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Abstract. Queue length monitoring is a commonly
arising problem in numerous applications such as queue
management systems, scheduling, and traffic monitoring.
Motivated by such applications, we formulate a queue moni-
toring problem, where there is a FIFO queue with arbitrary
arrivals and departures, and a server needs to monitor the
length of a queue by using decentralized pings from packets
in the queue. Packets can send pings informing the server
about the number of packets ahead of them in the queue.
Via novel online policies and lower bounds, we tightly char-
acterize the trade-off between the number of pings sent and
the accuracy of the server’s real time estimates. Our work
studies the trade-off under various arrival and departure pro-
cesses, including constant-rate, Poisson, and adversarial pro-
cesses.

1 Introduction FIFO queues are a ubiquitous
modeling tool in various applications such as job sched-
uling, packet routing, buffering, service request han-
dling, etc. In this paper, we consider FIFO queues that
consist of packets representing distributed agents. This
is a natural way to model scenarios like cars moving on
a congested road segment or waiting at a traffic light,
customers lining up for their turn at a service counter,
and so on. We aim to study the problem of monitoring
the status of such a queue, in particular, keeping track
of the length of the queue as the agents (who we will
call packets) enter and leave the system. We consider
the setting where the central server aims to maintain a
real time estimate of the queue length, using pings re-
ceived from the packets. Our goal is to understand the
following questions: What are the tradeoffs between the
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number of pings sent to the server (i.e., total communi-
cation) and the accuracy of the estimates? What policy
should individual packets follow in order to achieve the
desired bounds?

Motivation. Queue length is commonly used to es-
timate a client’s waiting time in the line for service.
Tracking the length is highly important for various rea-
sons. It can be used by the service provider for effective
resource management and also by the clients to choose
the best among multiple queues available to them. If the
queue length can be monitored by a dedicated sensor,
the problem is trivial. However, it becomes a signif-
icant challenge when the monitoring relies on packets
that cannot observe the global queue length and are
controlled by distributed and independent agents.

This situation arises particularly in traffic monitor-
ing [20, 10, 16, 25, 8, 21]. Monitoring the congestion on
various road segments in real time is a central compo-
nent of routing systems (whose goal is to find the best
route for a user). The monitoring server (which we will
simply refer to as the server) receives information about
the “congestion” on a segment from cars on the segment.
These cars, in turn, use local information such as their
speed, location, etc. to determine what to communicate
to the server and when to do so. The natural measure of
congestion is the total number of cars on the segment.

We need to consider both the pinging policy fol-
lowed by the individual cars (or devices located in cars),
as well as the server-side reconstruction of the conges-
tion. We have two main design goals. The first one is the
ping frequency. Pinging very frequently may allow the
server to better estimate congestion, but it also drains
the battery life on GPS devices, which are typically cell-
phones, and may compromise user privacy. The second
goal is to have decentralized one-way pings. In other
words, each device acts in isolation without coordinat-
ing pings with either the server or with other devices.
This is motivated by issues of trust and privacy, as well
as the cost of communication.

For designing policies achieving the goals above, we
must first consider what information is available to the
distributed devices. In the traffic setting, a device in
a car has very little global information about the full
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road segment. It has access to the current position and
speed of the car, but these are quantities that are only
affected by the cars ahead, not cars behind. Detailed
discussion on how the number of cars ahead can be
inferred can be found in the related work for the Car
Following Model (Section 1.3). Likewise, in the setting
of people waiting at a service line, a person may know
how many people are ahead, but not the total length of
the line. Motivated by these goals and observations, we
formulate the following queue monitoring problem.

Queue Monitoring Problem. Suppose we have a
FIFO queue to which packets arrive and depart at
discrete time steps according to arbitrary arrival and
departure processes. A server needs to continuously
monitor the queue length, which we use as a proxy
for congestion in the queue. At any time instant, any
packet can send a ping to the server notifying it about
the number of packets ahead of it in the queue (along
with any other information it sees fit). The system
is decentralized and communication is one-way, so the
server cannot send information to any specific packet,
nor can the packets communicate with each other. The
goal in this setting is to design a pinging policy for the
packets that uses only locally available information, and
a recovery procedure for the server that lets it use the
pings received so far to maintain an estimate of the
queue length at any point of time.

We assume that at any time, a packet in the queue
knows how many packets are ahead of it, but has no
further information. Thus, a pinging decision is made
based on this information collected so far. On the
packet side, the goal is to minimize the rate of pings.
On the server side for recovery, our error measure is
the average (over time) of the difference between the
prediction and the true number of packets in the queue,
i.e., the difference between the predicted and the true
queue length.

The queue monitoring problem is one instance of a
more general class of problems where we have distrib-
uted agents that each use myopic and local information
to send information to a server that aims to keep track
of a global state. Our algorithms and lower bounds can
thus provide templates to reason about other such sce-
narios.

1.1 Our Results Our main contribution is the
design and analysis of simple yet novel pinging policies
for the queue monitoring problem. Our policies adap-
tively regulate their ping probability based on locally
available information, and we show that the server can
indeed accurately reconstruct the queue length. In our
policies, a packet (at any time) sends a ping with a prob-
ability that is a function g(h,w), where h is the number
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of packets ahead of it, which we term its height, and
w is its waiting time, the time elapsed since it entered
the queue. We further establish the optimality of the
functional forms g(h,w) that appear in our algorithms.

We develop two types of pinging policies: the first
is termed PoA (Section 3), wherein a packet only pings
upon arrival into the queue, and the second is termed
P1co (Section 5) where the packet pings continuously,
at an adapting rate. The former has the advantage that
a packet sends at most one ping, and does not need to
keep track of any other state until it exits the queue.
However, POA is insufficient for worst case arrival and
departure processes, and we need continuous pinging.
The details of our results are as follows.

Ping on Arrival. As described above, in POA policies,
packets send pings only on arrival. Due to the limitation
on the information available to any packet, (distributed)
PoA policies have a very simple structure: if a packet
arrives and observes the queue to be of height A, it
sends a ping with probability f(h). Note that the
observed height is equal to the queue length for Poa
policies. We analyze POA policies in Section 3. We
show that despite seeming restrictive, POA policies can
yield non-trivial results. When departures occur at a
constant rate while arrivals are adversarial, the optimal
pinging policy belongs to this class. We then develop a
Poa policy that achieves reconstruction error € (defined
formally in Section 2) times the average queue length,
using f(h) = 0 (min (1, %)), where the O hides terms
depending on In % We prove the optimality by showing
in Section 4 that any monotone pinging function f(h)
needs to be at least this value for POA policies that
achieve e reconstruction error.

We further show that our upper bound for the
PoA policy with constant-rate departures easily implies
the same guarantee when departures follow a Poisson
process (G/M/1 queueing model [11]), while arrivals can
be arbitrary. We also consider the ‘opposite’ case, where
arrivals are constant-rate and the departure process
is adversarial, and extend this to Poisson arrivals.
These extensions are deferred to the full version of
this paper. For all these settings, we not only derive
similar guarantees for the PoA policy, but also show
matching lower bounds (in Section 4), thus justifying
the functional forms of our POA policies.

Ping Continuously. The second type of policies we
consider (in Section 5) allow packets to ping at any time
in which they are in the queue. We show that such
policies are needed (and POA policies are insufficient)
when both departures and arrivals either follow more
bursty stochastic processes than Poisson, or are entirely
adversarial. In such a policy, that we term P1co, each
packet pings every time step with probability g(h,w),
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where h is its height and w is its waiting time (the
number of time steps elapsed) since its arrival. We show
that for any adversarial arrival and departure processes,

when g(h,w) = O (hl(:z/e) ﬁ), then the reconstruction

error in queue length is at most €. We finally show that
the number of pings generated by this policy for a packet

arriving at height h is O (@) factor more than that of

the PoOA policy when either arrivals or departures occur
at a constant rate, showing there is not much room for
improvement in the functional form.

Beyond Monitoring a Single Queue. Although we
focus on monitoring a single queue, we remark that this
is not too restrictive. We note that our results yield
guarantees for networks of queues via known results.
In this case, the reconstruction error is the sum of the
errors in the queue heights, and we can bound this
error by € times the sum of the queue lengths. From
our results on the PoA policy for Poisson departures
, the same guarantee holds for a Jackson network of
queues where all departure processes are Poisson [11].
Similarly, the P1co policy in Section 5 extends to a
network of queues with arbitrary arrival and departure
processes.

1.2 Algorithmic Intuition and Technical
Contributions To build intuition, first assume that
packets arrive, but do not depart. In this case it is
natural to get the queue length from the latest arriving
packet whenever the queue length increases by a certain
factor. This can be simulated by the PoA policy
that pings with a probability inverse to the height, h.
However, it is unclear if this policy would continue
to work when packets can depart the system, since
the arrival and departure processes can interleave in
a complicated way. We show that PoA policies do
work when one of the arrival or departure processes is
somewhat predictable (constant-rate or Poisson), while
the other process is adversarial.

For further intuition behind our POA policy, con-
sider the setting where packets depart at a constant
rate or according to a Poisson distribution. Since job
departure is predictable, the only possible scenario for
the server to be significantly outdated with the current
queue height occurs when a large number of packets ar-
rive within a short period of time. In this case, PoA is
designed so that at least one packet sends a ping to the
server with a good probability before the height changes
by a factor of more than 1 + €.

However, the analysis is challenging. For each
packet i, we measure the lag §; of it as the expected
time it takes for the server to become aware of it by
receiving a ping from it or its subsequent packet (packet
i is counted in the height of a subsequent packet upon
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arrival if i is still present). We carefully charge E ", 6;
to an e fraction of the total delay. Here, we combine
ideas from competitive analysis, queueing theory, and
random processes.

When the arrival and departure processes are both
adversarial, we need an entirely different policy. With
a PoA policy, if a large number of packets depart
instantly and few new packets arrive, the server will
remain clueless of this change. We argue that we have to
allow packets to ping intermittently. The basic intuition
behind our second algorithm P1C0 is to view each packet
i’s height h at each time ¢ as a point (¢, h). Suppose
we are only interested in estimating the total delay of
packets over all times. This delay is just the number
of all points. We can now let this point (¢,h) add
weight h - w to the delay estimate with a probability
ﬁ, where w is the packet’s waiting time. This will give
an unbiased estimator of total delay.

However, the goal of the server is to accurately
interpolate the true delay, meaning that we should
estimate the number of packets present in the queue
at each time. To do this, we consider the rectangle
associated with the point, which has width w and height
h. That is, this rectangle R has four vertices: (t—w,h),
(t,h), (t —w,0), and (¢,0). Note that this rectangle
lies below the height profile curve as a function of time
because the number of packets ahead of packet i can
only decrese in time. Thus, the union of such rectangles
lies entirely below the profile curve. Further, the P1ico
ping rate is designed so that this union is close to the
profile curve.

Then, the server projects each rectangle encoded
by a ping forward in time and increases its height—
the magnified rectangle has four vertices: (¢t — w,h),
(t + 3ew, (1 + 3¢)h), (t —w,0), and (t + 3ew,0). The
server uses the union of these magnified rectangles as
its estimate. The analysis shows that this union almost
completely covers the profile curve while being only
slightly larger than the union of the original rectangles.

1.3 Related Work Online Buffer Manage-
ment. There are several online models for queue man-
agement that are motivated by networking applications;
this includes dynamic TCP acknowledgment [15, 6],
buffer reordering [3, 14], and packet scheduling in
switches [2]. However, in the TCP acknowledgment
problem (and more generally buffer management), the
entity sending acks is centralized and has complete in-
formation about arrivals so far. In contrast to this
model, our setting is decentralized and each pinging ve-
hicle (packet) has incomplete information about both
the total delay and which other vehicles are simultane-
ously sending pings. Therefore, the decentralized as-
pect in our problem makes the typical benchmark of a
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centralized offline optimum used in competitive analysis
too strong. Part of our innovation therefore is in com-
ing up with the right analytic framework to show the
optimality of our policies.

Stochastic Queue Management. Similarly, several
recent works in queueing theory [28, 22] have considered
the problem of stochastic load balancing of multiple
queues when the assigner gets limited feedback from
the queues about their load. The focus of this work is
to derive policies for sending feedback under which the
scheduling policy is stable. In contrast with this work,
our motivation comes from routing applications, where
giving the end-user accurate feedback about delay on
their route is crucial. This makes our goal different:
we seek to monitor the length (or height) of the queue
via feedback, and this is interesting even in single-
queue setting where load-balancing is a trivial problem.
Further, at a technical level, the performance of our
policies crucially depend on the nature of the arrival and
departure processes, and merely assuming ergodicity is
insufficient. (See Section 4 for lower bounds for general
ergodic processes.)

Energy-efficient Functional Monitoring. The gen-
eral problem of distributed functional monitoring |7, 24,
19] has received considerable attention in the context of
energy efficiency in sensor networks. In this setting, a
set of distributed low-power sensor nodes receive an ar-
bitrary sequence of items over time. These nodes need
to communicate as few bits of information as possible
to the server (to save energy), so that the server can
maintain a good running approximation to some statis-
tic over all the items, such as frequency moments, heavy
hitters, etc. This model generalizes the classical stream-
ing model [1]. In the distributed monitoring model,
nearly tight bounds on the trade-off between commu-
nication and approximation are known for several ba-
sic statistics, even when item insertions are adversar-
ial. However, when deletions are allowed, the problem
becomes hard. Our problem can be viewed as func-
tional monitoring, where the function is the delay in the
queue. The key difference is that the vehicles are sen-
sors, and they arrive and depart the system instead of
being fixed. Further, these observations are correlated
with each other and across time via traffic dynamics.
This makes our problem technically different.

Delay Estimation for Traffic Networks. We briefly
review relevant work in traffic monitoring. Existing
work in this area largely focuses on using sparse and
noisy GPS traces to accurately estimate historical traf-
fic, real-time traffic or future traffic [13, 12, 9]. So-
lutions for estimating route-specific ETAs have been
proposed using ML models based on physical world
features such as weather conditions, vehicle type, cur-
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rent network congestion, etc. [26, 23]. The work most
closely related to ours is [27]. This work assume a uni-
formly random subset of the vehicles are “probe” vehi-
cles that continuously update the server about queue
lengths ahead of them (i.e., their stop positions at in-
tersections). They develop various statistical estimators
for the actual queue lengths based on the positions of
these probe vehicles. In contrast, we assume vehicles
cannot continuously update the server, and this leads
to the natural question of adaptively minimizing the
number of probes needed to generate good estimates of
the delays.

Car Following Model. Since we assume that a packet
can infer the number of packets ahead of it in our
model, we explicitly discuss why this is a reasonable
assumption in the contexts of traffic congestion. A
vehicle can infer the number of vehicles (or congestion)
ahead of it as follows. If the vehicle is equipped with
technology that enables it to calculate following distance
(say via radar) and its exact location, it can set the local
estimate of congestion as £/§, where £ is the distance
to the head of the segment, and § is the following
distance. If the quantity ¢ is not directly available, this
can be inferred with a simple and well-known model
called the simplified car following model of Newell et
al. [17]. In this model, the segment is assumed to
have a uniform speed v, and given this speed, the
vehicles have an average “following distance" s given
by s = d + 7v, where the parameters d and 7 can
be learnt from historical data. These two parameters
are average intrinsic properties of drivers, for instance 7
represents the time needed to safely brake if the previous
car suddenly stops. Suppose that a vehicle knows its
speed v and its location ¢ relative to the head of the
segment, then it can estimate the number of vehicles
ahead of it as h = ﬁ. Alternatively, the mapping
from speed v to h can be learnt (say per segment) from
historical data and the resulting ML model can be used
by the vehicle. Note that since a car only knows its
location and speed (and not about future arrivals into
the segment), it can only infer the number of vehicles
ahead of it in the segment, motivating our assumption.

2 The Queue Monitoring Problem We con-
sider a FIFO queue into which packets arrive and de-
part. Packets arrive at the tail of the queue and depart
at the head. Let a; denote the arrival time of packet i.
Departures can be viewed as follows: There is a stream
of “departure tokens”; when a departure token is gen-
erated, if there is at least one packet in the queue, the
packet at the head of the queue departs. Let d; denote
the departure time of packet i. The delay experienced
by this packet (i.e., the time spent in the queue) is thus
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d; —a;. Let A denote the set of arrival times {a1, a2, ...}
and D denote the set of departure times {dy,da,..., }.
We will assume throughout that time is discrete, and
thus a;, d; are all integers. There is a horizon of T steps
at the end of which all packets have departed.

At time ¢, we denote the number of packets in the
queue as the “height” h;. We have the following equality
between the time-averaged delay and average height
(which we call oPT).

(21) OPT := %Z(dl — ai) = %th

€S t=0

This holds because the sum on the LHS measures the
number of time steps packet 4 is in the queue, and at
each such step, it contributes a value of 1 to the height,
which is the RHS sum.

Queue monitoring policy. Packets in the queue send
pings to a central monitoring server (henceforth called
the server) using a pinging algorithm P, and the goal
of the server is to keep track of h; at every time step ¢,
using an estimation algorithm &£. Thus we define queue
monitoring policy as the pair (P,&). We assume that
the algorithm P is fully decentralized, and there is no
communication between packets.

Next, we have the main twist that we motivated
earlier: each packet in the queue only knows the number
of packets ahead of it in the queue. The packet
does not know of the existence of later arrivals into
the queue, and in particular, it need not know the
current height h; of the queue. We let h;; denote
the “position” of packet i in the queue (i.e., number
of packets ahead of it including itself) at time ¢, for
t € [a;,d;]. Our key assumption is that the pinging
algorithm P (which decides the probability of sending
a ping and the information to include in each ping)
depends only on #’s information set at time ¢, which
is the set of h;y values at all times a; < ¢/ < ¢.!

On the server side, the estimation algorithm & must
use the pings received from the packets to maintain a
real-time estimate of the queue height. We denote the
estimate at time t by e;. Note that the server does not
have direct access to the queue and estimates only using
the pings.

We denote by ALG the time-average error in the
server’s estimate of queue height. Since the algorithms
P and £ can be randomized, we formally define it as an

IWhile this might sound restrictive, most natural policies, e.g.,
pinging when the ‘speed’ changes can be captured here (e.g., by
looking at the rate of change of the h values).
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expected value:

1
2.2 = —FE
(2.2) ALG T

zT:|ht - et|1 :

t=0

Design goals. Our aim is to design a pinging policy
such that (i) the total number of pings is small, and
(ii) the average error ALG in the server’s estimate of
queue height is small. Formally, let € € (0,1) be a small
constant that is given as an error parameter. Our goal
is to design a pinging policy with e reconstruction error,
which we define as:

(2.3) ALG <€-0PT+c

for some absolute constant ¢ (recall that OPT was
defined in (2.1)). For this guarantee to be meaningful,
we assume that either the arrival or departure process is
sufficiently variable, so that OPT = w (%) The question
we ask is: how many pings are necessary and sufficient
for obtaining such a guarantee?

Roadmap. We will first focus on a very simple class
of policies where each packet only pings on arrival (if
at all). We term these POA policies, as discussed ear-
lier. Section 3 studies POA policy when the departure is
constant-rate while the arrival is adversarial. As men-
tioned before, the full version of this paper shows ex-
tension of this result to the Poisson arrival and to the
opposite case where the arrival process is constant-rate
or Poisson. In Section 4 we show that POA policies are
essentially optimal under these restrictions on depar-
tures or arrivals, while they are insufficient for general
arrival and departure processes. For the latter setting,
we present a continuous pinging policy P1co and ana-
lyze its performance in Section 5.

3 PoaA Policy for the Constant-rate Depar-
ture Case We first consider the constant-rate depar-
ture setting, where the arrival process is completely ar-
bitrary but the departure process generates one token
per step.2 Therefore, in each time step, if the queue
is non-empty, one packet departs the system. An ar-
bitrary number of packets can arrive at any time step;
all these packets will have the same arrival time, but
we will assume an arbitrary but fixed ordering among
these packets. For our results, we can view the arrivals
as being determined by an adversary, albeit one who is
oblivious to the randomness of the pinging policy (i.e.,
does not know which packets have pinged so far).

2This is without loss of generality by scaling the arrival and
departure rates by the same factor. Further, the total number of
packets generated by PoA remains unchanged regardless of the
departure rate. As mentioned before, we only assume opT =
w(1/€) to keep the setting interesting.
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3.1 Optimality of Poa Policies for
Constant-rate Departures We begin with the
observation that for constant-rate departures, if packet
1 sends a ping at time ¢ with its current height h,
the server knows that its height at all times ¢’ > ¢t is
max{h;: — (' —t),0}. In fact, the server also knows
the packet’s height at previous time steps, assuming
the packet has entered the queue. Furthermore, since
a packet can only look ahead into the queue, the infor-
mation set of this packet (defined in Section 2) is the
same at time ¢ = a; (arrival time) and at all subsequent
times. This immediately yields the following structural
property.

LEMMA 3.1. For any pinging policy for constant-
rate departures, an equivalent policy (in terms of the
expected number of pings and the reconstruction error)
has packets only sending pings on arrival.

More formally, for any pinging algorithm P, we
can construct an algorithm P’ in which when packet
1 arrives, we compute the total probability that P will
send a ping (in the future; we can do this since the
packet’s information set at all times is known), and send
a ping at arrival with that probability. The server will
have at least the same amount of information as in the
case of P.

The lemma implies that any policy can be charac-
terized by a single function f : N — [0,1]. If a packet
arrives and finds the height of the queue is h, it sends
a ping to the server with probability f(h), else it never
sends a ping. This shows that the optimal policy be-
longs to the class of POA policies.

3.2 The PoA Policy and its Analysis We be-
gin with a simple POA policy and analyze its perfor-
mance. The policy is as follows.

e Ping algorithm P (packet side; run independently
for each packet): Let h be the queue height after
the packet arrives. Then it sends a ping with
probability f(h) := min (17%2/6))

consists of the arrival time and the height h.

The ping

o Estimation algorithm & (server side; run at each
time step): At time ¢, if the last packet received
was at time ¢’ with height h, the server’s estimate
er = max(0, h—(¢'—t)). In other words, the server’s
estimation assumes there were no arrivals since the
last ping.

In the rest of this section, we will show the following
theorem. It turns out to achieve an essentially optimal
number of pings; we show a matching lower bound in
Section 4.
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THEOREM 3.2. Consider the queue monitoring
problem over a time interval [0, T| where packet arrivals
A are arbitrary and departures are contant-rate at a unit
rate. Assuming the queue heights at times 0 and T are
zero, the POA policy described above achieves the bound:
E[ALG] < 37¢ - OPT.

We begin the proof by setting up notation. Assume
that the arriving packets A are numbered 1,2,..., N,
and that the arrival times a; are in non-decreasing order.
(For convenience, even if packets arrive in the same slot,
assume that the order is respected, as is natural in an
application like traffic.) We denote the height of the
queue just after the arrival of packet i but before the
arrival of packet ¢ + 1 by h(a;). As before, let T' denote
the time horizon at which all packets have departed.

Because of the unit departure rate assumption,
the packet stays in the queue for exactly h(a;) steps.
Therefore, the quantity OPT (defined as the time average
of the height) satisfies:

1 1
Tth = th(ai).

t=1 €A

OPT =

Since we have a unit departure rate, the update
satisfies the property that e; < h; at all points of time.
Thus the error term of interest is therefore

(3.1) ALG = ;EE[(ht —e)).

Accounting for ALG via packet lags. Define the
lag of packet i, denoted J;, as the additional expected
time it takes for the server to become “aware” of packet
1. Formally, if packet ¢ arrives at time ¢ and j is the first
packet > ¢ to send a ping to the server, then d; would be
min(h(a;), a; — a;).> Note that if i itself sends a ping,
this ensures d; = 0.

With this notation, we now observe that a packet’s
contribution to the numerator of ALc (Eq (3.1)) is
exactly equal to d;. This is because the quantity (h;—e;)
can be viewed as the number of packets that the server
is unaware of at time ¢. Combining these formulas, we
therefore have

.0
(3.2) ALG _ i

OPT >, 4h(a;)

Note that the denominator is deterministic and
depends solely on the packet arrival and departures,

3To be precise, the minimum must also include the term
(T — a;) for handling the packets arriving in the last few time
steps. This is a mild technicality that we will ignore here since T'
is be assumed to be sufficiently large.
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while the numerator is an expectation that depends on
the pinging algorithm. The main theorem is now the
following, which when combined with Eq (3.2) implies
Theorem 3.2.

THEOREM 3.3. The pinging strategy given by f sat-
isfies Y, 0; < 37e- >, h(a;).

3.2.1 Proof of Theorem 3.3 The rest of this
section is devoted to proving Theorem 3.3. The idea of
the proof is to consider the expression for §; and show
that it is small if sufficiently many packets arrive “soon
after” packet i. There can be packets for which this
may not happen, and for these packets, we show how to
charge the §; values to the sum of the heights (or the
area under the height curve) in a certain time interval,
which is the contribution of this interval to the delay
OPT.

Let us focus on packet i, arriving at time a;. We
assume that h(a;) > 21%(1/6), as otherwise the packet
sends a ping on arrival with probability 1, and thus
6; = 0. Let us now write an expression for ;. Define
p(i,7) to be the probability that (i+j) is the first packet
> i to send a ping. Then by definition, we have

(3.3) 6 =Y p(i, )y min{(air; — ai), h(a;)}.

Jj=0

(The sum thus runs over all the packets in the
interval [1,7T] that arrive after i.) Next, from the
choice of our ping probability, the intuition is that
one of the packets in the set {i,i + 1,...,7 + eh(a;)}
will send a ping. Let S; = {0,1,...,eh(a;)} capture
the relevant indices. Now consider the prefix of §; as
Yi = Zjesi p(ivj) min{(ai-i-j - ai)7 h(al)}

LEMMA 3.4. For any packet i, we have §; < v; +
€ h(a;).

Proof. Consider the packets i 4 j, for j € S;. For
all these packets, we have that the ping probability (no

matter when they arrive) is at least Zelagﬁ)/ ;L) > 1og£’11/ 9

where h = h(a;). This is because h(a;+;) < (1+€)h for
these packets.
Since each packet ¢ + j for j € S; sends a ping with

probability at least %, we have:
1 1 eh
> (i) < (1— Og(/e)) <e
: eh
j>eh
Therefore } ;. 5, p(4, ) min{(a;+;—a;), h(a;)} < eh(a;).
This completes the proof. 0

Combining with Equation (3.2), we have

ALG 30 i
OPT 37, h(a;) T X2, hlai)

(3.4) +e.
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Therefore, to show the theorem, we need to bound
>;%vi- We do this as follows. We make a sweep over
the packets. At every step, we maintain a “leftover”
(or unaccounted) v mass, which is the sum of v; values
for a certain range of j < i. We then charge the sum
of this and the +; values for all packets that arrive in
the interval [a;,t;], where ¢; is an appropriately chosen
time. For interval [t1,¢5], denote the area under the
height curve (or total delay) as: Aftq,ta] = Ziitl hy.
We will charge the total leftover v to Ala;, t;].

Formally, U denotes the unaccounted -y mass so far.
Define the following:

DEFINITION 3.1.

_ f h(a;)
{; = min g Giteh(ar) T @i

and let r;, € S; denote the largest index s.t. ajy,, <
a; +t;.

Algorithm 3.1 The CHARGING Analysis
Set i+ 0; U < 0; k < 0.
while i < N do
Compute t; and r; as in Definition 3.1.
if ; <3y forall j€[i,i+r;] then
U+U-+ Z;i}l 7;; and A — Alag, t;].
Charge U to A.
Set U «+ 0; and ¢ i+ 1; + 1.
else
£ < Smallest index with v, > 3v; and £ < i+ r;.
U<—U+Z§;§Vj;andi<—€.
end if
end while

Our charging scheme is presented in Algorithm 3.1.
Here, N is the total number of packets. Our key lemma
is the following:

LEmMMA 3.5. Whenever U is charged to A in the
above scheme, we have U < 36€A.

Proof. Consider any iteration of the while loop of
Algorithm 3.1, and let ¢ be the index of the packet at
the start of the loop. We will show that the following
invariant is always maintained at the start of the loop:

Invariant. U < 3eh(a;)v;.

Denote h = h(a;) and r = r;. First observe that
t; > vi/3. To see this, denote t, = Qiten, — a;. Note
that v; < min(h,?;). If ; < h/3, then t; = t; > ;.
Otherwise, t; = h/3 > 3;.

We now consider the two cases dictated by the if
statement in Algorithm 3.1.

Case 1: For all j € [i,i + 7], 7; < 37,;. In this case,
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noting that r < eh, we have

> v <r(3w) < 3ehyi.
jeliritr]

Since the U at the start of the loop is 3ehvy; by the
invariant, the final U is at most 6ehy;. The area
A= Ala;, t;] is at least %hti. Since v; < 3t;, the area
is always at least %h'yi. Therefore, U < 36eA. The
invariant is trivially satisfied for the next iteration.

Case 2: There exists ¢ € [i,7 + r] such that v, > 3;.

In this case, we only need to prove that our invariant
is maintained when the index moves to £. To see this,
note that the initial U is at most 3eh~y; by the invariant.
Therefore, final U satisfies

U<3ehyi+ Y v < 6ehy,
JE,£)

where we use the fact that /—i < r < eh and that £ is the
first index with v, > 3v;. Thus the total unaccounted
mass U at index ¢ is less than 6ehvy;. We argue that
this U < 3eyeh(as). Using the fact that v, > 3, it
suffices to prove that h(a) > 2h. Since a;y, —a; < h/3,
there are at most h/3 departures during this period
(by the constant-rate departure assumption), so that
h(ag) > 2h. This proves the invariant holds at the next
iteration, and completes the proof of the lemma. 0

Since the A in different iterations correspond to
areas for disjoint time intervals and since the total U
is the same as ), 4 vi, we have: Y. 17 < 36€), hy.
Since the RHS is equal to ), h(a;), we combine with
Eq (3.4) to complete the proof of Theorem 3.3.

4 Optimality Results and Lower Bounds for
PoaA Policies We will now present almost matching
lower bounds on the number of pings needed to achieve
e reconstruction error (Eq (2.3)) for the constant-rate
departure and constant-rate arrival settings, showing
the optimality of the Poa class of policies. We will
also show that POA policies stop being optimal when
we further generalize the arrival or departure processes,
motivating the Pi1co class of policies considered in
Section 5. All proofs are deferred to the full version
of this paper.

Constant-rate Departures. We first consider the
setting from Section 3. We know from Lemma 3.1
that the optimal policy is a POA policy. We have the
following lemma whose bound almost matches the ping
probability of the POA policy we analyzed in Section 3.

LEMMA 4.1. For e < %, let f be a ping probabil-
ity function in a POA policy that achieves O(e) recon-

struction error. Then for any h = ) (%), we must have
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Eglztlse)h fG) > %. Therefore, fore < % and any mono-
tone f that achieves € reconstruction error, we have

(1) =  (min (1, £)).

Constant-rate Arrivals. In this setting, the optimal
policy need not be a POA policy. Nevertheless, in
Lemma 4.2, we show for certain types of canonical
instances where the queue height is almost surely close
to a given value h, no policy can do much better than
the POA policy, that is, the expected number of pings
cannot be improved by more than a constant factor for
these instances.

Given any height h, for any instance, define N =
{i |hia; € [R(1 — 8€),h]} as the number of arrivals (or
time steps) with queue size in [h(1 — 8¢), h]. We show
a lower bound for the number of pings required by any
pinging policy below.

LEMMA 4.2. Fiz any € € (0,1/16). For any given
value h = (%), there exist instances with Np =
N—0o(N) (where N is the total number of arrivals), such
that any pinging policy that achieves O(€) reconstruction

1 .
error sends at least gz pings per packet on average.

The above lemma shows that no policy (not just
PoA policies) can improve on the expected number of
pings when the queue height stays close to any value
h. As a corollary, it shows that any POA policy that
achieves € reconstruction error requires f(h) = (i)
on the instances from Lemma 4.2. The last bound
matches the upper bound of the POA policy.

Insufficiency of PoA for General Stochastic Ar-
rivals or Departures. As our final lower bound, we
show that when we consider stochastic processes that
are more bursty than Poisson, POA policies are insuffi-
cient to achieve e-reconstruction error. This motivates
the P1coO class of policies in Section 5.

LEMMA 4.3. There exist instances with i.i.d. arrival
and departure processes and a constant € > 0 such that
no POA policy can achieve e-reconstruction error.

5 General Arrivals and Departures: The
Pico Policy In this section, we consider the most
general case when both the arrivals and departures
are arbitrary processes, either stochastic or adversar-
ial. Lemma 4.3 shows that PoA policies are insufficient
for this case, and we need a novel set of policies. Below,
we present more nuanced examples that show that even
pinging on both arrival and departures is insufficient.
These examples make a case for policies that ping con-
tinuously, albeit at a rate that is continuously adjusted
based on their current queue height and waiting time.

Justification for Continuous Pinging Policies.
One might wonder about policies that ping on departure
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in addition to arrival. However, this can either lead to
large reconstruction error or a large number of pings.

ExaMpLE 5.1. Initially, an unknown number h of
packets arrive into the system. Now consider two
scenarios: In the first scenario, all packets depart in
one step, while in the latter scenario, all but one packets
depart, and the remaining packet stays for h steps.

It is an easy exercise to show that the server cannot
achieve e-reconstruction error without distinguishing
the two scenarios. We will show that if packets ping
only on arrival or departure, then all packets must ping
on arrival. First note that only pings from the last
packet can help the server with distinguishing the two
scenarios. Further, a ping on departure is useless, since
the server needs to maintain an estimate for the h steps
till this packet departs (in the second scenario), and
will hence incur a large error by the time this ping is
received. Thus, the last packet must ping on arrival if
pings are made only on arrival or departure. Finally, it
remains the case that a packet must ping even if it is
not the last packet, as it does not see packets arriving
after it. Therefore, we cannot achieve e-reconstruction
error unless every packet pings on arrival.

The next example goes a step further and makes a
case for continuous pinging.

EXAMPLE 5.2. Initially, an unknown number h
packets arrive into the system and the i-th arriving
packet departs in either 2¢ or 211 time steps.

Suppose the i-th packet is the last packet. Then,
the server must know its existence because otherwise it
doesn’t know if the queue is empty or not for at least 2°
steps after the first ¢ — 1 packets depart. The resulting
error of 2% is unacceptable as the total time the first i —1
packets stay in the queue is also ©(2%). In this case the
server can’t learn about the i-th packet without a ping
from it, and just as in the previous example, this ping
cannot be on departure. Finally, it remains the case
that it must ping even if it is not the last, as it doesn’t
see packets arriving after it. This motivates the need
for each packet to ping continuously.

5.1 The Pico Policy We now present our ping
continuously or P1co policy. Let w; := t — a; denote
packet i’s waiting time in the queue at time t. We define
hi; to be the number of packets ahead of packet ¢ at time
t. We make the mild assumption that the minimum
waiting time is 1 unit (i.e., a packet cannot arrive and
leave the same time instant).

e Ping algorithm P (packet side): At each time
t € (a4, d;], packet ¢ sends a ping with probability

(5.1) g(hit, wir) = %21/@#

€ wighgg
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The ping consists of its waiting time w;; and its
current height hg;.

o Estimation algorithm & (server side): At each time
t, the server does the following step:

— Let P, denote the set of packets paired with
the times when they sent a ping so far. That
is, (i,t') € P, means that packet ¢ sent a ping
at time ¢/ < t.

— For each (i,t') € P; the server sets its esti-
mated height ey as:

hitl(l + 36) lf t S t/ + 36’[1}2‘15/
Ctit! —
b 0 otherwise

— The server’s estimate of height is e; =
maX(;¢)e P, Ctit’ -

Roughly speaking, if the server receives a ping from
a packet with height A and waiting time w, it guesses
that the height is > h for 3ew steps in the future. If the
queue suddenly empties, the error will not be too large
as it can be ‘charged’ to the previous waiting cost using
the fact that the packet waited for w steps and had a
height > h all that time. We also illustrate the policy
via an example:

EXAMPLE 5.3. Suppose h packets arrive in the sys-
tem at time 0, and they all depart at time 1. Suppose
at time 0, a subset of the packets sends a ping. Let
h' denote the largest height of any packet that sends a
ping. Note that the waiting time is 1. Then the server
maintains an estimate of h'(1+ 3e) till time 1+ 3¢, and
subsequently sets the estimate to zero.

5.2 Algorithmic Intuitions and Analysis
Overview Before jumping into the analysis, we give
more intuitions behind the policy and how they are nat-
urally tied to the analysis. Recall that our goal is to ap-
proximately reconstruct the time-varying height profile
{h}, t € [T] from pings. We can visualize it by hav-
ing a stack of h; points at time ¢ where yth point from
the bottom represents the yth oldest one among packets
alive at time t. Let (¢,y) denote the point and j(t,y)
the corresponding packet. For brevity let ¢ = j(¢,y). We
know that the packet ¢ has waited for w;; steps since its
arrival and it had at least h;; packets (including itself)
ahead of it all the time. It means that the rectangle of
width w;; and height h;; having (¢,y) as its upper and
right corner must lie inside the profile. Let L£;; denote
the rectangle.

Rectangles £;; have several important properties.
First, rectangle £;; only depends on packet j(t,y)’s
waiting time and height at time ¢. Thus, the packet
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can communicate the rectangle to the server without
consulting with other packets and this is what a ping en-
codes conceptually. Second, the union of all rectangles
L;; is exactly equal to the time-varying height profile.

But, there are are some issues. Communicating one
rectangle means one ping. Thus, to ping parsimoniously,
a rectangle is communicated with probability inversely
proportional to its area. Another issue is that each
rectangle L£;; only contains past information. Thus,
the server projects the rectangle into the future by
stretching it by a small factor. The crux of the analysis
lies in showing the height profile is approximately
sandwiched by the union of communicated rectangles
L;; and the union of their future projections. See
Figure 5.1 for visualization of this discussion.

time varying height profile

>
YT =iy O
y = i’s height at time ¢ i ‘Cit ®
i ®
i t : time
mm oo >

’s waiting time

Figure 5.1: Visualization of P1co. Suppose the packet
i = j(t,y) of height y pings at current time ¢. The
packet has had height at least y since it arrival and
therefore the rectangle L;;, colored blue, of height h
and width equal to i’s waiting time at time ¢ fits under
the time varying height profile. The server projects L;;
into the future. The projection R;;, colored green, is
a vertical and horizontal extension of £;;. The server’s
estimation is the union of the extended rectangles.

5.3 Analysis Our main result about the Pico
policy is the following.

THEOREM 5.1. Consider the queue monitoring
problem over a time interval [0,T] where packet ar-
rivals and departures are arbitrary. Assuming the queue
heights at the initial and final time steps are zero,
for any € € (0,1/5), the P1co policy described above
achieves the bound E[ALG] < 10¢ - OPT.

Recall the definition of ALG from Eq (2.2). Now
consider the following geometric view of the pinging
process. The z-axis represents time, and the y-axis
represents queue height. If the height of the queue
at integer time t is hs, any point (t',y) for y < hy
and ¢ € (¢t — 1,¢] is marked as full. The full points
— denote them #H — in this 2-D space capture the height
profile of the queue, and we call this the height diagram.
We let j(t,y) denote the packet corresponding to point
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(t,y) € H, which is the packet that has height y at time
t.

Now, when the server gets a ping from packet j(t, y)
at time ¢ with height y and waiting time w(t,y) :=
Wj(t,y),t» it creates a rectangle Ry, := [t,t+3e-w(t,y)] x
[0, (1 + 3€)y]. For brevity, we may say (¢,y) has waiting
time w(t,y) and height y, instead of saying j(¢,y) does.
Similarly, we may say (¢,y) pings when j(p, y) does. Let

Re= |J Ry
Y

<t

denote the union of rectangles the server has created
until time t. The server uses the height of R, at the
current time t as the queue height estimate e; at the
time. Note that since any rectangle constructed at time
t only covers current and future time steps, R; is not
affected by pings, arrivals, or departures at future time
steps.

The analysis consists of two parts, bounding the
under-estimation error and the over-estimation error.
Formally we will show E[AREA(H \ Rr)] < eAREA(H)
(Corollary 5.3) and AREA(Rr \ H) < 9cAREA(H)
(Lemma 5.9), which will complete the proof of Theo-
rem 5.1. Here, AREA(-) means the area of what is inside
in the parentheses; thus, the total delay is AREA(H).

5.3.1 Bounding Under-estimation Error
We first show the under-estimation error is low. The
following key lemma claims that our estimation covers
any point in height diagram with large probability.

LEMMA 5.2. Consider any point (t,y) in H. Then,
Pr(t,y) ¢ Ry <.

COROLLARY 5.3. E[AREA(H \ Rr)] < cAREA(H).

The following lemma articulates our high-level proof
strategy to show Lemma 5.2.

LEMMA 5.4. For any (t,y) € H, there exists a set A
of points in H such that i) at least one point (t',y') € A
pings with probability 1 — € and ) (t,y) € Ry, for all
(t',y') € A.

In words, if a point in A pings, it adds a rectangle
to our estimation that covers (¢,y) and at least one
point in A pings with large probability. It is easy to
see Lemma 5.4 immediately implies Lemma 5.2, and
therefore, Corollary 5.3. Thus, the remainder of the
section is devoted to proving Lemma 5.4. We fix a point
(t,h) € H throughout the section.

Finding a desirable A is not straightforward. Note
that i) and ii) are somewhat in conflict. To cover more
points along with the fixed point (¢,y) by rectangles
created in the past, intuitively they should be large.
But as discussed before, the rectangles are created with
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probability inversely proportional to their respective
area. Thus, if we want to use large rectangles to cover
the point, we will have to use more to guarantee a large
success probability. Note that the obvious approach of
setting A := {(t',y/) [t € [t — ew(t, y)],y" € [y — ey, y]}
doesn’t work because some points in A may create too
large rectangles (particularly if they have a large waiting
time) and therefore they are created with too small
probabilities.

To find a proper A, we find a special point for each
y €[l —ey,yl

LEMMA 5.5. There exists a point ¢y = (1y,y’) for
each y' € [(1 — €)y,y] such that every point (t',y') with
t' € [1y — ewy, Ty] has waiting time between (1 — €)w,y
and 4wy, and t — 1,0 < %ewy/, where wy = w(Ty,y")
denotes the waiting time of g, .

Proof. Fixay' € [(1—¢€)y,y]. Let t; :=¢. To find a
desired g, we will iteratively find a sequence of p; :=
(t1 = t,y'),p2 := (t2,9'), ., P -1 = (tk—1,Y), qy =
pr = (tx = 7y,y"). Let wy = w(ty,y’). Let pry1
be any point in {(t',y') | ¢’ € [tx — ewy, tx]} such that
W1 > 4wy, if any; if there’s no such point, then we set
K = k. Clearly, this process must terminate for fixed ¢,
since wy, increases exponentially in k£ and wy < t. Note
that wy, < FWe+1 < 7Whi2 < ... < RTFWK.

By definition of pg, any point (¥',y’) with ¢’ €
[tk — ewg,tk] has waiting time at most 4wy . Further,
the packet j(tx,y’) must have height at least y’ before
time ¢x. This implies the packet j(¢',y’) arrives no later
than j(tg,y’). Thus, (¢,3') must have waiting time
at least wx — ewg as t' € [tx — etk,tix]. Knowing
wy = wg by definition, we have the first claim.

The second claim follows from an easy algebra:

t—Ty =t —tx

K—1
= Z (tk — ths1)
k=1
K-1
<e W
k=1
K1
<e 4K -k WK
k=1
< 1 L O
—€e€w = —€Wy’.
=3 K 3 Yy

Intuitively, ¢, is a point that creates a rectan-
gle that covers (t,y) if it pings. Further, all points
{(t',y) |t € [1y —ew,, Ty} have similar waiting times.
Thus, they create rectangles of similar areas that cover
(t,y). We include those points in A.
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LEMMA 5.6. Let Ay = {(t',y) | t' € [ry —
€Wy, Ty |} and A == Uy,e[(l_e)%m Ay. Then, A satisfies
the properties stated in Lemma 5.4.

Proof. Recall that each point (¢',y') € A,/ has wait-
ing time at most 4w,, (Lemma 5.5). and therefore pings

with probability at least %411);3/ (Eqn. (5.1)).
Thus, the probability that no point in A pings is at
most,

5In(1/e 1
O T

Yy E[(1-e)y,yl '€y —ew,r,7,/]

< JI 11 exp(— 2L lnézl 9 4w2y,)

y' €[(1—e)y,y] t/ €[, —ew,/,T,/]

< TI exp(_1.251n(1/6)1)

€ Yy
y' €l(1—€)y,y]
1.251In(1
- H eXp(_Mﬂ) <e
€ Yy
y'€l(1—€)y,y]

which shows property i).

To show property ii), consider any (t',y') € A.
Our goal is to show that (¥,y’) creates a rectangle
covering (¢,y) if it pings, ie., (t,y) € Ry, . Note
Ry = [t/ ¥ + 3ew(t',y')] x [0, (1 + 3¢)y’]. Clearly we
have ¢/ < t.

t' 4+ 3ew(t',y') —t
> 71, — ewy + 3ew(t',y’) —t  [Definition of A]
> 7, — €wy + 3¢(1 — €)w,y —t  |Lemma 5.5

1
Z t— gﬁwy/ — Ewy/ —+ 36(1 — e)wy/ —t [Lemma 55]

>0 [When e € (0,5/9]]

Thus, we also have t < t' + 3ew(t',y’). Finally, since
y € [(1—e)y,yl], we have 0 < y < (14 3¢)y’. Therefore,
we have shown (t,y) € Ry, . O

5.3.2 Bounding Over-estimation Error We
now switch to bounding the over-estimation error. Any
(t,h) € H corresponds to a packet ¢ that exists in the
queue at time t. We therefore overload terminology
and denote this as (i,t) € H. To measure the over-
estimation error of H by R, we view H as the union of
Lt = [t —wiz, t] X [0, hye] for (i,t) € H. The proof of the
next lemma immediately follows from the observation
that the height of the packet corresponding to (i,t) can
only decrease over time.

LEMMA 5.7. For every (i,t) € H, we have L C H.
Therefore, we have U(i,t)e?—[ Lii CRr.
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Now for the sake of analysis, we consider the union
of Ui := [t — wis, t + 3ew;t] X [0, (14 3€)h;t], which is an
extension of L£;;. Note that U;; fully contains both L;;
and R;;. Therefore, their union is a super-set of Ry,
which implies the next lemma.

LEMMA 5.8. Ry C U 4yen Uit-

We finally bound the over-estimation error by
bounding the area of the regions U.

LEMMA 5.9. Foranye € (0,1/3), AREA(Rr\H) <
9eAREA(H).

Proof. From Lemmas 5.7 and 5.8, it suffices to show
that

Area( | Ui) < (1+3¢)°AreA( | L)
(i,t)EH (i,t)eH

Let u{t = [t — wit,t + 3610”] X [O,h”] Since L{it
stretches U/, vertically by a (1 + 3e) factor keeping
the rectangle abutting the x-axis, we clearly have
AREA(U e Uit) = (1 + 36) AREA(U ; pyep Uin)-
Thus, we only need to show  that
AREA(U nenUiy) < (1 4+ 3€)AREA(U(; 4yen Lit)-
Note that U], is equivalent to a rectangle that results
from extending L£;; by (1 + 3¢) factor to the right. The
claim then follows by considering each height h’ € [0, hl:
if we stretch the interval at height A’ in each L;; by a
uniform factor, and the length of their union stretches
by the same factor or less. ]

As discussed, this lemma, combined with Corol-
lary 5.3, proves Theorem 5.1.

5.4 Comparison with PoA Policies We finally
consider how much worse is the number of pings of

this policy compared to the PoA policy. We show that
log h
€

the the number of pings is O ( ) factor larger for

constant-rate arrivals or departures.

LEMMA 5.10. For constant-rate arrivals or depar-
tures, for packets arriving when the queue height is
h, the number of pings of the P1CO policy is within

0 (M In h) of the Poa policy.

Proof. First consider the constant-rate departure
case. Here, a packet arriving at height h sends a
ping after ¢t steps with probability 51”521/ E)m.
Therefore, the total number of pings sent by this packet
(in expectation) is

h

5In(1/e¢) 1 B In(1/e) Inh
(5:2) ; e th—t+1) _O< €2 h)

This is a factor O (M) worse than the PoA policy

€

that would have pinged with probability O (%) for
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this packet. Similarly, for the constant-rate arrival case,
suppose the current height of the queue is h. Then a
packet with height j arrived at least h — j steps ago, so
that its waiting time is at least h — j + 1. Therefore, the
expected number of pings at this step is again at most
the quantity from Eq (5.2). Therefore, the overhead

is again a factor of O (%) more than the Poa

policy, which would have pinged with probability O (i)
at this step. 0

6 Conclusion In this paper, we presented the
queue monitoring problem as an abstraction for track-
ing congestion in traffic applications. We showed de-
centralized online algorithms that achieve near-optimal
trade-offs between the number of pings and the error in
queue length. Our work shows that the question of con-
gestion monitoring is non-trivial even for a single queue.

The most important direction for future work is
to combine congestion monitoring with algorithms for
optimal routing in a network to minimize delay based on
this congestion information, much like low-complexity
methods for load balancing [28, 22, 4, 5, 18] that have
been widely studied in networking and queueing theory.
Such algorithms do not follow in any obvious way from
our current work, and we leave addressing this as an
interesting open question.

Another interesting direction is the following: the
PoA policy provides an unbiased estimator and is
therefore likely robust. In contrast, the Pico policy
is not unbiased as it is, and it would be very interesting
to develop another policy that is unbiased. Finally, it
would be interesting to study the effect of noise in our
problem.
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