray, strain-specific pathways.

Black arrows indicate putative horizontal gene transfer events.

described genera (A, undescribed genus; B, Luteomyces; C, Sympodiorosea; and D-H,
Escovopsis) (Fig. 6). Sixty-seven pathways were present in the symbionts, out of which 56
were unique to this group of symbionts and 11 were shared with other Hypocreales. The
analysis revealed that 15 pathways were present in the common ancestor of escovopsis
symbionts, and 11 of those were shared with the closely related genus Cladobotryum.
The transition from a non-ant-associated lifestyle to a fungal garden inhabitant correlates
with the loss of one pathway (P67), which is involved in the biosynthesis of an unchar-
acterized PKS and is present in all close relatives but absent in every attine-associated
symbiont. Five pathways (P7, P8, P10, P14, and P15) evolved early in the evolutionary
history of these fungal symbionts and are present in most strains. However, none of them
are ubiquitous, as there have been some clade-specific losses.

The remaining 50 pathways were acquired at various points during the evolution of
the group, either through horizontal gene transfer (HGT) or de novo. An average of three
pathways are acquired with every transition to a new ant agricultural system. However,
the transition from strains within the three most ancestral clades (A-C, Sympodiorosea,
Luteomyces, and an undescribed genus) to the most derived super-clade, including
clades D-H (Escovopsis), correlates with the acquisition of five pathways, including P18,
predicted to be responsible for the biosynthesis of shearinine D. This indicates that these
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pathways are unique to Escovopsis spp. Four pathways evolved early in the divergence of
Escovopsis to infect higher attine agriculture. Interestingly, no pathway is unique to the
most derived clade of leaf-cutter ant-associated Escovopsis, clades G and H.

Phylogenetic analysis of key biosynthetic genes from each pathway confirms, based
on congruence with the species tree, vertical inheritance for most of the pathways
following acquisition. However, it also suggests that some pathways may have been
exchanged between strains. P22, encoding for a terpenoid, has been transferred
between the ancestor of strains exploiting higher attines (ancestor of clades F-H) and the
clade comprising an undescribed genus infecting coral agriculture (clade A). Similarly,
P26, encoding a PKS, seems to have been shared between the ancestor of strains
infecting leaf-cutter agriculture and the most derived clade infecting coral agriculture.
In both cases, the direction of the exchange remains unclear. However, once transferred,
these pathways have subsequently been vertically inherited by all members of the
clades.

The evolution of biosynthetic potential in these symbionts has not only evolved
through pathway acquisition, but also through BGC losses. Six pathways have been lost
in strains infecting lower attines: three that were already present in the sister clade
represented by Cladobotryum and Hypomyces rosellus (P10, 11, 12, and P13) and three
that evolved in the common ancestor of all attine-associated symbiont strains (P10,
P14, and P15). P12 appears to have been lost twice, once in clade B (Luteomyces) and
once in clade C (Sympodiorosea). P4 and P9 have also been lost in four and two strains,
respectively. Within Escovopsis parasitizing higher attine colonies, no pathway has been
lost completely. Only three pathways have been lost in some strains: the ancient P13
in clade F, and the more recently evolved P18, putatively encoding for shearinine, in
one clade E strain (EPCORN). While the loss of this BGC in EPCORN and its inability to
synthesize the resulting compound was already described through both bioinformatic
and chemical assays (31), our results suggest it is not a widespread event, given that
all the remaining strains still conserve the BGC. A number of pathways (P4, P9, P14,
P15, P20, P21) have been lost in Escovopsis spp. strains that experienced a host-shift,
from association with a Leucocoprineae to a Pterulaceae cultivar host. It is plausible that
these pathway losses represent an adaptation and specialization to exploit a new host.
In general, more pathways have been lost in symbionts strains infecting lower attine
gardens than those Escovopsis spp. attacking the cultivars of higher attines, and those
pathways were most often ancient, suggesting that newly acquired BGCs either (i) have
not had enough evolutionary time to be selected against or (ii) may be adaptive and thus
maintained. These results oppose patterns described in other fungi, where generalist
parasites harbor more BGCs than specialist ones (4). In this symbiont group, strains
infecting lower attines are thought to be less specialized than those infecting higher
attine gardens (22). However, our results suggest that they may be more specialized
than previously thought. Furthermore, the colonies of lower attines, consisting of a
handful of workers, are smaller than those of higher attines, which consist of millions
of workers. Given the insecticidal properties of some BGCs, it is plausible that parasitic
strains attacking bigger colonies require a more diverse cocktail of bioactive compounds
relative to those infecting smaller colonies in order to prevent clearance by the ants.
In fact, studies have demonstrated that the proportion of ant nests harboring fungal
contaminants (fungi other than the cultivar) is highest in lower attines (16). However,
the proportion of those contaminants made up by Escovopsis spp. is highest for higher
attines (16). This could be the result of Escovopsis’ greater ability to fend off competitors
and to inhibit ant-weeding behavior, relative to other symbionts infecting lower attine
nests, given their higher content in BGCs. Additionally, symbiont strains in small colonies
may encounter less diverse microbial communities compared to those encountered
in bigger gardens, and as such may not require as many antibiotic compounds to
outcompete other microbes.

Our results suggest that atttine-ant associated symbionts acquired the capacity to
synthesize the antimicrobial compound melinacidin IV early in their evolution. It was
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subsequently lost in lineage B (P10), i.e., Luteomyces infecting lower attine gardens.
The evolution of the pathway is, however, uncertain. Although we did not detect the
presence of the core biosynthetic enzymes in the attine-associated symbionts’ sister
clade, consisting of Cladobotryum and Hypomyces strains, other Hypocreales, such as
Acrostalagmus sp., a rare fungal genus that has been found associated with soil (117),
mushrooms (118), and plant material (119), are known to synthesize this metabolite.
This suggests that this BGC may have been acquired horizontally. However, while the
closely related genus Trichoderma has never been described to synthesize this antibiotic,
strains within this genus harbor a number of homologous genes to the melinacidin
IV BGC, including the backbone enzyme (120). Therefore, alternatively, it is plausible
that the pathway responsible for the production of melinacidin IV evolved early within
the Hypocreaceae family and was lost in the Cladobotryum-H. rosellus clade, accumulat-
ing enough changes (or requiring fewer genes than previously thought) that we have
classified them as different GCFs in our survey.

The inferred ancestry for the pathway predicted to be responsible for shearinine (P18)
biosynthesis suggests that it is characteristic of Escovopsis spp. While absent from other
Hypocreales, a BGC encoding for shearinine D has been described for the distantly related
fungus Penicillium janthinellum (121), suggesting that it may have evolved through HGT
in these symbionts. Emodin, encoded by pathway P24, was one of the last BGCs to
evolve within Escovopsis, appearing in the ancestor of strains parasitizing general higher
agriculture and leaf-cutter ants. Our current understanding of escovopsis symbionts’
strain variation and BGC content will undoubtedly improve with further taxon sampling
across the symbionts’ phylogeny and will help elucidate the relative contribution of HGT
and de novo origin to their chemical potential.

The evolutionary transition between lower to higher agriculture in attine ants
correlates not only with an increase in colony size (from hundreds to millions of workers)
(122) but also with an incipient division of labor between worker ants that culminates
with the cast system in leaf-cutter ants (123). The transition from infecting lower to
higher attine agriculture gardens coincided with the evolution of a new suit of biosyn-
thetic gene clusters, possibly explaining the increase in complexity required by these
symbionts to survive in this environment.

Conclusion

Microbial symbionts interact with their hosts and competitors through a remarkable
array of secondary metabolites and natural products. Here, we highlight the highly
streamlined genomic features of attine ant-associated symbionts that are best known
as parasites of the ancient agricultural systems. The genomes of Escovopsis spp., as
well as species from the other symbiont genera, are defined by seven chromosomes,
harboring few repetitive sequences. Despite a high degree of metabolic conservation,
we observe variation in the symbionts’ potential to produce secondary metabolites.
As the phylogenetic distribution of the encoding biosynthetic gene clusters coincides
with attine transitions in agricultural systems and cultivar types, we highlight the likely
role of these metabolites in mediating adaptation by a group of specialized symbionts.
Future efforts will shed light on the mode-of-action and mechanistic basis of these
secondary metabolites and how these metabolites relate to the symbionts’ lifestyles and
interactions with other members of this ancient agricultural system.
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