

Strain-induced lead-free morphotropic phase boundary

Reza Ghanbari¹, Harikrishnan KP², Kinnary Patel³, Hua Zhou⁴, Tao Zhou⁵, Rui Liu⁵, Liyan Wu⁶, Aarushi Khandelwal^{7,8}, Kevin J. Crust^{8,9}, Sankalpa Hazra¹⁰, John Carroll^{11,12}, Cedric J. G. Meyers⁶, Jiayue Wang^{7,8}, Sergey Prosandeev³, Huimin Qiao¹, Young-Hoon Kim¹³, Yoji Nabe¹⁴, Miaofang Chi^{13,15}, Dali Sun¹³, Nina Balke¹, Martin Holt⁵, Venkatraman Gopalan¹⁰, Jonathan E. Spanier^{6,11,16}, David A. Muller^{2,17}, Laurent Bellaiche^{3,18}, Harold Y. Hwang^{7,8}, Ruijuan Xu^{1*}

¹ Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA

² School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA

³ Smart Ferroic Materials Center, Physics Department and Institute for nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA

⁴ X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA

⁵ Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA

⁶ Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia PA, USA

⁷ Department of Applied Physics, Stanford University, Stanford, CA, USA

⁸ Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

⁹ Department of Physics, Stanford University, Stanford, CA, USA

¹⁰ Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA

¹¹ Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA

¹² DEVCOM C5ISR U.S. Army, Aberdeen Proving Grounds, MD, USA

¹³ Center for Nanophase Materials Sciences (CNMS), Physical Sciences Directorate (PSD)
Oak Ridge National Laboratory, Oak Ridge, TN, USA

¹⁴ Department of Physics, North Carolina State University, Raleigh, NC, USA

¹⁵ Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, NC, USA

¹⁶ Departments of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA

¹⁷ Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA

¹⁸ Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.

*Email: rxu22@ncsu.edu

41

42

43

44 Enhanced susceptibilities in ferroelectrics often arise near phase boundaries between competing
45 ground states. While chemically-induced phase boundaries have enabled ultrahigh electrical and
46 electromechanical responses in lead-based ferroelectrics, precise chemical tuning in lead-free
47 alternatives, such as $(K,Na)NbO_3$ thin films, remains challenging due to the high volatility of alkali
48 metals. Here, we demonstrate strain-induced morphotropic phase boundary-like polymorphic
49 nanodomain structures in chemically simple, lead-free, epitaxial $NaNbO_3$ thin films. Combining
50 *ab initio* simulations, thin-film epitaxy, scanning probe microscopy, synchrotron X-ray diffraction,
51 and electron ptychography, we reveal a labyrinthine structure comprising coexisting monoclinic
52 and bridging triclinic phases near a strain-induced phase boundary. The coexistence of
53 energetically competing phases facilitates field-driven polarization rotation and phase transitions,
54 giving rise to a multi-state polarization switching pathway and large enhancements in dielectric
55 susceptibility and tunability across a broad frequency range. Our results open new possibilities for
56 engineering lead-free thin films with enhanced functionalities for next-generation applications.

57

58 **Introduction**

59 Ferroelectric materials often exhibit ultrahigh electrical and electromechanical responses
60 near phase boundaries where competing ground states coexist. A notable example is the
61 morphotropic phase boundary (MPB) in lead zirconium titanate ($PbZr_{1-x}Ti_xO_3$, PZT), a transition
62 region in the composition-temperature phase diagram marked by an abrupt change in crystal
63 symmetry¹⁻⁶. The flattening of the free energy profile at the MPB facilitates polarization rotation
64 among different phases under external fields, leading to remarkable dielectric and piezoelectric
65 performance^{2,7,8}. However, despite these advantages, the presence of toxic lead in PZT raises

66 significant environmental and health concerns, particularly for implantable bio-micro-
67 electromechanical systems (bio-MEMS) and *in vivo* piezoelectric sensors^{9,10}. Thus, there is an
68 urgent need for lead-free alternatives with comparable or superior performance.

69 Among lead-free ferroelectrics, potassium sodium niobate ((K,Na)NbO₃, KNN) has
70 emerged as a promising candidate, attracting substantial research interest over the past two
71 decades^{11,12}. Most research efforts have focused on enhancing susceptibilities in KNN-based bulk
72 ceramics by constructing multi-phase boundaries through chemical substitutions^{13–19}. However,
73 with the increasing demand for device miniaturization, developing lead-free thin films with
74 ultrahigh electrical and mechanical susceptibilities is crucial for applications such as micro- and
75 nano-electromechanical systems (MEMS and NEMS)²⁰. Chemically-driven phase boundaries,
76 however, often introduce compositional complexity, leading to structural disorder and
77 heterogeneity that degrade thin-film crystallinity^{21,22}. Moreover, the high volatility of alkali metals
78 makes precise chemical tuning of KNN-based thin films particularly challenging. To overcome
79 these limitations, alternative approaches beyond chemical methods are essential for constructing
80 phase boundaries in lead-free ferroelectric thin films.

81 Epitaxial strain, arising from lattice mismatch between thin films and substrates, offers a
82 promising alternative approach for creating MPB-like phase boundaries in lead-free ferroelectrics.
83 For instance, under compressive strain larger than -4%, BiFeO₃ undergoes a phase transition to a
84 highly distorted tetragonal-like phase, forming a mixed-phase structure comprising tetragonal-like
85 and rhombohedral-like phases, which results in ultrahigh electromechanical responses^{23–28}.
86 Additionally, recent studies have demonstrated improved dielectric and piezoelectric properties in
87 epitaxially BaTiO₃ films, arising from a strain-induced bridging phase²⁹ and a slush-like polar
88 structure composed of coexisting phases with varying symmetries³⁰. Despite the promise of strain-

89 engineered phase boundaries, this approach remains underexplored in KNN based thin films. To
90 explore strain-induced MPB-like structures in these materials, we focus on sodium niobate
91 (NaNbO_3), a key end-member of the KNN family, known for its rich structural polymorphism and
92 numerous phase transitions. The small energy barriers between nearly degenerate phases in
93 NaNbO_3 allow for structural modulation through a small thermal, electrical, or mechanical
94 perturbations, providing possibility for enabling multi-phase boundaries with enhanced
95 functionalities³¹. While NaNbO_3 bulk ceramics have been extensively studied for decades as
96 promising lead-free electroceramics for energy storage applications³²⁻³⁶, research on NaNbO_3 thin
97 films remains in its early stages but is rapidly gaining attention³⁷⁻⁴⁴. Recent advances in thin-film
98 synthesis have enabled the growth of high-quality NaNbO_3 films, unlocking their potential for
99 ultrahigh electromechanical responses^{45,46}. Furthermore, electron ptychography has recently
100 revealed an unconventional microscopic picture in NaNbO_3 films, where ferroelectricity is
101 dominated by the anion displacements relative to the niobium sublattice⁴⁷.

102 Here, combining epitaxial *ab initio* simulations, epitaxial thin-film synthesis, electrical
103 measurements, and detailed structural characterizations via scanning probe microscopy,
104 synchrotron X-ray diffraction, and electron ptychography, we design and construct strain-induced
105 MPB-like polymorphic structures with enhanced dielectric and ferroelectric properties in NaNbO_3
106 heterostructures. Our strategy is to leverage a slight strain perturbation from the substrate to
107 manipulate structural instabilities among nearly degenerate phases in NaNbO_3 thin films, thereby
108 inducing a multi-phase boundary. The coexisting polymorphs near the phase boundary facilitate
109 continuous polarization rotation, resulting in a multi-state switching pathway and large
110 enhancements in dielectric susceptibility and tunability across a broad frequency range.

111

112 **Results and Discussion**

113 **Design and synthesis of strain-induced multi-phase boundary in NaNbO₃ films**

114 Bulk NaNbO₃ exhibits a complex phase diagram with multiple temperature-dependent
115 phase transitions. At room temperature, it typically adopts an orthorhombic antiferroelectric *Pbcm*
116 phase, which can be irreversibly switched into a ferroelectric *Pmc2*₁ phase under an electrical field.
117 Our density functional theory (DFT) simulations (Fig. 1a) further reveal additional competing
118 ferroelectric polymorphs in NaNbO₃ thin films that are energetically favorable near the bulk lattice
119 of NaNbO₃ ($a \sim 3.88 - 3.915 \text{ \AA}$). This suggests the possibility of phase transitions or polymorph
120 coexistence in NaNbO₃ thin films under small strain. These polymorphs include phases with space
121 group symmetries *Cm*, *Pc*, and *Cc*, each exhibiting distinct polarization configurations and oxygen
122 octahedral tilts (Fig. 1b and Supplementary Fig. 1). Given the intricate energy balance among these
123 competing phases, we aim to experimentally realize MPB-like structures with coexisting
124 ferroelectric polymorphs in NaNbO₃ heterostructures to enable giant enhancements in dielectric
125 and ferroelectric properties via strain engineering.

126 To induce varying strain states in the thickness series via strain relaxation, we synthesize
127 epitaxial NaNbO₃ films with thicknesses ranging from 25 to 185 nm on (001)-oriented single
128 crystalline SrTiO₃ substrates, with atomically smooth interfaces (Supplementary Fig. 2) using
129 pulsed laser deposition (PLD). X-ray reflectivity (XRR) is employed to calibrate the thickness of
130 25 nm films and determine the growth rate for thicker films (Supplementary Fig. 3a). The
131 thickness-dependent structural evolution of the NaNbO₃ films is further examined through high-
132 resolution X-ray $\theta - 2\theta$ scans (Fig. 1c and Supplementary Fig. 3b, c). The presence of Laue fringes
133 indicates the high crystalline quality of the films. Notably, films with a thickness $t \geq 80 \text{ nm}$ exhibit
134 a broadened peak near the NaNbO₃-002 diffraction condition, suggesting the presence of multiple

135 diffraction peaks in NaNbO₃ films, potentially associated with either distinct structural phases or
136 different structural domain variants (Fig. 1c). To further explore this structural evolution, we study
137 the film topography using atomic force microscopy (AFM). While 25 nm films exhibit atomically
138 smooth surfaces, intriguing labyrinthine topography emerge in films with $t \geq 80$ nm (Figs. 1d-g).
139 These patterns, consisting of stripe-like features oriented along the pseudocubic [100] and [010],
140 exhibit increasing ordering as thickness increases. The labyrinthine structures introduce regions of
141 elevated “walls” and lowered “pathways” in the film topography, which possibly contributes to
142 the broadening of diffraction peaks observed in θ - 2θ scans. These labyrinthine patterns may arise
143 from the coexistence of either structural phases with varying symmetries or domain variants with
144 the same symmetry.

145

146 **Ferroelectric domain structure characterization**

147 To further elucidate the structural nature of the labyrinthine pattern, we examine the
148 ferroelectric domain structures of NaNbO₃ films using piezoresponse force microscopy (PFM)
149 (Supplementary Fig. 4). PFM imaging reveals that the “walls” and the “pathways” of the
150 labyrinthine pattern correspond to two distinct sets of ferroelectric polydomain structures, both
151 exhibiting ultra-fine nanoscale domains and a high density of domain walls. These polydomain
152 regions exhibit different PFM amplitude responses: the “walls” show a stronger vertical response
153 than the “pathways”, indicating a larger out-of-plane polarization component (Fig. 2a, c, e), while
154 the “pathways” display a stronger lateral response, suggesting a larger in-plane polarization
155 component (Fig. 2b, d, f). Detailed analysis of vertical and lateral PFM amplitude and phase signals,
156 performed by varying the relative orientation between the PFM cantilever and sample
157 (Supplementary Fig. 5), suggests that the “pathways” exhibit an in-plane polarization component

158 along the pseudocubic [110] or [1-10] (Fig. 2g), whereas the “walls” possess an in-plane
159 polarization component along the pseudocubic [100] or [010] (Fig. 2h). Combining both the in-
160 plane and out-of-plane signals as well as the projected domain wall orientation, we propose the
161 following polarization configurations: the “pathways” adopt a polydomain structure with
162 polarizations along [xxz] or [x-xz] (where $x > z$, given the stronger in-plane response; Fig. 2g), and
163 the “walls” possess polarizations along [x0z] or [0xz] (where $x < z$, given the stronger out-of-plane
164 response; Fig. 2h). Following established nomenclature used for similar polarization
165 configurations in MPB PZT⁴⁹, we designate these phases as “M_C” and “M_B”, respectively. Each
166 phase allows four possible polarization variants (eight if considering out-of-plane inversion),
167 forming various polydomain configurations with (010)- or (100)-type domain walls. Here we
168 provide illustrations for charge-neutral configurations with oppositely aligned out-of-plane
169 polarization in adjacent domains (Fig. 2g, h). Additionally, we also probe the potential presence
170 of polydomain structures with charged domains walls in the films, where adjacent domains exhibit
171 identical out-of-plane polarization direction. Based on PFM vertical amplitude contrast, we further
172 analyze the areal fraction evolution of these phases as a function of thickness. The M_B phase
173 increases from 14% in 25 nm films to 73% in 185 nm films, with the M_C phase following the
174 opposite trend (Fig. 2i). These observations suggest that thinner films favor the M_B phase with a
175 larger out-of-plane polarization, whereas thicker films favor the M_C phase with a larger in-plane
176 polarization. This phenomenon is likely driven by the thickness-dependent strain evolution in
177 NaNbO₃ films: the compressive strain in thinner films stabilizes a phase with enhanced out-of-
178 plane distortion, whereas strain relaxation in thicker films stabilizes a phase with increased in-
179 plane distortion.

180

181 **Characterizing mixed-phase via synchrotron X-ray diffraction and electron ptychography**

182 Given the nanoscale domain sizes approaching the resolution limit of PFM, we perform
183 additional structural characterizations to further verify these phases and uncover additional
184 structural details. First, we conduct second harmonic generation (SHG) polarimetry measurements
185 to characterize the symmetry of the coexisting phases. Electric dipole SHG is a nonlinear optical
186 process where incident light at a fundamental frequency, ω , is converted into second harmonic
187 light at frequency, 2ω , by the interacting material owing to its broken inversion symmetry
188 (Supplementary Fig. 6a). SHG polar plots are measured by rotating the polarization of the incident
189 fundamental light while measuring the reflected SHG intensities corresponding to both
190 polarization directions (*p*- and *s*-polarized) for each film thickness (Supplementary Fig. 6b-d).
191 Following PFM observations, the polar plots are fitted using a multi-domain model assuming the
192 coexistence of M_C and M_B phases, each consisting of four domain variants. It is important to note
193 that, while our measurements are well fitted by this monoclinic multi-domain model, other
194 structural models like multi-domain orthorhombic or rhombohedral models can also be used to fit
195 the polar plots.

196 To further confirm the monoclinic distortion, we conduct X-ray reciprocal space mapping
197 (RSM) to resolve the structural details of the coexisting phases. RSM has been applied in previous
198 studies as a powerful method for identifying and differentiating monoclinic symmetries in oxide
199 ferroelectrics⁵⁰⁻⁵². We conduct RSMs around the NaNbO_3 -002 diffraction condition using both
200 lab-source and synchrotron-based XRD (Fig. 3a and Supplementary Figs. 7a and 8). Diffraction
201 peaks corresponding to NaNbO_3 appear at higher and lower Q_y positions with respect to SrTiO_3 -
202 002. Based on peak positions, the calculated *c*-lattice parameters are ~ 3.891 Å and ~ 3.944 Å,
203 corresponding to the M_B and M_C phases with lower and higher topographic heights, respectively.

204 The intensity of these peaks evolves with thickness, with M_C being more pronounced in 25 nm
205 films and M_B dominating at greater thickness, consistent with the trend observed in PFM imaging
206 (Supplementary Fig. 7a). Based on the shift of the 002-diffraction peak, we quantify the thickness-
207 dependent evolution of out-of-plane strain for each phase and estimate the average out-of-plane
208 strain in the mixed-phase state by weighting the strain of each phase according to its areal fraction,
209 as extracted from PFM imaging (Supplementary Fig. 7b, c). The corresponding in-plane
210 compressive strain is estimated by converting the out-of-plane strain using the Poisson effect under
211 biaxial strain conditions (Supplementary Fig. 7d). These results reveal a gradual decrease in both
212 out-of-plane tensile strain and in-plane compressive strain with increasing film thickness,
213 consistent with strain relaxation. To further investigate potential compositional effects, we perform
214 X-ray photoelectron spectroscopy (XPS) on NaNbO_3 films with varying thicknesses. While the
215 XPS results show that the films are sodium deficient, there is no significant variation in Na/Nb
216 ratio across the thickness series (Supplementary Fig. 9), indicating that the structural evolution is
217 not driven by changes in sodium stoichiometry. Instead, it is governed directly by strain evolution:
218 in thinner films, compressive strain stabilizes the M_C -dominated mixed-phase state with a larger
219 *c*-lattice parameter, whereas strain relaxation in thicker films reduces the *c*-axis distortion, favoring
220 the M_B -dominated mixed-phase state.

221 Further insights into monoclinic distortion were obtained from the NaNbO_3 -103 diffraction
222 condition. The 103-diffraction peak splits into two adjacent peaks for the M_B phase (Fig. 3d) and
223 three adjacent peaks for the M_C phase (Fig. 3e and Supplementary Fig. 10), indicative of four-
224 domain configuration in each phase^{45,51}. These characteristic peak splitting confirms the presence
225 of monoclinic distortion of the coexisting phases. Beyond these monoclinic features, we also
226 observe four-fold symmetric satellite peaks surrounding the M_B and M_C in 002-diffraction,

227 exhibiting similar L but opposite H values (Fig. 3b, c). The first set, with L ~ 2.013, corresponds
228 to a triclinic phase (Tri-1, Fig. 3a, b) with a c-lattice parameter of ~3.885 Å and a tilt angle of 0.43°
229 along [100] relative to the substrate normal. Similarly, another set, with L ~ 1.995, corresponds to
230 a second triclinic phase (Tri-2, Fig. 3a, c) with a c-lattice parameter of ~3.951 Å and a tilt angle of
231 0.29° along [100]. These triclinic phases, previously also observed in other mixed-phase systems⁵²,
232 act as bridging phases between M_B and M_C (Fig. 3g). To directly visualize the real-space
233 distribution of monoclinic and triclinic phases, we perform scanning diffraction X-ray microscopy
234 (SDXM). This technique employs a focused, coherent synchrotron X-ray beam to scan point by
235 point across the sample, enabling phase mapping by selecting specific diffraction peaks including
236 those satellite peaks. Using this approach, we map the distributions of M_B, M_C, and Tri-1 phases
237 (Fig. 3f), where the triclinic phases appear near the M_B–M_C boundary region. These observations
238 further corroborate the bridging phase nature for these triclinic phases, with the polarization
239 rotating between the M_B and M_C phases (Fig. 3g).

240 To further elucidate the spatial distribution of the coexisting phases across the film
241 thickness, we perform scanning transmission electron microscopy (STEM) studies on mixed-phase
242 NaNbO₃ (Fig. 3h). We observe the segmentation of two phases (Fig. 3i and Supplementary Fig.
243 11), differentiated by the presence (Fig. 3j) and absence (Fig. 3k) of half-order satellite spots in
244 the diffraction patterns, corresponding to in-phase and anti-phase oxygen octahedra tilts,
245 respectively. Electron ptychography further resolves these tilt modes in real space, where in-phase
246 and anti-phase tilts manifest as single (Fig. 3l and Supplementary Fig. 12a) and double (Fig. 3m
247 and Supplementary Fig. 12b) oxygen columns in projection, respectively. Combining these
248 findings with DFT simulations (Supplementary Fig. 1), we identify the in-phase tilted structures
249 as *Pc* (a⁺b⁺c⁻) or *Cm* (a⁺b⁺c⁺) and the anti-phase tilted structure as *Cc* (a⁻a⁻c⁻). The simulated

250 polarization profiles for *Pc/Cm* and *Cc* are also consistent with the polarization configurations for
251 the M_C and M_B phases analyzed from PFM characterizations. These results further confirm the
252 coexistence of monoclinic *Pc/Cm* (M_C) and *Cc* (M_B) phases in the mixed-phase NaNbO_3 films.

253

254 **Multi-state polarization switching**

255 To understand how mixed-phase states influence macroscale properties, we conduct
256 electrical measurements to examine the ferroelectric switching behavior of NaNbO_3 films using a
257 vertical capacitor geometry with symmetric $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ electrodes (Methods). Well-defined,
258 fully saturated polarization-electric field (P-E) hysteresis loops were measured over a broad
259 frequency range from 1 Hz to 10 kHz, exhibiting low leakage in the synthesized films (Fig. 4a and
260 Supplementary Fig. 13). Both the saturated and remanent polarizations are significantly enhanced
261 compared to previous studies on NaNbO_3 ^{44,45,53-56}, due to the presence of M_C phase with enhanced
262 out-of-plane polarization. Maximum values of 53 $\mu\text{C}/\text{cm}^2$ in saturated polarization and 40 $\mu\text{C}/\text{cm}^2$
263 in remanent polarization were observed in 80 nm films. To further investigate the switching
264 kinetics, we employ the positive-up negative-down (PUND) method, probing switched remanent
265 polarization as a function of pulse voltage at varying pulse widths (Fig. 4b and Supplementary Fig.
266 14). Notably, the films exhibit multi-state polarization switching, with the intermediate-state
267 polarization increasing from 28.05 $\mu\text{C}/\text{cm}^2$ in 80 nm films to 54.10 $\mu\text{C}/\text{cm}^2$ in 185 nm films (Fig.
268 4b). To elucidate the structural mechanism underlying this multi-state switching behavior, we
269 perform local-scale PFM imaging by applying a DC bias within a defined region of the NaNbO_3
270 films. By characterizing the evolution of film topography under increasing applied bias, we
271 identify the following switching pathway: Initially, at a pre-poled bias of -6V, the film exhibits a
272 uniform elevated topography (Fig. 4c). Upon applying a positive bias, a labyrinthine pattern

273 emerges, exhibiting elevated “walls” and lowered “pathways”, indicative of mixed-phase
274 formation (Fig. 4d). Further increasing the bias transforms the labyrinthine pattern back into a
275 uniform elevated topography (Fig. 4e). These observations suggest a field-driven phase evolution
276 in NaNbO₃ films. Initially, the films are uniformly switched into the negatively poled M_C phase.
277 Upon applying a positive bias, the M_C phase first transitions into an intermediate state, consisting
278 of coexisting negatively poled M_C and positively poled M_B phases, before fully switching into a
279 positively poled M_C phase at higher bias (Fig. 4f). The polarization evolution of these intermediate
280 states aligns with the net polarization calculated for the mixed phase at each film thickness
281 (Supplementary Table 1). These results confirm that the observed multi-state switching in mixed-
282 phase NaNbO₃ originates from phase transitions between monoclinic phases in NaNbO₃. Moreover,
283 we evaluate the endurance of stability of both the fully switched and intermediate polarization
284 states. Our results demonstrate that the films exhibit minimal fatigue after more than 10⁸ writing
285 cycles, with less than a 10% change in remanent polarization (Supplementary Fig. 15a, b).
286 Retention tests further confirm the long-term stability of both the fully switched and intermediate
287 polarization states (Supplementary Fig. 15c). These results highlight the robustness of the multi-
288 state switching behavior and demonstrate the potential of mixed-phase NaNbO₃ films for reliable
289 non-volatile multi-state memory and logic applications.

290

291 **Enhanced dielectric susceptibility and tunability**

292 With the presence of mixed phases and multi-state switching in NaNbO₃, how do these
293 structural features influence the dielectric properties? Could they enhance susceptibility similarly
294 to MPB PZT films? To explore this, we further investigate the dielectric properties of mixed-phase
295 NaNbO₃ films. First, we perform Rayleigh analysis by measuring dielectric permittivity under

increasing AC excitation fields (Supplementary Fig. 16a). Using the Rayleigh law ($\varepsilon' = \varepsilon'_{init} + \alpha'E_0$)⁵⁷, we extract the reversible Rayleigh coefficient (ε'_{init}) in the linear regime, which accounts for contributions from intrinsic lattice and reversible domain wall motion, as well as the irreversible Rayleigh coefficient (α') in the nonlinear regime, which describes the extrinsic contribution from irreversible domain wall motion. Notably, the Rayleigh coefficients peak in 80 nm films, consistent with the thickness-dependent domain wall density observed in PFM imaging (Supplementary Fig. 16b and 17). These results indicate that the extrinsic contribution from both reversible and irreversible domain wall motion to dielectric permittivity correlates with domain wall line density in NaNbO₃ films. The high density of domain walls in mixed-phase NaNbO₃ leads to a significant enhancement in extrinsic domain wall contributions, resulting in increased domain wall mobility.

To further investigate the dielectric performance in the linear regime, we measured dielectric permittivity and loss tangent under low AC excitation fields across a frequency range of 20 Hz to 10 kHz (Fig. 5a). The results reveal an ultra-low loss tangent increasing with frequency, ranging from 0.021 to 0.067 in 185 nm films. Meanwhile, the measured permittivity exhibits a slight decrease with frequency, with a peak value of 977 observed in 80 nm films at 20 Hz. Among the examined thicknesses, the 80 nm films exhibit the highest permittivity, followed by 25 nm, 125 nm, and 185 nm films, consistent with the trend in domain wall density. Notably, even the 185 nm films show a high permittivity of up to 637. This enhancement arises from both intrinsic and extrinsic mechanisms. Intrinsically, the coexistence of monoclinic and triclinic phases facilitates continuous rotation of polarization under an applied electric field, thereby increasing dielectric susceptibility. Extrinsicly, the high density of domain walls enhances reversible domain wall motion, which further contributes to enhanced susceptibility. Notably, this enhancement is

319 comparable to, or even exceeds, previously reported values for MPB PZT films⁵⁸⁻⁶¹ (600 - 1300
320 depending on film thickness, processing, and crystallographic orientation in polycrystalline films).

321 Finally, we demonstrate how the mixed-phase structure enables exotic and highly tunable
322 dielectric properties, which are critical for electronically tunable filters, antennas, resonators, and
323 phase shifters in wireless communication systems. Upon applying a DC electric field, we observe
324 enhanced tunability at room temperature across a broad frequency range, from 1 kHz to microwave
325 frequencies (5 GHz - 18 GHz). At low frequencies and under DC fields below the coercive field,
326 we measure a hysteresis-free tunability ranging from 45% to 82%, with a peak value of 82% in 80
327 nm films (Fig. 5b). When increasing the DC field beyond the coercive field, tunability is further
328 enhanced, ranging from 75% to 92%, again peaking at 92% in 80 nm films while maintaining a
329 low loss tangent (Fig. 5c). Intriguingly, unlike conventional negative tunability, where permittivity
330 continuously decreases with increasing DC field, mixed-phase NaNbO₃ exhibits an
331 unconventional tunability response with a plateau in dielectric permittivity at low fields, remaining
332 stable until a higher field induces further dielectric suppression (Fig. 5c). This unconventional
333 behavior is attributed to the multi-state switching pathway in mixed-phase NaNbO₃, where an
334 intermediate mixed phase state (i.e., coexistence of negatively poled M_B and positively poled M_C
335 or *vice versa*) maintains minimal permittivity change under a DC field. This unconventional
336 tunability extends into microwave frequencies. Using an interdigital capacitor geometry, we
337 observe tunability ranging from 26% to 54% across 5–18 GHz, while maintaining a low loss
338 tangent (Fig. 5d and Supplementary Fig. 18). The relatively lower capacitance modulation in this
339 in-plane geometry, compared to the vertical capacitor geometry used for low-frequency
340 measurements, is attributed to the underlying SrTiO₃ substrate, which contributes significantly to
341 the total capacitance but remains non-tunable under applied fields (Methods). Despite this

342 substrate effect, the mixed-phase NaNbO₃ still exhibits highly tunable dielectric properties at
343 microwave frequencies. Future work will explore alternative device architectures designed to
344 mitigate substrate effects and further elucidate the high-frequency tunability mechanisms in
345 mixed-phase NaNbO₃.

346

347 **Outlook**

348 Our work highlights a strain-induced phase boundary in chemically simple, lead-free
349 ferroelectric thin films. We demonstrate strain-induced MPB-like polymorphic nanodomain
350 structures composed of coexisting monoclinic and bridging phases, which drive significant
351 enhancements in dielectric susceptibility and tunability. These enhancements are comparable to or
352 even surpass those of PZT films near MPB compositions, arising from both continuous
353 polarization rotation among the coexisting polymorphs and extrinsic contributions due to the
354 motion of a high density of domain walls. Additionally, we uncover field-driven transitions
355 between monoclinic phases that enable multi-state polarization switching and unconventional
356 tunability behavior across a broad frequency range. Notably, NaNbO₃ exhibits a unique ability to
357 undergo allotropic modifications at a much lower strain level than other lead-free perovskite oxides
358 such as BiFeO₃, due to its structural richness. This advantage allows the use of a broader range of
359 commercially accessible substrates that provide modest strain to induce and tune the phase
360 boundary. Beyond the MPB-like boundary, the structural complexity of NaNbO₃ also allows for
361 the creation of various multi-phase boundaries involving different crystal symmetries and ferroic
362 orders via strain engineering. Moreover, mixed-phase NaNbO₃ exhibits significantly lower
363 leakage currents compared to mixed-phase BiFeO₃, enabling direct measurement of its intrinsic
364 ferroelectric and dielectric properties near the strain-induced phase boundary. However, the

365 underlying leakage mechanism requires further investigation in future studies. Additionally, the
366 ultrahigh low-frequency tunability (up to 92%) observed in mixed-phase NaNbO₃ suggests the
367 promise of enhanced microwave tunability using alternative device architectures that minimize
368 substrate effects. This positions NaNbO₃ as a potential alternative to conventional tunable
369 dielectrics such as (Ba,Sr)TiO₃ (BST). More broadly, our findings open new opportunities for
370 strain-engineered mixed-phase states in other lead-free perovskites, particularly in underexplored
371 KNN-based thin films, for next-generation dielectric and ferroelectric applications.

372

373 **Methods**

374 **Thin-film synthesis**

375 Epitaxial heterostructures consisting of NaNbO₃ films and La_{0.7}Sr_{0.3}MnO₃ electrode layers were
376 synthesized on (001)-oriented single-crystalline SrTiO₃ substrates via pulsed laser deposition. The
377 synthesis of 10 nm thick La_{0.7}Sr_{0.3}MnO₃ bottom electrode layer was conducted in a dynamic
378 oxygen pressure of 190 mTorr, at a growth temperature of 730 °C, a laser fluence of 1.6 J /cm⁻²,
379 and a repetition rate of 3 Hz, using a 3.7 mm² imaged laser spot. The synthesis of NaNbO₃ films
380 with thicknesses ranging from 25 nm to 185 nm was conducted in a dynamic oxygen pressure of
381 210 mTorr, at a growth temperature of 660 °C, a laser fluence of 2.1 J cm⁻², and a repetition rate
382 of 2 Hz, using a 4.58 mm² imaged laser spot. For fabricating NaNbO₃ capacitor structures, a 60
383 nm thick La_{0.7}Sr_{0.3}MnO₃ top electrode layer was synthesized right after the growth of NaNbO₃ to
384 form a tri-layer heterostructure. The synthesis of the top electrode layer was conducted in a
385 dynamic oxygen pressure of 190 mTorr, at a growth temperature of 660 °C, a laser fluence of 1.6
386 J cm⁻², and a repetition rate of 3 Hz, using a 3.7 mm² imaged laser spot. Following synthesis, all
387 samples were cooled down to room temperature at a rate of 5 °C min⁻¹ under a static oxygen
388 pressure of 2.5 Torr.

389

390 **X-ray diffraction**

391 A high-resolution X-ray diffractometer (Rigaku SmartLab) was used to perform θ –2 θ line scans
392 and X-ray reflectometry. A high-resolution X-ray diffractometer (Malvern Panalytical Empyrean)
393 equipped with a 2D area detector was used to conduct 2D reciprocal space maps measurements.
394 Synchrotron X-ray 3D reciprocal space mapping (3D-RSM) measurement was performed using a
395 six-circle Huber diffractometer configured with Psi-C geometry at the beamline 7-ID-C of the APS
396 at Argonne National Laboratory, utilizing X-rays with energies of 17.5 KeV (wavelength λ =

397 0.70846 Å). A Si (111) double-crystal monochromator with an energy resolution of $\Delta E/E = 1 \times$
398 10⁻⁴ was employed to fine-tune the X-ray energy. The X-ray beam at 7-ID-C, with a total flux of
399 3×10^{12} photons per second at 17.5 keV, was optically focused by using Kirkpatrick-Baez (K-
400 B) mirrors, resulting in a beam profile of 30 μm (Vertical) × 50 μm (Horizontal). Scattering signals
401 were recorded using a Eiger2 X 500K 2D area detector, and the 2D images were subsequently
402 processed. Geometric corrections were applied to all 3D-RSM data, which was further analyzed
403 using the RSMap3D software developed at APS.

404

405 **Scanning diffraction X-ray microscopy**

406 Scanning diffraction X-ray microscopy (SDXM) measurement was performed at the Center for
407 Nanoscale Materials' Hard X-ray Nanoprobe Beamline 26-ID at the upgraded Advanced Photon
408 Source (APS) at Argonne National Laboratory. The X-ray beam energy was set to 10 keV, with a
409 focused beam size of 40 nm full width at half-maximum (FWHM) achieved using a Fresnel zone
410 plate. Diffraction patterns were collected by an Eiger2 X 1M detector positioned 1 meter from the
411 sample, with a pixel size of 75 μm. SDXM tilt series were acquired at three sample angles, 18.3°,
412 18.5°, and 18.7°. Large field-of-view maps were obtained by stitching together eight SDXM maps,
413 each covering an area of $6 \times 6 \text{ um}^2$ with a step size of 60 nm.

414

415 **Piezoresponse force microscopy**

416 Dual AC Resonance Tracking (DART) piezoresponse force microscopy was conducted to image
417 the domain structure with an MFP-3D Origin+ AFM (Asylum Research) using a conductive Pt/Ir
418 coated conductive tip (Nanosensor, PPP-EFM, force constant $\approx 2.8 \text{ N m}^{-1}$).

419

420 **Electrical measurements**

421 Capacitor structures with symmetric $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ electrodes were fabricated using
422 photolithography followed by a wet etching process. After patterning the photoresist in circular
423 shapes with diameters of 15, 25, 50, and 75 μm on the as-grown heterostructure, the sample was
424 immersed in a diluted phosphoric acid solution (1 part acid: 5 parts deionized water) at 70 °C for
425 15 seconds to selectively etch away the $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ top electrode regions that were not
426 protected by the patterned photoresist. Eventually, the samples were immersed in acetone at 70 °C
427 to remove the photoresist. Dielectric property measurements were conducted on at least 8
428 capacitors for each sample at room temperature. Dielectric permittivity and loss tangent were
429 measured using an E4980A LCR meter (Agilent Technologies). PUND measurements were
430 performed using a Precision Multiferroic Tester (Radian Technologies). The capacitor structure
431 was first pre-poled with a $-\text{V}_{\text{Max}}$ pulse to initialize its negative polarization state. The second pulse,
432 $+\text{V}_{\text{Max}}$, switched the polarization, and the switched polarization (P^*) was measured. Following this,
433 the sample was allowed to settle at 0 V before a second measurement was taken to account for
434 non-remanent polarization contributions. The third pulse ($+\text{V}_{\text{Max}}$) applied without switching,
435 provided a measurement of the total non-remanent polarization (P^\wedge), followed by another 0 V
436 measurement. The sequence was then mirrored for the negative voltage direction to complete the
437 measurement. The P^* represents switched polarization including both remanent and non-remanent
438 polarization components. In contrast, the P^\wedge , measured during non-switching pulses, accounts only
439 for the non-remanent contribution. Subtracting the P^\wedge term from the P^* term results in a measure
440 of remanent-only polarization which is represented in (Fig. 4b and Supplementary Fig. 14). For
441 this experiment, a pulse delay of 1 s and a pulse width of 0.01, 0.1, and 1 ms were used.

442 Microwave measurements were conducted on a gold interdigital capacitor (IDC) geometry
443 fabricated using a lithographic process. A Keysight N5222B programmable network analyzer
444 (PNA) was used to collect scattering parameters, while a Keithley 2612A source meter unit (SMU)
445 supplied the bias voltage. The sample was probed using an MPI TS150 probe station equipped
446 with FormFactor Infinity probes and SHF bias tees. Each two-port measurement began with a 0V
447 bias applied to the probes. The bias voltage was then incrementally increased, alternating between
448 positive and negative polarity. At each step, half of the total bias voltage was applied to each probe
449 in opposite polarities. For instance, the first measurement applied 0 V to both probes, followed by
450 +2.5 V and -2.5 V for a 5 V bias, then -2.5 V and +2.5 V for a -5 V bias, continuing this pattern
451 until the maximum bias voltage was reached. A custom Python script automated data collection
452 by controlling both the PNA and SMU. The acquired data included a complete set of two-port
453 scattering parameters for each bias condition. A MATLAB script was used to compute key
454 parameters such as capacitance and tunability from the acquired data.

455

456 **Scanning transmission electron microscopy**

457 The cross-sectional lamellae were prepared using a Thermo Fisher Helios G4 UX focused ion
458 beam with the standard lift-out method. The HAADF-STEM images and 4D-STEM data for
459 ptychographic reconstructions were acquired on a Thermo Fisher Spectra 300 X-CFEG STEM
460 operated at 300 kV in nanoprobe mode with a semi-convergence angle of 30 mrad and probe
461 current of 60 pA. The 4D-datasets for ptychography were collected on an EMPAD-G2 detector⁶²
462 operated at 2-10 kHz, with a probe overfocus of 10 nm and step-size of 0.42 Å. The ptychographic
463 reconstructions used the least-squares maximum likelihood (LSQ-ML) multislice algorithm⁶³⁻⁶⁵ in
464 the fold-slice package^{66,67} with 4 probe modes and slice thickness of 1-2 nm.

465 4D-STEM datasets for nanobeam diffraction were acquired on the EMPAD-G2 detector in
466 microprobe mode with a semi-convergence angle of 1 mrad. We first performed cepstral
467 transformation⁶⁸⁻⁷⁰ on the 4D-data to reduce the impact of sample mistilts across the lamella. The
468 phase-segmentation was done on the cepstral-transformed data through k-means clustering.

469

470 **Second harmonic generation**

471 Second harmonic generation (SHG) polarimetry was done with femtosecond pulses at $\lambda = 800$ nm
472 fundamental light from a regeneratively amplified SpectraPhysics Ti:Sapphire laser system (1kHz,
473 80 fs). The schematic of the setup used for measurements is shown in Supplementary Figure 6.
474 Linearly polarized light incident on the sample at 45° generate second harmonic light at $\lambda = 400$
475 nm reflected off the sample. The *p*-polarized and *s*-polarized SHG intensities were spectrally
476 filtered and measured by a photomultiplier tube through lock-in amplifier (SR830) detection. SHG
477 Polar plots were generated by rotating the polarization angle (ϕ) of the incident fundamental light
478 by a half-wave plate.

479

480 **X-ray photoelectron spectroscopy**

481 X-ray photoelectron spectroscopy (XPS) analyses were conducted using a PHI VersaProbe 4
482 equipped with a monochromatized Al K α source. Spectra calibration was performed by aligning
483 the adventitious carbon peak at 284.8 eV. The elemental stoichiometric ratios were quantified
484 using the MultiPak software.

485

486 **Density functional theory**

487 Density functional theory (DFT) calculations were conducted on a (001)-oriented NaNbO₃
488 epitaxial film, using the generalized gradient approximation, within the Perdew-Burke-Ernzerhof
489 functional for solids (PBEsol) as implemented in the Vienna Ab initio Simulation Package (VASP).
490 The projector augmented wave approach is employed to treat the valence electrons, which account
491 for 7 electrons for Na (2p⁶3s¹), 13 electrons for Nb (4s²4p⁶4d⁴5s¹), and 6 electrons for O (2s²2p⁴).
492 A plane-wave basis with a kinetic energy cutoff of 550 eV is used. The NaNbO₃ films are subject
493 to a misfit strain η_{misfit} , ranging from $\simeq -4\%$ to $\simeq +4\%$, defined as $\eta_{\text{misfit}} = \frac{a - a_0}{a_0} \times 100\%$, where a
494 represents the in-plane lattice constant of the substrate and a_0 is the in-plane lattice constant
495 resulting from the energy minimization of the Cc phase.

496 To model perfect epitaxy on a cubic substrate, the strain tensor in Voigt notation has three
497 elements that are frozen during each simulation: $\eta_1 = \eta_2 = \eta_{\text{misfit}}$ and $\eta_6 = 0$. Meanwhile, η_3 , η_4 , and
498 η_5 are allowed to relax, along with all internal atomic coordinates, until the Hellmann-Feynman
499 force on each atom is converged to below 0.001 eV/Å for each considered misfit strain. For the
500 NaNbO₃ epitaxial film, the Cm symmetry used in the reference⁴⁷ was rotated clockwise by 90° to
501 perform the DFT calculations.

502

503 **Data availability**

504 The datasets in the current study are available in the Dryad public repository at the following
505 link: <https://doi.org/10.5061/dryad.5dv41nsjf>.

506

507 **References**

- 508 1. Jaffe, H. Piezoelectric ceramics. *J. Am. Ceram. Soc.* **41**, 494–498 (1958).
- 509 2. Noheda, B. & Cox, D. E. Bridging phases at the morphotropic boundaries of lead oxide
510 solid solutions. *Phase Transitions* **79**, 5–20 (2006).
- 511 3. Izyumskaya, N. *et al.* Processing, Structure, Properties, and Applications of PZT Thin
512 Films. *Crit. Rev. Solid State Mater. Sci.* **32**, 111–202 (2007).
- 513 4. Schönenau, K. A. *et al.* Nanodomain structure of $\text{Pb}[\text{Zr}_{1-x}\text{Ti}_x]\text{O}_3$ at its morphotropic phase
514 boundary: Investigations from local to average structure. *Phys. Rev. B* **75**, 184117 (2007).
- 515 5. Bellaïche, L., Garcia, A. & Vanderbilt, D. Finite-temperature properties of $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$
516 alloys from first principles. *Phys. Rev. Lett.* **84**, 5427–5430 (2000).
- 517 6. Heitmann, A. A. & Rossetti, G. A., Jr. Thermodynamics of ferroelectric solid solutions with
518 morphotropic phase boundaries. *J. Am. Ceram. Soc.* **97**, 1661–1685 (2014).
- 519 7. Wei, X.-K. *et al.* Ferroelectric phase-transition frustration near a tricritical composition
520 point. *Nat. Commun.* **12**, 5322 (2021).
- 521 8. Bellaïche, L., García, A. & Vanderbilt, D. Electric-field induced polarization paths in
522 $\text{Pb}(\text{Zr}_{1-x}\text{Ti}_x)\text{O}_3$ alloys. *Phys. Rev. B* **64**, (2001).
- 523 9. Cucchiella, F., D'Adamo, I., Lenny Koh, S. C. & Rosa, P. Recycling of WEEEs: An
524 economic assessment of present and future e-waste streams. *Renewable Sustainable Energy
525 Rev.* **51**, 263–272 (2015).
- 526 10. Koh, S. C. L. *et al.* Drivers of U.S. toxicological footprints trajectory 1998–2013. *Sci. Rep.*
527 **6**, 39514 (2016).
- 528 11. Shrout, T. R. & Zhang, S. J. Lead-free piezoelectric ceramics: Alternatives for PZT? *J.*
529 *Electroceram.* **19**, 111–124 (2007).

- 530 12. Waqar, M., Wu, H., Chen, J., Yao, K. & Wang, J. Evolution from lead-based to lead-free
531 piezoelectrics: engineering of lattices, domains, boundaries, and defects Leading to giant
532 response. *Adv. Mater.* **34**, e2106845 (2022).
- 533 13. Wang, X. *et al.* Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. *J.*
534 *Am. Chem. Soc.* **136**, 2905–2910 (2014).
- 535 14. Wu, J., Xiao, D. & Zhu, J. Potassium-sodium niobate lead-free piezoelectric materials: Past,
536 present, and future of phase boundaries. *Chem. Rev.* **115**, 2559–2595 (2015).
- 537 15. Wu, B. *et al.* Giant piezoelectricity and high curie temperature in nanostructured alkali
538 niobate lead-free piezoceramics through phase coexistence. *J. Am. Chem. Soc.* **138**, 15459–
539 15464 (2016).
- 540 16. Zheng, T. *et al.* The structural origin of enhanced piezoelectric performance and stability in
541 lead free ceramics. *Energy Environ. Sci.* **10**, 528–537 (2017).
- 542 17. Liu, Q. *et al.* High-performance lead-free piezoelectrics with local structural heterogeneity.
543 *Energy Environ. Sci.* **11**, 3531–3539 (2018).
- 544 18. Tao, H. *et al.* Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush
545 Polar State with Multiphase Coexistence. *J. Am. Chem. Soc.* **141**, 13987–13994 (2019).
- 546 19. Zheng, T. *et al.* High-performance potassium sodium niobate piezoceramics for ultrasonic
547 transducer. *Nano Energy* **70**, 104559 (2020).
- 548 20. Won, S. S. *et al.* Lead-free Mn-doped $(\text{K}_{0.5}\text{Na}_{0.5})\text{NbO}_3$ piezoelectric thin films for MEMS-
549 based vibrational energy harvester applications. *Appl. Phys. Lett.* **108**, 232908 (2016).
- 550 21. Schlom, D. G., Chen, L. Q., Pan, X., Schmehl, A. & Zurbuchen, M. A. A thin film approach
551 to engineering functionality into oxides. *J. Am. Ceram. Soc.* **91**, 2429–2454 (2008).
- 552 22. Dhole, S., Chen, A., Nie, W., Park, B. & Jia, Q. Strain engineering: A pathway for tunable

- 553 functionalities of perovskite metal oxide films. *Nanomaterials* **12**, 835 (2022).
- 554 23. Ahart, M. *et al.* Origin of morphotropic phase boundaries in ferroelectrics. *Nature* **451**,
555 545–548 (2008).
- 556 24. Zeches, R. J. *et al.* A strain-driven morphotropic phase boundary in BiFeO₃. *Science* **326**,
557 977–980 (2009).
- 558 25. Zhang, J. X. *et al.* Large field-induced strains in a lead-free piezoelectric material. *Nat.*
559 *Nanotechnol.* **6**, 98–102 (2011).
- 560 26. Christen, H. M., Nam, J. H., Kim, H. S., Hatt, A. J. & Spaldin, N. A. Stress-induced
561 symmetry changes in BiFeO₃ films. *Phys. Rev. B* **83**, 144107 (2011).
- 562 27. Yang, J.-C., He, Q., Yu, P. & Chu, Y.-H. BiFeO₃ thin films: A playground for exploring
563 electric-field control of multifunctionalities. *Annu. Rev. Mater. Res.* **45**, 249–275 (2015).
- 564 28. Xue, F., Li, Y., Gu, Y., Zhang, J. & Chen, L.-Q. Strain phase separation: Formation of
565 ferroelastic domain structures. *Phys. Rev. B* **94**, 220101 (2016).
- 566 29. Everhardt, A. S. *et al.* Temperature-independent giant dielectric response in transitional
567 BaTiO₃ thin films. *Appl. Phys. Rev.* **7**, 011402 (2020).
- 568 30. Peng, W. *et al.* Constructing polymorphic nanodomains in BaTiO₃ films via epitaxial
569 symmetry engineering. *Adv. Funct. Mater.* **30**, 1910569 (2020).
- 570 31. Zhang, M.-H., Fulanovi, L., Zhao, C. & Koruza, J. Review on field-induced phase
571 transitions in lead-free NaNbO₃-based antiferroelectric perovskite oxides for energy storage.
572 *J. Materomics* **9**, 1–18 (2023).
- 573 32. Zhang, M.-H. *et al.* Tailoring high-energy storage NaNbO₃-based materials from
574 antiferroelectric to relaxor states. *Nat. Commun.* **14**, 1525 (2023).
- 575 33. Shimizu, H. *et al.* Lead-free antiferroelectric: xCaZrO₃-(1 - x)NaNbO₃ system (0 ≤ x ≤

- 576 0.10). *Dalton Trans. J. Inorg. Chem.* **44**, 10763–10772 (2015).
- 577 34. Randall, C. A., Fan, Z., Reaney, I., Chen, L. Q. & Trolier-McKinstry, S. Antiferroelectrics:
578 History, fundamentals, crystal chemistry, crystal structures, size effects, and applications. *J.
579 Am. Ceram. Soc.* **104**, 3775–3810 (2021).
- 580 35. Liu, Z. *et al.* Antiferroelectrics for energy storage applications: a review. *Adv. Mater.
581 Technol.* **3**, 1800111 (2018).
- 582 36. Wang, G. *et al.* Electroceramics for high-energy density capacitors: current status and future
583 perspectives. *Chem. Rev.* **121**, 6124–6172 (2021).
- 584 37. Schwarzkopf, J. *et al.* Strain-induced phase transitions in epitaxial NaNbO₃ thin films
585 grown by metal-organic chemical vapour deposition. *J. Appl. Crystallogr.* **45**, 1015–1023
586 (2012).
- 587 38. Duk, A., Schmidbauer, M. & Schwarzkopf, J. Anisotropic one-dimensional domain pattern
588 in NaNbO₃ epitaxial thin films grown on (110) TbScO₃. *Appl. Phys. Lett.* **102**, 2011–2015
589 (2013).
- 590 39. Sellmann, J. *et al.* Strained ferroelectric NaNbO₃ thin films: Impact of pulsed laser
591 deposition growth conditions on structural properties. *Thin Solid Films* **570**, 107–113
592 (2014).
- 593 40. Wu, H. *et al.* Alkali-deficiency driven charged out-of-phase boundaries for giant
594 electromechanical response. *Nat. Commun.* **12**, 2841 (2021).
- 595 41. Patel, K., Prosandeev, S., Xu, B., Xu, C. & Bellaiche, L. Properties of (001) NaNbO₃ films
596 under epitaxial strain: A first-principles study. *Phys. Rev. B.* **103**, 094103 (2021).
- 597 42. de Oliveira Guimarães, M. *et al.* Ferroelectric phase transitions in tensile-strained NaNbO₃
598 epitaxial films probed by in situ x-ray diffraction. *J. Appl. Phys.* **132**, 154102 (2022).

- 599 43. Bin Anooz, S. *et al.* High temperature phase transitions in NaNbO₃ epitaxial films grown
600 under tensile lattice strain. *Appl. Phys. Lett.* **120**, 202901 (2022).
- 601 44. Schneider, T., Cardoletti, J., Komissinskiy, P. & Alff, L. Impact of strain engineering on
602 antiferroelectricity in NaNbO₃ thin films. *ACS Omega* **8**, 23587–23595 (2023).
- 603 45. Liu, H. *et al.* Giant piezoelectricity in oxide thin films with nanopillar structure. *Science*
604 **369**, 292–297 (2020).
- 605 46. Lin, B. *et al.* Ultrahigh electromechanical response from competing ferroic orders. *Nature*
606 **633**, 798–803 (2024).
- 607 47. Harikrishnan, K. *et al.* Electron ptychography reveals a ferroelectricity dominated by anion
608 displacements. *arXiv:2408.14795 [cond-mat.mtrl-sci]* (2024).
- 609 48. Glazer, A. M. & Megaw, H. D. Studies of the lattice parameters and domains in the phase
610 transitions of NaNbO₃. *Acta Crystallogr. A* **29**, 489–495 (1973).
- 611 49. Vanderbilt, D. & Cohen, M. H. Monoclinic and triclinic phases in higher-order Devonshire
612 theory. *Phys. Rev. B Condens. Matter* **63**, 094108 (2001).
- 613 50. Damodaran, A. R. *et al.* Nanoscale structure and mechanism for enhanced
614 electromechanical response of highly Strained BiFeO₃ thin films. *Adv. Mater.* **23**, 3170–
615 3175 (2011).
- 616 51. Chen, Z. *et al.* Low-symmetry monoclinic phases and polarization rotation path mediated
617 by epitaxial strain in multiferroic BiFeO₃ thin films. *Adv. Funct. Mater.* **21**, 133–138
618 (2011).
- 619 52. Chen, Z. *et al.* Coexistence of ferroelectric triclinic phases in highly strained BiFeO₃ films.
620 *Phys. Rev. B* **84**, 1–6 (2011).
- 621 53. Schneider, T. *et al.* Evidence for antipolar displacements in NaNbO₃ thin films. *Appl. Phys.*

- 622 *Lett.* **121**, 122906 (2022).
- 623 54. Mino, T. *et al.* Piezoelectric properties of epitaxial NaNbO₃ Thin films deposited on
624 (001)SrRuO₃/pt/MgO substrates. *Jpn. J. Appl. Phys.* **46**, 6960–6963 (2007).
- 625 55. Yamazoe, S., Sakurai, H., Fukada, M., Adachi, H. & Wada, T. The effect of SrTiO₃
626 substrate orientation on the surface morphology and ferroelectric properties of pulsed laser
627 deposited NaNbO₃ films. *Appl. Phys. Lett.* **95**, 062906 (2009).
- 628 56. Saito, T., Adachi, H., Wada, T. & Adachi, H. Pulsed-laser deposition of ferroelectric
629 NaNbO₃ thin films. *Jpn. J. Appl. Phys.* (2008) **44**, 6969 (2005).
- 630 57. Bassiri-Gharb, N. *et al.* Domain wall contributions to the properties of piezoelectric thin
631 films. *J. Electroceram.* **19**, 47–65 (2007).
- 632 58. Agar, J. C. *et al.* Tuning susceptibility via misfit strain in relaxed morphotropic phase
633 boundary PbZr_{1-x}Ti_xO₃ epitaxial thin films. *Adv. Mater. Interfaces* **1**, 1400098 (2014).
- 634 59. Oikawa, T., Aratani, M., Funakubo, H., Saito, K. & Mizuhira, M. Composition and
635 orientation dependence of electrical properties of epitaxial Pb(Zr_xTi_{1-x})O₃ thin films grown
636 using metalorganic chemical vapor deposition. *J. Appl. Phys.* **95**, 3111–3115 (2004).
- 637 60. Berlincourt, D., Cmolik, C. & Jaffe, H. Piezoelectric properties of polycrystalline lead
638 titanate zirconate compositions. *Proc. IRE* **48**, 220–229 (1960).
- 639 61. Bastani, Y. & Bassiri-Gharb, N. Enhanced dielectric and piezoelectric response in PZT
640 superlattice-like films by leveraging spontaneous Zr/Ti gradient formation. *Acta Mater.* **60**,
641 1346–1352 (2012).
- 642 62. Philipp, H. T. *et al.* Very-high dynamic range, 10,000 frames/second pixel array detector for
643 electron microscopy. *Microsc. Microanal.* **28**, 1–16 (2022).
- 644 63. Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive

- 645 imaging. *New J. Phys.* **14**, 063004 (2012).
- 646 64. Tsai, E. H. X-ray ptychography with extended depth of field. *Optics Express* **24**, 29089–
647 29108 (2016).
- 648 65. Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission
649 microscopy in three dimensions using a multi-slice approach. *J. Opt. Soc. Am. A Opt. Image
650 Sci. Vis.* **29**, 1606–1614 (2012).
- 651 66. Wakonig, K. *et al.* PtychoShelves, a versatile high-level framework for high-performance
652 analysis of ptychographic data. *J. Appl. Crystallogr.* **53**, 574–586 (2020).
- 653 67. Chen, Z. *et al.* Electron ptychography achieves atomic-resolution limits set by lattice
654 vibrations. *Science* **372**, 826–831 (2021).
- 655 68. Padgett, E. *et al.* The exit-wave power-cepstrum transform for scanning nanobeam electron
656 diffraction: robust strain mapping at subnanometer resolution and subpicometer precision.
657 *Ultramicroscopy* **214**, 112994 (2020).
- 658 69. Harikrishnan, K. P. *et al.* Dose-efficient strain mapping with high precision and throughput
659 using cepstral transforms on 4D-STEM data. *Microsc. Microanal.* **27**, 1994–1996 (2021).
- 660 70. Yoon, D., Kp, H., Shao, Y.-T. & Muller, D. A. High-speed, high-precision, and high-
661 throughput strain mapping with cepstral transformed 4D-STEM data. *Microscopy and
662 Microanalysis* **28**, 796–798 (2022).

663
664

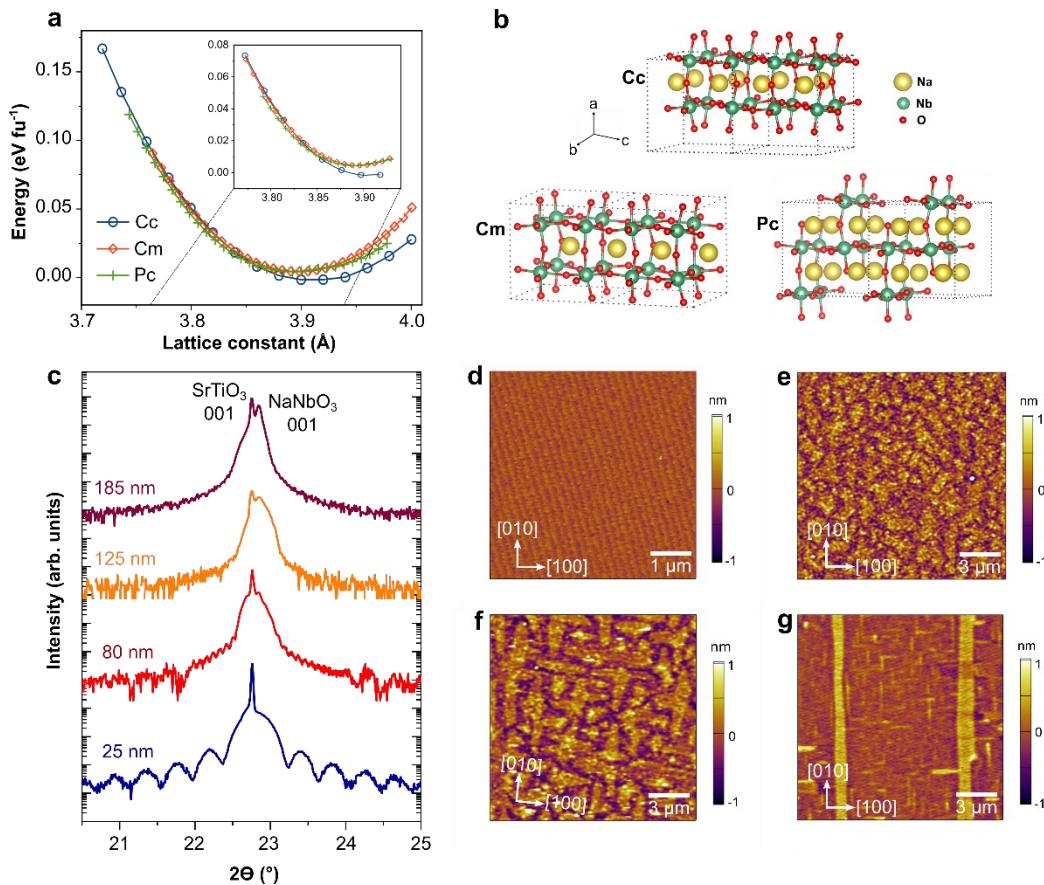
665 **Acknowledgments**

666 R.G. and R.X. acknowledge the support from the National Science Foundation (NSF) under award
667 No. DMR-2442399 and the American Chemical Society Petroleum Research Fund under award
668 No. 68244-DNI10. K.P., S.P. and L.B. thank an ARA Impact Grant 3.0, the Vannevar Bush

669 Faculty Fellowship (VBFF) Grant No. N00014-20-1-2834 from the Department of Defense. K.P.,
670 S.P., L.B., H.K., and D.A.M. acknowledge funding from the ETHOS MURI grant W911NF-21-2-
671 0162 from the Army Research Office (ARO). A.K., K.J.C., and H.Y.H. acknowledge support by
672 the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering
673 under Contract No. DE-AC02-76SF00515. S.H. and V.G. acknowledge support from the DOE-
674 BES under grant number DE-SC0012375 for optical second harmonic generation measurements.
675 D.S acknowledges support from the NSF under award number DMR-2143642 for sample
676 fabrication. L.W., C.J.G.M., and J.E.S. acknowledge support from the U.S. Army Research
677 Laboratory under Cooperative Agreement No. W911NF-24-2-0100, and J.E.S. acknowledges
678 support also from the U.S. Army Research Office under grant W911NF-21-1-0126. M.C.
679 acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences,
680 Division of Materials Sciences and Engineering under contract FWP-ERKCS89. Y.K. is supported
681 by BES-ECA ERKCZ55. Part of the microscopy work was performed at the Center for Nanophase
682 Materials Sciences (CNMS), a DOE Office of Science User Facility at ORNL. This work was
683 supported by the NSF, as part of the Center for Dielectrics and Piezoelectrics under grant nos. IIP-
684 1841453 and IIP-1841466. Work performed at the Center for Nanoscale Materials and Advanced
685 Photon Source, both U.S. Department of Energy Office of Science User Facilities, was supported
686 by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
687 The electron microscopy studies made use of the Cornell Center for Materials Research shared
688 instrumentation facility instruments supported by the NSF (DMR-2039380). Part of this work was
689 performed at the Stanford Nano Shared Facilities (SNSF) RRID:SCR_023230, supported by the
690 National Science Foundation under award ECCS-2026822. This work was performed in part at the
691 Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported

692 by the State of North Carolina and the National Science Foundation (award number ECCS-
693 2025064). The AIF is a member of the North Carolina Research Triangle Nanotechnology
694 Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

695 **Author contributions**
696
697 R.X. conceived and supervised the study. R.X. and R.G. designed the experiments. R.G.
698 synthesized the thin film samples and performed PFM characterizations and analysis, with
699 contributions from H.Q. and N.B. R.G. also carried out capacitor fabrication and electrical
700 measurements, with support from Y.N. and D.S. H.K. and D.A.M. conducted electron
701 ptychography and analysis. K.P., S.P., and L.B. performed the DFT simulations. R.G., A.K., and
702 K.J.C. conducted lab-source X-ray diffraction measurements, with support from H.Y.H. H.Z.
703 performed synchrotron X-ray reciprocal space mapping. T.Z., R.L., and M.H. carried out
704 synchrotron X-ray scanning diffraction microscopy, with contributions from Y.K. and M.C. J.W.
705 conducted XPS measurements and analysis. L.W., J.C., C.J.G.M., and J.E.S. conducted microwave
706 measurements. S.H. and V.G. performed SHG measurements and analysis. R.X. and R.G. wrote
707 the manuscript with input from all authors.

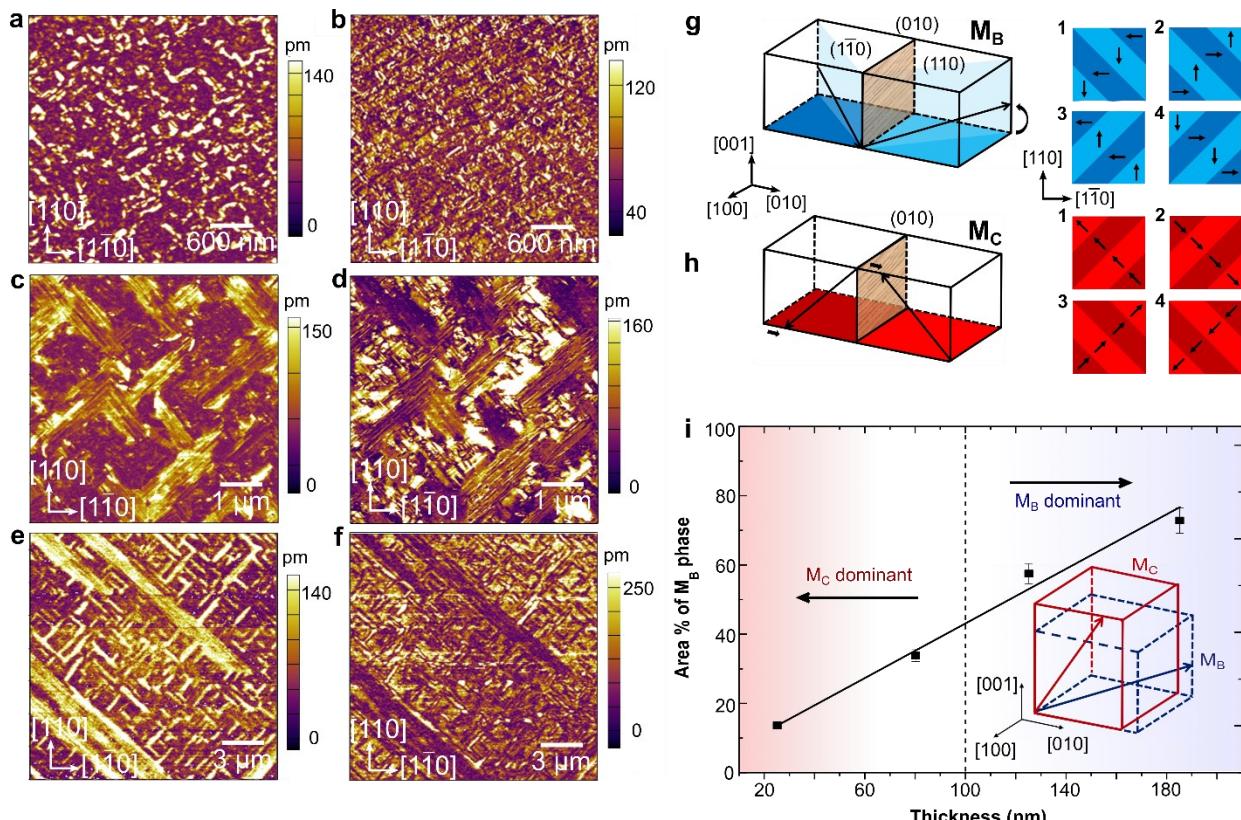

708

709 **Competing interests**

710 The authors declare no competing interests.

711 **Main Figures**

712


713

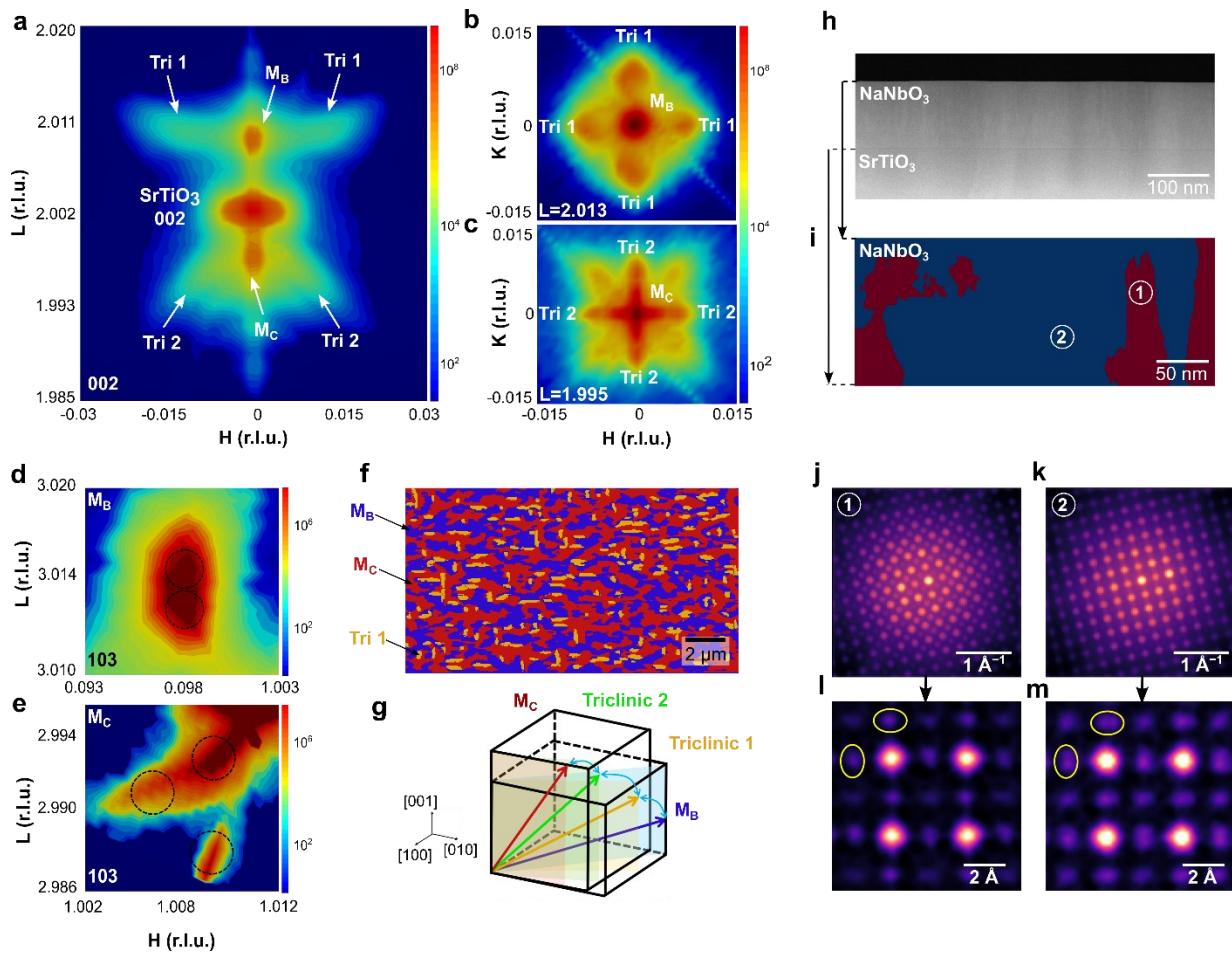
714 **Figure 1 | Structural phase and topography evolution of NaNbO₃/SrTiO₃ (001)**
715 **heterostructures with varying film thickness.** (a) Total energy as a function of lattice parameter
716 for the *Cc*, *Cm*, and *Pc* phases in (001)-oriented epitaxial NaNbO₃ thin films. The inset provides a
717 magnified view of the energy curve in the range of 3.76–3.94 Å. (b) Schematic representations of
718 the atomic structures of the *Cc*, *Cm*, and *Pc* phases in (001)-oriented epitaxial NaNbO₃ thin films.
719 (c) X-ray θ -2 θ diffraction patterns of NaNbO₃/SrTiO₃ (001) heterostructures as a function of film
720 thickness, measured near the pseudocubic (001) diffraction condition. (d–g) Atomic force
721 microscopy (AFM) images of NaNbO₃ films with thicknesses of (d) 25 nm, (e) 80 nm, (f) 125 nm,
722 and (g) 185 nm. The 25 nm films exhibit atomically smooth surfaces, while labyrinthine
723 topographical patterns emerge with increasing film thickness.

724

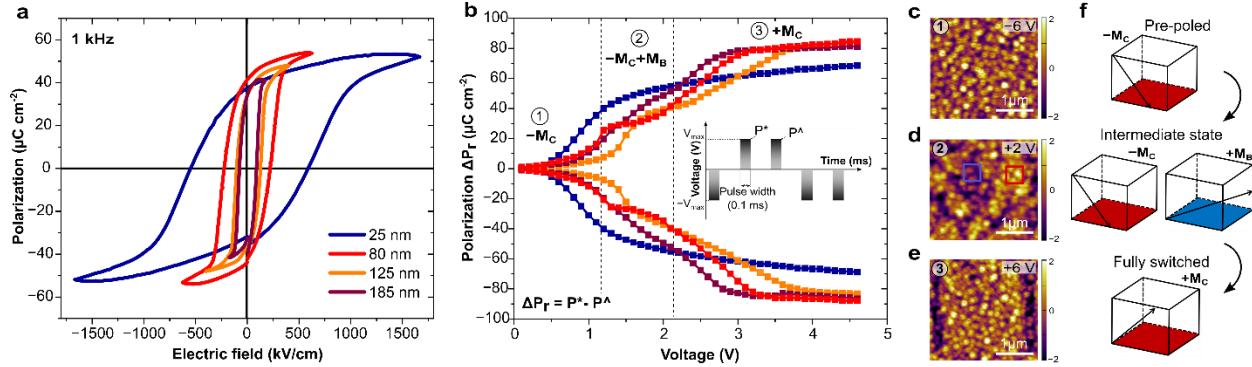
725

726

727

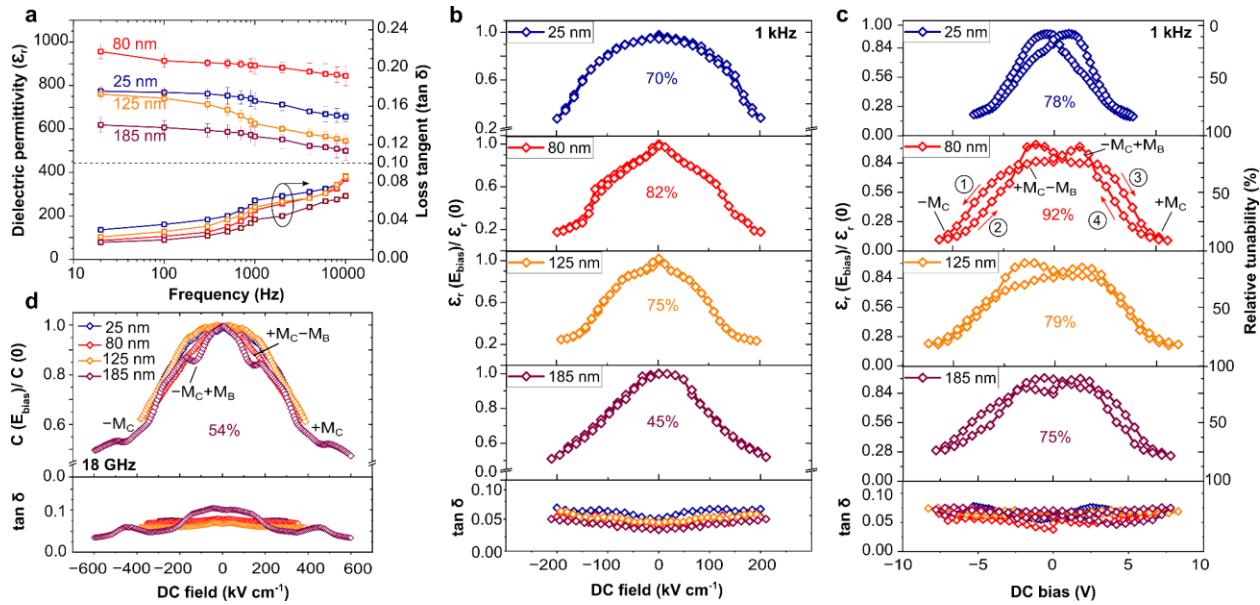

728 **Figure 2 | Ferroelectric domain structure evolution of $\text{NaNbO}_3/\text{SrTiO}_3$ (001)**
 729 **heterostructures with varying film thickness.** (a, c, e) Vertical and (b, d, f) lateral piezoresponse
 730 force microscopy (PFM) amplitude imaging, along with corresponding schematic representations
 731 of the M_C (red) and M_B (blue) phases for NaNbO_3 films with thicknesses of (a, b) 25 nm, (c, d) 80
 732 nm, and (e, f) 185 nm, respectively. Schematic representations of the polarization configurations
 733 with charge neutral domain walls for (g) M_B and (h) M_C phases, respectively, with corresponding
 734 in-plane projection schematics for the possible polydomain configurations. (i) Areal fraction of the
 735 M_B phase as a function of thickness, showing an increase in M_B phase and a decrease in M_C phase
 736 with increasing film thickness.

737


738

739

740


741 **Figure 3 | Elucidating the microstructure of mixed phases in $\text{NaNbO}_3/\text{SrTiO}_3$ heterostructures.** Synchrotron X-ray reciprocal space map (RSM) near the 002-diffraction condition for an 80 nm $\text{NaNbO}_3/\text{SrTiO}_3$ heterostructure, revealing two distinct peaks corresponding to the M_B and M_C phases, along with surrounding satellite peaks from the triclinic phase in the (a) HL-plane, (b) HK-plane at $L = 2.013$, and (c) HK-plane at $L = 1.995$. Zoomed-in RSMs near the 103-diffraction condition for the (d) M_B and (e) M_C phases of an 80 nm NaNbO_3 film show peak splitting, as highlighted in Supplementary Fig. 10. (f) Scanning diffraction X-ray microscopy (SDXM) dark-field imaging depicts the coexistence of M_B (blue), M_C (red), and bridging Triclinic 1 (Tri-1, orange) phases. (g) Schematic illustration of the polarization rotation pathway between the M_C and M_B phases, facilitated by intermediate triclinic phases. (h) HAADF-STEM image of the $\text{NaNbO}_3/\text{SrTiO}_3$ heterostructure. (i) Nanoscale spatial distribution of two distinct phases in the NaNbO_3 film, identified in red and blue via segmentation of nanobeam electron diffraction data. (j, k) Average diffraction patterns from the two segmented regions, showing the presence (j) or absence (k) of half-order diffraction spots indicative of in-phase and anti-phase octahedral tilts, respectively. (l, m) Ptychographic images of a 2×2 pseudo-cubic unit-cell region of the two phases, illustrating (l) in-phase and (m) anti-phase octahedral tilting. These tilt modes are distinguished by singular or split oxygen sites, highlighted with yellow ovals.

759

760 **Figure 4 | Ferroelectric switching properties of NaNbO_3 films with varying thickness. (a)**
 761 Polarization-electric field (P - E) hysteresis loops as a function of film thickness, measured at 1 kHz.
 762 **(b)** Thickness-dependent positive-up, negative down (PUND) measurements of NaNbO_3 films
 763 with varying thickness. The switched remanent polarization (ΔP_r) is measured as a function of
 764 applied voltage at a pulse width of 0.1 ms and a pulse delay of 1s. The pulse switching results
 765 indicate a multi-state switching pathway, with the presence of an intermediate polarization state,
 766 arising from a mixture of negatively poled M_C and positively poled M_B phases. **(c-e)** AFM
 767 topography evolution of 80 nm-thick NaNbO_3 film after poling at **(c)** -6 V, **(d)** 2 V, and **(e)** 6 V,
 768 revealing the emergence of a labyrinthine pattern upon the intermediate poling voltage. **(f)**
 769 Corresponding schematic representations illustrate the field-driven phase evolution in NaNbO_3
 770 films: the negatively poled M_C phase initially transitions into an intermediate state, where the
 771 negatively poled M_C and positively poled M_B phases coexist under the reversal field, before fully
 772 switching into a positively poled M_C phase.

773

776 **Figure 5 | Thickness-dependent dielectric property evolution of NaNbO_3 thin films.** (a)
777 Dielectric permittivity and loss tangent measured as a function of frequency (20 Hz–10 kHz) at an
778 AC excitation voltage of 5 mV for NaNbO_3 films with varying thickness. Normalized dielectric
779 permittivity as a function of DC field (b) up to 220 kV/cm (below the coercive field), and as a
780 function of DC bias (c) up to 8 V (above the coercive field), with tunability ($\Delta\epsilon_r(\text{bias})/\epsilon_r(0)$)
781 extracted for each thickness. Measurements in (b) and (c) were performed on vertical capacitor
782 structures with symmetric $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ electrodes at 1 kHz. The unconventional tunability
783 behavior shown in (c) is attributed to the multi-state switching pathway in mixed-phase NaNbO_3 ,
784 where an intermediate mixed phase state (i.e., coexistence of negatively poled M_B and positively
785 poled M_C or vice versa) maintains minimal permittivity change under a DC field. The direction of
786 DC bias application is indicated for the 80 nm-thick film. (d) Normalized capacitance and loss
787 tangent measured at 18 GHz using an in-plane interdigital capacitor geometry on $\text{NaNbO}_3/\text{SrTiO}_3$
788 heterostructures with varying film thickness. A maximum tunability of 54% was observed in 185
789 nm films, exhibiting unconventional tunability behavior due to the presence of an intermediate
790 polarization state.