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1 Introduction 

Learning to symbolize and reason about the covarying relationships between abstract 
quantities, while being introduced to over 100 new physical quantities, characterizes 
a typical student’s experience in an introductory algebra-based or calculus-based 
physics course. Students who are enrolled in a physics course at the upper high 
school or early university levels are typically also enrolled in a course in algebra 2 
(functions, equations and inequalities, logarithmic and exponential relationships, and 
polynomial equations), precalculus, or calculus. There is an opportunity for math-
ematics instruction to help enrich students’ experiences mathematizing in physics 
contexts, and for physics instruction to help students develop better conceptual under-
standing of the mathematics that they use. This chapter seeks to make connections 
between the mathematics and physics worlds, inspiring instruction that can result in a 
deeper understanding and appreciation of the mathematical nuances of the symbolic 
models that describe the physical world. What follows is written to help bridge these 
two instructional worlds. 

Quantitative literacy (QL) is the ability to adequately use elementary mathematical 
tools to interpret and manipulate quantitative data and ideas that arise in individuals’ 
private, civic, and work lives (Gillman, 2005). We also note that quantitative literacy 
requires an inclination to describe real-world phenomena mathematically. Quantita-
tively literate individuals recognize the value in considering mathematics as a way to 
understand and reason about real-life situations. In this chapter we consider Physics
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Quantitative Literacy (PQL), i.e., quantitative literacy in the context of (introductory) 
physics, and argue that it is a pedagogically and intellectually fertile actualization of 
QL. 

Introductory physics uses familiar mathematics in distinct ways to describe the 
world and make meaning. To an expert, a physics equation “tells the story” of an 
interaction or process. Quantitative modeling, in which patterns are expressed using 
mathematical functions that relate physical quantities to each other, is the backbone 
of PQL. For example, when reading the equation, 

x(t) = +20 m + (−3m/s)t + 
1 

2 

(−9.8m/s2
) 
t2 

an expert may quickly construct a mental story of how the position of a projectile 
varies with time, starting 20 m above the ground and launched with a speed of 3 m/s 
vertically downward. The one-dimensional coordinate system is determined in this 
case by the physical fact that the acceleration due to gravity points downward, toward 
the earth. Part of the challenge of learning physics is developing the ability to decode 
symbolic representations in this manner. 

While the ability to describe the physical world quantitatively as exemplified 
above is a goal of introductory physics courses, little has been done to determine 
specific, assessable learning objectives related to PQL. This may be, in part, due to 
a lack of self-awareness on the part of instructors about what PQL entails, and how 
they, as experts, reason quantitatively in contexts of introductory physics. There is a 
growing body of literature that seeks to better clarify what PQL entails in introductory 
physics (Bajracharya et al., 2012; Boudreaux et al., 2020; Eichenlaub & Redish, 2019; 
Eriksson et al., 2018; Hayes & Wittmann, 2010; Huynh & Sayre, 2018; Redish, 2021; 
Torigoe & Gladding, 2011; White Brahmia et al., 2020, 2021). This section builds 
on that prior work. In order to frame improving quantitative literacy in a physics 
instructional context, we first operationalize physics quantitative literacy (PQL) in  
Sect. 2. Next, in Sect. 3, we outline introductory physics learning objectives that can 
help instructors meet the broad goal of developing students’ PQL, and suggest areas 
of overlap with concurrent mathematics courses. Lastly, in Sect. 4, we describe an 
assessment instrument we’ve developed to help instructors determine whether or not 
their instructional methods are helping students meet the PQL learning objectives. 

2 Operationalizing Physics Quantitative Literacy 

PQL relies on a blend of conceptual and procedural mathematics and physics content 
to formulate and apply quantitative models to describe the physical world. Figure 1 
shows a visual representation of the process of quantitative modeling in physics, 
beginning with observations that can lead to creation of base quantities. We define 
base quantities, such as time, position, and change in position, as those that can be 
created from observations and a single type of measurement. Quantitative modeling
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Fig. 1 Quantitative modeling in physics 

continues with the exploration of these quantities and their relationships to each other, 
resulting in derived or composite quantities (such as velocity or speed), established 
relationships between quantities, and more formal symbolic models. In this section, 
we operationalize PQL by describing quantitative modeling as outlined in Fig. 1—the 
process of mathematizing the physical world. 

The equation x(t) = +  20 m + (−3m/s)t + 1 2 
(−9.8m/s2

) 
t2 in the introductory 

vignette above is an instantiation of the kinematics equation x(t) = xo + vot + 1 2 at
2, 

which describes the time-dependent position of an object moving with constant 
acceleration a and initial velocity vo from initial position xo. It is introduced in the 
first week of almost all college-level introductory physics courses. This equation is 
a result of the quantitative modeling process in Fig. 1. The first step in the process 
is observations leading to the creation of base quantities position and time. These 
quantities appear in the kinematics equation as variables (x and t) and a parameter 
(initial position xo). Consideration of how the base quantities vary and covary leads 
to the derived quantities of velocity and acceleration, which appear as parameters vo 
and a. It also leads to characterizations of patterns between the quantities: position 
can be described as a function of time (x can be expressed as x(t)) and depends on the 
“accumulation” of displacement due to motion characterized by initial velocity vo and 
acceleration a. The result is a symbolic model, the general kinematics equation x(t) = 
xo + vot + 1 2 at

2. 
As Fig. 1 depicts, quantitative modeling occurs in a conceptually blended mental 

space. Quantitative modeling in physics is not simply “doing mathematics with 
physics quantities.” It requires a novel combination of mathematical and physical 
reasoning. Conceptual blending theory (CBT) (Fauconnier & Turner, 2002) provides 
a framework for characterizing this combination. Fauconnier and Turner describe a



318 S. White Brahmia and A. Olsho

cognitive process in which a unique mental space is formed from two (or more) sepa-
rate mental spaces. The blended space can be thought of as a product of the input 
spaces, rather than a separable sum. According to CBT, development of expert math-
ematization in physics would occur not through a simple addition of new elements 
(physics quantities) to an existing cognitive structure (arithmetic), but rather through 
the creation of a new and independent cognitive space. This space, in which creative, 
quantitative analysis of physical phenomena can occur, involves a continuous inter-
dependence of thinking about the mathematical and physical worlds. Development 
of PQL involves the creation of a new cognitive space that depends on both math-
ematical and physical reasoning, but is not a simple, separable sum of these two 
spaces. 

The remainder of this section uses Fig. 1 as a guide to fully operationalize PQL. 
Section 2.1 details quantitative modeling, of which quantification is a foundation. 
In Sect. 2.2, we discuss in detail two facets of quantitative modeling that are partic-
ularly important in the contexts of introductory-level physics: reasoning about sign 
and signed quantities; and covariational reasoning with quantities. While reasoning 
about sign and covariational reasoning have been well-researched by the mathe-
matics education community, recent work by the authors and their collaborators 
suggest these modes of reasoning as used in physics contexts by physics experts 
are distinct from the analogous modes in mathematical contexts (White Brahmia 
et al., 2020). Characterization of these types of reasoning with physics quantities is 
necessary to understand quantification and quantitative modeling in physics courses, 
especially for developing assessable learning objectives. 

2.1 Quantitative Modeling in Physics 

Quantification is a facet of quantitative modeling, and generates the building blocks 
for the mathematical descriptions involved in quantitative modeling. Thompson 
defines quantification as “the process of conceptualizing an object and an attribute 
of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship... with its unit” (Thompson, 2011, p. 37). For example, a 
bus’s motion can be quantified by a velocity (combining the mathematical objects of 
ratio and vector) relative to the ground. Thompson considers quantification to be “a 
root of mathematical thinking,” and argues that learners develop their mathematics 
from reasoning about quantities. In work involving middle school algebra students, 
Ellis (2007) claims that modes of mathematical structural reasoning are more likely 
to develop when students practice with quantities that are composed of other quanti-
ties through multiplication or division, rather than the strictly numerical patterns and 
algorithms common to school mathematics. Ellis claims it is precisely these kinds 
of quantities that help develop students’ abilities to create powerful generalizations. 
White Brahmia (2019) argues that quantification is the overlooked first step in the 
modeling process in physics instruction.
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Quantification in introductory-level physics courses is typically not generative. 
Students are rarely asked to create new quantities to describe attributes. Instead, 
quantification in introductory-level physics courses is focused on the understanding 
and use of introduced quantities to describe processes and physical phenomena. 
Students are asked to participate in quantitative modeling with already-defined 
physical quantities. 

Just as conceptual understanding of mathematical operations enriches cogni-
tion, so too does understanding the meaning and calculation of introduced quan-
tities. Consider the two common framings of division as the process of sharing or 
segmenting, as described by Thompson and Saldanha (2003). Sharing is the parti-
tioning of a number into some number of equal-sized portions (e.g., 12 3 = 4 shares in 
each of 3 portions). Segmenting is portioning out a number in groups of a given size 
(e.g., 12 4 = 3 portions of size 4). Thompson and Saldanha (2003) demonstrate that 
“operational understanding of division entails a conceptual isomorphism between” 
sharing and segmenting. These framings are productive in the context of numbers 
and can help new learners to visualize the meaning of division. Moreover, they 
are productive for students in many “real-life” scenarios. Contrast, however, this 
conceptual understanding of ratio and division with the construction of velocity as 
a vector quantity. Velocity can be understood by framing division as an operation 
which relates (Thompson et al., 2014) a change in position, which is a vector, to 
a time interval, which is a scalar, and produces a quotient entirely different from 
the dividend and the divisor. Velocity as the vector rate of change of position has 
its own physical meaning. Thompson et al. (2014) argue that understanding of a 
ratio quantity created by comparing two quantities of different natures is equivalent 
to understanding “relative magnitude” and note “high-level scientific reasoning that 
involves physical quantities typically involves conceiving of relative magnitudes.” In 
our experience, many students coming out of mathematics courses lack this under-
standing. We also find that it is uncommon for physics instructors to make explicit this 
difference when introducing velocity—that division is now performed for a different 
reason than it was when calculating, for example, the duration of a process that takes 
one-fourth as long as another, 22 s 4 = 5.5 s. 

We note that PQL includes an inclination or habit-of-mind to quantify or create 
quantitative models, hereafter referred to as “models.” The modeling shown in Fig. 1 
begins with observations of the world, which may lead to quantification for individ-
uals with high QL. Ability to think mathematically is not enough; it must be accom-
panied by a recognition that the physical world can be described quantitatively, and 
an inclination to develop and understand the model. 

Observation and quantification are crucial first steps in developing models in 
physics. Modeling can also result in novel composite quantities. Acceleration is one 
such composite physical quantity: .a is the ratio of a change in velocity ..v and an 
interval of time.t . The creation of acceleration as a quantity is a result of a quantita-
tive model: Galileo famously wrestled with the mathematical decision of whether to 
describe accelerated motion with a ratio of change in velocity to distance traveled or 
change in velocity to elapsed time. His choice of the latter led to the formal concept
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of acceleration, a foundation for the subsequent Newtonian synthesis. The quan-
titative modeling demonstrated in the introductory vignette involves both a proce-
dural and conceptual mastery of the prerequisite mathematics (Redish & Kuo, 2015; 
Thompson, 2011). Gray and Tall (1994) describe this combination of procedural and 
conceptual mastery in mathematical contexts as proceptual understanding and name 
it as a target learning goal for mathematics courses. Gray and Tall (1994) highlight the 
distinction between procedural efficiency and conceptual understanding, explaining 
that “the symbol 3 4 stands for both the process of division and the concept of frac-
tion.” In the terms of Thompson and Saldanha (2003), proceptual understanding 
involves both the conceptualization of fraction, and the conceptualization and action 
of division. 

We argue that quantitative modeling also requires proceptual understanding of 
physics quantities themselves. Consider the quantity average velocity, .vav = ..x 

.t . A  
physics student with a proceptual understanding of velocity would be procedurally 
proficient at determining an object’s average velocity by dividing its displacement 
by the elapsed time, as well as understand conceptually that the ratio is a quantity 
unto itself, .vav , with its own properties and meaning. 

We also argue that to succeed in physics courses, it may not be enough to under-
stand the mathematics as taught in mathematics courses. In introductory physics, 
“flexibility” with mathematics is expected of students—they are expected to under-
stand and apply mathematics in ways that are different than they may have been taught 
in prior mathematics courses. This flexibility is a hallmark of expert-like reasoning in 
physics (Sherin, 2001; Vlassis, 2004). A physics expert is able to distinguish between 
a negative sign used to indicate the type of electric charge in surplus in a given system 
(Olsho et al., 2021), and one used to indicate the direction of a component of an elec-
tric field relative to an assigned coordinate system (White Brahmia et al., 2020); a 
product may indicate an increase or accumulation of a quantity, or the creation of a 
new quantity. Physics experts readily interpret these aspects of the mathematization 
of physical systems (Fig. 2). 

PROCEDURE PROCESS PROCEPT 
Step-by-step; 
routine problem 
solving 

Increased efficiency; 
Flexible solutions with 
Conceptual alternatives 

Ability to think about  
mathematics symbolically 

Increasing Sophistication 

Fig. 2 Proceptual development, adapted from Tall (2008)
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Familiarity with multiple representations is a foundation for modeling in physics 
(Brewe, 2008). This familiarity facilitates the expert-like habit of seeking coherence 
between varied representations of quantities and relationships. Because quantitative 
modeling requires proceptual understanding of the mathematics used to relate physics 
quantities, as well as familiarity with the physics quantities themselves, we suggest 
that students must have some experience with the multiple representations taught in 
mathematics and physics courses (e.g., symbolic, graphical, and diagrammatic). The 
ability to think abstractly about physics quantities allows for greater understanding 
of the physical phenomena or qualities that the quantities represent; for example, 
students are able to consider the meaning of the quantity “electric potential” beyond 
its algebraic representation. Familiarity with multiple representations and physics 
quantities also allows students to make useful generalizations about quantities—they 
are able to consider similarities and differences between disparate vector quantities 
such as electric field and acceleration, or scalar quantities such as mass and charge. 
A proceptual understanding of the mathematics may help develop a deeper under-
standing of the physics quantities, which can, in turn, deepen understanding of the 
mathematics (Sealey & Thompson, 2016). 

Success in a physics course requires conceptualizing models that were generated 
by someone else; moreover, students are expected to understand the symbolizing 
of quantity and covariational relationships between quantities as if they created the 
models themselves. This depth of understanding involves recognizing patterns and 
decoding symbolic models. In the following section, we explicate these cognitive 
activities by focusing on two areas of reasoning central to the quantitative models 
featured in introductory-level physics. 

2.2 Facets of Quantitative Reasoning in Introductory Physics 

In this section, we discuss two facets of quantitative modeling that are of partic-
ular importance in introductory physics: reasoning about sign and signed quantities; 
and covariational reasoning, including reasoning about compound quantities. As 
discussed earlier, reasoning about sign is of particular importance to quantification 
of base quantities in physics, while covariational reasoning plays a substantial role 
in development of quantitative models and quantification of composite or derived 
quantities. 

2.2.1 Reasoning About Sign and Signed Quantities in Physics 

Negative integers represent a more cognitively difficult mathematical object than 
positive integers do for pre-college mathematics students (Bishop et al., 2014). 
Mathematics education researchers have isolated a variety of “natures of negativity” 
fundamental to algebraic reasoning in the context of high school algebra—the many 
meanings of the negative sign that must be distinguished and understood for students
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to develop understanding (Gallardo & Rojano, 1994; Nunes, 1993; Thompson & 
Dreyfus, 1988; Vlassis, 2004). These various meanings of the negative sign, which 
will be discussed in greater detail below, form the foundation for scientific quantifica-
tion, where the mathematical properties of negative numbers are well-suited to repre-
sent natural processes and quantities. Recognition that the negative sign has different 
meanings in different contexts, and correct interpretation of the meaning of a negative 
sign in a given context—called “flexibility” with negativity by mathematics education 
researcher Vlassis (2004)—is a known challenge in mathematics education. There is 
mounting evidence that reasoning about negative quantity poses a significant hurdle 
for physics students at the introductory level and beyond (Bajracharya et al., 2012; 
Ceuppens et al., 2019; Eriksson et al., 2018; Hayes & Wittmann, 2010; Huynh & 
Sayre, 2018; White Brahmia et al., 2020). 

In physics, as in mathematics, it is convention that an unsigned quantity is a 
positive quantity (e.g., “5 μC” is taken to mean a charge of + 5 μC). While research 
indicates that students are not facile at interpreting the meaning of negative signs 
specifically, we suggest that it is the presence of an explicit sign associated with a 
quantity that results in the difficulty. Indeed, physics education researchers report 
that a majority of students enrolled in a calculus-based physics course struggled to 
make meaning of negative and positive quantities in spite of completing Calculus 
I and more advanced courses in mathematics (White Brahmia & Boudreaux, 2016, 
2017). In our discussion below, we focus on negativity and use of the negative sign 
(as by convention, that is the context in which use of an explicit sign is necessary), 
but suggest the applicability to sign and signed quantities more generally. 

Flexibility with negativity and interpretation of the negative sign in different 
physics contexts plays an important role in both quantification specifically and quan-
titative modeling more generally. Sherin’s (2001) “symbolic forms” were developed 
to explain how successful physics students interpret and create equations. Sherin 
suggested that students associate symbolic patterns with physical and mathematical 
meaning. Work by mathematics and science education researchers has expanded 
Sherin’s original list of symbolic forms (Dorko & Speer, 2015; Rodrigues et al., 
2019; White Brahmia, 2019). While mathematics education researchers identified 
a “measurement” symbolic form as consisting of magnitude, units, and exponent 
(Dorko & Speer, 2015), research in physics contexts suggests a “quantity” symbolic 
form consisting of sign, value, and units, where the sign carries physical meaning 
related to the specific quantity (White Brahmia, 2019). These two symbolic forms 
are shown in Fig. 3.

The difference between the symbolic forms speaks to the importance of sign 
when considering physics quantities. Quantities representing change, such as .v = 
vfinal−vinital (i.e., change in speed), are fundamental to introductory-level physics but 
are discussed less in mathematics course. The “quantity” symbolic form includes the 
expectation of a sign associated with each quantity, which in the case of .v informs 
whether the speed is increasing or decreasing. Expressed using the “measurement” 
symbolic form, .v would only consist of magnitude and units, and omits important 
information about the nature of the change. The inclusion of sign allows for a more 
complete description of an object’s motion.
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Fig. 3 Symbolic forms relevant to physics quantities

The meaning of the sign is of particular significance for scalar quantities, where 
the meaning may be consistent with mathematical conventions (comparison to a 
reference or zero, such as for temperature) or could be part of a model or physics 
convention (for example, heat Q is negative for a system when thermal energy is 
transferred out of that system). Introductory-level physics students also see a use of 
sign that is idiosyncratic to physics: sign as an indication of type, as with electric 
charge, where the sign of the net charge on an object indicates the type of charge 
(positive or negative) in surplus on the object (Olsho et al., 2021). 

Sign plays an important role for vector quantities as well. Vector quantities are 
always interpreted geometrically (i.e., having a magnitude and a direction) in college-
level physics courses; a negative sign associated with a vector or vector component 
thus indicates its direction, either relative to a defined coordinate system (Fx = 
−3N) or to another vector, as in the quantitative statement of Newton’s Third Law 
( .F12 = −  .F21). 

For quantitative modeling more generally, students must consider the meaning of 
negative (and positive) signs when they are used to model physical relationships or 
processes, or to compare or combine quantities. In these cases, positive and negative 
signs can be used to describe how quantities relate to each other, or as part of the 
operations of addition and subtraction—divergent uses of the same symbols. Students 
are introduced to expressions that relate quantities that oppose or are opposite to each 
other. Even when used to indicate the operation of subtraction, the negative sign has 
varied meanings in physics contexts. To describe the many meanings of the negative 
signs in the contexts of introductory-level physics, White Brahmia, et al. (2020) 
developed a framework of the natures of negativity in introductory physics, based on 
an analogous framework in the context of algebra (Vlassis, 2004). An abbreviated 
version of the physics framework is shown in Table 1. The framework outlines three 
uses or facets of the negative sign in physics: as associated with a single quantity; as  
used describe a relationship between multiple quantities; and as used to denote the 
operation of subtraction. As seen in Table 1, each of these facets is itself multifaceted, 
which is an indication of the many nuances of negativity in physics contexts.
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Table 1 Abbreviated version 
of the framework of natures 
of negativity in introductory 
physics (White Brahmia 
et al., 2020) 

(Q) Quantity (R) Relationship (O) Operation 

1. Scalar 1. Opposes 1. Removal 
(physical) 

a. Type (charge only) 2. Opposite 2. Difference 
(temporal) 

b. Change, rate of 
change 

3. Relative 
Orientation 

4. Removal 
(modeling) 

c. Comparison to 
reference 

4. Negative 
exponents 

3. Difference 
(other) 

d. Models, convention 

2. Vector component 

Boldface indicates a facet of a main nature of negativity 

Use of the negative sign to convey physical meaning is a basis of quantitative 
modeling. Even at the college introductory level, combinations of positive and nega-
tive signs are necessary to model processes and relationships. Further, the negative 
sign associated with a given quantity can have multiple correct interpretations. For 
example, when a force does negative work on a system, it can be interpreted as an 
indication that the force acts to decrease the mechanical energy of the system. The 
negative sign also indicates that the force is applied in a direction opposite to the 
direction of the displacement of the system. White Brahmia and Boudreaux (2017) 
found that students who understood that a force does negative work on a system 
when applied in a direction opposite to the system’s displacement were more likely 
to understand that a net negative work is associated with a decrease in the system’s 
energy. The researchers interpreted this result as an indication that a mathematical 
understanding about the scalar product catalyzed a more robust understanding about 
the change in system energy. This is an example of how understanding positive and 
negative signs is associated with more complete understanding of physics quantities, 
and the quantities’ meanings within physics models (White Brahmia, 2019). 

2.2.2 Covariational Reasoning in Physics 

Covariational reasoning, “the cognitive activities involved in coordinating two 
varying quantities while attending to the ways in which they change in relation 
to each other” (Carlson et al., 2002, p. 354) has been shown to be strongly associ-
ated with student success in calculus by mathematics education researchers (Carlson 
et al., 2002; Saldanha & Thompson, 1998; Thompson, 1994). Physics covariational 
reasoning plays a substantial role in physics quantitative modeling. It involves finding 
the relationship between quantities, and representing that relationship symbolically. 
These are both key facets of quantitative modeling as depicted in Fig. 1. In college-
level introductory physics courses, students are routinely asked to describe how
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quantities relate to each other, and how a change in one quantity affects another 
quantity. 

However, few studies by physics education researchers have explored how co-
variational reasoning is used in introductory physics contexts. A study reported on 
by Zimmerman et al. (2020a, 2020b) suggests that covariational reasoning in physics 
graduate students (“experts” in introductory physics contexts) differs in some ways 
from that in mathematics graduate students, as reported by Hobson and Moore (2017). 
In particular, physics experts display a number of specific behaviors—one of which 
will be described in the paragraphs below—that allow them to consider the rela-
tionship between two variables while reducing or even eliminating the formal, novel 
covariational reasoning seen in mathematics experts in similar contexts. These behav-
iors allow for physicists to engage in reasoning about the quantities themselves, as 
well as the relationship between the quantities, in a way that is not typically neces-
sary in mathematical contexts. For this reason, we call the covariational reasoning 
done by physics experts “covariational reasoning with quantities” or simply “physics 
covariational reasoning.” 

Zimmerman et al. (2020a, 2020b) have identified a number of behavior in physics 
experts that seem to facilitate covariational reasoning. In what follows we focus on 
a particular instance of the overarching physics expert behavior which Zimmerman 
et al. (2020a, 2020b) call “compiled relationships”: the use and creation of defined 
relationships between two quantities that may or may not be in the problem statement 
in order to help address the relationship between two quantities in the specified task. 
We suggest that this is a cognitive activity that is distinct in physics covariational 
reasoning, and that it allows for greater focus on the meaning of physics quanti-
ties. The use of compiled relationships as an expert behavior relies on the fact that 
there are relatively few functions that make up the models encountered in a college-
level physics course—most involve linear or inverse relationships, basic trigono-
metric functions, simple quadratics, or exponential decay. Most physical contexts 
at this level can be mathematized with just this handful of functions, with which 
expert physicists become very familiar. Therefore, physics experts come to expect 
one of these common functions, and readily mathematize tasks that involve novel 
covariational reasoning for mathematics experts—for whom any function is possible. 

The behavior encompassed by the compiled relationships category has several 
facets. Here, we define a facet which we call “automatic mathematization” 
(Zimmerman et al., 2020a, 2020b) which illustrates a key difference between the 
way physics experts and mathematics experts approach quantitative modeling tasks 
that involve covariational reasoning. Automatic mathematization is the almost-
immediate, automatic assignment of a known functional relationship between quanti-
ties. This mathematization is typically guided by the physics and draws on well-tested 
models of nature. It may be as simple as a learned rule such as “force decreases as 1 r2 ” 
or more complex, requiring identification of a physical phenomenon in a particular 
context and then mathematizing. An example of the latter was seen in interviews 
with physics graduate students who were asked to draw a graph relating intensity 
of light in liquid as a function of the depth of the water. Several of the intervie-
wees recognized that a decrease in light intensity with increasing distance from
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the light source was due to the physical phenomenon of scattering. These graduate 
students then assumed that the intensity would therefore decrease exponentially with 
increasing distance from the source, connecting the physical phenomenon of scat-
tering to the function f (x) = e−x . Zimmerman et al. (2020a, 2020b) report on several 
other physics-specific expert behaviors that were not reported on in the studies of 
mathematics graduate students by Hobson and Moore (2017), Moore (2014). They 
conclude that physics covariational reasoning is built on a proceptual understanding 
of quantities themselves, and a handful of functions. The physics expert behav-
iors described above—and others—allow physicists to make sense of the quantities, 
through their physical interpretation, and the mathematical relationships between 
quantities simultaneously. We believe that this blended sensemaking is character-
istic of physics covariational reasoning, and therefore, of quantitative modeling in 
physics. 

In this section, we have described our work exploring how experts reason quanti-
tatively. In Fig. 1 we outline the reasoning that goes into generating and interpreting 
symbolic models in physics. The quantitative modeling demonstrated in the vignette 
in the introduction exemplifies this reasoning process, where the position and time are 
quantities that emerge from direct observation and the velocity and acceleration are 
derived quantities that characterize the motion. Unlike “measures” in mathematics, 
physics quantities typically include a sign that carries its own important meaning. 
The covariational relationship between quantities is symbolized in the kinematics 
equation shown. 

By identifying these sophisticated reasoning patterns, we create targets for assess-
able PQL-related learning objectives—discussed in the next section—for students 
enrolled in introductory physics courses. 

3 Assessable PQL Learning Objectives 

Having operationalized PQL in the previous section through frameworks that char-
acterize expert reasoning, in this section we describe the development of assessable 
PQL learning objectives for the college-level introductory physics course, using 
expert PQL as a target. We note that explicit PQL learning objectives in introductory 
physics are uncommon, largely because the kind of reasoning outlined in the previous 
section is assumed by most physics instructors to be developed in the prerequisite 
mathematics courses. There is a gap between physics and mathematics instruction 
that this work seeks to help close. 

Developing learning objectives (LOs) that can help guide instructional efforts 
toward effective development of PQL builds on the sustained and productive 
department-wide efforts developing undergraduate physics course learning objec-
tives (Chasteen et al., 2011). In this section we discuss evidence-based PQL learning 
objectives, and in the next, an example of an assessment instrument that can be used 
to assess the effectiveness of instruction at meeting some of these objectives.
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3.1 Methodology 

The methodology we describe here for developing LOs discusses the overall develop-
ment process, and also includes LOs that are not associated with PQL. The remainder 
of the chapter focuses specifically on the subset of LOs associated with developing 
PQL. 

At the outset, we recognized that effective LOs articulate values shared by a broad 
group of instructors. Our first step in creating a succinct set of assessable learning 
objectives for the introductory physics sequence involved consolidating the outcomes 
of prior systematic efforts by the physics education research community, representing 
hundreds of the researcher’s hours spent collaborating with departmental colleagues. 
Past department-level efforts in the United States have focused mainly on courses 
beyond the introductory level, which rely on a proceptual understanding of calculus. 
PQL at the introductory level helps build the foundation for the calculus-thinking 
that underpins modeling in physics; we approached this project through the lens 
of conceptually understanding the mathematical foundations of algebraic physics 
models. 

In order to develop a set of LOs that are broadly appealing and recognizable to 
most instructors, we started with the existing LOs from a variety of widely respected 
sources.1 We conducted a card-sorting task with those LOs, and supplemented the 
results where appropriate. Learning scientists have used card-sorting tasks to inves-
tigate mental organization of disciplinary knowledge (Chi et al., 1981; Schoenfeld & 
Herrmann, 1982). Experts are given cards showing various content with no pre-
established groupings. They are then asked to sort the cards into groups that they feel 
make the most sense, and describe each group. The first author (SWB), a physics 
education research postdoc (whose dissertation specialization was surface science), 
and a senior astrophysics graduate student with extensive teaching and curriculum 
development experience, employed a card-sorting task with learning objectives that 
span the introductory physics course. On each card was a single objective. The 
researchers independently sorted the objectives into groups, then discussed their 
groups, and modified their sortings until they reached agreement. 

The overall structure of the resulting learning objectives is hierarchical (see Fig. 4) 
and includes a novel level not seen in other efforts—sequence-level objectives that 
span the entire introductory physics sequence. The sequence level includes a limited 
number of LOs that blend the professional science practices and physics habits-of-
mind characteristics of high-functioning STEM professionals. We recognize that this 
level of learning takes a long time and may not be measurable over the course of one 
term. It is mainly at the sequence level that we include objectives designed to develop 
skills that are strongly associated with PQL. Developing a proceptual understanding

1 We looked to the high-quality practices of NGSS and the College Board, which have been carefully 
crafted over several years, for guidance in developing our own learning objectives at the sequence 
level (NSTA; College Board, 2020). They created the individual sequence-level LOs used in the 
sorting task by gathering the LOs from the multiple sources (Beichner, 2011; Etkina et al., 2006; 
Kozminski et al., 2014; LGBT  + Physicists, 2013; SEI). 
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Fig. 4 Hierarchical structure of LOs 

of models in physics also happens slowly, over the period of multiple sequential 
courses. 

The course-level objectives include 10–15 overarching content themes that are 
specific to that course. Lastly, unit-level objectives, often thought of as the specific 
content, correspond in duration to a typical chapter in a college course. 

The introductory physics sequence-level learning objectives resulting from the 
card-sorting task are listed in Table 2. The resulting consensus includes three themes 
around which similar LOs clustered: physics habits of mind, understanding models 
and limits, and professionalism and workplace skills.

Note that there is no separation between lab and lecture course objectives. 
While some objectives lend themselves better to the lab, there is considerable 
cognitive overlap. There is compelling evidence that it takes both laboratory and 
lecture/recitation experiences for these learning objectives to be met. Labs which 
emphasize following instructions and the development of technical laboratory skills 
miss an opportunity to help students develop the ability to design ways to answer 
scientific questions (Canright & White Brahmia, 2021; Etkina, 2015). 

We share an example that is ubiquitous in physics: the inverse-square covariational 
relationship, which is central to many physics models (e.g., Coulomb’s law, Newton’s 
Law of Gravitation, light and sound intensity). The following example shows the 
learning objectives that are part of developing reasoning associated with Coulomb’s 
law, a 1 r2 force, and the associated field in an electromagnetism course (typically the 
second term in an introductory sequence), and demonstrates how the levels shown 
in Fig. 4 differ: 

• The relevant unit-level LOs include: 

– Analogy to Gravitation: Use Newton’s 3rd law to reason about the force 
vector direction along a line connecting the two interacting objects; Use the 
1 
r2 structure of the gravitational and electrical forces to reason covariationally 
about similarities in the interactions between massive objects and between 
charged objects. 

– Coulomb’s Law: State Coulomb’s Law in equation form and explain the 
covariational relationship between the electrostatic force and (1) the magnitude 
of the charges, and (2) the separation of the charges

• The relevant course-level LOs include:
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Table 2 Sequence-level learning objectives 

HM: physics habits of mind 

HM-1. Translation between physical and symbolic world: develop the inclination and ability 
to translate between the physical and symbolic worlds in an effort to quantitatively reason 
about how nature works 

HM-2. Reasoning with physical quantities: reason abstractly and quantitatively with new 
scalar and vector quantities: make physical sense of the quantities and mastering their 
mathematical structures 

HM-3. Multiple representations: create and translate between multiple representations of the 
same concept (e.g., text, equations, graphs, diagrams) 

HM-4. Problem articulation: articulate what it is that needs to be solved in a particular 
problem, what is known and represent them using a non-verbal representation 

HM-5. Perseverance: recognize that wrong turns are valuable in learning the material, recover 
from mistakes, and persisting in working to the solution even when there is no clear path to the 
endpoint 

HM-6. Sensemaking with quantity: effectively use unit reasoning, vector and scalar natures 
and limiting cases to make sense of answers 

HM-7. Order of magnitude and reasonableness: anticipate the order of magnitude to judge the 
reasonableness of measurements and calculations 

HM-8. Reasoning based on mathematical structure: look for and make use of patterns 
associated with mathematical structure to reason across contexts and scale 

HM-9. Recognizing uncertainties: be able to recognize that all measured quantities have 
inherent uncertainties 

ML: understanding models and their limits in physics 

ML-1. Making observations: form a scientific question, design and carry out experiments to look 
for patterns 

ML-2. Developing a model: analyze and interpret data while attending to uncertainty in 
measurement and construct explanations based on patterns in the data 

ML-3. Reasoning with mathematical models: develop and use mathematical models and 
explanations, construct viable arguments, engage in argumentation from evidence and 
critique reasoning of others 

ML-4. Model limitation: articulate assumptions made when applying a model, and the range 
over which a particular model is a valid description of nature 

ML-5. Model testing: design an experiment to test the model and make a prediction of the 
outcome based on it 

ML-6. Scientific judgment: analyze and interpret data from a testing experiment while attending 
to uncertainty, and make a scientific judgment about the outcome 

PW: professionalism and workplace 

PW-1. Collective intelligence: recognizing the two features of high collective intelligence, and 
monitoring social climate to optimize these features (equitable speaking turns, social sensitivity) 

PW-2. Collaboration: able to articulate affordances that a group brings to arriving at a creative 
solution, knowing what the roles are that members of effective groups t 

PW-3. Inclusion: demonstrate effective communication skills in the context of a recitation or lab 
group that results in whole-group meaningful participation

(continued)
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Table 2 (continued)

PW: professionalism and workplace

PW-4. Communicating physics: be able to communicate physics in written and oral forms 

PW-5. Independent Learning: recognizing and acting on confusion: be able to articulate 
specifically the source of confusion and taking action to move beyond that difficulty (e.g., office 
hours, group study) 

PW-6. Skepticism toward conclusions: recognize that scientific conclusions—whether from an 
outside source or from your own calculations—may be incorrect, and develop the ability to 
check these conclusions with simple calculations, 3rd party information, and/or common sense 

The PQL-specific LOs appear in bold italic

– Electric Force and Field: Apply Coulomb’s Law and the superposition 
principle to find the net force and field due to a distribution of charges 

– Sophisticated Quantities in E&M: Distinguish between the vector and scalar 
nature of EM quantities and the role of ± signs 

• The relevant sequence-level LOs include: 

– ML-3: Reasoning with mathematical models: Develop and use mathematical 
models and explanations, construct viable arguments, engage in argumentation 
from evidence. 

– HM-8: Reasoning based on mathematical structure: Look for and make use 
of patterns associated with mathematical structure to reason across contexts 
and scale. 

In the remainder of this chapter, we focus on sequence-level objectives because 
PQL develops over repeated exposure, at a different rate for all students. The expecta-
tion is that by the time students have completed the introductory sequence of physics, 
these objectives will have been met. Sequence-level objectives in turn strongly influ-
enced the course-level objectives, and the streamlining of the unit goals. We next 
look closely at the specific PQL sequence-level LOs. 

3.2 Sequence-Level Learning Objectives 

A subset of the sequence-level learning objectives that target PQL specifically is 
indicated by bold italics in Table 2. We suspect that mathematics instructors will 
find these familiar, and likely see overlap with their own learning objectives. We see 
great potential to embolden student learning, both in mathematics and in physics, 
if both disciplines can emphasize mathematical reasoning that is highly valued in 
physics. We focus here on three of the learning objectives from Table 2 to better 
clarify why they matter, and how they might overlap with mathematics instruction: 
HM-1, HM-3, and HM-6 (see Table 3).
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Table 3 Sample LOs with examples from physics 

HM-1 HM-3 HM-6 

Translation between physical 
and symbolic world 

Multiple representations Sensemaking with quantity 

. Positive and negative signs 
(e.g., electric charge, one 
dimensional velocity, 
displacement, acceleration) 

. Summation of conserved 
quantities (e.g., energy, 
momentum) 

. Unit vectors to represent 
direction of vector quantities 
(e.g., force, displacement, 
electric field) 

. Interpretation of slope and 
area under curve in graphs 
(e.g., position vs. time, 
pressure vs. volume, force 
vs. displacement) 

. Verbal interpretation of 
equations (e.g., example in 
introduction) 

. Force diagrams to represent 
direction and magnitude of 
vector quantities (e.g., 
Newton’s laws, statics) 

. Limiting cases What hap-
pens in a given model for 
very large/small and zero 
values of a quantity? 

. Dimensional analysis are 
the units of an answer 
consistent? Does a model 
make sense in the physical 
world? 

. Vector versus scalar 
reasoning does “direction” 
carry meaning for a given 
quantity? (e.g., force, 
energy, momentum, time) 

HM-1, Translation between the physical and symbolic world, is a continuous 
mental action of experts in physics, relying heavily on mathematical symbols to 
convey deep meaning. Addition and subtraction can be performed only with like 
quantities, and the operations carry different meaning than the integers that carry the 
same symbols, as was demonstrated in the introduction of this chapter. 

HM-3, Multiple Representations, is brought to life in the vignette at the opening 
of this chapter. The reliance on particular representations and the inclination to seek 
coherence between them is a hallmark of expert behavior around making sense of 
models. Equations are ubiquitous in all physics contexts. Graphical representations of 
position, velocity, and acceleration as a function of time are an instructional platform 
kinematics, bar charts are commonly used to keep track of conserved quantities, and 
vector diagrams are foundational in the studies of solid and fluid statics and dynamics. 

HM-6, Sensemaking with quantity, encompasses exploring the limiting cases 
of single and multivariable models, using the units in a calculation both to guide and 
to check for sensemaking, and exploring physical-world implication of the vector or 
scalar nature of a quantity. As an example of the latter, multiplication and division 
create entirely new quantities with unique properties. Work is a scalar product of 
two vectors (force and displacement); it is neither force nor displacement, and not a 
vector. Nonetheless, students routinely conflate work and force, not differentiating 
between the product and a factor, or a scalar and a vector. 

We have gathered a substantial amount of evidence for face validity of the 
sequence-level LOs. The language has been modified iteratively based on a series 
of interviews with faculty until the LOs reached a steady state in which they are 
both understood as intended and valued by instructors. Much work remains before 
it becomes standard practice across most institutions that undergraduate physics 
instruction is designed to meet evidence-based objectives, and measures of the effec-
tiveness of instruction are based on them. In their current form, the LOs described in
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Table 2 are used at our institutions with a broad set of instructors, with an associated 
outcome of facilitating consensus about course content, assessments, professional 
development, and modifications to courses. 

In this section we’ve demonstrated the ubiquity and importance of quantification, 
symbolizing and modeling to physics reasoning, and provided PQL learning objec-
tives that reflect their value to instruction. In what follows we describe an instrument 
that can be used to assess whether or not instruction is meeting these objectives. 

4 The Physics Inventory of Quantitative Literacy 

Despite the importance of physics quantitative literacy as a learning outcome in 
introductory physics courses, there is a dearth of instruments to assess its devel-
opment. To address this need, we developed, with collaborators Smith, Boudreaux, 
Eaton, and Zimmerman, the Physics Inventory of Quantitative Literacy (PIQL), a 
multiple-choice reasoning inventory (White Brahmia et al., 2021). Various concept 
inventories, such as the Force Concept Inventory (Hestenes et al., 1992) and the Force 
and Motion Conceptual Evaluation (Thornton & Sokoloff, 1998) in physics, and the 
Precalculus Concept Assessment (Carlson et al., 2010) and Calculus Concept Inven-
tory (Epstein, 2006) in mathematics, have raised awareness of student difficulties, 
leading to directed instructional interventions and improvements in curricula, and we 
believe that the PIQL can have an analogous impact on physics instruction. There 
are, however, several aspects of the PIQL that set it apart from concept inventories: 

1. Instead of focusing on a single physics concept or level of mathematics, the 
PIQL was developed to assess facets of mathematical reasoning (i.e., PQL) that 
are important in introductory physics, and foundational to subsequent physics 
courses. 

2. The PIQL has several “multiple-choice multiple-response” items (i.e., multiple 
choice questions for which there may be more than one correct answer, and for 
which students are asked to choose all responses that they believe are correct), 
which allow us to probe both conceptual mathematics and conceptual physics 
features of student reasoning in a given context. 

3. The PIQL is designed to assess development of PQL throughout an entire intro-
ductory physics course sequence, rather than providing a measurement of concept 
mastery for a single course. 

As the PIQL is intended to assess PQL and its development with instruction in 
physics, the items focus on the types of quantification and quantitative modeling that 
are important in introductory physics: reasoning about sign and signed quantities, 
and covariational reasoning. Covariational reasoning in particular is foundational to 
the mathematics course that is prerequisite to introductory physics courses (precal-
culus), and several PIQL items are adapted from items from the Precalculus Concept 
Assessment (Carlson et al., 2010). In addition, some PIQL items assess student 
reasoning about ratios and proportions; while this type of reasoning is related to
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covariational reasoning, we treat it as a distinct category for PIQL items. Propor-
tional reasoning represents a domain of quantification that is particularly relevant 
for introductory physics, where many models involve linear relationships and many 
quantities are ratios of other quantities (Boudreaux et al., 2020). Reasoning about 
sign and signed quantities and covariational reasoning are key to quantification and 
quantitative modeling, as described in Sect. 2. The PIQL’s focus on these facets of 
mathematical reasoning in physics contexts makes it an important metric for assessing 
whether PQL-related learning objectives are being met, particularly those in the HM: 
Physics Habits of Mind and ML: Understanding models and their limits in physics 
categories. PIQL items are not focused on procedural mathematics or calculations, 
which are also important in introductory physics and are well-served by meeting the 
mathematics prerequisites for physics. The conceptual mathematics and quantitative 
reasoning embodied in the PIQL are a foundation for the mathematics used in intro-
ductory physics courses at the college level, and are not typically an outcome of the 
prerequisite mathematics courses. 

Expert-like PQL is firmly rooted in a well-formed conceptual blend of physics 
concepts and proceptual understanding of precalculus and algebra, as discussed in 
Sect. 2; therefore, novel PIQL items were developed on the theoretical foundation 
of Conceptual Blending Theory (Fauconnier & Turner, 2002), as well as Sherin’s 
(2001) symbolic forms. Readers interested in the process of item develop-ment based 
on these theoretical frameworks should see the journal article describing the PIQL’s 
development and validation (White Brahmia et al., 2021). 

Here, we describe three items from the PIQL and relate them to the learning 
objectives described in Table 2, chosen to exemplify the LOs highlighted in Table 
3. The first item was written to probe student understanding of sign and signed 
quantities, and assesses learning objective HM-1 primarily, in addition to HM- 2, 
HM-6, and HM-8. The second involves covariational reasoning, and assesses learning 
objective HM-3 primarily, along with HM-1, HM-2, HM-6, HM-8, and ML-3. The 
third also involves covariational reasoning, focusing on evaluation of an algebraic 
limit. It primarily assesses learning objective HM-6, as well as HM-1, HM-8, and 
ML-3. 

The Electric field question (see Fig. 5) asks students to determine the meaning 
of a negative sign associated with a component of a vector quantity. In introductory 
physics contexts, the most useful and intuitive interpretation of a vector quantity is a 
geometric interpretation. Students learn that a vector is a quantity with a magnitude 
and a direction. Therefore, the sign associated with a vector component indicates 
its direction relative to a defined coordinate system. We find, however, that students 
struggle to make meaning of the sign of vector components that represent unfamiliar 
quantities (White Brahmia & Boudreaux, 2017). This is especially true for quantities 
such as electric field, and others related to electromagnetism. We believe that, for 
many students enrolled in college-level introductory physics courses, a lack of intu-
ition and experience with quantities of electromagnetism, as well as unfamiliarity 
with the mathematical abstraction of vector fields obscures the meaning of the sign. 
This is despite the fact that the meaning of the sign of a vector component is under-
stood by students in the more familiar context of mechanics. This question serves
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Fig. 5 Electric field, PIQL multiple-choice multiple-response item (top) that exemplifies a procep-
tual understanding of the “sign” aspect of White Brahmia’s “quantity” symbolic form (bottom). 
The correct response is b 

as an assessment of PQL-related learning objective HM-1 in particular: students are 
expected to translate the physical attribute of direction into a symbolic representation 
using sign. 

The Plant Growth question, shown in Fig. 6, is an item that assesses students’ 
graphical interpretation and covariational reasoning, and is based on an item from the 
Precalculus Concept Assessment (Carlson et al., 2010). The item features a graph 
with time as the independent variable, and growth rate as the dependent variable. 
Students are asked to compare not the growth rates of the two plants, but the amount 
of growth of the two plants over the period depicted in the graph. To do this, students 
could recognize that plant A grows at a faster rate for the entire time shown in 
the graph, and therefore grows more; or, a student could recognize that the area 
under each curve represents the accumulated growth of the associated plant. Both 
of these strategies require students to interpret the quantities depicted in the graph, 
and how they can use those quantities to compare a third, related quantity. This 
item is particularly relevant to sequence-level learning objectives HM-3. Students 
are expected to make sense of graphical representations of quantities: when the 
independent variable is time, and the dependent variable is a time rate of change of a 
given quantity, the area under the curve represents the accumulation of that quantity.

The Fish item, shown in Fig. 7, is also adapted from the Precalculus Concept 
Assessment (Carlson et al., 2010), and assesses covariational reasoning in an alge-
braic (rather than graphical) context. To answer, students need to determine that 
the expression given for N (t) increases with increasing t, by recognizing that the 
numerator grows more quickly than the denominator. They must also recognize that 
answering the item requires a determination of a limit, and determine the value of 
the limit of the given algebraic expression. One way to determine the value of the
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Fig. 6 PIQL item that exemplifies the covariational reasoning used in introductory physics contexts, 
and understanding of graphical representations of quantitative models. The correct answer is b

Fig. 7 Fish, PIQL multiple-choice single-response item, that assesses students’ covariational 
reasoning in an algebraic context. The correct answer is b 

limit of the expression is to rewrite the expression as 

N (t) = 
600(t + 5/6) 
0.5(t + 2) 

= 1200 
t + 5/6 
t + 2 

. 

As t gets large, the fraction approaches 1 from below; thus, as t increases, N (t) 
approaches 1200 from below. We note that while the wording of the answer choices 
is such that less rigorous reasoning can be employed to find the correct answer, 
recognition of the necessity of taking a limit is central to this item. This item is well-
aligned with learning objective HM-6: students must recognize the need to consider 
the limit of an expression for large values of t. 

Interestingly, though experts categorize the items on the PIQL as primarily using 
proportional reasoning, reasoning about sign and signed quantities, or covariational 
reasoning, both exploratory and confirmatory factor analyses of student responses on 
the steady-state version indicated that the items on the inventory were not separable 
into these constructs from the students’ perspective. This indicates that, from the
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students’ perspective, the PIQL may assess a single construct (i.e., physics quan-
titative literacy) and that the three facets of reasoning are deeply interconnected 
in physics contexts for students. Student interviews as well as targeted psychome-
tric analyses are consistent with this interpretation (White Brahmia et al., 2021). 
This supports our classification of the PIQL as a reasoning inventory, rather than 
a concept inventory, and that it is an appropriate metric for assessing PQL-related 
learning objectives, which are focused on reasoning rather than specific mathematical 
or physical concepts. 

5 Conclusion 

In this paper we define Physics Quantitative Literacy (PQL) and describe its central 
role in physics thinking. We operationalize PQL in the context of quantification 
and modeling, with a focus on covariational reasoning and reasoning about sign 
and signed quantities. We also demonstrate that PQL is not only central to physics 
learning, but has a strong overlap with concepts in algebra, and precalculus as well. 
We then describe our process for developing sequence-level assessable PQL learning 
objectives for the introductory physics sequence, and present the current version of 
those objectives. We note that mathematics educators are likely to see overlap with 
their own learning objectives for algebra and precalculus courses. It is with optimism 
for this synergistic potential between the disciplines that we include physics learning 
objectives in this chapter. Lastly, we describe an assessment instrument designed 
to assess some of these learning objectives, the Physics Inventory of Quantitative 
Literacy (PIQL), a reliable and valid reasoning inventory that assesses students’ 
physics quantitative literacy as it develops with instruction in introductory physics 
courses. Results from Classical Test Theory provide evidence for its validity and 
reliability, and both exploratory and confirmatory factor analyses suggest that it is a 
single-factor instrument. We interpret the factor analysis results as an indication that 
the PIQL tests a single construct that we call Physics Quantitative Literacy (PQL). We 
presented the PIQL as a useful metric for assessing PQL-related learning objectives, 
and as a step toward establishing metrics for learning objectives for calculus-based 
introductory physics courses. 

Students come to their STEM courses having succeeded in their prerequisite 
mathematics courses, yet they typically encounter an unfamiliar experience with the 
mathematics they “know.” Many fail to make effective connections with their prior 
learning experience in order to function in the new one. There is a strong need for a 
proceptual facility with some of the mathematics from prerequisite courses, as relied 
on in introductory mathematics-based STEM courses (like physics), to be part of the 
students’ learning progression through these courses. 

We conclude by encouraging education researchers and curriculum developers 
from mathematics and mathematics-based disciplines, like physics, to explore the 
overlap between our disciplines in the work that we do. We are teaching the same 
students. Exploring the interface of their course-taking experiences and mutually
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supporting our collective learning objectives holds potential for symbiotic learning. 
In addition, collaboration at the interface opens possibilities of realizing new learning 
outcomes that may even include a more creative and generative approach in both 
disciplines. We consider the work in this chapter to be one step in that direction. 
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