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ABSTRACT Smart grids are increasingly vulnerable to False Data Injection Attacks (FDIAs) due to
their growing reliance on interconnected digital systems. Many existing FDIA techniques assume access
to critical physical model information, such as grid topology, to successfully bypass Bad Data Detection
(BDD). However, this assumption is often impractical, as utilities may restrict access to this data, or the
evolving nature of distribution grids—particularly with the integration of renewable energy—can render this
information unavailable. Current methods that address the absence of physical model lack formal guarantees
for BDD evasion. To bridge this gap, we propose a novel physical-model-free FDIA framework that 1)
bypasses BDD with formal guarantees and 2) maximizes the attack impact without requiring explicit physical
model. Our approach leverages an autoencoder (AE) with a regularized latent space to enforce physical
consistency, using historical measurements to replicate the residual error distribution, ensuring BDD evasion.
Additionally, we integrate a Generative Adversarial Network (GAN) to explore the measurement manifold
and induce the most significant state changes, enhancing the impact of the attack. The key innovation
lies in the AE-GAN hybrid model’s ability to replicate the residual error distribution while maximizing
attack efficacy, offering a performance guarantee that existing methods lack. We validate our method across
11 representative grid systems, using real power profiles simulated in MATPOWER, and demonstrate its
consistent ability to bypass BDD by preserving the residual error distribution. The results highlight the
robustness and generalizability of the proposed FDIA framework.

INDEX TERMS  False data injection attack, state estimation, bad data detector, no physical model, auto-
encoder, generative adversarial network.

. INTRODUCTION

N MODERN power systems, the integration of digital
I systems and communication enables real-time monitor-
ing and control. However, such digitization also exposed
power systems to vulnerabilities exploitable by malicious
attackers [1], as evidenced by incidents such as the
2015 cyber attack on Ukraine’s electricity infrastructure [2],
the 2018 attack on the U.S. power grid [3], and the recent
2022 cyber-attack on energy entities in U.S. [4]. Nowadays,
such attacks are even more prevalent in distribution systems,
as data storage and cloud services are increasingly outsourced
to third-party companies, and the security and integrity of
measurements become more susceptible to breaches [5].
As a consequence, it is critical to study False Data Injection
Attacks (FDIAs) so proper defense protocol can be enforced.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2025

In FDIAs, adversaries leverage the leaked system measure-
ments and physical model to compromise state estimation
algorithms [6]. Such adversaries lead to severe consequences
such as power outages [7], line congestion [8], and eco-
nomic disruption [9]. Traditionally, many model-based FDIA
methods offer theoretical guarantees of stealth by precisely
crafting attack vectors that reproduce the residual structure
of system measurements [10]. These guarantees rely on com-
plete knowledge of the system model, enabling attackers to
manipulate measurements while maintaining the same likeli-
hood of bypassing the Bad Data Detector (BDD) as genuine
measurements. However, these model-based attacks necessi-
tate access to fundamental power system details [11], includ-
ing power system topology, parameters, and a state estimator
model. However, this reliance on physical model information
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FIGURE 1. Overview of the proposed FDIA model: (a) Traditional physical-model-free FDIA methods face challenges in preserving
the Chi-squared distribution of LNR values, thus lack a guaranteed bypass of BDD. (b) The tailored AE structure whose latent
layer possesses the same dimensionality as the system states to mimic the state estimation process in terms of denoising and
projecting noisy measurements onto a physically meaningful manifold. (c) The principle how the hybrid model of AE and GAN
can generate fake measurements with guaranteed bypass of BDD and maximized attack impact.

is increasingly impractical in modern power grids, where
system operators diligently safeguard such information to
prevent leakage [12]. Additionally, in some distribution grids,
even the operators may lack complete knowledge of physical
model due to outdated information, evolving infrastructure,
and infrequent or missing updates [13]. This challenge is
further exacerbated by the rapid integration of renewable
energy sources [14]. This is because some of them belong
to third party, which does not synchronize information with
the utility [5].

In contrast to traditional model-based attacks, physical-
model-free attacks, also called data-driven attacks, are crafted
without prior system knowledge of the power grid [15], [16].
In this field, the key is to estimate the system topology inex-
plicitly. For example, there is work that estimates the system
Jacobian matrix through linear independent component anal-
ysis [17], PCA approximation [18], [19], and low-rank matrix
approximation [20]. Recently, matrix reconstruction using
eigenvalue decomposition is also utilized [21], [22] to gen-
erate attack measurements. Furthermore, machine learning
approaches are also utilized to generate false measurements,
such as employing auto-encoders [23], [24] and generative
adversarial networks [25], [26], [27].

While these physical-model-free attacks have shown
advancements in reducing the largest normalized residual
(LNR) value in attack measurements to bypass the BDD,
there were no guarantees of their effectiveness. Specifically,
they typically involve a learning or estimation process of the
unknown physical model, which usually suffers from error
propagation issues. Eventually, such error propagation can
disrupt the inherent Chi-squared distribution that LNR values
typically follow, leading to an unguaranteed bypass of the
BDD. This issue is demonstrated in Fig. 1(a) and discussed
in [28], compromising the effectiveness of physical-model-
free FDIA stealthiness [29]. For instance, [20] presented
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an attack using reduced measurement information based on
a low-rank matrix approximation. However, this attack can
only achieve a success rate of bypassing the BDD lower than
the original data.

To address these limitations, we propose an alternative
autoencoder (AE) design that eliminates the need for phys-
ical model while providing a theoretical guarantee of BDD
evasion in distribution, by replicating the residual behavior
of genuine measurements. The core idea involves designing
a special AE that mimics the power system state estima-
tion process in terms of denoising and projecting noisy
measurements onto a physically meaningful manifold. This
mimicking allows the model to produce denoised measure-
ments with small LNR values, a key metric for bypassing
the BDD. Specifically, we tailor the latent layer of AE model
to possess the same dimensionality as the system state. This
process is demonstrated in Fig. 1(b). In doing so, the AE
model can capture the essential low-dimensional features
to reconstruct the system measurements, while effectively
denoises the measurements. This is because the state of the
power system is defined as the minimum number of variables
that can recover the measurements. Overall, the denoising
function of the AE model will remove measurement noises
similar to the state estimation process, eventually producing
similar LNR values for attack measurements.

Then, we engineer the attack model to maximize attack
impact by utilizing a Generative adversarial network (GAN)
module. Specifically, we train the GAN model on histori-
cal measurement data. This enables the GAN to generate
diverse, yet realistic, attack measurements that adhere to
the inherent distribution of legitimate system measurements.
Additionally, a penalty term is incorporated to discourage
deviations between the original and attack measurements,
aiming to maximize the impact of the attack. Fig. 1(c) illus-
trates the operation of our proposed hybrid AE-GAN model.
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When presented with real system measurements, the AE
confines the generated fake measurements to a region that
effectively bypasses the BDD by leveraging its denoising
capabilities. Subsequently, the GAN module, incorporating
a penalty term, explores this permissible region and iden-
tifies the position that leads to the most significant attack
impact. In mathematical terms, by carefully integrating these
components, the hybrid model generates attack measure-
ments whose residuals replicate the original Chi-squared
distribution of genuine measurements. This forms the basis
of our statistical guarantee of BDD evasion, ensuring that,
the attacks are as likely to bypass the BDD as legitimate
measurements.

To assess the efficacy of our proposed FDIA approach
across diverse system configurations, we conducted simula-
tions using MATPOWER [30] on 11 testbeds encompassing
both transmission and distribution grids. Our evaluation
quantitatively validates the advantage of our method with
respect to other physical-model-free FDIA baselines, based
on metrics of the BDD passing rates. The rest of the paper
is organized as follows: Section II introduces the preliminar-
ies of the FDIA problem, Section III presents our proposed
physical-model-free FDIA model, Section IV shows numeri-
cal experiments and Section V concludes the paper.

Il. PRELIMINARIES

Before detailing our FDIA strategy, this section provides
an overview of state estimation, bad data detection, and the
limitations of traditional FDIA. We highlight that, while our
FDIA approach is applicable to both AC and DC systems,
for this paper, we focus on demonstrating its application to
DC systems, i.e., linearized power flow systems, to facilitate
theoretical derivations.

A. DC POWER FLOW STATE ESTIMATION

In FDIAs, the attacker aims to inject malicious data into the
grid measurements z = (z1, -, zn) € R™ to compromise
the accuracy of the state estimation process [31]. For DC state
estimation, measurements z are determined as z = Hx + e,
where X = (x1,---,x,) € R" are system states such as
voltage angles and magnitudes, and H € R"™*" is the Jaco-
bian matrix defined by the grid topology. Measurement noise
e € R™ captures sensor-related disturbances (e.g., SCADA
or PMU noise) during the measurement collection process.
The noise is typically assumed to be Gaussian distributed as
e ~ N(0,R), where R = diag(olz, cee, anzl) is a diagonal
covariance matrix and Gl-2 is the variance of i-th noise [32].
When system operators collect measurements z, they recover
the states x by solving the state estimator [32] as:

m 2

N . (zi — Hix)

X:argrr;ln ZO’—’Z’ (1)
where H; is the i-th row of matrix H. Furthermore, the solu-
tion to Eq. (1) can be explicitly written as [32]

=H'R'H 'H'R 'z )
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B. BAD DATA DETECTOR (BDD)

In FDIAs, attackers introduce falsified data into the mea-
surements z, thereby disrupting the accurate estimation of
states x as outlined in Eq. (1). Given that numerous power
system operations (e.g. economic dispatch and contingency
analysis) depend on accurate state estimation results [33],
compromised estimations can result in erroneous system con-
trol decisions. In practice, in order to assess if z contains
bad or wrong data due to telecommunication failures, meter
errors, or even FDIAs [32], [34], the system operators often
calculate the squared measurement residual error

Iz — 23 = |z — H&||3 = |ISz|3, 3)

where S = I — HH'R'H) " '"H"R™! is the residual sensi-
tivity matrix [32] and has the property SH = 0.

If the measurement z = Hx + e does not contain bad data,
the largest normalized residual (LNR) approximately follows
a Chi-squared distribution of m — n degrees of freedom [32]:

2
LNR(z) := Z 6z) Z (S e) ~xil. @

i=1 i i=1

where the Chi-squared distribution arises from the Gaus-
sianity assumption of the noise e. The degrees of freedom
are attributed to the fact that, given the necessity for at
least n measurements to satisfy power balance equations,
a maximum of m — n measurement noises can be linearly
independent [32]. As Chi-squared test is formed by Gaussian
noises, we make the following Assumption 1 to facilitate the
derivation of our theoretical results which does not impact the
fundamental design principles of our proposed FDIA. Similar
assumptions have been adopted in various studies [35], [36].

Assumption 1: In a power grid, the power measurements
z follows a Gaussian distribution as z ~ N(0, X + R),
where ¥ = diag(6?, - - - , 8%) and R = diag(o'?, o?) are
diagonal covariance matrices.

System operators implement a bad data detector (BDD)
utilize the Chi-squared distribution test as follows. (1) Choose
a significance level, denoted as « (e.g., 0.05). (2) Evaluate
the normalized residual error LNR(z) and compare it to the
critical value 7 = X(Zm_”)’ |_o Obtained from the Chi-squared
distribution table. If LNR(z) > t, this raises suspicion of bad
data; otherwise, the measurements are considered free from
the influence of bad data.

C. CHALLENGES AND PROBLEM DEFINITION

In model-based FDIAs [10], [11] where attackers have access
to the Jacobian matrix H (also referred to as the physical
model), they can modify the measurements z without affect-
ing the LNR value [10]. Specifically, they can inject attack
data as z, = z+ Hc, where c is an arbitrary vector [11], [37].
From Eq. (3), the residual error of z, remains identical to that
of the original measurement, i.e., |S(z + Hc)||% = ||Sz +
O||% = ||Sz||%. Consequently, the manipulated measurements
z, will bypass the BDD if the original measurements z bypass
the BDD.
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However, a more realistic scenario in modern power grids
is that attackers lack access to physical model information
(e.g., line parameters, grid topology), as many utilities dili-
gently safeguard such information [12]. Motivated by this
challenge, we formally define this paper’s study as follows.

o Given: Historical time-series system measurements z

without physical model H.
o Generate: Attack measurements z, whose LNR value
still follows the Chi-squared distribution x2 .

By generating LNR values adhering to the same
Chi-squared distribution as the real data, we aim to provide
a performance guarantee of bypassing the BDD. This is
because past FDIA methods without physical model lack
such a guarantee [17], [18], [19], [20], [24], [25], [26], [27]
and we want to bridge this gap.

lll. PERFORMANCE GUARANTEED ATTACK WITHOUT
PHYSICAL MODEL

To guarantee a successful FDIA, the tampered measurements
need to bypass the BDD, as discussed in Section II-B. The
key is to ensure that the tampered data possesses approx-
imately the same LNR value as real measurements. While
model-based approaches (see Section II-C) can rely on physi-
cal model information (i.e., the Jacobian matrix H) to achieve
so, we lack such information in model-free scenarios.

A. STATE-PRESERVED RESIDUAL ERROR MINIMIZATION
We note that the residual error in Eq. (3) is equivalent to
the minimal distance of z to the manifold 7 where H :
{Hx|x € R"} is defined by the Jacobian matrix H. Model-
based FDIAs leverage the matrix H to construct an attack
vector a = Hc € H ensuring that the minimal distance (i.e.,
residual error) of z and z + a, to the manifold H, remains
unchanged. While we don’t have the knowledge of matrix
H, we recognize there could be alternative mappings H' that
defines the same manifold H as long as the span of the
columns of H' remains the same as that of H.

This recognition leads us to utilize the auto-encoder (AE),
which represents a machine-learning based method to learn
the manifold H from historical measurements z. In AE,
an encoder network maps the input measurements to the latent
““states” space, and a decoder network tries to reconstruct
the input measurements from the latent ‘“‘states” space [38].
Denoting the overall AE model by a function AE (.), it is
trained with the loss function:

minE, ||z — AE (z; 6ap) > ®)
OAE

with network parameters Oag. Upon convergence of such
training, the decoder mapping in AE model is expected to
span the manifold 7, thus producing small residual errors for
attack measurements to bypass the BDD.

To achieve so, we tailor the latent space in the AE model
to possess the same dimensionality as the real system state.
This information, unlike the exact Jacobian matrix H, if often
available to attackers in many scenarios. By doing so, the
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latent ““states” will form a manifold and align with the def-
inition of states in power systems, e.g., the minimum set of
variables that can uniquely define all the measurements in the
systems. This design is shown in Fig.1 (b). Mathematically,
we use the linear AE model as an example to provide a proof
of the reduced residual error of attack measurements.

For demonstrating that the linear AE model can reduce
the residual error, we start from exploring its connection to
Principal Component Analysis (PCA). A linear AE model
contains a linear network A € R™*™ as encoder and another
linear network B € R™*" as decoder. Notice that the dimen-
sion of the latent space is set to n, i.e., the number of real
states. Suppose the historical measurements matrix Z =
[z1,22, -~ ,zr] € R™T contains T > m data points and
is properly zero-centered and scaled, the linear AE model
wishes to reconstruct the original data as Z ~ BAZ. This AE
model is trained as ming g [|Z — BAZ||%. The work in [39]
identified the connection between AE model and PCA. When
PCA uses the top eigenspace of XX ' to approximate the
dataset, any B at a local minimizer recovers the top rank-
n eigenspace of ZZ" under mild nondegeneracy conditions.
This is presented in Lemma 1.

Lemma 1: [Equivelancy of autoencoder and PCA]. Sup-
pose that Z € R™T (with T > m) satisfies that zz"
has distinct eigenvalues. Then, at any local minimizer of the
optimization

min |Z — BAZ||3, (6)
AeRmxm BeRmxn
B spans the top rank-n eigenspace of ZZ .

To explicitly calculate the residual error of attack mea-
surements crafted from the decoder network, we utilize the
singular value decomposition (SVD) of Z. Here, we assume
that the data has been properly centered and scaled for
this analysis. Suppose the SVD of Z is expressed as Z =
Uxv’ = > a,'u,'v;r, where U € R™™ and V ¢
RT>*™ are unitary matrices, and £ € R™ ™ is a diagonal
matrix with non-negative singular entries. Due to Lemma 2,
we note that the decoder network essentially reconstruct a
rank-n approximation by keeping the leading n singular val-
ues and vectors and discarding the rest: AE(Z) ~ Z,) =
U(,,)):(n)V(Tn) = Z;:l oiu,-vl.T. Here, U(n) € R™7M ig the
truncated U matrix, V) € RT*" is the truncated V matrix,
and X,y € R"*" is the truncated X with the leading n singu-
lar values. In Lemma 2, we explicitly analyze the distribution
of the resulted residual error of the proposed AE model.

Lemma 2: Suppose the collected power measurements z
satisfy Assumption 1 in a power grid with m measurements
and n system states. Let a linear autoencoder, trained via Eq.
(5), have a hidden layer of dimension n. Then, the autoen-
coder behaves equivalently to principal component analysis
(PCA) to recover the top rank-n (n < m) eigenspace of the
measurement data, thus producing the LNR value (Eq. (4)) as

1 m-—n _n
LNRAE = — [|S2, (13 ~ Gamma(——,2=).  (7)
o 2 m
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Proof: The LNR of the n-rank measurement is given as
1 1
LNRaE = = 8715 = — ISUmRm V13 (8)

1 2 n 1 5
= ;”SU(n)R(n)Hz = E;”SU(m)R(m)”z ©)

nm-—n

n 2 n
=&~ —x“(m— n) := Gamma( ,2—).
m m

(10)

|
Lemma 2 demonstrates that the residual error of measure-
ments generated by the AE is significantly reduced compared
to the original measurements. This process essentially trans-
forms the measurements from the gray area (likely failing the
BDD) to the pink area (likely bypassing the BDD) as illus-
trated in Fig. 1(c). However, this approach also has a problem:
the AE-generated attack measurements might become too
similar to the original measurements, potentially rendering
the attack undetectable but also ineffective. As discussed
previously, we choose to utilize the generative adversarial net-
work to explore the “bypass’ region to identify its boundary
and thereby maximize the attack impact.

B. ATTACK IMPACT MAXIMIZATION

To generate new data conform to specific underlying distri-
butions, [40] introduced the idea of the generative adversarial
network (GAN). GAN is a framework to implicitly learn the
training data distribution so that one can sample from it and
generate new data from that same distribution, in our case, the
power system measurement distribution.

In this paper, to address well-documented challenges with
GAN:Ss, such as vanishing gradients and the lack of con-
vergence guarantees, we leverage the Wasserstein GAN
proposed by [41]. Specifically, GAN conducts adversarial
training between a generator G and a discriminator D using

Ezwp, Eenp, [D(z) — D (G(e)],  (11)

min max
G DeD

where D is the set of 1-Lipschitz functions [41]; PP, is the
real measurement distribution; ¢ is the noise sampled from
standard Gaussian distribution P.. Eventually, the generator
G has the ability to converge [41] to learn the real measure-
ment distribution [P, from the set of historically observed
measurements Z = {z; = Hx; + ¢; € Rm}iLzl, where L is
the size of the dataset. We note that, despite GAN’s ability
to recover the distribution of measurements z, it does not
inherently ensure the recovery of the associated residual error
distribution. This phenomenon is illustrated in Lemma 3.

Lemma 3: Suppose the collected power measurements z
satisfy Assumption 1 and are used to train the Generative
Adpversarial Network (GAN) defined in Eq. (11). Given suf-
ficient training, the generator in the GAN can produce false
measurements that follow the distribution Z ~ AV(0, X + R).
Thus, the LNR value of false measurements satisfy

52+O'2

o2

). (12)

1 - m—n
LNRGaN = — [ISZl|5 ~ Gamma(——, 2
o 2
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Proof: The LNR of the original measurement is
S8zl = ISHx + )3 = 5lSell; ~ x*(m — ),
where noise e ~ A/(0, R). Since Z ~ N(0, X + R), the new
LNR is

82 + o2

1
—|ISz||3 ~ 2(m — 13
02 ” Z||2 0_2 X (m I’l) ( )
_ 52 2
= Gamma(m n,2—+26 ). (14)
o
| ]

The rationale underlying Lemma 3 is that while GAN can
generate fake measurements z that match the exact original
measurement distribution, the resulting data z lacks genuine
power physical model, resembling pure noise. Consequently,
the new residual error for Z is notably larger compared to the
original residual error, which depends only on the noise e—
a small component of the original data z = Hx + e. This
increase is proportional to 52:2"2, determined by the signal-
to-noise ratio in the measurements z = Hx + e.

From Lemma 2 and Lemma 3, it’s important to note that the
application of AE yields a reduced LNR value compared to
the original, while GAN tends to produce a higher LNR. With
this insight and explicit derivation of LNR distributions when
utilizing AE and GAN individually, an opportunity emerges:
to effectively bypass the BDD with guarantees, it becomes
evident that a hybrid model integrating the strengths of both
AE and GAN is a natural progression. To connect the AE and
GAN model, we design a hybrid loss

min max
G DeD

+ g - G(@) — AE* (G@) |12, (15)

Eyp,Ee~r, D @) = D (G())

where AE* denotes the well-trained AE model and AAg serves
as the hyperparameter balancing the contributions of AE
and GAN. In Eq. (15), we configure the generator G(-) to
use a real measurement as input and generate a tampered
version as the output by setting the noise space to be the
measurement space, i.e., P, = P,. That is, Z = G(z) are
the attack measurements modified from real measurements
z. This approach of feeding the generator real data as input
has been explored in previous research [42] and has shown to
be just as effective as using random noise as input. In this
hybrid model, the collaboration between AE and GAN is
two-fold: the AE works to reduce noise in the measurements
and diminish the residual error, while the GAN emulates
the distributional characteristics of the measurements. The
equilibrium achieved in this hybrid model is elucidated in
Theorem 1.

Theorem 1: Suppose the collected power measurements
z satisfy Assumption 1, and let the hybrid model consist
of an autoencoder (AE) and a generative adversarial net-
work (GAN), trained jointly using the loss function defined
in Eq. (15). The AE is configured with a hidden layer of
dimension n, corresponding to the number of system states.
Given sufficient training of the hybrid model, the generator
in the hybrid model can produce attack measurements whose
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residual errors match the theoretical Chi-squared distribution,
. . 2,

provided the hyperparameter is chosen as AZE = JZ(S(nTl)'

Proof: Based on Lemma 2 and Lemma 3, the resultant

distribution of the LNR value, obtained throu§h training with

m—n +a AAE |
the hybrid model is 75— +A Gamma( )+ THiAE
Gamma(™5*,

LNR
2402 5 MAE
e o2U+rap)  MOHAAE) men_y
Xz, (16)

m—n 52402 NAAE
P HT e T 2mt s

matching the density function of the Chi-squared distribution

x2(m — n) when %% = % [

With the remdual error matching the original Chi-squared
distribution, Theorem 1 highlights the potential of the hybrid
model to bypass the BDD with guarantees. Aside from
bypassing the BDD, we want to maximize the impact of
the attack. Specifically, we want to incentivize the genera-
tor to produce attack measurements Z = G(z) that differ
significantly from the corresponding real measurements z.
To accomplish this, we incorporate a regularization term
based on the L2 norm ||z — G(2)|3:

min max
G DeD

i 7= AE (2) 13 = Aaweek - 2= 23], (17)

EZNPZEiNPg [D (zy— D (i)

where Z = G(z), and Agyack 1S the hyperparameter control-
ling the extent of the distance punishment. In Lemma 4,
we discuss the effect of this hyperparameter: a larger penalty
Aattack leads to a larger attack impact. We note that, since
the DC state estimation process can be linearly described by
Eq. (2), a larger norm ||z — i||% in the measurement space
translates to a larger norm ||x — i||§ in the state space. Thus,
the regularization term in Eq. (17) tends to make the state
estimator to produce erroneous estimated states that deviate
more significantly from the actual system states.

Lemma 4: The attack impact, quantified by ||z — i||§, hasa
lower bound O (Aagack ), Where Aggack 1S the penalty parameter
of z and Z being too close.

To summarize, our proposed architecture is shown in Fig. 2
with two stages. First, an autoencoder is trained with histor-
ical measurement data to minimize the residual error in the
state estimator. Second, the GAN is trained with the same
data and the two regularization terms: (1) one incentivizes
the GAN to produce measurements that will pass the residual
error test and (2) another to maximize the attack’s impact.

IV. NUMERICAL EXPERIMENTS
This section assesses the efficacy of our proposed FDIA
without knowing physical model. Our analysis specifically
investigates the residual error distribution to assess its influ-
ence on the Bad Data Detector (BDD) bypass performance.
Evaluation Metrics: For BDD, we calculate the largest
normalized residual (LNR) of attacked data z following Eq.
(3). Then, we compute the rate at which the LNR values fall
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FIGURE 2. Proposed physical-model-free FDIA architecture with
an AE-GAN hybrid structure.

below a Chi-squared distribution critical value:
succppp = P(LNR(@) < X(y_p). 1—a)- (18)

where m and n represent the dimensions of the measure-
ment and state vectors, and « is the significance level.
To assess how closely the LNR values adhere to the
expected Chi-squared distribution X(szn)’ we employ the

Earth Mover’s Distance (EMD) metric [43]. A lower EMD
value signifies better alignment between the generated LNR
distribution and the theoretical Chi-squared distribution.
Dataset Configuration: We evaluate across diverse system
configurations. This includes experiments on transmission
systems using the IEEE 14-bus, 30-bus, 39-bus, 57-bus, 118-
bus, 200-bus network, and the Reliability Test System - Grid
Modernization Lab Consortium (RTS-GMLC) system [44],
[45]. The experiments also cover distribution grids includ-
ing the IEEE 8-bus, 123-bus networks [14], [46], along
with two representative European systems: a medium voltage
network in an urban area (MV urban) and a low voltage
network in a suburban area (LV suburban) [47], [48]. The
time-series measurements z are simulated by solving DC
power flow equations in MATLAB Power System Simulation
Package (MATPOWER) [30]. To generate more authentic
data, we incorporate real power profiles into our experiments.
Specifically, we utilize the profile provided by Duquesne
Light Company in Pittsburgh for our transmission grid exper-
iments. For the distribution grid experiments, we employ
the Pecan Street profile. To enhance the richness of our
simulations, we introduce variability by scaling the load and
generation profiles using randomly selected loading param-
eters. Additionally, we inject white noise into measurements
with a standard deviation set to 0.02 p.u. [49], [50].
Implementing Details: In the linear AE model, the input
consists of active power flow measurements on all branches,
representing the physical measurements collected from
the grid. For example, in the IEEE 14-bus system with
20 branches, the input vector has a dimension of 20. The
output layer of the AE mirrors the input, aiming to reconstruct
the original measurement vector with minimal reconstruction
error. To capture the underlying system behavior, we set the
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FIGURE 3. Empirical histogram of LNR values using AE/GAN
compared to real LNR values in IEEE 14-bus system.

width of the latent layer to match the number of independent
system states (n), which corresponds to the number of bus
voltage angles excluding the reference bus. For instance,
in the IEEE 14-bus system, the latent space dimension is set
to 13. For the linear encoder, linear decoder, generator, and
discriminator architectures, we employ five fully-connected
layers where each layer comprises approximately ten neu-
rons, and the neurons are activated through Rectified Linear
Units (ReLU). We set the maximum number of training
epochs to 300 for sufficient training. Additionally, for every
5 iteration, we train the generator so that we prioritize training
the discriminator to allow for better convergence. For each
iteration, we sample 50 mini-batches to compute gradients for
advanced searching for parameters. We update these parame-
ters using the Adam optimizer with a learning rate of 2 x 10~
After obtaining system measurements from MATLAB 2022b,
the remaining calculations for FDIA are implemented using
Python 3.8 on a personal computer with an Intel Core i7
processor clocked at 2.2 GHz, and 16 GB of RAM.

Baseline Methods: In the following experiments, we com-
pare our FDIA approach with recent physical-model-free
FDIA baselines, including a principal component analysis
PCA approach to estimate the system Jacobian matrix [18],
a low-rank matrix singular value decomposition approxima-
tion SVD to estimate the system Jacobian matrix [20], and a
generative adversarial network-based approach iAttackGen
to generate new attack measurements [27].

A. VERIFICATION OF RESIDUAL ERROR USING AE AND
GAN ALONE

Before delving into our hybrid model combining AE and
GAN, this subsection first examines the individual perfor-
mances of AE and GAN modules to verify Lemma 2 and
Lemma 3. To validate the two Lemmas, we illustrate in Fig. 3
the empirical histograms of LNR values obtained from FDIA
data employing AE and GAN individually, comparing them
to the LNR values of real measurements. The results demon-
strate a noticeable deviation of the residual error distribution
from the original Chi-squared distribution when using AE
or GAN alone. Specifically, we compute the Earth Mover’s
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FIGURE 4. FDIA measurements using AE/GAN compared to real
measurements in IEEE 14-bus system.

Distance (EMD) between the calculated distribution in Fig. 3
and the theoretical ones from Lemma 2 and Lemma 3. The
resulting low EMD values (see last column of Table 1) sup-
port our theoretical claims.

To gain insights into the above formation of LNR distri-
butions in Fig. 3, we plot the FDIA measurements obtained
through the individual application of AE and GAN in Fig. 4.
Utilizing the t-SNE visualization technique [51], we reduce
the m dimensional plots to 2 dimensions. The observations
reveal that GAN tends to accurately capture the distribu-
tion of real measurements, whereas AE primarily focuses
on learning the central, noiseless components of the real
measurements. Specifically, GAN, by accurately learning the
measurement distribution, results in FDIA data dominated by
pure noise that closely follows this distribution, leading to
a significantly large LNR. Conversely, AE, concentrating on
the noiseless portion of real measurements, yields FDIA data
with minimal noise, consequently resulting in a very small
LNR.

B. EVALUATION OF ATTACK PERFORMANCE OF OUR
FDIA

After evaluating the impact of FDIA when using AE or GAN
independently, we now focus on assessing the effects of FDIA
using our hybrid model which combines AE and GAN.

1) QUALITY OF CREATED SAMPLES

Fig. 5 depicts the real measurements (red) alongside the fake
measurements (blue) generated by our FDIA. While the fake
measurements visually resemble the real data, they do not
completely overlap. This divergence from the original dataset
is anticipated, as the attack regularization term incentivizes
GAN to produce measurements that reside within the bound-
ary of the original data distribution.

2) PERTURBATION OF SYSTEM STATES

Fig. 6 shows the real system states (red) and the states pro-
duced by the fake measurements (blue). Notably, the fake
states exhibit a greater degree of dispersion compared to
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TABLE 1. Performance comparison on various systems. Significance level « = 3%.

physical model Succppp (%) T

Earth-Moving Distance (EMD) |

m n ‘ PCA [18] SVD [20] iAttackGen [27] our FDIA ‘ PCA [18] SVD [20] iAttackGen [27] our FDIA
IEEE 14-bus 20 14 96.2 95.9 95.1 97.6 2.93 1.84 2.53 0.34
IEEE 30-bus 41 30 94.7 95.3 96.7 97.2 4.33 4.57 5.04 1.12
IEEE 39-bus 46 39 94.3 94.4 94.7 97.1 3.17 3.56 2.89 0.89
IEEE 57-bus 80 57 94.5 95.5 95.4 97.7 13.8 124 17.3 1.42
IEEE 118-bus 186 118 94.5 96.6 95.2 98.3 36.1 33.6 29.5 4.67
IEEE 200-bus 245 200 95.3 96.0 98.0 95.3 23.6 18.4 19.0 3.23
RTS-GMLC 120 73 93.6 95.7 95.5 98.5 21.1 18.4 24.3 2.57
IEEE 8-bus 14 8 96.4 96.0 95.3 98.2 2.56 1.96 2.28 0.45
IEEE 123-bus 244 123 93.8 94.3 97.7 94.2 18.1 12.6 17.2 3.51
MYV urban 46 36 96.2 96.3 96.4 97.4 1.48 2.77 2.11 1.04
LV suburban 226 115 93.8 94.3 97.9 94.7 9.57 4.49 13.9 3.12
5 T 3] IEEE 14-bus
5 Fafe mmm= Chi-squared Dis.
= LNR of Real Data
-2 4 -3 7 LNR of Our FDIA Data
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FIGURE 5. FDIA measurements compared to real measurements.
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FIGURE 6. FDIA states compared to real states.

the real states. This divergence aligns with the attacker’s
objective of manipulating the system state estimation process
by solely tampering with the measurements.

3) RESIDUAL ERROR DISTRIBUTION

To validate the assertion that our FDIA can accurately
recover the Chi-squared distribution with a carefully chosen
hyperparameter Aag, as per Theorem 1, we present empir-
ical histograms of LNR values in different systems using
our FDIA approach in Fig. 7. The findings demonstrate
our FDIA model successfully reproduces the original Chi-
squared distribution, presenting a challenge for defenders in
distinguishing between real data and attack data.

Fig. 7 shows that the LNR values of our FDIA model
closely adhere to the Chi-squared distribution X,%_n, sug-
gesting a high likelihood of bypassing the BDD. To provide
quantitative validation, we calculate the success rate of pass-
ing BDD using Eq. (18) and present the results in Table 1.
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FIGURE 7. The empirical histogram of LNR values. o« = 3%.

The results indicate that our FDIA model achieves a
higher rate (around 97%) of bypassing BDD to baseline
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models (around 95%). This improvement is likely attributed
to the model’s capability of accurately replicating the Chi-
squared distribution, as formally proven in Theorem 1.
Meanwhile, we observe that although other baselines also
demonstrate relatively high rates of bypassing BDD, they
exhibit a significantly higher Earth Mover’s Distance (EMD)
metric compared to our FDIA model. It implies that these
baseline attacks are more easily detectable when scrutiniz-
ing the distribution of LNR values. In contrast, our FDIA
model achieves a remarkably small EMD, indicating close
alignment of its LNR values with the exact Chi-squared
distribution.

C. SENSITIVITY ANALYSIS TO HIDDEN STATE DIMENSION
A key design choice in our FDIA model is the hidden state
dimension within the autoencoder (AE) module. We hypoth-
esize that setting this dimension equal to the number of free
system states is essential for achieving accurate measurement
reconstruction and replicating the behavior of the state esti-
mation process. To validate this hypothesis, we conduct an
experiment using the IEEE 14-bus test case. We analyze the
residual error and the reconstruction error while varying the
AFE’s latent dimension from 1 to 20. It is important to note
that, in DC power flow models, the system states are the
voltage phase angles of all buses except the reference bus,
whose angle is fixed and non-free. Therefore, the number of
free system states in the chosen system is 13.

Lemma 2 states that the residual error of attack measure-
ments processed by the AE is proportional to the hidden
dimension size. To validate this relationship, Fig. 8 (upper
half) plots the residual errors of attack measurements from
AE for various hidden dimension sizes. The blue curve repre-
sents the averaged residual error, and the shaded area shows
the range of residual errors. The plot demonstrates that the
residual errors of the attack measurements exhibit a trend
that roughly aligns with a linear relationship to the size of
the hidden dimension. Furthermore, as the hidden dimension
size approaches 20 (which corresponds to the number of
system measurements in this case study), the residual error
approaches the level observed for real measurements (hori-
zontal pink line).

While reducing the hidden layer dimension in the AE
model can lower the residual error—thereby improving
stealthiness—it may also lead to a higher reconstruction error.
This is because a smaller latent space lacks the capacity to
capture the full complexity of the measurement data. The
lower half of Fig. 8 illustrates the reconstruction error of a
well-trained AE model across various hidden dimensions.
We observe that the reconstruction error drops sharply and
approaches zero once the latent dimension exceeds 13, which
corresponds to the number of independent system states in
this case study. This observation aligns with the principle
that system states represent the minimal set of variables
required to reconstruct all measurements [32]. These results
indicate that setting the AE’s hidden layer dimension equal
to the number of system states achieves a desirable balance:
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various hidden layer size for the IEEE 14-bus test case.

it minimizes residual error while preserving accurate recon-
struction of the original measurements.

1) DISCUSSION ON DATA AVAILABILITY

The feasibility of training our AE-GAN model depends
on access to historical measurement data. While real-time
topology and parameters are typically protected, archived
measurements are often available for operational or regula-
tory purposes [52], and may be obtained via cyber intrusions,
insider threats, or public platforms [53]. When data is limited,
training—especially for GANs—becomes more challenging
due to overfitting risk and reduced diversity. To mitigate
this, data augmentation [54] and transfer learning [55] can
improve generalization. We conduct a sensitivity analysis on
the IEEE 57-bus system by varying training sizes from 500 to
5000 samples. Results show the BDD bypass rate stabilizes
around 95% after 1750 samples, suggesting moderate data
is sufficient. This reflects the model’s data efficiency, as it
learns the residual structure rather than the full physical
model. Future work will explore few-shot and meta-learning
techniques to further reduce data requirements.

D. SENSITIVITY ANALYSIS TO HYPER-PARAMETERS

1) SENSITIVITY TO HYPER-PARAMETER A ag

We examine the effect of Asg by plotting the success rate of
passing BDD (succgpp) and earth-moving distance (EMD)
for various Aag in Fig. 9. Here, we denote the theoretically
optimal hyperparameter from Theorem 1 as AZ‘E and compare
it with 0.5 x )\OAIE and 2 x )\OAIE. The findings demonstrate
that choosing Aag = 0.5 x A;‘g, smaller than the optimal
value, leads to the predominance of the GAN model within
the hybrid framework. This positioning shifts the residual
error distribution to the right of the true Chi-squared distri-
bution, resulting in a decreased succBDD and an increased
EMD. Conversely, opting for 2 x AOAIE, larger than the optimal
value, favors the DAE model dominance, causing the residual
error distribution to shift to the left of the true Chi-squared
distribution. This leads to a higher succBDD but a larger
EMD. Notably, neither scenario proves as advantageous as
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selecting the optimal hyperparameter A\ AE, which achieves a
perfect recovery of the Chi-squared distribution.

2) SENSITIVITY TO HYPER-PARAMETER Aattack
We also assess the effects of Ayiack, Which governs the
extent of attack size regularization. In Fig. 10, we depict
the relationship between fake measurements and real mea-
surements across various selections of the hyperparameter
Aattack- Additionally, we visualize the corresponding resid-
ual error for each scenario. As we vary the hyperparameter
Aattack, Which penalizes the distance between FDIA and real
measurements, interesting trends emerge. With a small value
like Aaack = 0.01, we observe that the generated FDIA
data clusters closely around the real data. As we increase
Aattack to values like 0.1 and 0.5, the fake measurements
progressively deviate from the real ones, indicating a more
successful attack. However, a notable observation is made
at Agrack = 0.5, where the significant increase starts to
compromise the Chi-squared distribution of the residual error,
potentially leading to failure at the distribution detector.

3) TRADE-OFF BETWEEN HYPERPARAMETERS Apg
AND 2 attack

An effective attack achieves two key objectives: (1) bypassing
the BDD and (2) creating a significant attack vector. Our
prior sensitivity analysis revealed that the hyperparameters
AAE and Agack influence these objectives in opposing ways.
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To illustrate this trade-off, Fig. 11 presents the successful rate
of passing BDD (succgpp) and the expected squared norm of
the attack size E||z — z||% across various combinations of AAg
and Agack- Indicated by the results, the optimal weights are
Mg = 0.7and A%, o = 0.1, where A’ ;. is actually very close
to the theoretically optimal value in Theorem 1.

4) SENSITIVITY ANALYSIS TO MEASUREMENT
COVERAGE

In real-world scenarios, complete historical data from all
grid measurements may not always be available, and certain
measurements might be inherently protected or immune to
manipulation. This practical constraint necessitates an anal-
ysis of our FDIA’s performance under varying degrees of
measurement coverage. Denoting the number of measure-
ments immune to attack as mNoAtak < [0 m], we conduct
a sensitivity analysis to evaluate our FDIA across a range
of mNoAttack yajyes. To do so, we randomly select and
remove mNAtk measurements and apply our FDIA process.
As shown in Fig. 12, the success rate of bypassing BDD drops
with an increasing number of unattacked measurements. This
decline is unsurprising, given the diminished attack infor-
mation resulting from the reduced measurement coverage,
thereby presenting greater challenges for effective FDIA.
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E. EXTENSION TO AC POWER SYSTEMS

Although our method is developed under the DC power
flow model for rigorous theoretical guarantees, we evaluate
its performance on AC systems using the IEEE 57-bus and
118-bus test cases. Fig. 13 compares the empirical LNR
distributions of the generated attack measurements with the
theoretical Chi-squared distribution used in BDD. Results
show that our method generalizes reasonably well: the attack
residuals closely match the expected distribution, indicating
a high likelihood of bypassing BDD even under nonlinear AC
conditions. However, the fit is slightly less precise compared
to the DC case. This degradation stems from the nonlinear
nature of AC systems, which complicates the measurement
manifold and limits the ability of a standard autoencoder
to fully capture it. Since our theoretical guarantees rely on
linear models, this gap is expected. These findings motivate
future work on developing specialized or physics-informed
autoencoders better suited for nonlinear AC systems.

F. ROBUSTNESS UNDER SYSTEM CONTINGENCIES

In practical power systems, the Assumption 1 of steady-state
operation and stationary data distributions can be challenged
by real-world contingencies. These contingencies may tem-
porarily or permanently shift the system behavior, raising
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concerns about the robustness and adaptability of data-driven
attack models. In this section, we examine two representa-
tive scenarios that deviate from steady-state operation and
evaluate the performance of our proposed AE-GAN model
under each: (1) power-related fluctuations that preserve the
grid topology, and (2) structural changes that alter the system
topology and trigger updates to the state estimator and BDD
mechanism.

For power-related fluctuations, the system experiences
short-term deviations such as demand spikes or generation
adjustments, which do not change the network topology.
Since the Jacobian matrix H remains fixed, the BDD test
remains valid. While these fluctuations shift the operating
point, they still follow the same physical model and thus lie
near the boundary of the original data distribution assumed
in our training. To validate robustness under such conditions,
we simulate a scenario in the IEEE 57-bus system where
10% of the time window includes synthetic deviations in
the state variables. We compute new measurements from the
unchanged H, and use the entire dataset (including perturbed
data) for training. As shown in Fig. 14 (left), the residuals
of the generated false measurements remain well aligned
with the Chi-squared distribution, indicating that our method
remains stealthy and effective under moderate load fluctua-
tions.

For topology-altering contingencies, such as line outages
or reconfiguration events, the system undergoes a permanent
structural change that alters its physical model. In response,
the operator updates the state estimator to reflect the new
topology, resulting in a modified Jacobian matrix H and a
corresponding update to the BDD mechanism. To simulate
such a scenario, we remove the transmission line between
bus 25 and bus 30 in the IEEE 57-bus system and gen-
erate DC power flow data under both the original and
modified topologies. We concatenate the two datasets to
form a composite measurement distribution with two dis-
tinct modes. To ensure compatibility with the updated BDD
logic, we apply MATLAB’s built-in change-point detection
algorithm findchangept s to isolate the post-contingency
data, which aligns with the updated system configuration.
The AE-GAN model is then retrained on this post-change
data. As shown in Fig. 14 (right), the residuals of the
generated attacks continue to follow the Chi-squared distribu-
tion closely, demonstrating that, with proper preprocessing,
the proposed method remains stealthy even under topology
changes.

The above experiment regarding topology-altering events
also provides insights into the performance of our approach
under a class of defense mechanisms known as Moving
Target Defense (MTD), which intentionally and periodically
reconfigures the grid topology to disrupt attack strate-
gies. While our experiment reflects a single MTD-induced
change, it shows that with access to post-reconfiguration data,
change-point detection enables the attacker to adapt to the
new topology and retrain the model to maintain stealthiness.
However, we also observe that if MTD schemes are applied
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topology-altering events, in IEEE 57-bus system, compared to
the theoretical Chi-squared distribution.

at high frequency, the attacker may lack sufficient data under
each topology to retrain effectively, thereby degrading the
feasibility of data-driven FDIAs. Fortunately, in practical
power systems, MTD strategies are implemented at moderate
timescales due to operational, physical, and economic con-
straints. As such, our method remains applicable in many
realistic MTD settings, and we highlight adaptation to rapid
or unpredictable MTD as an important direction for future
work.

V. CONCLUSION

This paper presents a novel physical-model-free False Data
Injection Attack (FDIA) framework that reliably bypasses
Bad Data Detection (BDD) without requiring any physical
model, such as grid topology or line parameters. The pro-
posed method introduces a principled hybrid architecture
combining an autoencoder (AE) and a generative adversarial
network (GAN). The AE module reduces residual errors by
mimicking the state estimation process in terms of denois-
ing and projecting noisy measurements onto a physically
meaningful manifold. It is achieved by using a latent space
dimension equal to the number of system states to denoise
measurements and replicate the residual error characteristics
of real data. The GAN module then explores the measurement
manifold to induce significant deviations in the estimated
states, thereby maximizing the impact of the attack. Theo-
rem | formally demonstrates that the residual errors of the
generated false measurements follow the same theoretical
Chi-squared distribution as true measurements, ensuring a
statistically equivalent likelihood of bypassing the BDD. The
effectiveness of the proposed method is validated across
11 representative grid systems, including both transmission
and distribution networks, using real-world power profiles.
The results show consistently high BDD evasion success rates
and low Earth Mover’s Distance (EMD) values, outperform-
ing existing model-free baselines and confirming the ability
of our method to replicate the residual distribution with high
fidelity. These findings reveal a critical vulnerability in mod-
ern power grids, where attackers without system knowledge
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can still launch highly effective and stealthy FDIAs. Future
work will extend this framework to more realistic AC power
flow models and explore advanced detection and defense
mechanisms to counteract such data-driven cyber threats.
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