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Abstract—With the growing integration of Inverter-Based
Resources (IBRs) for renewable energy, power grids are shift-
ing towards hybrid generations. As the system becomes more
complex, it is challenging to ensure optimal and safe control.
Recent work shows how to achieve a conditional optimal control
with stability ensured by pre-selecting one subclass of activation
functions for control. However, we demonstrate that the subclass
leads to a sub-optimal control policy for IBRs. To address this
issue, we propose a method to enlarge the feasibility space for
true optimality while preserving the Lyapunov stability. The key
idea is to implement a conditional control strategy based on the
damping. When IBRs observe that synchronous generators are on
the way to stabilize the grid sufficiently, IBRs do not necessarily
need to conduct droop control with monotonic function. In
some cases, IBRs can conduct actions that more closely align
with non-monotonic control to encourage renewable generations.
This extends from monotonic to non-monotonic functional space.
Moreover, based on Pontryagin’s maximum principle, we prove
that the extended region is sufficiently large to contain a globally
optimal solution. By leveraging our activation function, which
can be both monotonic and non-monotonic, our numerical results
on various test cases show significant improvement compared to
existing solutions.

Index Terms—Inverter-Based Resources, Optimal Frequency
Control, Sufficiently Large Feasible Control Region, Pontryagin’s
Maximum Principle, and Reinforcement Learning

I. INTRODUCTION

To reduce the emission of carbon dioxide, renewable gen-

erations are increasingly introduced to the power grid via

inverters [1]. If they are not well managed, power grids will

suffer events [2]–[5]. Such shift renders the widely deployed

linear-droop control less efficient, as such control models

the generators as synchronous machines [6]–[9]. However,

synchronous machine models can not adequately model in-

termittent generation with an inverter interface that reduces

inertia and creates a nonlinear relationship in the control.

Consequently, the synchronous machine-based linear control

is far from optimum when we have Inverter-Based Resources

(IBRs) [10]. With many countries setting ambitious zero-

emission targets by 2050 [1], developing optimal control

strategies is crucial for resilient and sustainable grids [11].

For the nonlinear control of the inverter, a direct approach

is to approximate it using a linear time-varying control, where

the slopes are adjusted based on changing operating conditions

[9]. While such a method provides improvement over the

linear control, they are often based on heuristic designs, e.g.,

a quadratic function over time, leading to non-optimal design

[12]. For a more systematic approach, one can introduce a

* All three authors contributed equally to this work.

physics model partially to tune the droop gain adaptively, e.g.,

based on the wind turbine parameters [13]. Human expertise

can also be used for fuzzy controllers [14]. Since we do not

know physical behavior exactly [10], can we learn the behavior

with guarantees of system stability and optimality via data-

driven approaches?

To learn nonlinear controller policies, Reinforcement Learn-

ing (RL) has emerged as a promising method [15]–[17]. But,

RL lacks inherent stability guarantees for critical infrastructure

like power systems [18], [19]. So, the condition of Lyapunov

stability was added as a constraint during RL training [20]–

[22]. [23] finds a monotonically increasing function satisfies

Lyapunov condition, similar to droop control. If the monotonic

function is assumed, the paper shows how to regulate the fre-

quency optimally conditioned on this assumption or selection.

The objective chosen includes infinite norm to minimize maxi-

mum frequency deviations and L2-norm for the average effect

over the time horizon. Recurrent Neural Networks (RNNs)

are used to not only ensure that the optimization considers

all the temporal states but also to speed up the learning

process. Recently, [24] extended the work by introducing

communication among inverters, but the core idea is the same.

One problem of the method is the pre-selection of mono-

tonic functions. There is no proof that non-monotonic func-

tions can not ensure stability. Because of this, the optimization

for frequency regulation does not consider a sufficiently large

feasibility region for true optimality [25]. As a consequence,

the control performance in [23] is sub-optimal. A natural

question arises: Can we quantify a sufficiently large action

region that contains the globally optimal solution? To answer

the question, we look into the exactness of inequality when

deriving the monotonic and non-monotonic relationship on the

control function based on the swing equation.

There are two requirements for stability based on swing

equation. One is the unique stable state. This is because con-

verging to different operating points under the same condition

indicates instability or undesirable operating conditions [26].

For this uniqueness, we observe that the damping values were

ignored in [23], [24]. By incorporating damping, the control

rule goes beyond the monotonic functional class, enlarging

the potential region with stability. The second requirement for

stability is the convergence of system states to an equilibrium

point. Thus, we prove that a selected Lyapunov function is

stable under the proposed non-monotonic control function with

damping considered. For a proof, it is hard to find a direct

analytical form. So, we employ the Pontryagin’s maximum

principle and Lagrangian multiplier to conduct a dual analysis.

Such a detour makes us capable of showing that our solution
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in optimal frequency control is strictly better than the existing

approaches with relaxed conditions. Specifically, we prove

that the globally optimal solution lies in our quantified action

region, and there is a high chance for the globally optimal

solution to lie outside of the region in existing methods.

To train our controller, RNN is essential for considering

all the past deviations, as the optimal frequency control can

regulate the maximum overshoot and the average deviations

over time. RNN as a computation graph also speeds up

the learning process [23]. Within the recurrent structure, we

further investigate the design of the RNN cell for target control

functions. To achieve stable and optimal control functions, we

devise a parallel structure for the RNN cell with nonlinear

stacked ReLU functions. And, the weighted connections for

the two coordinate blocks in the RNN cell are restricted into

the maximal possible range, strictly guaranteed by the param-

eter clipping technology [27]–[29]. Finally, we generalize the

problem setup on the objectives to show that the theorem

holds broadly for different classes of cost functions. The

optimal control strategy for different objectives shows distinct

characteristics, monotonic or non-monotonic. For example,

when the IBRs know that synchronous generators (SGs) will

stabilize the system, IBRs will sometimes use non-monotonic

control functions for achieving better performance in the

objectives.

To validate our approach, we conduct simulations using

the IEEE-39 bus system, a widely accepted benchmark for

stability analysis [21], [23]. Our results demonstrate that

the proposed controller outperforms previous designs across

various state and action cost functions. For example, our

design has lower overall cost values and converges faster.

This improvement is particularly notable when the objec-

tive considers emission and fuel cost reductions, highlighting

the controller’s effectiveness in addressing key concerns in

renewable-integrated power systems.

The rest of the paper is as follows. Section II provides math-

ematical modeling. Section III shows that past methods have

a conservative action region, bringing non-optimal solutions.

Section IV illustrates how the action region can be enlarged.

Section V shows the extended region is sufficiently large:

the globally optimal control lies within the region. Section

VI presents numerical results, and Section VII concludes the

paper.

II. MATHEMATICAL MODELING WITH FLEXIBLE

OBJECTIVE

Consider a n-bus power system with phase angles θ =
{θ1, · · · , θn} and the frequency deviations ω = {ω1, · · · , ωn}.
Based on θ̇i = ωi, we can form the energy dissipation equation

for controller designs. For example, Fig. 1 shows how to

construct the swing equation when the mechanical power is

converted to the electric power for a local bus i. For such a

system, we have five different inputs in red lines that jointly

create the inertia torque of the generator: Miω̇i, where Mi is

the inertia constant [30], [31].

The first one is the power from the mechanical part:

pm,i = pg,i −
1

Ri

ωi, where pg,i is the governor set point or

Figure 1: Frequency control loop at a generator with integrated

inverter resources [30].

the scheduled mechanical power input to the generator. Ri is

the droop characteristic of the governor and 1

Ri

ωi represents

the frequency-dependent component of the mechanical power.

The second term ui(ωi) is the inverter output for frequency

regulation like the droop control, so we give the negative sign

the same as the sign in front of 1

Ri

ωi. The third term is load

damping Liωi. The last two terms are the local load pl,i and

the electrical power flow pe,i =
∑n

j=1
Bij sin(θi − θj). As

they are using the power in some sense, the signs for them

are negative. Therefore, we have

Miω̇i =

(

pg,i −
1

Ri

ωi

)

− ui(ωi)− Liωi − pl,i − pe,i (1)

= (pg,i − pl,i)−

(
1

Ri

+ Li

)

ωi − pe,i − ui(ωi) (2)

= pi −Diωi − pe,i − ui(ωi), (3)

where pi = pg,i − pl,i is the net power injection at bus i and

Di =
1

Ri

+ Li is the combined droop coefficient for the SG

and the load at bus i [32]. The combined droop is shown in

the grey area in Fig. 1. In this paper, we will highlight that

such a droop is useful for improving the feasibility region for

control. Please note that a controller needs to satisfy not only

the swing Eq. (3), but also the limits of power generation for

IBRs at bus i during the dynamics, e.g., ui(wi) ∈ [uiui]. What

happens if there is no inverter on a bus? We set ui = ui = 0
for no control.

While one can use the swing Eq. (3) and inverter constraints

to minimize the cost of frequency deviation, there is another

constraint we need to enforce. The controller needs to have

stability guarantees. For such a guarantee, we convert the

swing Eq. (3) into an abstract form:

ẋi(t) = f(xi(t), ui(t)), (4)

where we redefine the state in a vector form xi = (θi, ωi)
T .

In such a form, f(·) is the dynamical function. Moreover, the

system is stable if a Lyapunov function is a positive definite

function V (x). For example, if V (x∗) = 0, V (x) > 0 for all

x ∈ D\x∗, and V̇ (x) < 0 for all x ∈ D\x∗ [33], [34], we have

the Lyapunov stability at an equilibrium point x∗. In the rest

of the paper, we also follow the classic setting for modeling

the dynamics. We assume that (1) the voltage magnitude is 1
p.u., (2) the lines are lossless, and (3) the reactive powers are

ignored [32]. We note that while simplified models are used

for analysis, high-order models are used in simulations.
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A. Flexible Objective Designs

In the past work, the objective is predefined with a fixed

form. We generalize the objective in this subsection. Our

objective includes two classes. One is the state cost, while the

second class is the control cost [35]. This is based on the ob-

servation that most of the objectives can be modeled by these

two classes, where the state cost evaluates the performance,

e.g., frequency deviation and the control cost represents the

efforts needed to have a good result [36]. Therefore, we define

the optimization problem below.

min
u

n∑

i=1

(C1(ωi) + γC2(ui(ωi)))

s.t. ui(ωi) ∈ Ui,

(5)

where Ui is the feasible region that admits stability for

the swing equation dynamics, defined in Eq. (7), C1(ωi)
denotes the cost for the deviations of controlled states, i.e.,

the frequency deviation. C2(ui(ωi)) is the cost for the control

efforts, i.e., the change of active power generation for SGs

and IBRs. For such two costs, C1(ωi) often employs a norm-

based objective to measure the time-domain deviations of

the frequency. L2-norm accounts for averaged deviation, e.g.,
∫ T

0
(ωi(t))

2dt, where T is the total duration, while L∞-

norm looks into minimizing worst-case deviation, which is

equivalent to the magnitude of frequency nadir in an under

frequency disturbance.

For C2(ui(ωi)), we can design it to encourage renewable

energy generation [37], [38], minimize fuel costs [39], reduce

carbon emission cost [38], [40], and lower degradation cost

due to heat and wear from changing the operating point [23].

Finally, the maximum rate of change of frequency (RoCoF)

can also be augmented to C1 to ensure system resilience [41].

All these can be captured in the general form C2(ui(ωi)) =
||ui(ωi)||

2 − βωi, where β > 0 is a weight to penalize the

generation of the SG. When it is over-frequency, the objective

will encourage the curtailment of SG over the curtailment of

IBRs. When under-frequency, the objective tries to reward the

increase of IBR generation and penalize SG generations.

Remark: We give further explanations for the objective

−βωi. This objective is proportional to the increase of the

SG generation −Diωi (Di > 0), defined in Equations (3)

in the paper. Namely, for different scenarios, this increase

is minimized, and the curtailment of the SG generation is

maximized. Specifically, we discuss the following scenarios.

• Over-frequency scenario. When ωi > 0, −βωi < 0.

Correspondingly, −Diωi < 0 and −ui(ωi) < 0 are

the SG and IBR generation curtailment, respectively.

Minimizing the objectives in Equation (5) will (i) con-

strain the frequency deviation in C1(ωi), (ii) reduce the

IBR generation curtailment in ||ui(ωi)||
2 by pushing

ui(ωi) > 0 towards 0, thus maximizing −ui(ωi), and (iii)

increase the SG generation curtailment by minimizing

the negative objectives −βωi and −Diωi. Note that this

minimization will make −Diωi towards a more negative

value.

• Under-frequency scenario. When ωi < 0, −βiωi > 0.

Correspondingly, −Diωi > 0 and −ui(ωi) > 0 are

the increase of the SG and IBR generation, respectively.

Minimizing the objective in Equation (5) will (i) constrain

the frequency deviation in C1(ωi), (ii) constrain the

increase of IBR by minimizing ||ui(ωi)||
2 and pushing

ui(ωi) < 0 towards 0 which is important to respect

actuator physical limits, and (iii) reduce the increase of

the SG by minimizing the positive objectives −βωi and

−Diωi. Although objective (ii) penalizes IBR production

when it’s under-frequency, it improves the transient re-

sponses by having a shorter settling time for the system

and smoothens the controller’s response. Moreover, we

introduce objective (iii) so that the coordinate control is

prioritized for reducing the increase of the SG. Then,

by the power balance constraint, the IBR generation

will increase. Notably, this prioritization doesn’t exist for

traditional optimal control with only objectives (i) and

(ii).

B. Problem Definition

We can write the optimization below, with a general form

for the objectives, to consider different needs, e.g., safety and

economic benefits. Such a form makes our work applicable to

a wide spectrum of OPF problems instead of a specific class

[37]–[40].

min
u

n∑

i=1

(C1(ωi) + γC2(ui(ωi)))

s.t. ui(ωi) ∈ Ui,

(6)

where C1(ωi) and C2(ui(ωi)) are defined above. Constraints

of Ui = {ui|ui is feasible} include the swing equation, the

generation limits, and the stability condition.

θ̇i = ωi, (7a)

Miω̇i = pi −Diωi −

n∑

j=1

Bij sin(θi − θj)− ui(ωi), (7b)

ui ≤ ui ≤ ui, (7c)

ui(ωi) is stabilizing to a unique equilibrium point. (7d)

III. CONSERVATIVE DESIGN VIA MONOTONICALLY

INCREASING FUNCTIONS

In this section, we will show that the past design is conser-

vative, and we will illustrate how to enlarge the conservative

design for a sufficiently large region to contain a globally

optimal solution. Therefore, we can achieve significantly better

performance in many scenarios. In general, two important

properties are employed to evaluate the feasibility of the

control actions: (1) Uniqueness. Feasible actions should con-

trol states to a unique equilibrium point, bringing guaranteed

control results. (2) Stability. Feasible actions should be able

to stabilize the state to the equilibrium point.

Conditions for uniqueness. Since (7d) requires ui(ωi)
to stabilize to a unique equilibrium point, one needs to

check what control property ensures a unique solution while

satisfying (7b). Letting δi = θi−
1

n

∑n
j=1

θj be the center-of-

inertia coordinates [42], [43], we have θj = δj −
1

n

∑n
k=1

θj
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by changing the subscript. Subtract the two terms, we have

θi − θj = δi +
1

n

∑n
k=1

θj − δj −
1

n

∑n
k=1

θj = δi − δj .

Therefore, we can rewrite the swing Eq. (7b) into

Miω̇i = pi −Diωi −

n∑

j=1

Bij sin(δi − δj)− ui(ωi). (8)

Taking the derivative of δi = θi −
1

n

∑n
j=1

θj with respect

to time, we have θ̇i = ωi −
1

n

∑n
j=1

ωj at the equilibrium

point. Moreover, there is zero dynamics, e.g., θ̇i = Miω̇i = 0.

Therefore, for the local equilibrium point (δ∗,ω∗) such that

δ∗ = [δ∗1 , · · · , δ
∗

n] and ω∗ = [ω∗

1 , · · · , ω
∗

n], we obtain

0 = ω∗

i −
1

n

n∑

j=1

ω∗

j , (9a)

0 = pi −Diω
∗ − ui(ω

∗)−

n∑

j=1

Bij sin(δ
∗

i − δ∗j ). (9b)

To discuss the uniqueness of the equilibrium point, we must

consider a certain state range because the state δi has cyclic

patterns. For the angle range, since δi is computed as the

center-of-inertia, we can safely conclude that the equilibrium

point δ∗i ∈ (−π/2, π/2) and |δ∗i −δ
∗

j | ∈ [0, π/2), if buses i and

j are connected. For the frequency range, it typically allows

small variations around a nominal value [44]. Furthermore,

at the unique equilibrium point, all buses must have a fixed

and synchronized frequency ω∗. Therefore, ω∗

i = ω∗, for

∀1 ≤ i ≤ n. Summing up (9a) for a lossless system leads to
∑n

i=1
pi =

∑n
i=1

ui(ω
∗)+ω∗

∑n
i=1

Di. Suppose there are two

equilibrium points ω∗ and ω̂. As the total power
∑n

i=1
pi does

not change, we have
∑n

i=1
pi =

∑n
i=1

ui(ω
∗) +ω∗

∑n
i Di =∑n

i=1
ui(ω̂) + ω̂

∑n
i Di. This leads to

n∑

i=1

ui(ω
∗)− ui(ω̂)

ω∗ − ω̂
= −

n∑

i=1

Di < 0. (10)

[23] observes that the left hand side of Eq. (10) is positive,

if ui(ω) is monotonically increasing. But, this contradicts the

negative sign on the right of (10), as the damping Di is a

non-negative physical term. Therefore, the monotonicity gives

a sufficient condition for the design of ui(ω) to verify the

uniqueness of ω∗, needed in (7d). While a sufficient condition

enables a unique outcome, there may exist another condition

that creates better performance and preserves uniqueness and

stability. Specifically, there is a significant and unexplored

room for the coordination between SG and the IBR, en-

couraging a larger search room for the control of IBR, i.e.,

ui(ωi). We emphasize that this coordination does not require

communication, as it is between the inverter and generator that

share the same bus and frequency. Under the coordination, we

can change the right-hand side of Eq. (10) to other negative

values and still preserve the uniqueness.

Conditions for stability. To verify the stability of a Lya-

punov controller, we need to find a Lyapunov function V (x),
satisfying the stability condition stated after Eq. (4). The

condition is, if V (x∗) = 0, V (x) > 0 for all x ∈ D \ x∗, and

V̇ (x) < 0 for all x ∈ D \ x∗. For constructing the Lyapunov

function, typically, there are two parts summed together [45].

The first one is the mechanical energy, which can be expressed

as 1

2

∑n
i=1

Mi(ωi − ω∗

i )
2. The second part is the electrical

potential energy of the system, e.g., Wp(δ), representing the

electrical power stored in the transmission network’s inductors

and capacitors [46].

V (δ,ω) =
1

2

n∑

i=1

Mi(ωi − ω∗

i )
2 +Wp(δ) (11)

where Wp(δ) = − 1

2

∑n
i=1

∑n
j=1

Bij(cos(θij) − cos(θ∗ij)) −∑n
i=1

∑n
j=1

Bijsin(θ
∗

ij)(θi−θ
∗

i ). In order to let the system be

stable, we need V (x) ≥ 0, V̇ (x) ≤ 0 according to the stability

condition of Lyapunov function.

V̇ (x) =
dV

dt
=

n∑

i=1

(
∂V

∂δi
δ̇i +

∂V

∂ωi

ω̇i

)

. (12)

We have
∑n

i=1
∂V
∂δi

δ̇i = 0 based on our assumption of a loss-

less transmission assumption with voltages and currents are

constant in a short time. In such a short time, the transmission

network does not dissipate electric energy; hence the sum of

total electrical energy stored in the system remains constant,

making
∑n

i=1
∂V
∂δi

δ̇i = 0. Also, since wi on different buses

will be the same after reaching the stability point, we replace

w∗

i with w∗ for compactness. Then, we have

dV

dt
=

n∑

i=1

1

2
(2M(ωi − ω∗)ω̇i) (13)

=

n∑

i=1

Di(ωi − ω∗)2 −

n∑

i=1

(ωi − ω∗)(ui(ωi)− ui(ω
∗

i )).

We need the derivative dV
dt

to be negative for Lyapunov

stability, as the negative derivative lets any points go to the

equilibrium point only. One choice for strictly negative dV
dt

is

to let each individual term be negative in (11). Therefore, we

have the following inequality.

(ωi − ω∗)(ui(ωi)− ui(ω
∗

i )) > (−Di) (ωi − ω∗)2, (14)

where we keep the controller u on the left hand side with a

positive sign. Why is the region of the past method conserva-

tive under stability conditions? [23], [24] show that any control

rule with u(ωi) monotonically non-decreasing achieves local

Lyapunov stability. However, we show that such a condition

can be achieved with a more general condition. As ω∗ is at the

equilibrium point, when no more control should be dispatched,

we set u(ω∗

i ) = 0. This leads to
{

ui(ωi) +Diωi > 0, if ωi > 0,

ui(ωi) +Dωi < 0, if ωi < 0.
(15)

Eq. (15) brings a much relaxed condition for stability, com-

pared to the monotonic requirement in [23], [24].

IV. ENLARGE THE FEASIBLE REGION FOR CONTROL

In this section, we aim to investigate an enlarged ac-

tion region with uniqueness and stability requirements. Strict

derivations are given to show the region extension. Based

on the derivation, we will show in the next section that
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the enlarged region is sufficiently large to contain a globally

optimal solution.

For uniqueness, we note that the control rule of SGs is

typically linear with respect to frequency. This linear rela-

tionship is due to governors’ mechanical limitations, such as

the linearity of governor speed with power [47], the linearity

of turbine power, and the valve position [30]. Therefore, we

represent the contribution of the SG control by a linear droop

gain αiDi to modify the control pattern of the SG, where

1 ≥ αi ≥ 0 implies that the maximal possible frequency

response coefficient for the SG is Di. The value of αi is

determined by the modeling uncertainty in the SG and the

desired robustness, as many SGs exhibit delays and nonlinear

behavior, which can be bounded by αi. Hence, in a coordina-

tion mode, the total controllable power between SG and IBR

is ũi(ωi, αi) = ui(ωi) + αiDiωi. Under this condition, we

can now derive an equivalent form for the condition of the

equilibrium point. Specifically, we have

0 = ω∗

i −
1

n

n∑

j=1

ω∗

j ,

0 = pi − (1− αi)Diω
∗ − ũi(ω

∗)−

n∑

j=1

Bij sin(δ
∗

i − δ∗j ).

(16)

Eq. set in (16) reduces to Eq. (9a), when αi = 0. This

echoes our claims that the derivations from (8) to (15) lead

to an overly conservative region. In particular, introducing

αi won’t change the control law of the IBR and SG but

brings convenient analyses for stability and the optimal control

function design. First, for IBR, we emphasize that ũi(ωi, αi)
is only an intermediate variable. In the following derivation,

we will prove that the stability can be achieved by making

ũi(ωi, αi) monotonic. However, the true control function for

IBR, namely, ui(ωi) can be non-monotonic. The physical

meaning is that the IBR control can consider the damping

resources in the SG to gain more flexibility, which is better

than previous methods. Second, the droop control for the SG

is Diωi but not (1 − αi)Diωi to satisfy the swing equation

dynamics. In general, our theory reveals that as long as there

is damping (Di > 0) in the SG, IBR can make use of these

resources to behave non-monotonically but still achieve sta-

bility. More importantly, non-monotonic property is preferred

to encourage the generation of IBRs. Finally, we note that

similar to previous work [21], [23], [48] in the design phase,

we omit the upper and lower bounds of the SGs. However, in

simulations we implement uSG ≤ uSG ≤ uSG.

In the next lemma, we will prove that Eq. (16) provides

an relaxed sufficient condition for the uniqueness of the

equilibrium point.

Lemma 1. Let ũi(ωi, αi) = ui(ωi) + αiDiωi. Assume that

the angles at equilibrium satisfy |δ∗i − δ∗j | ∈ [0, π/2), if bus i
and j are connected. Then, there exists a unique equilibrium

point (δ∗,ω∗) if for 1 ≥ αi ≥ 0, ũi(ωi, αi) is monotonically

increasing with respect to a local frequency deviation ωi.

Proof. Eq. (16) is equivalent to

n∑

i=1

pi =
n∑

i=1

ũi(ω
∗, αi) + (1− αi)ω

∗

n∑

i=1

Di. (17)

Consequently, Eq. (17) is the sufficient and necessary con-

dition for the equilibrium point. Then, we only need to inves-

tigate the equivalent condition for the uniqueness. To prove

the sufficiency of the condition, we assume that ũi(ωi, αi) is

monotonically increasing. Assuming there are two equilibrium

points ω∗ and ω̂ for (17) leads to

n∑

i=1

ũi(ω
∗, αi) + (1− αi)ω

∗

n∑

i

Di

=
n∑

i=1

ũi(ω̂, αi) + (1− αi)ω̂
n∑

i

Di.

(18)

which is equivalent to:

n∑

i=1

ũi(ω
∗, αi)− ũi(ω̂, αi)

ω∗ − ω̂
= −(1− αi)

n∑

i=1

Di ≤ 0. (19)

Then, the left hand side of Eq. (19) is positive, which brings

a contradiction.

Rather than the sufficient condition in [23] with αi = 0, our

case considers αi ∈ [0, 1] for a relaxed sufficient condition to

support the uniqueness of the equilibrium point. Subsequently,

we need to prove that this condition always implies the

stability of the system. Thus, this condition can satisfy all

constraints in Eq. (7). To be more specific, we propose the

following theorem.

Theorem 1. Consider the unique equilibrium point (δ∗,ω∗)
defined in Lemma 1 with a region of attraction Di =
{(δ,ω)||δi − δj | ∈ [0, π/2), buses i and j are connected.}.
For the monotonically increasing function ũi(ωi, αi) with

1 ≥ αi ≥ 0, (δ∗,ω∗) is locally and exponentially stable.

Proof. First, by Lemma 1, we have established that

ũi(ωi, αi) = ui(ωi)+αiDiωi being monotonically increasing

ensures a unique equilibrium point (δ∗,ω∗) satisfying Eq.

(17).

If ui(ωi) is monotonically increasing (i.e., αi = 0), local

asymptotic stability was shown in (11)-(15) and exponen-

tial stability can be demonstrated following the example of

[23], where the Lyapunov derivative V̇ is bounded using

the quadratic form and applying the Rayleigh-Ritz theorem

establish V̇ ≤ −cV proving exponential stability.

For the relaxed condition where we only assume ũi(ωi, αi)
is monotonically increasing with αi ∈ [0, 1], we follow

the same stability analysis. The key requirement is that

ũi(ωi, αi)− ũi(ω
∗, αi) and ωi − ω∗

i have the same sign.

This condition is precisely what Lemma 1 guarantees

through the monotonicity of ũi(ωi, αi), as shown in Eq. (19)

where:
ũi(ω

∗, αi)− ũi(ω̂, αi)

ω∗ − ω̂
> 0.

Therefore, the same Lyapunov-based stability proof from

[23] applies directly to our case with the relaxed condition,
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establishing local and exponential stability of the unique

equilibrium point.

Combining Lemma 1 and Theorem 1, we can conclude that

the monotonic property of ũi(ωi, αi) brings an extended region

of Ui, compared to the state-of-the-art [23], [24]. To further

quantify the region, we give the following corollary.

Corollary 1. Assume that the feasible range for the monoton-

ically increasing function ũi(ωi, αi) is [ũi(ωi), ũi(ωi)], then,

Ui = [ũi(ωi)−Diωi, ũi(ωi)] ∩ [ui, ui].

By Corollary 1, ui(ωi) can be non-monotonic since the

lower bound is ũi(ωi) − Diωi with an extra negative slope

−Di. This allows the optimization of flexible objectives such

as carbon emissions and renewable curtailment.

V. GLOBALLY OPTIMAL CONTROL WITH A SUFFICIENTLY

LARGE REGION

A. Optimality via the Enlarged Region

The last section proves that the proposed region is much

larger than the feasible region for control from previous meth-

ods with stability guarantees. However, the question remains

whether the identified area of Ui is sufficiently large to contain

the globally optimal solution. In this subsection, we prove the

following two properties: (1) there exists the globally optimal

control action in Ui and (2) in many cases, the globally optimal

control action lies outside of the region identified in the state-

of-the-art [23], [24].

Theorem 2. For the proposed optimization in (5), the follow-

ing properties hold:

• There exists an globally optimal solution u∗

i (ωi) in the

identified region of Ui in Corollary 1.

• Within a time interval, if ũ∗

i +
β
2
− ωi

γ
− αiDiω̇i > 0 is

not monotonically increasing with respect to ωi. Namely,

the optimal solution is outside of the range in existing

work [23].

Proof. To prove the result directly, we need to find
du∗

i

dωi

to

indicate the increasing or decreasing trends for the optimal

policy function. However, this is hard to compute due to

the fact that there is no explicit expression, and the function

u∗

i (ωi) is estimated by a neural network. Therefore, we adopt

an alternative approach, where we use Lagrangian dual to

calculate the derivative in the dual space. After such a cal-

culation, we will return to the original space to calculate
du∗

i

dωi

.

However, the analytical framework of Lagrangian dual and

Pontryagin’s maximum principle only provides the necessary

conditions for a locally optimal solution. We note that the

objectives proposed in II-A are convex with respect to the

action ui. This implies that the investigated optimality is for

a globally optimal solution. In general, we will provide the

following steps for proof.

Step 1. Introduce Lagrangian analysis. To introduce

Lagrangian analytical framework for optimal control problem,

we employ Pontryagin’s maximum principle [49]. Specifically,

for the optimization in bus i, we introduce the time-varying

Lagrangian multiplier for the ODE constraints, leading to a

Hamiltonian function over [0, T ]

H = C1(ωi) + γC2(ui(ωi)) (20)

+ λi

(
pi −

∑

j

Bij sin(δi − δj)− (1− αi)Diωi − ũi(ωi)
)
.

According to the first-order condition for the optimal solu-

tion, we have:

∂H

∂ũi

|ũi=ũ∗

i
= γ

dC2

dũi

|ũi=ũ∗

i
− λi

= γ
d
[
[ũi(ωi, αi)]

2 − 2αiDiωiũi(ωi, αi) + (αiDiωi)
2
]

dũi(ωi, αi)
|ũi=ũ∗

i

− λi

= 2γũ∗

i (ωi, αi)− 2γαiDiωi − λi = 0

=⇒ ũ∗

i =
λi

2γ
+ αiDiωi.

(21)

Step 2. Compute dual state evolution. According to Eq.

(21), to compute ũ∗

i , we need to calculate the evolution of the

multiplier λi, i.e., the dual state. By Hamiltonian functions,

we have:

λ̇ = −
∂H

∂ωi

=γβ −
dC1

dωi

+ [λi − 2γũi + 2γαiDiωi]
dũi

dωi

+ 2γαiDi(ũi − αiDiωi) + λi(1− αi)Di.
(22)

Step 3. Return to the analysis of the original state. By

Equations (21) and (22), we have:

˙̃ui|ũi=ũ∗

i
=

dũi

dωi

ω̇i|ũi=ũ∗

i
= ũ∗

i +
β

2
−

1

2γ

dC1

dωi

. (23)

To further investigate the sign of dũi

dωi

, since the L2 and L∞

have similar effects, we utilize L2 norm for analysis, which

brings well-defined gradients. Hence, dC1

dωi

= 2ωi. Since 1

2γ
is

large as frequency control is prioritized over action cost when

it’s over-frequency, the Right-Hand-Side (RHS) of Eq. (23) is

negative. When it’s under-frequency, the RHS of Eq. (23) is

positive. Then, we need to figure out the sign of ω̇i so that we

can determine if dũi

dωi

is positive or negative.

The theorem discusses the property of the globally optimal

solution u∗

i and ũ∗

i , which is the ideal solution as the Pontrya-

gin maximum principle is derived based on a centralized full

state-feedback controller. We use the analysis to study how

such a controller would act and use it as a design guide for

the neural network-based local controller. In this ideal case,

once there is an over-frequency (under-frequency) scenario, the

controller will immediately take action to push the deviation

to 0. Thus, for the over-frequency (under-frequency) case, the

globally optimal controller will make ω̇i < 0 (ω̇i > 0). In

other words, the ideal controller will never enable ω̇i > 0
(ω̇i < 0) to enlarge the frequency deviations. We note that

for our controller, the power imbalances are not measurable.

Therefore, we can only consider them as disturbance with zero

means in the optimization problem, which allows us to design

a controller that attempts to enforce ω̇ < 0 (ω̇ > 0) whenever

ω > 0 (ω < 0). Hence, dũi

dωi

> 0 always hold, bringing a

monotonic relationship between ũi and ωi.
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For the second property, we have ũi(ωi, αi) = ui(ωi) +
αiDiωi. Therefore,

du∗

i

dωi

=
ũ∗

i +
β
2
− ωi

γ

ω̇i

− αiDi. (24)

This suggests that for the over-frequency scenario, when

ũ∗

i +
β
2
− ωi

γ
−αiDiω̇i > 0, u∗

i is not monotonically increasing.

This condition can happen because ω̇i < 0 and the decreasing

rate can be large.

The conditions specified in Theorem 2 are critical due to

the following reasons: (1) the term |ω̇i| is relatively large to

quickly stabilize the frequency and (2) the hyper-parameters

γ and β in the objective design are relatively large, which en-

courages the curtailment of SG generations. More specifically,

when the system is over-frequency, all the hyper-parameters

mentioned in reason (2) promote the cost penalization for

SG generations. As a result, the curtailment function for

IBR generation, ui(ωi), does not necessarily increase as the

frequency ωi rises. Conversely, the curtailment function for

SG generation, Dωi, is monotonically increasing with ωi.

B. Non-monotonic Controller to Learn the IBR Control with

A Sufficiently Large Feasible Region

To solve the optimization and provide a nonlinear controller,

we a introduce neural network based controller ũi(ωi, αi; Θ)
as a universal approximator to learn the nonlinear control

policy for the RL agent to make decisions, where Θ represents

the network’s weights. According to Section III, we need to:

(a) limit αi ∈ [0, 1], (b) restrict the parameterized controller,

ũi(ωi, αi; Θ) to be monotonically increasing with respect

to ωi, (c) set ũi(0, αi; Θ) = 0, and (d) enable saturation

constraints in Eq. (7) are satisfied. Then, gradient descent will

search local optimal solutions of Θ in the sufficiently large

region Ui. To achieve these goals, we introduce the following

critical techniques for the controller, we revisit some definition

in [23], and adapt the designs into our framework.

1) Structural Design with a Parameter Clip to Ensure

αi ∈ [0, 1]: For requirement (a), recall that ui(ωi; Θ) =
ũi(ωi, αi; Θ) − αiDiωi. So, we propose a structural design

that includes a neural network ũi(ωi, α; Θ) plus a linear layer

αiDiωi. To make sure that the constraint always holds when

updating weights, we employ parameter clipping [28], [29].

Specifically, for the ith training iteration, clipping requires a

mapping

αi ← max(min(αi, 1), 0). (25)

2) Non-Monotonic Stacking ReLU to Gain Monotonic

Property for ũi(ωi, α; Θ): For requirements (b) and (c), we

design a non-monotonic stacking ReLU function: ũi(ωi, α; Θ)
is a one-layer neural network. When ωi > 0, f+

i (ωi) =
qiσ(1ωi + bi), where qi, bi ∈ R

m are the weight and bias

vectors, respectively. m is the number of neurons in the

layer. σ(x) = max(x, 0) is the ReLU function. We can

make f+
i (ωi) monotonically increasing by setting

∑l
j=1

qji ≥

0, ∀l = 1, 2, · · · ,m, b1i = 0, and bli ≤ bl−1
i , ∀l = 2, 3, · · · ,m.

The proofs of the monotonic property can be found in [23].

Similarly, when ωi < 0, f−

i (ωi) is defined. The defined

f+
i (ωi) and f−

i (ωi) together make sure that ũi(ωi, α; Θ) is

monotonically increasing when ωi ∈ R and passes the origin.

3) Another ReLU Outside to Satisfy Saturation Constraint:

For requirement (d), we utilize the ReLU again to make sure

the final output satisfy the saturation constraint:

ui(ωi) =ui − σ
(
ui − (f+

i (ωi) + f−

i (ωi)− αiDiωi)
)

+ σ
(
ui − (f+

i (ωi) + f−

i (ωi)− αiDiωi)
)
. (26)

C. RNN-Based Controller Training

In this section, we show how to train the proposed controller.

First, we discretize the system to apply reinforcement learning

based approaches. The discrete dynamics is obtained using

a fixed time step ∆t. At each step k = 0, 1, . . . ,K, we

approximate

θi(k + 1) = θi(k) + ∆t ωi(k), (27)

ωi(k + 1) =
1

M
ωi(k)−

∆t

M

n∑

j=1

Bijsin(θi − θj) +
1

pi
∆t

+ (1−
D∆t

M
)ω(k)−

∆t

M
u(ωi(k); Θ), (28)

where (θi[k], ωi[k]) are the angle and frequency at step k and

ui(ωi[k]) is the inverter control.

To learn the weights and biases of the neural-network-

based controller, we embed our controller in an RNN structure

unrolled in time and trained via a gradient-based reinforcement

learning (RL) approach. The purpose of the RNN structure

is to provide a computationally efficient way to propagate

the gradients through automatic differentiation [23]. We note

that the RNN framework does not add additional control nor

affect the stability as it is constrained to embed the system

dynamics in (28) to facilitate learning u(ωi(k); Θ) [23]. The

pseudocode is summarized in Algorithm 1, which uses mini-

batches of simulated trajectories and updates parameters by

backpropagating the loss through the unrolled RNN cells.

a) Forward Pass (RNN Unrolling): As discussed in Sec-

tion IV, each bus i applies a control law

ui(ωi; Θ) = ui − σ
(
ui−ũi(ωi, αi; Θ)

)
+ σ

(
ui−ũi(ωi, αi; Θ)

)
,

where

ũi(ωi, αi; Θ) = f+
i (ωi) + f−

i (ωi) − αi Di ωi.

To account for time-coupling, we treat (θi, ωi) as the

hidden “cell state.” At each stage k, the RNN cell (controller)

receives (θi(k), ωi(k)) as input and outputs the control ui(k).
The power-system equations (7) then update the states to

(θi(k + 1), ωi(k + 1)), which are passed to the next RNN

cell at stage k + 1.

b) Loss Computation.: Because the objective (6) involves

both state costs C1(ω) (e.g., L2 or L∞ norms of frequency

deviation) and action costs C2(u) (e.g., quadratic penalty on

u or renewable-curtailment costs), we evaluate them at each
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Algorithm 1: Reinforcement Learning to train the

control function with RNN unrolling

Input: Learning rate α, batch size H , total time stages

K, number of episodes N .

Output: Optimized neural network weights Θ for

control

1 Initialization: Randomly initialize weights Θ of the

neural network controller (26)

2 for episode = 1 to N do // outer loop

3 for h = 1 to H do // mini-batch loop

// (1) Randomly sample initial

load step

4 Generate random initial load change ∆pm
within the specified bounds for bus

i = 1, . . . , n.
// (2) Roll out the unrolled RNN

through K stages

5 for k = 0 to K − 1 do

6 (a) Pass (θhi (k), ω
h
i (k)) through the RNN

cell (which implements (26) internally) to

obtain the control action uh
i (k)

7 (b) Simulate one step of the power system

dynamics (7) with time step ∆t to get

(θhi (k + 1), ωh
i (k + 1))

8 end

// (3) Compute the cost of the

trajectory

9 Use the objective in (6).

10 end

// (4) Aggregate losses and update

neural network

11 TotalLoss = 1

H

∑H
h=1

Lossh
12 (a) Perform backpropagation through the unrolled

RNN layers (including the non-monotonic design

(26) and parameter clipping)

13 (b) Update Θ← Θ− α∇Θ(TotalLoss) using

Adam or a similar optimizer

14 end

time step and sum (or take the max) over the entire horizon

0, . . . ,K. Concretely,

TotalLoss = 1

H

H∑

h=1

n∑

i=1

C1

(
ωh
i (k)

K
k=0

)

︸ ︷︷ ︸

state cost

+ γ C2

(
uh
i (k)

K
k=0

)
,

where h ∈ {1, · · · , H} indexes the mini-batches (each simu-

lating a distinct trajectory with different initial states or load

disturbances).

c) Backward Pass (Gradient and Parameter Updates).:

To train the network weights Θ (including the clipping for αi),

we use backpropagation through time (BPTT). Specifically,

automatic differentiation frameworks compute the gradient of

the loss by unrolling the RNN for K steps and chaining

derivatives of each cell’s outputs with respect to the previous

cell’s states and actions. Overall, this RNN-based scheme

provides a direct way to optimize closed-loop policies ui(ωi)

by simulating realistic power-system trajectories. Once trained,

the neural controller can be deployed in real time: at each

sampling instant, measure the local frequency ωi, feed it into

the trained network, and apply the computed ui(ωi) to the

inverter.

VI. EXPERIMENTS

To validate the claim of our method, we use the IEEE-39
New England test system, commonly used for stability analysis

[21], [50]. This is because the New England system has been

designed to emulate the dynamic response of medium-sized

power networks [51]. In this test case, there are 10-connected

generators, and it is assumed that for each generator, there

is a connected renewable inverter to act as the controller.

To validate our method, we compare it with respect to past

methods. We also conduct such comparisons for various types

of cost functions and different load disturbances to check the

generalizability claimed in the earlier sections.

A. Simulation Setup

For the simulation setup, the training is done using the Keras

Tensorflow framework with Nvidia 3070 GPU. The dynamic

response of the network is modeled using ANDES, an open-

source Python package for power system dynamic simulation

[52], where a 6th order model is used for the generators and

Western Electricity Coordinating Council (WECC) models for

the inverter resources. For benchmarking, we use different

combinations of traditional generations and inverter-based

generations on different buses. Once the load is chosen, we

assume the load to be constant during the operation, which is

typical for short-scale primary frequency control analysis [30].

To train the network, we generate 800 batches of 2 seconds

trajectories with uniform load and generation step change

between [−1, 1] p.u. Training is carried out for 200 epochs

to ensure convergence. We evaluate performance using L2-

and L∞-norms for state loss, while action loss is assessed

through different combinations of metrics, including degrada-

tion, emissions, and fuel savings, each with adjustable weights.

For validating our contribution on a larger feasibility region,

we consider the same setup with the monotonic ReLU design

in [23]. For example, we train the same neural network to min-

imize the same cost with L∞-norm for the state cost, where

γ = 0.005, β = 0.002, and α = 0.6. For benchmark methods,

we use Monotonic-ReLU [23] as the nominal benchmark, but

we include two additional benchmarks representing primary

methods of optimal frequency control. First, policy search

based unconstrained optimization where (5) is solved with

an optimization solver with linear parametrization [9] which

we refer to as Optimal-Linear. The second is learning based

approach where the Lyapunov function is learned instead of

guaranteeing the stability by design [21], [48], which we will

refer to as Learned-Lyapunov.

B. Feasible Region Comparison

Fig. 3 shows the optimized activation function for con-

trollers when γ = 0.005 in optimization (6), where γ is the
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weight for the two metrics in the objective function. The x-

axis is the measured frequency deviation, and the y-axis is

the corresponding inverter action. The subplots of Fig. 3 are

for buses 30, 31, 32, and 33 when the optimization achieves

the optimal results. The selected buses are at different edges

for representative illustration. In the figure, we first show the

original region from the past method [23] in purple. Our

approach enlarges the region to include the region in pink.

As we can see, the pink region is significant, so our approach

explores both the purple and pink regions freely. Then, we

present the optimization results from the past method and

the proposed method. The dashed blue line is from the past

method. It stays strictly within the blue region. Our proposed

control method has more freedom, and the optimized control

rule in the red line can happen in both purple and pink regions.

For example, the control rule can be in the same regions

or different regions (i.e., bottom right sub-plot in Fig. 2).

A unique feature is that our design allows a non-monotonic

control function, which helps achieve optimal results. This

non-monotonicity allows the inverter to either increase its

generation in the under-frequency case when the frequency

deviation is below a certain threshold, then increase it when

it rises above that, such as the top right subplot, or be

monotonically decreasing as the bottom right subplot. This

gives flexibility in the inverter operation to do what is optimal

based on the given objective.
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Figure 2: Control function for monotonic and non-monotonic

design for the four inverters at buses 30, 31, 32, and 33 for

γ = 0.005.

For validation on diverse values of γ, we increase γ from

0.005 to 0.008 shown in Fig. 3. The goal is to check our results

when giving more weight to the action penalty. We observe

that the two regions are the same, but the optimized control

rules have different behaviors. In particular, our proposed

method can stay in the pink region with non-monotonic

properties. For example, the last figure shows that the past

methods tries to be close to the pink region in our proposed

method. Our method can go beyond the boundary between

the purple and pink regions for better optimality. We observe

from the Fig. 3 that for the first, second, and fourth sub-plots,

the inverters prioritize increasing renewable generation in the

over-frequency scenario. In the under-frequency scenario for

the third sub-plot, both controllers are monotonic as they both

increase renewable generation in such case.
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Figure 3: Control function for monotonic and non-monotonic

design for the four inverters at buses 30, 31, 32, and 33 for

γ = 0.008.

C. Objective Comparison During Training

In addition to comparing how much we improve the feasible

region, it is critical to quantify how much improvement our

method gives on the objective. Therefore, we use Fig. 4

to show how the performance comparison between the past

method with a monotonic function [23] in blue dashed line

and the proposed method in solid red line. The x-coordinate

shows the epochs during training, and the y-coordinate shows

the total loss in the objective. We can see that the perfor-

mances are similar at the beginning. However, the red one

gradually outperforms in the sense of having a lower loss after

25 epochs. The losses for both methods stabilize after 100
iterations. The final loss is -0.8 for the old method in blue and

-1.1 for the proposed method in red. And, the improvement is

about 37%.
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Figure 4: Convergence comparison for the proposed and the

Monotonic-ReLU method.

D. Performance Comparison with Different Objective Designs

After showing how the proposed method improves its

performance during the training process, we will show the
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(a) L2 Loss. (b) L∞ Loss. (c) L∞ with RoCoF.

Figure 5: Total costs, state costs, and action cost for the past and proposed control methods as the weight γ changes.
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(b) Under frequency with 1 p.u. step load increase.

Figure 6: Frequency response of the proposed controller in comparison to the monotonic ReLU controller in both over frequency

and under frequency events with high disturbance. In both subplots, the proposed controller is on the left and the monotonic

is on the right.

converged results with different objective functions and dif-

ferent weights. For example, Fig. 7a illustrates the total cost,

average state, and action costs with the same setup as the last

subsection. In such a setup, we have an L2 norm on frequency

deviation for C1. Similarly, we consider the step load change

analysis by various values of γ. The x-axis of Fig. 5 is the

action penalty γ, and the y-axis is the cost function. We draw

six lines in the figure, as we not only compare the total costs

but also their sub-components on state costs and control costs.

We can see that the proposed method not only has a lower total

cost but also reduces the action cost significantly.

We change the objective to convert L2 to L∞ norm in

Fig. 7b. We also include RoCoF in Fig. 5c to reflect the

Rate of Change of Frequency (RoCoF). In both figures, we

can observe the same phenomenon that our proposed method

can reduce the total cost. Also, the larger the γ infers more

control cost and better overall performance. In Fig. 7b and

Fig. 5c, we observe improvement in the action cost due to

increased renewable generation with a slight increase in the

state cost, and the tradeoff is controlled by the value of γ.

This shows that having a non-monotonic response for the

inverter controller design can still stabilize the system and

minimize all forms of frequency loss metrics as long as the

coordinated response remains monotonic. For the subsequent

simulations, the proposed controller adopts the design in

5c with γ = 0.005, combining the penalty on maximum

frequency deviation and RoCoF.

E. Significant Performance for Boosting Renewable Energy

Last subsection shows that our approach can boost renew-

able.

So, Fig. 9 looks into the net change of renewable curtailment

over time, when there is a step load decreases of 10% on

buses 30, 31, and 32 at t = 0.5. Specifically, Fig. 9 shows

the total power produced by all buses’ inverters in both

proposed and monotonic designs. The blue and red lines are

the same initially. After the load change, the red line stays

higher than the blue line. This shows that our proposed design

increases renewable production in the transient and reduces

steady-state curtailment, which agrees with the coordination
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(b) Under frequency with 0.1 p.u. step load increase.

Figure 7: Frequency response of the proposed controller in comparison to the monotonic ReLU controller in both over frequency

and under frequency events with low disturbance. In both subplots, the proposed controller is on the left and the monotonic

is on the right.

expected from our non-monotonic design. We examine the

response further by looking at all the inverters generation

in Fig. 8 for both the proposed and monotonic designs and

observe. Unlike the past control, The proposed design let some

inverters increase their generation during the over frequency

where the generation is sufficient from synchronous genera-

tors. For example, we observe in Fig. 8 that some inverters

can increase their generation even during a load decrease due

to the expanded region. Finally, we validate the frequency

stability in Fig. 10, which shows that the proposed method

maintains frequency stability below 0.05 HZ while minimizing

curtailment, while the Learned-Lyapunov method sacrifices

exhibits a much larger deviation.
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Figure 8: (a) Inverter generation offset for proposed design (b)

Inverter generation offset for monotonic ReLU design.

F. Evaluate Transient System Stability

The previous sections show that our method works better

than the past in the sense of lower objectives and the capability

to boost renewable. However, it is critical to make sure that all

the constraints are satisfied. For example, a critical constraint

motivating this paper comes from the Lyapunov stability.

For thoroughness, we show the stability performance with

both under-frequency and over-frequency cases at different

disturbance levels. First for high disturbance, the step load is

decreased by 1 p.u. at t = 0.5s, while for the under frequency

the load is increased by 1 p.u. shown in figure Fig 6. The

figures depict the evolution of the system’s frequency during

the disturbance. We observe that despite the sudden distur-

bance, the frequencies on all buses converge to a common

value, indicating that synchronism is maintained. Moreover,

we observe that both the proposed design and monotonic-

ReLU achieve a similar maximum frequency deviation of

around 0.09 Hz. This validates that the renewable curtailment

minimization does diminish the frequency response to large

deviations. On the other hand, the curtailment minimization is

evidence during the smaller disturbance, which we simulate

with a load change of 0.1 p.u. as in Fig. 7. We observe that

the proposed method exhibits a larger frequency deviation;

however, it is within 0.04 Hz, which is within safe operating

conditions.
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Figure 9: The total power produced by all buses’ inverters by

the proposed design and benchmark methods.

G. Robustness Evaluation via Sensitivity Analysis on Distur-

bances and Costs

For robustness evaluation, we test with a wide range of

scenarios in Figs 11 and 12. For example, we test various

disturbance events. We also randomly select three generators

for each event, and we vary the step load change at those

buses between −1 p.u. to 1 p.u., and the simulation is repeated

over 50 iterations per step load change. This setup ensures a
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Figure 10: The maximum frequency deviation in all buses

under the proposed design and benchmark methods.

comprehensive comparison of our proposed method for a wide

range of events. Fig. 11 shows the average performance of the

frequency cost on the y coordinate against the load change on

the x coordinate. Also, Fig. 12 shows the average performance

of the renewable generation loss cost on the y coordinate

against the load change on the x coordinate. From the figures,

we observe that under-load scenarios have a trade-off between

the renewable curtailment cost and frequency deviation cost,

and the non-monotonic design yields better performance, e.g.,

significantly lower cost. The improvement is most apparent in

the [−.25, 0] range where the proposed method has an average

15% decrease in net curtailment over the Monotonic-ReLU

and a maximum improvement of 50% when the step load

changes by 6%. Moreover, the proposed method has a consis-

tent cost decrease over linear. The learned-Lyapunov method

achieves a lower action cost but fails to maintain frequency

safety, as it is missing the theoretical guarantee we provide.

Finally, as the improvement occurs in low deviation events,

which are more prominent, it will accumulate consistently over

time, leading to significant savings. In Fig. 13, we can see the

cost improvement of the proposed method. On the other hand,

our cost is almost identical to that of the monotonic design

in the overload scenario. This is because both the monotonic

and non-monotonic designs increase the generation during an

overload event.
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Figure 11: Change of maximum frequency within a range of

step load changes for the proposed Lyapunov controller and

the benchmark methods.
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Figure 12: Change of inverter generation loss within a range

of step load changes for the proposed Lyapunov controller and

the benchmark methods.

0.25 0.20 0.15 0.10 0.05 0.00
Load Change

0.050

0.025

0.000

0.025

0.050

Ac
tio

n 
Co

st

Proposed Control
Monotonic-ReLU
Linear-Optimal
Learned-Lyapunov

Figure 13: Change of inverter generation loss within over

frequency low disturbance events for the proposed Lyapunov

controller and the benchmark methods.

VII. CONCLUSION

This paper proposes to enlarge the feasibility region for

optimizing primary frequency control. The extended region

is rigorously proved to be sufficiently large to contain a

globally optimal solution, but the past region usually doesn’t

contain such a solution. As a consequence, our proposed

Lyapunov neural controller shows better performance than the

past methods. The better performance is due to our design of

using the damping resources to expand the Lyapunov stable

policies in the neural network’s search space. Based on the

property of the control, we design a non-monotonic ReLU

function for action exploration. As the new design allows the

optimization of a wider range of cost functions, we show that

we can have better renewable curtailment and lower fuel costs,

which the monotonic design fails to optimize.
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