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Abstract—With the growing integration of Inverter-Based
Resources (IBRs) for renewable energy, power grids are shift-
ing towards hybrid generations. As the system becomes more
complex, it is challenging to ensure optimal and safe control.
Recent work shows how to achieve a conditional optimal control
with stability ensured by pre-selecting one subclass of activation
functions for control. However, we demonstrate that the subclass
leads to a sub-optimal control policy for IBRs. To address this
issue, we propose a method to enlarge the feasibility space for
true optimality while preserving the Lyapunov stability. The key
idea is to implement a conditional control strategy based on the
damping. When IBRs observe that synchronous generators are on
the way to stabilize the grid sufficiently, IBRs do not necessarily
need to conduct droop control with monotonic function. In
some cases, IBRs can conduct actions that more closely align
with non-monotonic control to encourage renewable generations.
This extends from monotonic to non-monotonic functional space.
Moreover, based on Pontryagin’s maximum principle, we prove
that the extended region is sufficiently large to contain a globally
optimal solution. By leveraging our activation function, which
can be both monotonic and non-monotonic, our numerical results
on various test cases show significant improvement compared to
existing solutions.

Index Terms—Inverter-Based Resources, Optimal Frequency
Control, Sufficiently Large Feasible Control Region, Pontryagin’s
Maximum Principle, and Reinforcement Learning

I. INTRODUCTION

To reduce the emission of carbon dioxide, renewable gen-
erations are increasingly introduced to the power grid via
inverters [1]. If they are not well managed, power grids will
suffer events [2]-[5]. Such shift renders the widely deployed
linear-droop control less efficient, as such control models
the generators as synchronous machines [6]-[9]. However,
synchronous machine models can not adequately model in-
termittent generation with an inverter interface that reduces
inertia and creates a nonlinear relationship in the control.
Consequently, the synchronous machine-based linear control
is far from optimum when we have Inverter-Based Resources
(IBRs) [10]. With many countries setting ambitious zero-
emission targets by 2050 [1], developing optimal control
strategies is crucial for resilient and sustainable grids [11].

For the nonlinear control of the inverter, a direct approach
is to approximate it using a linear time-varying control, where
the slopes are adjusted based on changing operating conditions
[9]. While such a method provides improvement over the
linear control, they are often based on heuristic designs, e.g.,
a quadratic function over time, leading to non-optimal design
[12]. For a more systematic approach, one can introduce a
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physics model partially to tune the droop gain adaptively, e.g.,
based on the wind turbine parameters [13]. Human expertise
can also be used for fuzzy controllers [14]. Since we do not
know physical behavior exactly [10], can we learn the behavior
with guarantees of system stability and optimality via data-
driven approaches?

To learn nonlinear controller policies, Reinforcement Learn-
ing (RL) has emerged as a promising method [15]-[17]. But,
RL lacks inherent stability guarantees for critical infrastructure
like power systems [18], [19]. So, the condition of Lyapunov
stability was added as a constraint during RL training [20]-
[22]. [23] finds a monotonically increasing function satisfies
Lyapunov condition, similar to droop control. If the monotonic
function is assumed, the paper shows how to regulate the fre-
quency optimally conditioned on this assumption or selection.
The objective chosen includes infinite norm to minimize maxi-
mum frequency deviations and L2-norm for the average effect
over the time horizon. Recurrent Neural Networks (RNNs)
are used to not only ensure that the optimization considers
all the temporal states but also to speed up the learning
process. Recently, [24] extended the work by introducing
communication among inverters, but the core idea is the same.

One problem of the method is the pre-selection of mono-
tonic functions. There is no proof that non-monotonic func-
tions can not ensure stability. Because of this, the optimization
for frequency regulation does not consider a sufficiently large
feasibility region for true optimality [25]. As a consequence,
the control performance in [23] is sub-optimal. A natural
question arises: Can we quantify a sufficiently large action
region that contains the globally optimal solution? To answer
the question, we look into the exactness of inequality when
deriving the monotonic and non-monotonic relationship on the
control function based on the swing equation.

There are two requirements for stability based on swing
equation. One is the unique stable state. This is because con-
verging to different operating points under the same condition
indicates instability or undesirable operating conditions [26].
For this uniqueness, we observe that the damping values were
ignored in [23], [24]. By incorporating damping, the control
rule goes beyond the monotonic functional class, enlarging
the potential region with stability. The second requirement for
stability is the convergence of system states to an equilibrium
point. Thus, we prove that a selected Lyapunov function is
stable under the proposed non-monotonic control function with
damping considered. For a proof, it is hard to find a direct
analytical form. So, we employ the Pontryagin’s maximum
principle and Lagrangian multiplier to conduct a dual analysis.
Such a detour makes us capable of showing that our solution
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in optimal frequency control is strictly better than the existing
approaches with relaxed conditions. Specifically, we prove
that the globally optimal solution lies in our quantified action
region, and there is a high chance for the globally optimal
solution to lie outside of the region in existing methods.

To train our controller, RNN is essential for considering
all the past deviations, as the optimal frequency control can
regulate the maximum overshoot and the average deviations
over time. RNN as a computation graph also speeds up
the learning process [23]. Within the recurrent structure, we
further investigate the design of the RNN cell for target control
functions. To achieve stable and optimal control functions, we
devise a parallel structure for the RNN cell with nonlinear
stacked ReL.U functions. And, the weighted connections for
the two coordinate blocks in the RNN cell are restricted into
the maximal possible range, strictly guaranteed by the param-
eter clipping technology [27]-[29]. Finally, we generalize the
problem setup on the objectives to show that the theorem
holds broadly for different classes of cost functions. The
optimal control strategy for different objectives shows distinct
characteristics, monotonic or non-monotonic. For example,
when the IBRs know that synchronous generators (SGs) will
stabilize the system, IBRs will sometimes use non-monotonic
control functions for achieving better performance in the
objectives.

To validate our approach, we conduct simulations using
the IEEE-39 bus system, a widely accepted benchmark for
stability analysis [21], [23]. Our results demonstrate that
the proposed controller outperforms previous designs across
various state and action cost functions. For example, our
design has lower overall cost values and converges faster.
This improvement is particularly notable when the objec-
tive considers emission and fuel cost reductions, highlighting
the controller’s effectiveness in addressing key concerns in
renewable-integrated power systems.

The rest of the paper is as follows. Section II provides math-
ematical modeling. Section III shows that past methods have
a conservative action region, bringing non-optimal solutions.
Section IV illustrates how the action region can be enlarged.
Section V shows the extended region is sufficiently large:
the globally optimal control lies within the region. Section
VI presents numerical results, and Section VII concludes the

paper.

II. MATHEMATICAL MODELING WITH FLEXIBLE
OBIJECTIVE

Consider a n-bus power system with phase angles 8 =
{01, - ,0,} and the frequency deviations w = {w1, - ,wy }.
Based on 6; = w;, we can form the energy dissipation equation
for controller designs. For example, Fig. 1 shows how to
construct the swing equation when the mechanical power is
converted to the electric power for a local bus ¢. For such a
system, we have five different inputs in red lines that jointly
create the inertia torque of the generator: M;w;, where M, is
the inertia constant [30], [31].

The first one is the power from the mechanical part:
DPm,i = Dg,i — R%wl-, where pg ; is the governor set point or
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Figure 1: Frequency control loop at a generator with integrated
inverter resources [30].

the scheduled mechanical power input to the generator R; is
the droop characteristic of the governor and wl represents
the frequency-dependent component of the mechanlcal power.
The second term w;(w;) is the inverter output for frequency
regulation like the droop control, so we give the negative sign
the same as the sign in front of —wl The third term is load
damping L;w;. The last two terms are the local load p1,; and
the electrical power flow p.; = ijl B sin(6; — Qj).
they are using the power in some sense, the signs for them
are negative. Therefore, we have

Miw; =

1
(pg,i - Riwz) —ui(w;) — Liw; — prs — pes (1)

1
= (pg,i — P1,i) — (Rz + Li) ui(w;) (2)
= pi — Diw; — pe,i — u;i(wi), 3)

where pz = Pg,i — Pi,; is the net power injection at bus ¢ and
D; = R + L; is the combined droop coefficient for the SG
and the load at bus i [32]. The combined droop is shown in
the grey area in Fig. 1. In this paper, we will highlight that
such a droop is useful for improving the feasibility region for
control. Please note that a controller needs to satisfy not only
the swing Eq. (3), but also the limits of power generation for
IBRs at bus ¢ during the dynamics, e.g., u;(w;) € [u,;u;]. What
happens if there is no inverter on a bus? We set u;, =u; =0
for no control.

While one can use the swing Eq. (3) and inverter constraints
to minimize the cost of frequency deviation, there is another
constraint we need to enforce. The controller needs to have
stability guarantees. For such a guarantee, we convert the
swing Eq. (3) into an abstract form:

i(t) = f(@i(t), ui(t)), )

where we redefine the state in a vector form x; = (Oi,wi)T
In such a form, f(-) is the dynamical function. Moreover, the
system is stable if a Lyapunov function is a positive definite
function V(). For example, if V(z*) = 0, V(x) > 0 for all
x € D\z*,and V(z) < 0 for all z € D\z* [33], [34], we have
the Lyapunov stability at an equilibrium point z*. In the rest
of the paper, we also follow the classic setting for modeling
the dynamics. We assume that (1) the voltage magnitude is 1
p-u., (2) the lines are lossless, and (3) the reactive powers are
ignored [32]. We note that while simplified models are used
for analysis, high-order models are used in simulations.

Wi — Pe,i —
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A. Flexible Objective Designs

In the past work, the objective is predefined with a fixed
form. We generalize the objective in this subsection. Our
objective includes two classes. One is the state cost, while the
second class is the control cost [35]. This is based on the ob-
servation that most of the objectives can be modeled by these
two classes, where the state cost evaluates the performance,
e.g., frequency deviation and the control cost represents the
efforts needed to have a good result [36]. Therefore, we define
the optimization problem below.

min ;(Cl(wi) + 7Ca(u;(wi))) 5)

s.t. ul(wz) eu;,

where U; is the feasible region that admits stability for
the swing equation dynamics, defined in Eq. (7), Cq(w;)
denotes the cost for the deviations of controlled states, i.e.,
the frequency deviation. Co(u;(w;)) is the cost for the control
efforts, i.e., the change of active power generation for SGs
and IBRs. For such two costs, C(w;) often employs a norm-
based objective to measure the time-domain deviations of
the frequency. L2-norm accounts for averaged deviation, e.g.,
[ (wi(t))?dt, where T is the total duration, while L°°-
norm looks into minimizing worst-case deviation, which is
equivalent to the magnitude of frequency nadir in an under
frequency disturbance.

For Cy(u;(w;)), we can design it to encourage renewable
energy generation [37], [38], minimize fuel costs [39], reduce
carbon emission cost [38], [40], and lower degradation cost
due to heat and wear from changing the operating point [23].
Finally, the maximum rate of change of frequency (RoCoF)
can also be augmented to C to ensure system resilience [41].
All these can be captured in the general form Co(u;(w;)) =
[|wi(w;)||* — Bw;, where 3 > 0 is a weight to penalize the
generation of the SG. When it is over-frequency, the objective
will encourage the curtailment of SG over the curtailment of
IBRs. When under-frequency, the objective tries to reward the
increase of IBR generation and penalize SG generations.

Remark: We give further explanations for the objective
—pBw;. This objective is proportional to the increase of the
SG generation —D;w; (D; > 0), defined in Equations (3)
in the paper. Namely, for different scenarios, this increase
is minimized, and the curtailment of the SG generation is
maximized. Specifically, we discuss the following scenarios.

o Over-frequency scenario. When w; > 0, —fw; < 0.

Correspondingly, —D;w; < 0 and —u;(w;) < 0 are
the SG and IBR generation curtailment, respectively.
Minimizing the objectives in Equation (5) will (i) con-
strain the frequency deviation in C1(w;), (ii) reduce the
IBR generation curtailment in ||u;(w;)||> by pushing
u;(w;) > 0 towards 0, thus maximizing —u;(w;), and (iii)
increase the SG generation curtailment by minimizing
the negative objectives —w; and —D;w;. Note that this
minimization will make —D;w; towards a more negative
value.

o Under-frequency scenario. When w; < 0, —f8;w; > 0.

Correspondingly, —D;w; > 0 and —u;(w;) > 0 are

the increase of the SG and IBR generation, respectively.
Minimizing the objective in Equation (5) will (i) constrain
the frequency deviation in Cj(w;), (i) constrain the
increase of IBR by minimizing ||u;(w;)||> and pushing
u;(w;) < 0 towards 0 which is important to respect
actuator physical limits, and (iii) reduce the increase of
the SG by minimizing the positive objectives —Sw; and
—D;w;. Although objective (ii) penalizes IBR production
when it’s under-frequency, it improves the transient re-
sponses by having a shorter settling time for the system
and smoothens the controller’s response. Moreover, we
introduce objective (iii) so that the coordinate control is
prioritized for reducing the increase of the SG. Then,
by the power balance constraint, the IBR generation
will increase. Notably, this prioritization doesn’t exist for
traditional optimal control with only objectives (i) and

(ii).

B. Problem Definition

We can write the optimization below, with a general form
for the objectives, to consider different needs, e.g., safety and
economic benefits. Such a form makes our work applicable to
a wide spectrum of OPF problems instead of a specific class
[37]-[40].

m&n;(Cl(wi) + 702 (ui(wi))) ©)

s.t.ow(w;) € U,

where C1(w;) and Ca(u;(w;)) are defined above. Constraints
of U; = {u;|u; is feasible} include the swing equation, the
generation limits, and the stability condition.

éi = Wi, (73-)

lel =Di — Diwi — Z Bij sin(9i — (97) — Uy (wi), (7b)
j=1

< Uy, (7c)

(7d)

i > U
u;(w;) is stabilizing to a unique equilibrium point.

IIT. CONSERVATIVE DESIGN VIA MONOTONICALLY
INCREASING FUNCTIONS

In this section, we will show that the past design is conser-
vative, and we will illustrate how to enlarge the conservative
design for a sufficiently large region to contain a globally
optimal solution. Therefore, we can achieve significantly better
performance in many scenarios. In general, two important
properties are employed to evaluate the feasibility of the
control actions: (1) Uniqueness. Feasible actions should con-
trol states to a unique equilibrium point, bringing guaranteed
control results. (2) Stability. Feasible actions should be able
to stabilize the state to the equilibrium point.

Conditions for uniqueness. Since (7d) requires wu;(w;)
to stabilize to a unique equilibrium point, one needs to
check what control property ensures a unique solution while
satisfying (7b). Letting ; = 0; — % Z?Zl 6; be the center-of-
inertia coordinates [42], [43], we have §; = J; — %ZZ=1 0;
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by changing the subscript Subtract the two terms, we have

0;—0; = 6 + >0 .0, — L3 0, = 6 — 05
Therefore we can rewrrte the swmg Eq. (7b) 1nt0
Mid)l‘ =Di — Diwi — Z Bij sin(éi — 5j) — ul(wz) (8)
j=1

Taking the derivative of §; = 6; —
j= .
point. Moreover, there is zero dynamics, e.g., 6; = M;w; = 0.
Therefore, for the local equilibrium point (6*,w*) such that
0* =07, - ,0] and w* = [w], - ,w}], we obtain

v n
n
1
Ozw;‘f—g wi,
n J
i=1

0=p; — Diw" —ui(w*) = »_ Byjsin(5; — 7). (9b)
j=1

£, 6; with respect

to time, we have 91 = w; — %Z L w; at the equilibrium

(9a)

To discuss the uniqueness of the equilibrium point, we must
consider a certain state range because the state d; has cyclic
patterns. For the angle range, since J; is computed as the
center-of-inertia, we can safely conclude that the equilibrium
point 6} € (—/2,7/2) and |67 —d7| € [0, 7/2), if buses i and
7 are connected. For the frequency range, it typically allows
small variations around a nominal value [44]. Furthermore,
at the unique equilibrium point, all buses must have a fixed
and synchronized frequency w*. Therefore, w; = w*, for
V1 <4 < n. Summing up (9a) for a lossless system leads to
S pi = > wi(w*)+w* > D;. Suppose there are two
equilibrium points w* and . As the total power Y .-, p; does
not change, we have > " | p; = > i u;(w*) +w* Y I' D; =
S u(@) +w Z? D;. This leads to

n
Yo e T wl Z D; <0.
i=1

[23] observes that the left hand side of Eq. (10) is positive,
if u;(w) is monotonically increasing. But, this contradicts the
negative sign on the right of (10), as the damping D; is a
non-negative physical term. Therefore, the monotonicity gives
a sufficient condition for the design of w;(w) to verify the
uniqueness of w*, needed in (7d). While a sufficient condition
enables a unique outcome, there may exist another condition
that creates better performance and preserves uniqueness and
stability. Specifically, there is a significant and unexplored
room for the coordination between SG and the IBR, en-
couraging a larger search room for the control of IBR, i.e.,
u;(w;). We emphasize that this coordination does not require
communication, as it is between the inverter and generator that
share the same bus and frequency. Under the coordination, we
can change the right-hand side of Eq. (10) to other negative
values and still preserve the uniqueness.

Conditions for stability. To verify the stability of a Lya-
punov controller, we need to find a Lyapunov function V' (z),
satisfying the stability condition stated after Eq. (4). The
condition is, if V(z*) =0, V(z) > 0 for all x € D\ z*, and
V(x) < 0 for all z € D\ z*. For constructing the Lyapunov
function, typically, there are two parts summed together [45].

_ul

(10)

The first one is the mechanical energy, which can be expressed
as 3> | M;(w; — w})?. The second part is the electrical
potential energy of the system, e.g., WW,(d), representing the
electrical power stored in the transmission network’s inductors
and capacitors [46].

1 n .
— §ZMi(w27wi)2+Wp(5) (11)
1=1
where W,(8) = =137 > i1 Bij(cos(0ij) — cos(6;;)) —

Dy Ej | Bijsin(0};)(0; —07). In order to let the system be
stable, we need V' (z) > 0,V (z) < 0 according to the stability
condition of Lyapunov function.

ov . )

-—Ww; | .

dv_z”: Ve
_i:I 851 ! 8wi

Viz) = i
We have Y ., 86 V.5; = 0 based on our assumption of a loss-
less transmission assumption with voltages and currents are
constant in a short time. In such a short time, the transmission
network does not dissipate electric energy; hence the sum of
total electrical energy stored in the system remains constant,
making ZZ 1 g(‘;é 0. Also, since w; on different buses
will be the same after reaching the stability point, we replace

w; with w* for compactness. Then, we have

12)

v K1
- = ; 5 (M (w; — i) (13)
n n
=Y Di(wi —w*)? = (wi — w*) (ui(wi) — wi(w])).
i=1 i=1
We need the derivative % to be negative for Lyapunov
stability, as the negative derivative lets any points go to the
equilibrium point only. One choice for strictly negative % is

to let each individual term be negative in (11). Therefore, we
have the following inequality.

(wi —w*) (ui(wi) — ui(W))) > (=D;) (wi —w*)?,  (14)

where we keep the controller u on the left hand side with a
positive sign. Why is the region of the past method conserva-
tive under stability conditions? [23], [24] show that any control
rule with u(w;) monotonically non-decreasing achieves local
Lyapunov stability. However, we show that such a condition
can be achieved with a more general condition. As w* is at the
equilibrium point, when no more control should be dispatched,

we set u(w]) = 0. This leads to
ui(w;) + Diw; >0, if w; >0, (15)
uz(wl) + Dw; <0, ifw; <O.

Eq. (15) brings a much relaxed condition for stability, com-
pared to the monotonic requirement in [23], [24].

IV. ENLARGE THE FEASIBLE REGION FOR CONTROL

In this section, we aim to investigate an enlarged ac-
tion region with uniqueness and stability requirements. Strict
derivations are given to show the region extension. Based
on the derivation, we will show in the next section that
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the enlarged region is sufficiently large to contain a globally
optimal solution.

For uniqueness, we note that the control rule of SGs is
typically linear with respect to frequency. This linear rela-
tionship is due to governors’ mechanical limitations, such as
the linearity of governor speed with power [47], the linearity
of turbine power, and the valve position [30]. Therefore, we
represent the contribution of the SG control by a linear droop
gain «;D; to modify the control pattern of the SG, where
1 > «; > 0 implies that the maximal possible frequency
response coefficient for the SG is D;. The value of «; is
determined by the modeling uncertainty in the SG and the
desired robustness, as many SGs exhibit delays and nonlinear
behavior, which can be bounded by «;. Hence, in a coordina-
tion mode, the total controllable power between SG and IBR
is U;(wi, ;) = wi(w;) + a;D;w;. Under this condition, we
can now derive an equivalent form for the condition of the
equilibrium point. Specifically, we have

n
1
0=w—— g w?,
n j
j=1

0=p; — (1 — o) Diw" — @i;(w*) = Y Byjsin(d} — 57).
j=1

(16)
Eq. set in (16) reduces to Eq. (9a), when «; = 0. This
echoes our claims that the derivations from (8) to (15) lead
to an overly conservative region. In particular, introducing
a; won’t change the control law of the IBR and SG but
brings convenient analyses for stability and the optimal control
function design. First, for IBR, we emphasize that @;(w;, «;)
is only an intermediate variable. In the following derivation,
we will prove that the stability can be achieved by making
U;(w;, ;) monotonic. However, the true control function for
IBR, namely, u;(w;) can be non-monotonic. The physical
meaning is that the IBR control can consider the damping
resources in the SG to gain more flexibility, which is better
than previous methods. Second, the droop control for the SG
is D;w; but not (1 — «;)D;w; to satisfy the swing equation
dynamics. In general, our theory reveals that as long as there
is damping (D; > 0) in the SG, IBR can make use of these
resources to behave non-monotonically but still achieve sta-
bility. More importantly, non-monotonic property is preferred
to encourage the generation of IBRs. Finally, we note that
similar to previous work [21], [23], [48] in the design phase,
we omit the upper and lower bounds of the SGs. However, in
simulations we implement ugs < use < Usg.

In the next lemma, we will prove that Eq. (16) provides
an relaxed sufficient condition for the uniqueness of the
equilibrium point.

Lemma 1. Let @;(w;, ;) = ui(w;) + a;Diw;. Assume that
the angles at equilibrium satisfy |67 — 67| € [0,7/2), if bus i
and j are connected. Then, there exists a unique equilibrium
point (8%, w*) if for 1 > «; > 0, @;(w;, ;) is monotonically
increasing with respect to a local frequency deviation w;.

5
Proof. Eq. (16) is equivalent to
> opi=Y di(wt i)+ (1—o)w* Y D (17)
i=1 i=1 i=1

Consequently, Eq. (17) is the sufficient and necessary con-
dition for the equilibrium point. Then, we only need to inves-
tigate the equivalent condition for the uniqueness. To prove
the sufficiency of the condition, we assume that @;(w;, ;) is
monotonically increasing. Assuming there are two equilibrium
points w* and @ for (17) leads to

i&i(w*, ;) + (1 — a;)w* i: D;
i=1 i

(@, 04) + (1 — ai)wz D;.

%

(18)

I
<3}

s
Il
—

which is equivalent to:

Z U (w*, aq) — ?i(d},ad,) - (1- ai)ZDi <0. (19

. w* —w 5
=1 =1

Then, the left hand side of Eq. (19) is positive, which brings
a contradiction.

O

Rather than the sufficient condition in [23] with a;; = 0, our
case considers «; € [0, 1] for a relaxed sufficient condition to
support the uniqueness of the equilibrium point. Subsequently,
we need to prove that this condition always implies the
stability of the system. Thus, this condition can satisfy all
constraints in Eq. (7). To be more specific, we propose the
following theorem.

Theorem 1. Consider the unique equilibrium point (6*,w™)
defined in Lemma 1 with a region of attraction D; =
{(6,w)||6; — 6;| € [0,7/2), buses i and j are connected.}.
For the monotonically increasing function ;(w;, o) with
1> a; >0, (0%,w*) is locally and exponentially stable.

Proof. First, by Lemma 1, we have established that
Ui (Wi, ;) = u;(w;) + ; Dyw; being monotonically increasing
ensures a unique equilibrium point (6*,w™) satisfying Eq.
am.

If u;(w;) is monotonically increasing (i.e., o; = 0), local
asymptotic stability was shown in (11)-(15) and exponen-
tial stability can be demonstrated following the example of
[23], where the Lyapunov derivative V is bounded using
the quadratic form and applying the Rayleigh-Ritz theorem
establish V < —¢cV proving exponential stability.

For the relaxed condition where we only assume ;(w;, «;)
is monotonically increasing with «; € [0,1], we follow
the same stability analysis. The key requirement is that
U;(wi, o) — U3 (w*, ;) and w; — w; have the same sign.

This condition is precisely what Lemma 1 guarantees
through the monotonicity of ;(w;, «;), as shown in Eq. (19)
where: o o

Ui (w*, o) — Ui (w0, ) >0,

wr—w
Therefore, the same Lyapunov-based stability proof from
[23] applies directly to our case with the relaxed condition,
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establishing local and exponential stability of the unique
equilibrium point. O

Combining Lemma 1 and Theorem 1, we can conclude that
the monotonic property of @;(w;, «;) brings an extended region
of U;, compared to the state-of-the-art [23], [24]. To further
quantify the region, we give the following corollary.

Corollary 1. Assume that the feasible range for the monoton-
ically increasing function ;(w;, 041) is [QZ- (wi), @;(w;)], then,
U; = [t;(w;) — Diw;, G; (w;)] N [u;, @

By Corollary 1, u;(w;) can be non-monotonic since the
lower bound is @;(w;) — D;w; with an extra negative slope
—D;. This allows the optimization of flexible objectives such
as carbon emissions and renewable curtailment.

V. GLOBALLY OPTIMAL CONTROL WITH A SUFFICIENTLY
LARGE REGION

A. Optimality via the Enlarged Region

The last section proves that the proposed region is much
larger than the feasible region for control from previous meth-
ods with stability guarantees. However, the question remains
whether the identified area of U/; is sufficiently large to contain
the globally optimal solution. In this subsection, we prove the
following two properties: (1) there exists the globally optimal
control action in ¢/; and (2) in many cases, the globally optimal
control action lies outside of the region identified in the state-
of-the-art [23], [24].

Theorem 2. For the proposed optimization in (5), the follow-
ing properties hold:

o There exists an globally optimal solution u}(w;) in the
identified region of U; in Corollary 1.

o Within a time interval, if u; —|— £ — “’7 —a; Dw; > 0 s
not monotonically increasing wzth respect to w;. Namely,
the optimal solution is outside of the range in existing

work [23].

Proof. To prove the result directly, we need to find ZZZ to
indicate the increasing or decreasing trends for the optimal
policy function. However, this is hard to compute due to
the fact that there is no explicit expression, and the function
uf(w;) is estimated by a neural network. Therefore, we adopt
an alternative approach, where we use Lagrangian dual to
calculate the derivative in the dual space. After such a cal-
culation, we will return to the original space to calculate ij .
However, the analytical framework of Lagrangian dual and
Pontryagin’s maximum principle only provides the necessary
conditions for a locally optimal solution. We note that the
objectives proposed in II-A are convex with respect to the
action wu;. This implies that the investigated optimality is for
a globally optimal solution. In general, we will provide the
following steps for proof.

Step 1. Introduce Lagrangian analysis. To introduce
Lagrangian analytical framework for optimal control problem,
we employ Pontryagin’s maximum principle [49]. Specifically,
for the optimization in bus i, we introduce the time-varying

Lagrangian multiplier for the ODE constraints, leading to a
Hamiltonian function over [0, 7]

H = Cy(w;) + vCa(ui(w;))
+ A\ (pz- — ZBij Sil’l((gi —

J

(20)

(Sj) — (1 — ai)Diwi — ﬂl(wl))
According to the first-order condition for the optimal solu-
tion, we have:

OH dCy
%'ﬁi:ﬁ =7 da, |la,=ar — X
d[[ﬂi(wi, a;)]? = 20 Diw;ii; (wi, o) + (aiDiwi)ﬂ
-7 it (wi, o) =
Y
= 27t (wi, o) — 2y Diw; — Ay = 0
— 11: = % + a; D;w;.
(21)

Step 2. Compute dual state evolution. According to Eq.
(21), to compute u;, we need to calculate the evolution of the
multiplier \;, i.e., the dual state. By Hamiltonian functions,

we have:
. oH dCl dii;
=—— = -2 2~vo; D
A P VB — o [Ai = 2vi; + 2y Diw;] —— o
+ Q’YOQDZ( azDiwi) + )\1(1 — ai)Di~
(22)

Step 3. Return to the analysis of the original state. By
Equations (21) and (22), we have:

=iy o LdG
i 2 2y dw;

du,

(23)

To further investigate the sign of , since the Lo and L
have similar effects, we utilize Lo norm for analysis, which
brings well-defined gradients. Hence, ‘fli = 2w;. Since % is
large as frequency control is prioritized over action cost when
it’s over-frequency, the Right-Hand-Side (RHS) of Eq. (23) is
negative. When it’s under-frequency, the RHS of Eq. (23) is
positive. Then, We need to figure out the sign of w; so that we
can determine 1f %L js positive or negative.

The theorem dlscusses the property of the globally optimal
solution u; and %, which is the ideal solution as the Pontrya-
gin maximum principle is derived based on a centralized full
state-feedback controller. We use the analysis to study how
such a controller would act and use it as a design guide for
the neural network-based local controller. In this ideal case,
once there is an over-frequency (under-frequency) scenario, the
controller will immediately take action to push the deviation
to 0. Thus, for the over-frequency (under-frequency) case, the
globally optimal controller will make w; < 0 (w; > 0). In
other words, the ideal controller will never enable w; > 0
(w; < 0) to enlarge the frequency deviations. We note that
for our controller, the power imbalances are not measurable.
Therefore, we can only consider them as disturbance with zero
means in the optimization problem, which allows us to design
a controller that attempts to enforce w < 0 (w > 0) whenever
w > 0 (w < 0). Hence, 4% > ( always hold, bringing a

’ dwi
monotonic relationship between #; and w;.
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For the second property, we have @;(w;, ;) = u;(w;) +
a; D;w;. Therefore,
duf Ui + g -

L= R — il —OéiDi.
dwi w;

(24)

This suggests that for the over-frequency scenario, when
u; +§ — %L —o,; Dw; > 0, u} is not monotonically increasing.
This condition can happen because w; < 0 and the decreasing
rate can be large.

O

The conditions specified in Theorem 2 are critical due to
the following reasons: (1) the term |w;| is relatively large to
quickly stabilize the frequency and (2) the hyper-parameters
~ and S in the objective design are relatively large, which en-
courages the curtailment of SG generations. More specifically,
when the system is over-frequency, all the hyper-parameters
mentioned in reason (2) promote the cost penalization for
SG generations. As a result, the curtailment function for
IBR generation, u;(w;), does not necessarily increase as the
frequency w; rises. Conversely, the curtailment function for
SG generation, Dw;, is monotonically increasing with w;.

B. Non-monotonic Controller to Learn the IBR Control with
A Sufficiently Large Feasible Region

To solve the optimization and provide a nonlinear controller,
we a introduce neural network based controller @;(w;, cv;; ©)
as a universal approximator to learn the nonlinear control
policy for the RL agent to make decisions, where O represents
the network’s weights. According to Section III, we need to:
(a) limit «; € [0,1], (b) restrict the parameterized controller,
Ui (w;, @;;0) to be monotonically increasing with respect
to w;, () set 4;(0,a;;0) = 0, and (d) enable saturation
constraints in Eq. (7) are satisfied. Then, gradient descent will
search local optimal solutions of © in the sufficiently large
region U;. To achieve these goals, we introduce the following
critical techniques for the controller, we revisit some definition
in [23], and adapt the designs into our framework.

1) Structural Design with a Parameter Clip to Ensure
a; € [0,1]: For requirement (a), recall that u;(w;;©) =
Ui (wi, @3 0) — a;Diw;. So, we propose a structural design
that includes a neural network @;(w;, a; ©) plus a linear layer
a; D;w;. To make sure that the constraint always holds when
updating weights, we employ parameter clipping [28], [29].
Specifically, for the ¥ training iteration, clipping requires a
mapping

a; < max(min(a;, 1),0). (25)

2) Non-Monotonic Stacking RelLU to Gain Monotonic
Property for i;(w;, a; ©): For requirements (b) and (c), we
design a non-monotonic stacking ReLU function: ;(w;, «; ©)
is a one-layer neural network. When w; > 0, f'(w;) =
gio(lw; + b;), where g;,b; € R™ are the weight and bias
vectors, respectively. m is the number of neurons in the
layer. o(z) = max(z,0) is the ReLU function. We can
make f;"(w;) monotonically increasing by setting 2221 q >
0¥l =1,2,--- ,m, b} =0, and b}, <"1 VI =2,3--- m.
The proofs of the monotonic property can be found in [23].

Similarly, when w; < 0, f; (w;) is defined. The defined
[T (wi) and f; (w;) together make sure that @;(w;, a; ©) is
monotonically increasing when w; € R and passes the origin.

3) Another ReLU Outside to Satisfy Saturation Constraint:
For requirement (d), we utilize the ReLU again to make sure
the final output satisfy the saturation constraint:

wi(w;) =t; — o (w; — (fi (wi) + f; (wi) — a;Diw;))

+o(u; — (fiF (@) + fi7 (wi) — i Diwi)).  (26)

C. RNN-Based Controller Training

In this section, we show how to train the proposed controller.
First, we discretize the system to apply reinforcement learning
based approaches. The discrete dynamics is obtained using
a fixed time step At. At each step £ = 0,1,..., K, we
approximate

0i(k+1) = 0;(k) + Atw;(k), (27)

wl(k‘ + 1) :%wi(k;) — % ZBWSZTL(@ - 9]) + plAt
j=1 !
DAt At
+ (1= ——)w(k) — —u(wi(k);©), (28)

M M

where (6;[k], w;[k]) are the angle and frequency at step k and
u;(w;[k]) is the inverter control.

To learn the weights and biases of the neural-network-
based controller, we embed our controller in an RNN structure
unrolled in time and trained via a gradient-based reinforcement
learning (RL) approach. The purpose of the RNN structure
is to provide a computationally efficient way to propagate
the gradients through automatic differentiation [23]. We note
that the RNN framework does not add additional control nor
affect the stability as it is constrained to embed the system
dynamics in (28) to facilitate learning u(w;(k); ©) [23]. The
pseudocode is summarized in Algorithm 1, which uses mini-
batches of simulated trajectories and updates parameters by
backpropagating the loss through the unrolled RNN cells.

a) Forward Pass (RNN Unrolling): As discussed in Sec-
tion IV, each bus ¢ applies a control law

ui(wi; ©) = U — o(W—ui(wi, 3 0)) + o(u;—ui(w;, a3 0)),
where
Ui(wi, 030) = fiH(wi) + fi (wi) — o Dy w;.

To account for time-coupling, we treat (6;,w;) as the
hidden “cell state.” At each stage k, the RNN cell (controller)
receives (6;(k),w;(k)) as input and outputs the control u; (k).
The power-system equations (7) then update the states to
(0;(k + 1),w;(k + 1)), which are passed to the next RNN
cell at stage k + 1.

b) Loss Computation.: Because the objective (6) involves
both state costs C;(w) (e.g., L? or L, norms of frequency
deviation) and action costs Cy(u) (e.g., quadratic penalty on
u or renewable-curtailment costs), we evaluate them at each
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Algorithm 1: Reinforcement Learning to train the
control function with RNN unrolling

Input: Learning rate «, batch size H, total time stages
K, number of episodes N.
Output: Optimized neural network weights © for
control

1 Initialization: Randomly initialize weights © of the
neural network controller (26)
2 for episode = 1 to N do
3 for h=11t0 H do // mini-batch loop
// (1) Randomly sample initial
load step
4 Generate random initial load change Ap,,
within the specified bounds for bus
t=1,...,n.
// (2) Roll out the unrolled RNN
through K stages
5 for k=0t K—1do
6 (a) Pass (01 (k),w! (k)) through the RNN
cell (which implements (26) internally) to
obtain the control action u’ (k)
7 (b) Simulate one step of the power system
dynamics (7) with time step At to get
(01 (k + 1), (k + 1))

// outer loop

8 end
// (3) Compute the cost of the
trajectory
9 Use the objective in (6).
10 end
// (4) Aggregate losses and update

neural network

1 TotalLoss = - Zthl Lossy,

12 (a) Perform backpropagation through the unrolled
RNN layers (including the non-monotonic design
(26) and parameter clipping)

13 (b) Update © + © — a Vg (TotalLoss) using
Adam or a similar optimizer

14 end

time step and sum (or take the max) over the entire horizon
0,..., K. Concretely,

H n
TotalLoss = 4 Z Z Cr(wl (ko) + v Coul (k)fy),
h=1 i=1

state cost

where h € {1,--- , H} indexes the mini-batches (each simu-
lating a distinct trajectory with different initial states or load
disturbances).
¢) Backward Pass (Gradient and Parameter Updates).:

To train the network weights © (including the clipping for ),
we use backpropagation through time (BPTT). Specifically,
automatic differentiation frameworks compute the gradient of
the loss by unrolling the RNN for K steps and chaining
derivatives of each cell’s outputs with respect to the previous
cell’s states and actions. Overall, this RNN-based scheme
provides a direct way to optimize closed-loop policies u;(w;)

by simulating realistic power-system trajectories. Once trained,
the neural controller can be deployed in real time: at each
sampling instant, measure the local frequency w;, feed it into
the trained network, and apply the computed u;(w;) to the
inverter.

VI. EXPERIMENTS

To validate the claim of our method, we use the IEEE-39
New England test system, commonly used for stability analysis
[21], [50]. This is because the New England system has been
designed to emulate the dynamic response of medium-sized
power networks [51]. In this test case, there are 10-connected
generators, and it is assumed that for each generator, there
is a connected renewable inverter to act as the controller.
To validate our method, we compare it with respect to past
methods. We also conduct such comparisons for various types
of cost functions and different load disturbances to check the
generalizability claimed in the earlier sections.

A. Simulation Setup

For the simulation setup, the training is done using the Keras
Tensorflow framework with Nvidia 3070 GPU. The dynamic
response of the network is modeled using ANDES, an open-
source Python package for power system dynamic simulation
[52], where a 6" order model is used for the generators and
Western Electricity Coordinating Council (WECC) models for
the inverter resources. For benchmarking, we use different
combinations of traditional generations and inverter-based
generations on different buses. Once the load is chosen, we
assume the load to be constant during the operation, which is
typical for short-scale primary frequency control analysis [30].

To train the network, we generate 800 batches of 2 seconds
trajectories with uniform load and generation step change
between [—1,1] p.u. Training is carried out for 200 epochs
to ensure convergence. We evaluate performance using L2-
and L,,-norms for state loss, while action loss is assessed
through different combinations of metrics, including degrada-
tion, emissions, and fuel savings, each with adjustable weights.
For validating our contribution on a larger feasibility region,
we consider the same setup with the monotonic ReLU design
in [23]. For example, we train the same neural network to min-
imize the same cost with L°°-norm for the state cost, where
v =0.005, 8 = 0.002, and o = 0.6. For benchmark methods,
we use Monotonic-ReLLU [23] as the nominal benchmark, but
we include two additional benchmarks representing primary
methods of optimal frequency control. First, policy search
based unconstrained optimization where (5) is solved with
an optimization solver with linear parametrization [9] which
we refer to as Optimal-Linear. The second is learning based
approach where the Lyapunov function is learned instead of
guaranteeing the stability by design [21], [48], which we will
refer to as Learned-Lyapunov.

B. Feasible Region Comparison

Fig. 3 shows the optimized activation function for con-
trollers when v = 0.005 in optimization (6), where +y is the
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weight for the two metrics in the objective function. The x-
axis is the measured frequency deviation, and the y-axis is
the corresponding inverter action. The subplots of Fig. 3 are
for buses 30, 31, 32, and 33 when the optimization achieves
the optimal results. The selected buses are at different edges
for representative illustration. In the figure, we first show the
original region from the past method [23] in purple. Our
approach enlarges the region to include the region in pink.
As we can see, the pink region is significant, so our approach
explores both the purple and pink regions freely. Then, we
present the optimization results from the past method and
the proposed method. The dashed blue line is from the past
method. It stays strictly within the blue region. Our proposed
control method has more freedom, and the optimized control
rule in the red line can happen in both purple and pink regions.
For example, the control rule can be in the same regions
or different regions (i.e., bottom right sub-plot in Fig. 2).
A unique feature is that our design allows a non-monotonic
control function, which helps achieve optimal results. This
non-monotonicity allows the inverter to either increase its
generation in the under-frequency case when the frequency
deviation is below a certain threshold, then increase it when
it rises above that, such as the top right subplot, or be
monotonically decreasing as the bottom right subplot. This
gives flexibility in the inverter operation to do what is optimal
based on the given objective.
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Figure 2: Control function for monotonic and non-monotonic
design for the four inverters at buses 30, 31,32, and 33 for
~ = 0.005.

For validation on diverse values of v, we increase v from
0.005 to 0.008 shown in Fig. 3. The goal is to check our results
when giving more weight to the action penalty. We observe
that the two regions are the same, but the optimized control
rules have different behaviors. In particular, our proposed
method can stay in the pink region with non-monotonic
properties. For example, the last figure shows that the past
methods tries to be close to the pink region in our proposed
method. Our method can go beyond the boundary between
the purple and pink regions for better optimality. We observe
from the Fig. 3 that for the first, second, and fourth sub-plots,
the inverters prioritize increasing renewable generation in the

over-frequency scenario. In the under-frequency scenario for
the third sub-plot, both controllers are monotonic as they both
increase renewable generation in such case.
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Figure 3: Control function for monotonic and non-monotonic
design for the four inverters at buses 30, 31,32, and 33 for
~ = 0.008.

C. Objective Comparison During Training

In addition to comparing how much we improve the feasible
region, it is critical to quantify how much improvement our
method gives on the objective. Therefore, we use Fig. 4
to show how the performance comparison between the past
method with a monotonic function [23] in blue dashed line
and the proposed method in solid red line. The x-coordinate
shows the epochs during training, and the y-coordinate shows
the total loss in the objective. We can see that the perfor-
mances are similar at the beginning. However, the red one
gradually outperforms in the sense of having a lower loss after
25 epochs. The losses for both methods stabilize after 100
iterations. The final loss is -0.8 for the old method in blue and
-1.1 for the proposed method in red. And, the improvement is
about 37%.

- - =Past Control
—Proposed Control

Total Loss

I N T L
IR AT e

0 50 100 150
Episodes

Figure 4: Convergence comparison for the proposed and the
Monotonic-ReLU method.

D. Performance Comparison with Different Objective Designs

After showing how the proposed method improves its
performance during the training process, we will show the
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Figure 5: Total costs, state costs, and action cost for the past and proposed control methods as the weight  changes.
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Figure 6: Frequency response of the proposed controller in comparison to the monotonic ReLLU controller in both over frequency
and under frequency events with high disturbance. In both subplots, the proposed controller is on the left and the monotonic

is on the right.

converged results with different objective functions and dif-
ferent weights. For example, Fig. 7a illustrates the total cost,
average state, and action costs with the same setup as the last
subsection. In such a setup, we have an L, norm on frequency
deviation for . Similarly, we consider the step load change
analysis by various values of . The x-axis of Fig. 5 is the
action penalty ~, and the y-axis is the cost function. We draw
six lines in the figure, as we not only compare the total costs
but also their sub-components on state costs and control costs.
We can see that the proposed method not only has a lower total
cost but also reduces the action cost significantly.

We change the objective to convert Lo to L., norm in
Fig. 7b. We also include RoCoF in Fig. 5c to reflect the
Rate of Change of Frequency (RoCoF). In both figures, we
can observe the same phenomenon that our proposed method
can reduce the total cost. Also, the larger the ~ infers more
control cost and better overall performance. In Fig. 7b and
Fig. 5c, we observe improvement in the action cost due to
increased renewable generation with a slight increase in the
state cost, and the tradeoff is controlled by the value of ~.

This shows that having a non-monotonic response for the
inverter controller design can still stabilize the system and
minimize all forms of frequency loss metrics as long as the
coordinated response remains monotonic. For the subsequent
simulations, the proposed controller adopts the design in
5S¢ with v = 0.005, combining the penalty on maximum
frequency deviation and RoCoF.

E. Significant Performance for Boosting Renewable Energy

Last subsection shows that our approach can boost renew-
able.

So, Fig. 9 looks into the net change of renewable curtailment
over time, when there is a step load decreases of 10% on
buses 30, 31, and 32 at ¢ = 0.5. Specifically, Fig. 9 shows
the total power produced by all buses’ inverters in both
proposed and monotonic designs. The blue and red lines are
the same initially. After the load change, the red line stays
higher than the blue line. This shows that our proposed design
increases renewable production in the transient and reduces
steady-state curtailment, which agrees with the coordination
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Figure 7: Frequency response of the proposed controller in comparison to the monotonic ReLLU controller in both over frequency
and under frequency events with low disturbance. In both subplots, the proposed controller is on the left and the monotonic

is on the right.

expected from our non-monotonic design. We examine the
response further by looking at all the inverters generation
in Fig. 8 for both the proposed and monotonic designs and
observe. Unlike the past control, The proposed design let some
inverters increase their generation during the over frequency
where the generation is sufficient from synchronous genera-
tors. For example, we observe in Fig. 8 that some inverters
can increase their generation even during a load decrease due
to the expanded region. Finally, we validate the frequency
stability in Fig. 10, which shows that the proposed method
maintains frequency stability below 0.05 HZ while minimizing
curtailment, while the Learned-Lyapunov method sacrifices
exhibits a much larger deviation.

0.00 LAy
0.00
—0.05 —0.05
—— Busl —— Bus6
~=0.10 _ Bus 2 Bus 7
3 3-0.10 —— Bus3 —— Bus8
S —-0.15 > Bus 4 Bus 9
—— Bus5 —— Bus10
~0.20 -0.15
-0.25 _0.20
0 5 10 15 0 5 10 15

time(s) time(s)
Figure 8: (a) Inverter generation offset for proposed design (b)
Inverter generation offset for monotonic ReLLU design.

FE. Evaluate Transient System Stability

The previous sections show that our method works better
than the past in the sense of lower objectives and the capability
to boost renewable. Howeyver, it is critical to make sure that all
the constraints are satisfied. For example, a critical constraint
motivating this paper comes from the Lyapunov stability.
For thoroughness, we show the stability performance with
both under-frequency and over-frequency cases at different
disturbance levels. First for high disturbance, the step load is
decreased by 1 p.u. at ¢t = 0.5s, while for the under frequency

the load is increased by 1 p.u. shown in figure Fig 6. The
figures depict the evolution of the system’s frequency during
the disturbance. We observe that despite the sudden distur-
bance, the frequencies on all buses converge to a common
value, indicating that synchronism is maintained. Moreover,
we observe that both the proposed design and monotonic-
ReLU achieve a similar maximum frequency deviation of
around 0.09 Hz. This validates that the renewable curtailment
minimization does diminish the frequency response to large
deviations. On the other hand, the curtailment minimization is
evidence during the smaller disturbance, which we simulate
with a load change of 0.1 p.u. as in Fig. 7. We observe that
the proposed method exhibits a larger frequency deviation;
however, it is within 0.04 Hz, which is within safe operating
conditions.

. —— Proposed Control
0.25 - = Monotonic-ReLU
. — -+ Optimal-Linear
Learned-Lyapunov

time(s)

Figure 9: The total power produced by all buses’ inverters by
the proposed design and benchmark methods.

G. Robustness Evaluation via Sensitivity Analysis on Distur-
bances and Costs

For robustness evaluation, we test with a wide range of
scenarios in Figs 11 and 12. For example, we test various
disturbance events. We also randomly select three generators
for each event, and we vary the step load change at those
buses between —1 p.u. to 1 p.u., and the simulation is repeated
over 50 iterations per step load change. This setup ensures a
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Figure 10: The maximum frequency deviation in all buses
under the proposed design and benchmark methods.

comprehensive comparison of our proposed method for a wide
range of events. Fig. 11 shows the average performance of the
frequency cost on the y coordinate against the load change on
the x coordinate. Also, Fig. 12 shows the average performance
of the renewable generation loss cost on the y coordinate
against the load change on the x coordinate. From the figures,
we observe that under-load scenarios have a trade-off between
the renewable curtailment cost and frequency deviation cost,
and the non-monotonic design yields better performance, e.g.,
significantly lower cost. The improvement is most apparent in
the [—.25, 0] range where the proposed method has an average
15% decrease in net curtailment over the Monotonic-ReLU
and a maximum improvement of 50% when the step load
changes by 6%. Moreover, the proposed method has a consis-
tent cost decrease over linear. The learned-Lyapunov method
achieves a lower action cost but fails to maintain frequency
safety, as it is missing the theoretical guarantee we provide.
Finally, as the improvement occurs in low deviation events,
which are more prominent, it will accumulate consistently over
time, leading to significant savings. In Fig. 13, we can see the
cost improvement of the proposed method. On the other hand,
our cost is almost identical to that of the monotonic design
in the overload scenario. This is because both the monotonic
and non-monotonic designs increase the generation during an
overload event.
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Figure 11: Change of maximum frequency within a range of
step load changes for the proposed Lyapunov controller and
the benchmark methods.
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Figure 12: Change of inverter generation loss within a range
of step load changes for the proposed Lyapunov controller and
the benchmark methods.
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Figure 13: Change of inverter generation loss within over
frequency low disturbance events for the proposed Lyapunov
controller and the benchmark methods.

VII. CONCLUSION

This paper proposes to enlarge the feasibility region for
optimizing primary frequency control. The extended region
is rigorously proved to be sufficiently large to contain a
globally optimal solution, but the past region usually doesn’t
contain such a solution. As a consequence, our proposed
Lyapunov neural controller shows better performance than the
past methods. The better performance is due to our design of
using the damping resources to expand the Lyapunov stable
policies in the neural network’s search space. Based on the
property of the control, we design a non-monotonic ReLU
function for action exploration. As the new design allows the
optimization of a wider range of cost functions, we show that
we can have better renewable curtailment and lower fuel costs,
which the monotonic design fails to optimize.
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