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ABSTRACT Smart grids are increasingly vulnerable to False Data Injection Attacks (FDIAs) due to

their growing reliance on interconnected digital systems. Many existing FDIA techniques assume access

to critical physical model information, such as grid topology, to successfully bypass Bad Data Detection

(BDD). However, this assumption is often impractical, as utilities may restrict access to this data, or the

evolving nature of distribution grids—particularly with the integration of renewable energy—can render this

information unavailable. Current methods that address the absence of physical model lack formal guarantees

for BDD evasion. To bridge this gap, we propose a novel physical-model-free FDIA framework that 1)

bypasses BDDwith formal guarantees and 2) maximizes the attack impact without requiring explicit physical

model. Our approach leverages an autoencoder (AE) with a regularized latent space to enforce physical

consistency, using historical measurements to replicate the residual error distribution, ensuring BDD evasion.

Additionally, we integrate a Generative Adversarial Network (GAN) to explore the measurement manifold

and induce the most significant state changes, enhancing the impact of the attack. The key innovation

lies in the AE-GAN hybrid model’s ability to replicate the residual error distribution while maximizing

attack efficacy, offering a performance guarantee that existing methods lack. We validate our method across

11 representative grid systems, using real power profiles simulated in MATPOWER, and demonstrate its

consistent ability to bypass BDD by preserving the residual error distribution. The results highlight the

robustness and generalizability of the proposed FDIA framework.

INDEX TERMS False data injection attack, state estimation, bad data detector, no physical model, auto-

encoder, generative adversarial network.

I. INTRODUCTION

I
N MODERN power systems, the integration of digital

systems and communication enables real-time monitor-

ing and control. However, such digitization also exposed

power systems to vulnerabilities exploitable by malicious

attackers [1], as evidenced by incidents such as the

2015 cyber attack on Ukraine’s electricity infrastructure [2],

the 2018 attack on the U.S. power grid [3], and the recent

2022 cyber-attack on energy entities in U.S. [4]. Nowadays,

such attacks are even more prevalent in distribution systems,

as data storage and cloud services are increasingly outsourced

to third-party companies, and the security and integrity of

measurements become more susceptible to breaches [5].

As a consequence, it is critical to study False Data Injection

Attacks (FDIAs) so proper defense protocol can be enforced.

In FDIAs, adversaries leverage the leaked systemmeasure-

ments and physical model to compromise state estimation

algorithms [6]. Such adversaries lead to severe consequences

such as power outages [7], line congestion [8], and eco-

nomic disruption [9]. Traditionally, many model-based FDIA

methods offer theoretical guarantees of stealth by precisely

crafting attack vectors that reproduce the residual structure

of system measurements [10]. These guarantees rely on com-

plete knowledge of the system model, enabling attackers to

manipulate measurements while maintaining the same likeli-

hood of bypassing the Bad Data Detector (BDD) as genuine

measurements. However, these model-based attacks necessi-

tate access to fundamental power system details [11], includ-

ing power system topology, parameters, and a state estimator

model. However, this reliance on physical model information
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FIGURE 1. Overview of the proposed FDIA model: (a) Traditional physical-model-free FDIA methods face challenges in preserving

the Chi-squared distribution of LNR values, thus lack a guaranteed bypass of BDD. (b) The tailored AE structure whose latent

layer possesses the same dimensionality as the system states to mimic the state estimation process in terms of denoising and

projecting noisy measurements onto a physically meaningful manifold. (c) The principle how the hybrid model of AE and GAN

can generate fake measurements with guaranteed bypass of BDD and maximized attack impact.

is increasingly impractical in modern power grids, where

system operators diligently safeguard such information to

prevent leakage [12]. Additionally, in some distribution grids,

even the operators may lack complete knowledge of physical

model due to outdated information, evolving infrastructure,

and infrequent or missing updates [13]. This challenge is

further exacerbated by the rapid integration of renewable

energy sources [14]. This is because some of them belong

to third party, which does not synchronize information with

the utility [5].

In contrast to traditional model-based attacks, physical-

model-free attacks, also called data-driven attacks, are crafted

without prior system knowledge of the power grid [15], [16].

In this field, the key is to estimate the system topology inex-

plicitly. For example, there is work that estimates the system

Jacobian matrix through linear independent component anal-

ysis [17], PCA approximation [18], [19], and low-rankmatrix

approximation [20]. Recently, matrix reconstruction using

eigenvalue decomposition is also utilized [21], [22] to gen-

erate attack measurements. Furthermore, machine learning

approaches are also utilized to generate false measurements,

such as employing auto-encoders [23], [24] and generative

adversarial networks [25], [26], [27].

While these physical-model-free attacks have shown

advancements in reducing the largest normalized residual

(LNR) value in attack measurements to bypass the BDD,

there were no guarantees of their effectiveness. Specifically,

they typically involve a learning or estimation process of the

unknown physical model, which usually suffers from error

propagation issues. Eventually, such error propagation can

disrupt the inherent Chi-squared distribution that LNR values

typically follow, leading to an unguaranteed bypass of the

BDD. This issue is demonstrated in Fig. 1(a) and discussed

in [28], compromising the effectiveness of physical-model-

free FDIA stealthiness [29]. For instance, [20] presented

an attack using reduced measurement information based on

a low-rank matrix approximation. However, this attack can

only achieve a success rate of bypassing the BDD lower than

the original data.

To address these limitations, we propose an alternative

autoencoder (AE) design that eliminates the need for phys-

ical model while providing a theoretical guarantee of BDD

evasion in distribution, by replicating the residual behavior

of genuine measurements. The core idea involves designing

a special AE that mimics the power system state estima-

tion process in terms of denoising and projecting noisy

measurements onto a physically meaningful manifold. This

mimicking allows the model to produce denoised measure-

ments with small LNR values, a key metric for bypassing

the BDD. Specifically, we tailor the latent layer of AE model

to possess the same dimensionality as the system state. This

process is demonstrated in Fig. 1(b). In doing so, the AE

model can capture the essential low-dimensional features

to reconstruct the system measurements, while effectively

denoises the measurements. This is because the state of the

power system is defined as the minimum number of variables

that can recover the measurements. Overall, the denoising

function of the AE model will remove measurement noises

similar to the state estimation process, eventually producing

similar LNR values for attack measurements.

Then, we engineer the attack model to maximize attack

impact by utilizing a Generative adversarial network (GAN)

module. Specifically, we train the GAN model on histori-

cal measurement data. This enables the GAN to generate

diverse, yet realistic, attack measurements that adhere to

the inherent distribution of legitimate system measurements.

Additionally, a penalty term is incorporated to discourage

deviations between the original and attack measurements,

aiming to maximize the impact of the attack. Fig. 1(c) illus-

trates the operation of our proposed hybrid AE-GAN model.
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When presented with real system measurements, the AE

confines the generated fake measurements to a region that

effectively bypasses the BDD by leveraging its denoising

capabilities. Subsequently, the GAN module, incorporating

a penalty term, explores this permissible region and iden-

tifies the position that leads to the most significant attack

impact. In mathematical terms, by carefully integrating these

components, the hybrid model generates attack measure-

ments whose residuals replicate the original Chi-squared

distribution of genuine measurements. This forms the basis

of our statistical guarantee of BDD evasion, ensuring that,

the attacks are as likely to bypass the BDD as legitimate

measurements.

To assess the efficacy of our proposed FDIA approach

across diverse system configurations, we conducted simula-

tions using MATPOWER [30] on 11 testbeds encompassing

both transmission and distribution grids. Our evaluation

quantitatively validates the advantage of our method with

respect to other physical-model-free FDIA baselines, based

on metrics of the BDD passing rates. The rest of the paper

is organized as follows: Section II introduces the preliminar-

ies of the FDIA problem, Section III presents our proposed

physical-model-free FDIA model, Section IV shows numeri-

cal experiments and Section V concludes the paper.

II. PRELIMINARIES

Before detailing our FDIA strategy, this section provides

an overview of state estimation, bad data detection, and the

limitations of traditional FDIA. We highlight that, while our

FDIA approach is applicable to both AC and DC systems,

for this paper, we focus on demonstrating its application to

DC systems, i.e., linearized power flow systems, to facilitate

theoretical derivations.

A. DC POWER FLOW STATE ESTIMATION

In FDIAs, the attacker aims to inject malicious data into the

grid measurements z = (z1, · · · , zm) ∈ R
m to compromise

the accuracy of the state estimation process [31]. For DC state

estimation, measurements z are determined as z = Hx + e,

where x = (x1, · · · , xn) ∈ R
n are system states such as

voltage angles and magnitudes, and H ∈ R
m×n is the Jaco-

bian matrix defined by the grid topology. Measurement noise

e ∈ R
m captures sensor-related disturbances (e.g., SCADA

or PMU noise) during the measurement collection process.

The noise is typically assumed to be Gaussian distributed as

e ∼ N (0,R), where R = diag(σ 2
1 , · · · , σ 2

m) is a diagonal

covariance matrix and σ 2
i is the variance of i-th noise [32].

When system operators collect measurements z, they recover

the states x by solving the state estimator [32] as:

x̂ = argmin
x

m
∑

i=1

(zi − Hix)
2

σ 2
i

, (1)

where Hi is the i-th row of matrix H. Furthermore, the solu-

tion to Eq. (1) can be explicitly written as [32]

x̂ = (H⊤
R

−1
H)−1

H
⊤
R

−1
z. (2)

B. BAD DATA DETECTOR (BDD)

In FDIAs, attackers introduce falsified data into the mea-

surements z, thereby disrupting the accurate estimation of

states x as outlined in Eq. (1). Given that numerous power

system operations (e.g. economic dispatch and contingency

analysis) depend on accurate state estimation results [33],

compromised estimations can result in erroneous system con-

trol decisions. In practice, in order to assess if z contains

bad or wrong data due to telecommunication failures, meter

errors, or even FDIAs [32], [34], the system operators often

calculate the squared measurement residual error

∥z − ẑ∥22 = ∥z − Hx̂∥22 = ∥Sz∥22, (3)

where S = I − H(H⊤
R

−1
H)−1

H
⊤
R

−1 is the residual sensi-

tivity matrix [32] and has the property SH = 0.

If the measurement z = Hx+ e does not contain bad data,

the largest normalized residual (LNR) approximately follows

a Chi-squared distribution of m− n degrees of freedom [32]:

LNR(z) :=

m
∑

i=1

(Siz)
2

σ 2
i

=

m
∑

i=1

(Sie)
2

σ 2
i

∼ χ2
m−n, (4)

where the Chi-squared distribution arises from the Gaus-

sianity assumption of the noise e. The degrees of freedom

are attributed to the fact that, given the necessity for at

least n measurements to satisfy power balance equations,

a maximum of m − n measurement noises can be linearly

independent [32]. As Chi-squared test is formed by Gaussian

noises, we make the following Assumption 1 to facilitate the

derivation of our theoretical results which does not impact the

fundamental design principles of our proposed FDIA. Similar

assumptions have been adopted in various studies [35], [36].

Assumption 1: In a power grid, the power measurements

z follows a Gaussian distribution as z ∼ N (0, 6 + R),

where 6 = diag(δ2, · · · , δ2) and R = diag(σ 2, · · · , σ 2) are

diagonal covariance matrices.

System operators implement a bad data detector (BDD)

utilize the Chi-squared distribution test as follows. (1) Choose

a significance level, denoted as α (e.g., 0.05). (2) Evaluate

the normalized residual error LNR(z) and compare it to the

critical value τ = χ2
(m−n),1−α

obtained from the Chi-squared

distribution table. If LNR(z) ≥ τ , this raises suspicion of bad

data; otherwise, the measurements are considered free from

the influence of bad data.

C. CHALLENGES AND PROBLEM DEFINITION

In model-based FDIAs [10], [11] where attackers have access

to the Jacobian matrix H (also referred to as the physical

model), they can modify the measurements z without affect-

ing the LNR value [10]. Specifically, they can inject attack

data as za = z+Hc, where c is an arbitrary vector [11], [37].

From Eq. (3), the residual error of za remains identical to that

of the original measurement, i.e., ∥S(z + Hc)∥22 = ∥Sz +

0∥22 = ∥Sz∥22. Consequently, the manipulated measurements

za will bypass the BDD if the original measurements z bypass

the BDD.
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However, a more realistic scenario in modern power grids

is that attackers lack access to physical model information

(e.g., line parameters, grid topology), as many utilities dili-

gently safeguard such information [12]. Motivated by this

challenge, we formally define this paper’s study as follows.

• Given: Historical time-series system measurements z

without physical model H.

• Generate: Attack measurements za whose LNR value

still follows the Chi-squared distribution χ2
m−n.

By generating LNR values adhering to the same

Chi-squared distribution as the real data, we aim to provide

a performance guarantee of bypassing the BDD. This is

because past FDIA methods without physical model lack

such a guarantee [17], [18], [19], [20], [24], [25], [26], [27]

and we want to bridge this gap.

III. PERFORMANCE GUARANTEED ATTACK WITHOUT

PHYSICAL MODEL

To guarantee a successful FDIA, the tampered measurements

need to bypass the BDD, as discussed in Section II-B. The

key is to ensure that the tampered data possesses approx-

imately the same LNR value as real measurements. While

model-based approaches (see Section II-C) can rely on physi-

cal model information (i.e., the Jacobian matrixH) to achieve

so, we lack such information in model-free scenarios.

A. STATE-PRESERVED RESIDUAL ERROR MINIMIZATION

We note that the residual error in Eq. (3) is equivalent to

the minimal distance of z to the manifold H where H :

{Hx|x ∈ R
n} is defined by the Jacobian matrix H. Model-

based FDIAs leverage the matrix H to construct an attack

vector a = Hc ∈ H ensuring that the minimal distance (i.e.,

residual error) of z and z + a, to the manifold H, remains

unchanged. While we don’t have the knowledge of matrix

H, we recognize there could be alternative mappings H′ that

defines the same manifold H as long as the span of the

columns of H′ remains the same as that of H.

This recognition leads us to utilize the auto-encoder (AE),

which represents a machine-learning based method to learn

the manifold H from historical measurements z. In AE,

an encoder networkmaps the inputmeasurements to the latent

‘‘states’’ space, and a decoder network tries to reconstruct

the input measurements from the latent ‘‘states’’ space [38].

Denoting the overall AE model by a function AE (·), it is

trained with the loss function:

min
θAE

Ez ∥z − AE (z; θAE)∥2 (5)

with network parameters θAE. Upon convergence of such

training, the decoder mapping in AE model is expected to

span the manifoldH, thus producing small residual errors for

attack measurements to bypass the BDD.

To achieve so, we tailor the latent space in the AE model

to possess the same dimensionality as the real system state.

This information, unlike the exact Jacobian matrixH, if often

available to attackers in many scenarios. By doing so, the

latent ‘‘states’’ will form a manifold and align with the def-

inition of states in power systems, e.g., the minimum set of

variables that can uniquely define all the measurements in the

systems. This design is shown in Fig.1 (b). Mathematically,

we use the linear AE model as an example to provide a proof

of the reduced residual error of attack measurements.

For demonstrating that the linear AE model can reduce

the residual error, we start from exploring its connection to

Principal Component Analysis (PCA). A linear AE model

contains a linear network A ∈ R
n×m as encoder and another

linear network B ∈ R
m×n as decoder. Notice that the dimen-

sion of the latent space is set to n, i.e., the number of real

states. Suppose the historical measurements matrix Z =

[z1, z2, · · · , zT ] ∈ R
m×T contains T > m data points and

is properly zero-centered and scaled, the linear AE model

wishes to reconstruct the original data as Z ≈ BAZ. This AE

model is trained as minA,B ∥Z− BAZ∥22. The work in [39]

identified the connection between AEmodel and PCA.When

PCA uses the top eigenspace of XX⊤ to approximate the

dataset, any B at a local minimizer recovers the top rank-

n eigenspace of ZZ⊤ under mild nondegeneracy conditions.

This is presented in Lemma 1.

Lemma 1: [Equivelancy of autoencoder and PCA]. Sup-

pose that Z ∈ R
m×T (with T > m) satisfies that ZZ⊤

has distinct eigenvalues. Then, at any local minimizer of the

optimization

min
A∈Rn×m,B∈Rm×n

∥Z− BAZ∥22 , (6)

B spans the top rank-n eigenspace of ZZ⊤.

To explicitly calculate the residual error of attack mea-

surements crafted from the decoder network, we utilize the

singular value decomposition (SVD) of Z. Here, we assume

that the data has been properly centered and scaled for

this analysis. Suppose the SVD of Z is expressed as Z =

U6V
⊤ =

∑m
i=1 σiuiv

⊤
i , where U ∈ R

m×m and V ∈

R
T×m are unitary matrices, and 6 ∈ R

m×m is a diagonal

matrix with non-negative singular entries. Due to Lemma 2,

we note that the decoder network essentially reconstruct a

rank-n approximation by keeping the leading n singular val-

ues and vectors and discarding the rest: AE(Z) ≈ Z(n) =

U(n)6(n)V
⊤
(n) =

∑r
i=1 σiuiv

⊤
i . Here, U(n) ∈ R

m×n is the

truncated U matrix, V (n) ∈ R
T×n is the truncated V matrix,

and 6(n) ∈ R
n×n is the truncated 6 with the leading n singu-

lar values. In Lemma 2, we explicitly analyze the distribution

of the resulted residual error of the proposed AE model.

Lemma 2: Suppose the collected power measurements z

satisfy Assumption 1 in a power grid with m measurements

and n system states. Let a linear autoencoder, trained via Eq.

(5), have a hidden layer of dimension n. Then, the autoen-

coder behaves equivalently to principal component analysis

(PCA) to recover the top rank-n (n < m) eigenspace of the

measurement data, thus producing the LNR value (Eq. (4)) as

LNRAE =
1

σ 2
∥Szn∥

2
2 ∼ Gamma(

m− n

2
, 2

n

m
). (7)
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Proof: The LNR of the n-rank measurement is given as

LNRAE =
1

σ 2
∥Szn∥

2
2 =

1

σ 2
∥SU(n)R(n)V

⊤
(n)∥

2
2 (8)

=
1

σ 2
∥SU(n)R(n)∥

2
2 =

n

m

1

σ 2
∥SU(m)R(m)∥

2
2 (9)

= ε ∼
n

m
χ2(m− n) := Gamma(

m− n

2
, 2

n

m
).

(10)

Lemma 2 demonstrates that the residual error of measure-

ments generated by the AE is significantly reduced compared

to the original measurements. This process essentially trans-

forms the measurements from the gray area (likely failing the

BDD) to the pink area (likely bypassing the BDD) as illus-

trated in Fig. 1(c). However, this approach also has a problem:

the AE-generated attack measurements might become too

similar to the original measurements, potentially rendering

the attack undetectable but also ineffective. As discussed

previously, we choose to utilize the generative adversarial net-

work to explore the ‘‘bypass’’ region to identify its boundary

and thereby maximize the attack impact.

B. ATTACK IMPACT MAXIMIZATION

To generate new data conform to specific underlying distri-

butions, [40] introduced the idea of the generative adversarial

network (GAN). GAN is a framework to implicitly learn the

training data distribution so that one can sample from it and

generate new data from that same distribution, in our case, the

power system measurement distribution.

In this paper, to address well-documented challenges with

GANs, such as vanishing gradients and the lack of con-

vergence guarantees, we leverage the Wasserstein GAN

proposed by [41]. Specifically, GAN conducts adversarial

training between a generator G and a discriminator D using

min
G

max
D∈D

Ez∼PzEc∼Pc [D (z) − D (G(c))] , (11)

where D is the set of 1-Lipschitz functions [41]; Pz is the

real measurement distribution; c is the noise sampled from

standard Gaussian distribution Pc. Eventually, the generator

G has the ability to converge [41] to learn the real measure-

ment distribution Pz from the set of historically observed

measurements Z = {zi = Hxi + ei ∈ R
m}Li=1, where L is

the size of the dataset. We note that, despite GAN’s ability

to recover the distribution of measurements z, it does not

inherently ensure the recovery of the associated residual error

distribution. This phenomenon is illustrated in Lemma 3.

Lemma 3: Suppose the collected power measurements z

satisfy Assumption 1 and are used to train the Generative

Adversarial Network (GAN) defined in Eq. (11). Given suf-

ficient training, the generator in the GAN can produce false

measurements that follow the distribution z̃ ∼ N (0, 6 + R).

Thus, the LNR value of false measurements satisfy

LNRGAN =
1

σ 2
∥Sz̃∥22 ∼ Gamma(

m− n

2
, 2

δ2 + σ 2

σ 2
). (12)

Proof: The LNR of the original measurement is
1
σ 2 ∥Sz∥

2
2 = 1

σ 2 ∥S(Hx + e)∥22 = 1
σ 2 ∥Se∥

2
2 ∼ χ2(m − n),

where noise e ∼ N (0,R). Since z̃ ∼ N (0, 6 + R), the new

LNR is

1

σ 2
∥Sz̃∥22 ∼

δ2 + σ 2

σ 2
χ2(m− n) (13)

:= Gamma(
m− n

2
, 2

δ2 + σ 2

σ 2
). (14)

The rationale underlying Lemma 3 is that while GAN can

generate fake measurements z̃ that match the exact original

measurement distribution, the resulting data z̃ lacks genuine

power physical model, resembling pure noise. Consequently,

the new residual error for z̃ is notably larger compared to the

original residual error, which depends only on the noise e—

a small component of the original data z = Hx + e. This

increase is proportional to δ2+σ 2

σ 2 , determined by the signal-

to-noise ratio in the measurements z = Hx + e.

FromLemma 2 and Lemma 3, it’s important to note that the

application of AE yields a reduced LNR value compared to

the original, while GAN tends to produce a higher LNR.With

this insight and explicit derivation of LNR distributions when

utilizing AE and GAN individually, an opportunity emerges:

to effectively bypass the BDD with guarantees, it becomes

evident that a hybrid model integrating the strengths of both

AE and GAN is a natural progression. To connect the AE and

GAN model, we design a hybrid loss

min
G

max
D∈D

Ez∼PzEc∼Pc

[

D (z) − D (G(c))

+ λAE · ∥G(c) − AE∗ (G(c)) ∥2
]

, (15)

whereAE∗ denotes thewell-trainedAEmodel and λAE serves

as the hyperparameter balancing the contributions of AE

and GAN. In Eq. (15), we configure the generator G(·) to

use a real measurement as input and generate a tampered

version as the output by setting the noise space to be the

measurement space, i.e., Pc = Pz. That is, z̃ = G(z) are

the attack measurements modified from real measurements

z. This approach of feeding the generator real data as input

has been explored in previous research [42] and has shown to

be just as effective as using random noise as input. In this

hybrid model, the collaboration between AE and GAN is

two-fold: the AE works to reduce noise in the measurements

and diminish the residual error, while the GAN emulates

the distributional characteristics of the measurements. The

equilibrium achieved in this hybrid model is elucidated in

Theorem 1.

Theorem 1: Suppose the collected power measurements

z satisfy Assumption 1, and let the hybrid model consist

of an autoencoder (AE) and a generative adversarial net-

work (GAN), trained jointly using the loss function defined

in Eq. (15). The AE is configured with a hidden layer of

dimension n, corresponding to the number of system states.

Given sufficient training of the hybrid model, the generator

in the hybrid model can produce attack measurements whose
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residual errors match the theoretical Chi-squared distribution,

provided the hyperparameter is chosen as λ
opt
AE = δ2·m

σ 2(n−1)
.

Proof: Based on Lemma 2 and Lemma 3, the resultant

distribution of the LNR value, obtained through training with

the hybrid model, is 1
1+λAE

·Gamma(m−n
2

, 2 δ2+σ 2

σ 2 )+ λAE
1+λAE

·

Gamma(m−n
2

, 2 n
m
). The density function of this LNR is

e

− LNR

(2 δ2+σ2

σ2(1+λAE)
+2

nλAE
m(1+λAE)

)

0(m−n
2

)(2 δ2+σ 2

σ 2(1+λAE)
+ 2 nλAE

m(1+λAE)
)
x
m−n
2 −1, (16)

matching the density function of the Chi-squared distribution

χ2(m− n) when λ
opt
AE = δ2·m

σ 2(n−1)
.

With the residual error matching the original Chi-squared

distribution, Theorem 1 highlights the potential of the hybrid

model to bypass the BDD with guarantees. Aside from

bypassing the BDD, we want to maximize the impact of

the attack. Specifically, we want to incentivize the genera-

tor to produce attack measurements z̃ = G(z) that differ

significantly from the corresponding real measurements z.

To accomplish this, we incorporate a regularization term

based on the L2 norm ∥z − G(z)∥22:

min
G

max
D∈D

Ez∼PzEz̃∼Pg

[

D (z) − D
(

z̃
)

+ λAE · ∥z̃ − AE
(

z̃
)

∥22 − λattack · ∥z − z̃∥22

]

, (17)

where z̃ = G(z), and λattack is the hyperparameter control-

ling the extent of the distance punishment. In Lemma 4,

we discuss the effect of this hyperparameter: a larger penalty

λattack leads to a larger attack impact. We note that, since

the DC state estimation process can be linearly described by

Eq. (2), a larger norm ∥z − z̃∥22 in the measurement space

translates to a larger norm ∥x − x̃∥22 in the state space. Thus,

the regularization term in Eq. (17) tends to make the state

estimator to produce erroneous estimated states that deviate

more significantly from the actual system states.

Lemma 4: The attack impact, quantified by ∥z− z̃∥22, has a

lower boundO (λattack), where λattack is the penalty parameter

of z and z̃ being too close.

To summarize, our proposed architecture is shown in Fig. 2

with two stages. First, an autoencoder is trained with histor-

ical measurement data to minimize the residual error in the

state estimator. Second, the GAN is trained with the same

data and the two regularization terms: (1) one incentivizes

the GAN to produce measurements that will pass the residual

error test and (2) another to maximize the attack’s impact.

IV. NUMERICAL EXPERIMENTS

This section assesses the efficacy of our proposed FDIA

without knowing physical model. Our analysis specifically

investigates the residual error distribution to assess its influ-

ence on the Bad Data Detector (BDD) bypass performance.

Evaluation Metrics: For BDD, we calculate the largest

normalized residual (LNR) of attacked data z̃ following Eq.

(3). Then, we compute the rate at which the LNR values fall

FIGURE 2. Proposed physical-model-free FDIA architecture with

an AE-GAN hybrid structure.

below a Chi-squared distribution critical value:

succBDD = P(LNR(z̃) ≤ χ2
(m−n),1−α), (18)

where m and n represent the dimensions of the measure-

ment and state vectors, and α is the significance level.

To assess how closely the LNR values adhere to the

expected Chi-squared distribution χ2
(m−n), we employ the

Earth Mover’s Distance (EMD) metric [43]. A lower EMD

value signifies better alignment between the generated LNR

distribution and the theoretical Chi-squared distribution.

Dataset Configuration:We evaluate across diverse system

configurations. This includes experiments on transmission

systems using the IEEE 14-bus, 30-bus, 39-bus, 57-bus, 118-

bus, 200-bus network, and the Reliability Test System - Grid

Modernization Lab Consortium (RTS-GMLC) system [44],

[45]. The experiments also cover distribution grids includ-

ing the IEEE 8-bus, 123-bus networks [14], [46], along

with two representative European systems: a medium voltage

network in an urban area (MV urban) and a low voltage

network in a suburban area (LV suburban) [47], [48]. The

time-series measurements z are simulated by solving DC

power flow equations inMATLAB Power System Simulation

Package (MATPOWER) [30]. To generate more authentic

data, we incorporate real power profiles into our experiments.

Specifically, we utilize the profile provided by Duquesne

Light Company in Pittsburgh for our transmission grid exper-

iments. For the distribution grid experiments, we employ

the Pecan Street profile. To enhance the richness of our

simulations, we introduce variability by scaling the load and

generation profiles using randomly selected loading param-

eters. Additionally, we inject white noise into measurements

with a standard deviation set to 0.02 p.u. [49], [50].

Implementing Details: In the linear AE model, the input

consists of active power flow measurements on all branches,

representing the physical measurements collected from

the grid. For example, in the IEEE 14-bus system with

20 branches, the input vector has a dimension of 20. The

output layer of the AEmirrors the input, aiming to reconstruct

the original measurement vector with minimal reconstruction

error. To capture the underlying system behavior, we set the
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FIGURE 3. Empirical histogram of LNR values using AE/GAN

compared to real LNR values in IEEE 14-bus system.

width of the latent layer to match the number of independent

system states (n), which corresponds to the number of bus

voltage angles excluding the reference bus. For instance,

in the IEEE 14-bus system, the latent space dimension is set

to 13. For the linear encoder, linear decoder, generator, and

discriminator architectures, we employ five fully-connected

layers where each layer comprises approximately ten neu-

rons, and the neurons are activated through Rectified Linear

Units (ReLU). We set the maximum number of training

epochs to 300 for sufficient training. Additionally, for every

5 iteration, we train the generator so that we prioritize training

the discriminator to allow for better convergence. For each

iteration, we sample 50mini-batches to compute gradients for

advanced searching for parameters. We update these parame-

ters using theAdamoptimizer with a learning rate of 2×10−4.

After obtaining systemmeasurements fromMATLAB2022b,

the remaining calculations for FDIA are implemented using

Python 3.8 on a personal computer with an Intel Core i7

processor clocked at 2.2 GHz, and 16 GB of RAM.

Baseline Methods: In the following experiments, we com-

pare our FDIA approach with recent physical-model-free

FDIA baselines, including a principal component analysis

PCA approach to estimate the system Jacobian matrix [18],

a low-rank matrix singular value decomposition approxima-

tion SVD to estimate the system Jacobian matrix [20], and a

generative adversarial network-based approach iAttackGen

to generate new attack measurements [27].

A. VERIFICATION OF RESIDUAL ERROR USING AE AND

GAN ALONE

Before delving into our hybrid model combining AE and

GAN, this subsection first examines the individual perfor-

mances of AE and GAN modules to verify Lemma 2 and

Lemma 3. To validate the two Lemmas, we illustrate in Fig. 3

the empirical histograms of LNR values obtained from FDIA

data employing AE and GAN individually, comparing them

to the LNR values of real measurements. The results demon-

strate a noticeable deviation of the residual error distribution

from the original Chi-squared distribution when using AE

or GAN alone. Specifically, we compute the Earth Mover’s

FIGURE 4. FDIA measurements using AE/GAN compared to real

measurements in IEEE 14-bus system.

Distance (EMD) between the calculated distribution in Fig. 3

and the theoretical ones from Lemma 2 and Lemma 3. The

resulting low EMD values (see last column of Table 1) sup-

port our theoretical claims.

To gain insights into the above formation of LNR distri-

butions in Fig. 3, we plot the FDIA measurements obtained

through the individual application of AE and GAN in Fig. 4.

Utilizing the t-SNE visualization technique [51], we reduce

the m dimensional plots to 2 dimensions. The observations

reveal that GAN tends to accurately capture the distribu-

tion of real measurements, whereas AE primarily focuses

on learning the central, noiseless components of the real

measurements. Specifically, GAN, by accurately learning the

measurement distribution, results in FDIA data dominated by

pure noise that closely follows this distribution, leading to

a significantly large LNR. Conversely, AE, concentrating on

the noiseless portion of real measurements, yields FDIA data

with minimal noise, consequently resulting in a very small

LNR.

B. EVALUATION OF ATTACK PERFORMANCE OF OUR

FDIA

After evaluating the impact of FDIA when using AE or GAN

independently, we now focus on assessing the effects of FDIA

using our hybrid model which combines AE and GAN.

1) QUALITY OF CREATED SAMPLES

Fig. 5 depicts the real measurements (red) alongside the fake

measurements (blue) generated by our FDIA. While the fake

measurements visually resemble the real data, they do not

completely overlap. This divergence from the original dataset

is anticipated, as the attack regularization term incentivizes

GAN to produce measurements that reside within the bound-

ary of the original data distribution.

2) PERTURBATION OF SYSTEM STATES

Fig. 6 shows the real system states (red) and the states pro-

duced by the fake measurements (blue). Notably, the fake

states exhibit a greater degree of dispersion compared to
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TABLE 1. Performance comparison on various systems. Significance level α = 3%.

FIGURE 5. FDIA measurements compared to real measurements.

FIGURE 6. FDIA states compared to real states.

the real states. This divergence aligns with the attacker’s

objective of manipulating the system state estimation process

by solely tampering with the measurements.

3) RESIDUAL ERROR DISTRIBUTION

To validate the assertion that our FDIA can accurately

recover the Chi-squared distribution with a carefully chosen

hyperparameter λAE, as per Theorem 1, we present empir-

ical histograms of LNR values in different systems using

our FDIA approach in Fig. 7. The findings demonstrate

our FDIA model successfully reproduces the original Chi-

squared distribution, presenting a challenge for defenders in

distinguishing between real data and attack data.

Fig. 7 shows that the LNR values of our FDIA model

closely adhere to the Chi-squared distribution χ2
m−n, sug-

gesting a high likelihood of bypassing the BDD. To provide

quantitative validation, we calculate the success rate of pass-

ing BDD using Eq. (18) and present the results in Table 1.

FIGURE 7. The empirical histogram of LNR values. α = 3%.

The results indicate that our FDIA model achieves a

higher rate (around 97%) of bypassing BDD to baseline
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models (around 95%). This improvement is likely attributed

to the model’s capability of accurately replicating the Chi-

squared distribution, as formally proven in Theorem 1.

Meanwhile, we observe that although other baselines also

demonstrate relatively high rates of bypassing BDD, they

exhibit a significantly higher Earth Mover’s Distance (EMD)

metric compared to our FDIA model. It implies that these

baseline attacks are more easily detectable when scrutiniz-

ing the distribution of LNR values. In contrast, our FDIA

model achieves a remarkably small EMD, indicating close

alignment of its LNR values with the exact Chi-squared

distribution.

C. SENSITIVITY ANALYSIS TO HIDDEN STATE DIMENSION

A key design choice in our FDIA model is the hidden state

dimension within the autoencoder (AE) module. We hypoth-

esize that setting this dimension equal to the number of free

system states is essential for achieving accurate measurement

reconstruction and replicating the behavior of the state esti-

mation process. To validate this hypothesis, we conduct an

experiment using the IEEE 14-bus test case. We analyze the

residual error and the reconstruction error while varying the

AE’s latent dimension from 1 to 20. It is important to note

that, in DC power flow models, the system states are the

voltage phase angles of all buses except the reference bus,

whose angle is fixed and non-free. Therefore, the number of

free system states in the chosen system is 13.

Lemma 2 states that the residual error of attack measure-

ments processed by the AE is proportional to the hidden

dimension size. To validate this relationship, Fig. 8 (upper

half) plots the residual errors of attack measurements from

AE for various hidden dimension sizes. The blue curve repre-

sents the averaged residual error, and the shaded area shows

the range of residual errors. The plot demonstrates that the

residual errors of the attack measurements exhibit a trend

that roughly aligns with a linear relationship to the size of

the hidden dimension. Furthermore, as the hidden dimension

size approaches 20 (which corresponds to the number of

system measurements in this case study), the residual error

approaches the level observed for real measurements (hori-

zontal pink line).

While reducing the hidden layer dimension in the AE

model can lower the residual error—thereby improving

stealthiness—it may also lead to a higher reconstruction error.

This is because a smaller latent space lacks the capacity to

capture the full complexity of the measurement data. The

lower half of Fig. 8 illustrates the reconstruction error of a

well-trained AE model across various hidden dimensions.

We observe that the reconstruction error drops sharply and

approaches zero once the latent dimension exceeds 13, which

corresponds to the number of independent system states in

this case study. This observation aligns with the principle

that system states represent the minimal set of variables

required to reconstruct all measurements [32]. These results

indicate that setting the AE’s hidden layer dimension equal

to the number of system states achieves a desirable balance:

FIGURE 8. Residual error and reconstruction error against

various hidden layer size for the IEEE 14-bus test case.

it minimizes residual error while preserving accurate recon-

struction of the original measurements.

1) DISCUSSION ON DATA AVAILABILITY

The feasibility of training our AE-GAN model depends

on access to historical measurement data. While real-time

topology and parameters are typically protected, archived

measurements are often available for operational or regula-

tory purposes [52], and may be obtained via cyber intrusions,

insider threats, or public platforms [53].When data is limited,

training—especially for GANs—becomes more challenging

due to overfitting risk and reduced diversity. To mitigate

this, data augmentation [54] and transfer learning [55] can

improve generalization. We conduct a sensitivity analysis on

the IEEE 57-bus system by varying training sizes from 500 to

5000 samples. Results show the BDD bypass rate stabilizes

around 95% after 1750 samples, suggesting moderate data

is sufficient. This reflects the model’s data efficiency, as it

learns the residual structure rather than the full physical

model. Future work will explore few-shot and meta-learning

techniques to further reduce data requirements.

D. SENSITIVITY ANALYSIS TO HYPER-PARAMETERS

1) SENSITIVITY TO HYPER-PARAMETER λAE

We examine the effect of λAE by plotting the success rate of

passing BDD (succBDD) and earth-moving distance (EMD)

for various λAE in Fig. 9. Here, we denote the theoretically

optimal hyperparameter from Theorem 1 as λ
opt
AE and compare

it with 0.5 × λ
opt
AE and 2 × λ

opt
AE. The findings demonstrate

that choosing λAE = 0.5 × λ
opt
AE, smaller than the optimal

value, leads to the predominance of the GAN model within

the hybrid framework. This positioning shifts the residual

error distribution to the right of the true Chi-squared distri-

bution, resulting in a decreased succBDD and an increased

EMD. Conversely, opting for 2×λ
opt
AE, larger than the optimal

value, favors the DAEmodel dominance, causing the residual

error distribution to shift to the left of the true Chi-squared

distribution. This leads to a higher succBDD but a larger

EMD. Notably, neither scenario proves as advantageous as
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FIGURE 9. Performance against different λAE. Upper: The

successful rate of passing BDD. Lower: The earth-moving

distance between LNR values of fake/true data. α = 3%.

selecting the optimal hyperparameter λ
opt
AE, which achieves a

perfect recovery of the Chi-squared distribution.

2) SENSITIVITY TO HYPER-PARAMETER λattack

We also assess the effects of λattack, which governs the

extent of attack size regularization. In Fig. 10, we depict

the relationship between fake measurements and real mea-

surements across various selections of the hyperparameter

λattack. Additionally, we visualize the corresponding resid-

ual error for each scenario. As we vary the hyperparameter

λattack, which penalizes the distance between FDIA and real

measurements, interesting trends emerge. With a small value

like λattack = 0.01, we observe that the generated FDIA

data clusters closely around the real data. As we increase

λattack to values like 0.1 and 0.5, the fake measurements

progressively deviate from the real ones, indicating a more

successful attack. However, a notable observation is made

at λattack = 0.5, where the significant increase starts to

compromise the Chi-squared distribution of the residual error,

potentially leading to failure at the distribution detector.

3) TRADE-OFF BETWEEN HYPERPARAMETERS λAE

AND λattack

An effective attack achieves two key objectives: (1) bypassing

the BDD and (2) creating a significant attack vector. Our

prior sensitivity analysis revealed that the hyperparameters

λAE and λattack influence these objectives in opposing ways.

FIGURE 10. Measurements and residual error distribution of our

FDIA model under various hyperparameters λattack. α = 3%.

FIGURE 11. The success rate of bypassing BDD and the attack

size w.r.t. the hyper-parameters λAE and λattack in IEEE 14-bus

system. The optimal choice is λ
∗

AE
= 0.7 and λ

∗

attack
= 0.1.

To illustrate this trade-off, Fig. 11 presents the successful rate

of passing BDD (succBDD) and the expected squared norm of

the attack size E∥z̃− z∥22 across various combinations of λAE
and λattack. Indicated by the results, the optimal weights are

λ∗
AE = 0.7 and λ∗

attack = 0.1, where λ∗
AE is actually very close

to the theoretically optimal value in Theorem 1.

4) SENSITIVITY ANALYSIS TO MEASUREMENT

COVERAGE

In real-world scenarios, complete historical data from all

grid measurements may not always be available, and certain

measurements might be inherently protected or immune to

manipulation. This practical constraint necessitates an anal-

ysis of our FDIA’s performance under varying degrees of

measurement coverage. Denoting the number of measure-

ments immune to attack as mNoAttack ∈ [0,m], we conduct

a sensitivity analysis to evaluate our FDIA across a range

of mNoAttack values. To do so, we randomly select and

removemNoAttack measurements and apply our FDIA process.

As shown in Fig. 12, the success rate of bypassing BDD drops

with an increasing number of unattacked measurements. This

decline is unsurprising, given the diminished attack infor-

mation resulting from the reduced measurement coverage,

thereby presenting greater challenges for effective FDIA.
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FIGURE 12. Successful rate of bypassing BDD againstmNoAttack.

FIGURE 13. Empirical histograms of LNR of attack

measurements in IEEE 57-bus and 118-bus AC systems

compared to the theoretical Chi-squared distribution.

E. EXTENSION TO AC POWER SYSTEMS

Although our method is developed under the DC power

flow model for rigorous theoretical guarantees, we evaluate

its performance on AC systems using the IEEE 57-bus and

118-bus test cases. Fig. 13 compares the empirical LNR

distributions of the generated attack measurements with the

theoretical Chi-squared distribution used in BDD. Results

show that our method generalizes reasonably well: the attack

residuals closely match the expected distribution, indicating

a high likelihood of bypassing BDD even under nonlinear AC

conditions. However, the fit is slightly less precise compared

to the DC case. This degradation stems from the nonlinear

nature of AC systems, which complicates the measurement

manifold and limits the ability of a standard autoencoder

to fully capture it. Since our theoretical guarantees rely on

linear models, this gap is expected. These findings motivate

future work on developing specialized or physics-informed

autoencoders better suited for nonlinear AC systems.

F. ROBUSTNESS UNDER SYSTEM CONTINGENCIES

In practical power systems, the Assumption 1 of steady-state

operation and stationary data distributions can be challenged

by real-world contingencies. These contingencies may tem-

porarily or permanently shift the system behavior, raising

concerns about the robustness and adaptability of data-driven

attack models. In this section, we examine two representa-

tive scenarios that deviate from steady-state operation and

evaluate the performance of our proposed AE-GAN model

under each: (1) power-related fluctuations that preserve the

grid topology, and (2) structural changes that alter the system

topology and trigger updates to the state estimator and BDD

mechanism.

For power-related fluctuations, the system experiences

short-term deviations such as demand spikes or generation

adjustments, which do not change the network topology.

Since the Jacobian matrix H remains fixed, the BDD test

remains valid. While these fluctuations shift the operating

point, they still follow the same physical model and thus lie

near the boundary of the original data distribution assumed

in our training. To validate robustness under such conditions,

we simulate a scenario in the IEEE 57-bus system where

10% of the time window includes synthetic deviations in

the state variables. We compute new measurements from the

unchangedH, and use the entire dataset (including perturbed

data) for training. As shown in Fig. 14 (left), the residuals

of the generated false measurements remain well aligned

with the Chi-squared distribution, indicating that our method

remains stealthy and effective under moderate load fluctua-

tions.

For topology-altering contingencies, such as line outages

or reconfiguration events, the system undergoes a permanent

structural change that alters its physical model. In response,

the operator updates the state estimator to reflect the new

topology, resulting in a modified Jacobian matrix H and a

corresponding update to the BDD mechanism. To simulate

such a scenario, we remove the transmission line between

bus 25 and bus 30 in the IEEE 57-bus system and gen-

erate DC power flow data under both the original and

modified topologies. We concatenate the two datasets to

form a composite measurement distribution with two dis-

tinct modes. To ensure compatibility with the updated BDD

logic, we apply MATLAB’s built-in change-point detection

algorithm findchangepts to isolate the post-contingency

data, which aligns with the updated system configuration.

The AE-GAN model is then retrained on this post-change

data. As shown in Fig. 14 (right), the residuals of the

generated attacks continue to follow the Chi-squared distribu-

tion closely, demonstrating that, with proper preprocessing,

the proposed method remains stealthy even under topology

changes.

The above experiment regarding topology-altering events

also provides insights into the performance of our approach

under a class of defense mechanisms known as Moving

Target Defense (MTD), which intentionally and periodically

reconfigures the grid topology to disrupt attack strate-

gies. While our experiment reflects a single MTD-induced

change, it shows that with access to post-reconfiguration data,

change-point detection enables the attacker to adapt to the

new topology and retrain the model to maintain stealthiness.

However, we also observe that if MTD schemes are applied
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FIGURE 14. Empirical LNR histograms of attack measurements

under two scenarios: (left) power-related fluctuations, (right)

topology-altering events, in IEEE 57-bus system, compared to

the theoretical Chi-squared distribution.

at high frequency, the attacker may lack sufficient data under

each topology to retrain effectively, thereby degrading the

feasibility of data-driven FDIAs. Fortunately, in practical

power systems, MTD strategies are implemented at moderate

timescales due to operational, physical, and economic con-

straints. As such, our method remains applicable in many

realistic MTD settings, and we highlight adaptation to rapid

or unpredictable MTD as an important direction for future

work.

V. CONCLUSION

This paper presents a novel physical-model-free False Data

Injection Attack (FDIA) framework that reliably bypasses

Bad Data Detection (BDD) without requiring any physical

model, such as grid topology or line parameters. The pro-

posed method introduces a principled hybrid architecture

combining an autoencoder (AE) and a generative adversarial

network (GAN). The AE module reduces residual errors by

mimicking the state estimation process in terms of denois-

ing and projecting noisy measurements onto a physically

meaningful manifold. It is achieved by using a latent space

dimension equal to the number of system states to denoise

measurements and replicate the residual error characteristics

of real data. TheGANmodule then explores themeasurement

manifold to induce significant deviations in the estimated

states, thereby maximizing the impact of the attack. Theo-

rem 1 formally demonstrates that the residual errors of the

generated false measurements follow the same theoretical

Chi-squared distribution as true measurements, ensuring a

statistically equivalent likelihood of bypassing the BDD. The

effectiveness of the proposed method is validated across

11 representative grid systems, including both transmission

and distribution networks, using real-world power profiles.

The results show consistently high BDD evasion success rates

and low Earth Mover’s Distance (EMD) values, outperform-

ing existing model-free baselines and confirming the ability

of our method to replicate the residual distribution with high

fidelity. These findings reveal a critical vulnerability in mod-

ern power grids, where attackers without system knowledge

can still launch highly effective and stealthy FDIAs. Future

work will extend this framework to more realistic AC power

flow models and explore advanced detection and defense

mechanisms to counteract such data-driven cyber threats.
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