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Abstract. Federated Learning (FL) enables multiple parties to train
machine learning models collaboratively without sharing the raw train-
ing data. However, the federated nature of FL enables malicious clients
to influence a trained model by injecting error model updates via Byzan-
tine or backdoor attacks. To detect malicious model updates, a typical
approach is to measure the distance between each model update and a
ground-truth model update. To find such ground-truth model updates, ex-
isting defenses either require a benign root dataset on the server (e.g.,
FLTrust) or simply use trimmed mean or median as the threshold for
clipping (e.g., FLAME). However, such benign root datasets are imprac-
tical, and the trimmed mean or median may also eliminate contributions
from underrepresented datasets. In this paper, we propose a generic so-
lution, namely FedTruth, to defend against model poisoning attacks in
FL, where the ground-truth model update (i.e., the global model update)
will be estimated among all the model updates with dynamic aggregation
weights. Specifically, FedTruth does not have specific assumptions on the
benign or malicious data distribution or access to a benign root dataset.
Moreover, FedTruth considers the potential contributions from all be-
nign clients. Our empirical results show that FedTruth can reduce the
impacts of poisoned model updates against both Byzantine and backdoor
attacks, and is also efficient in large-scale FL systems.

Keywords: FedTruth - Byzantine Attack - Backdoor Attack - Robust-
ness - Federated Learning

1 Introduction

In traditional machine learning, training data is usually hosted by a centralized
server (cloud server) that runs the learning algorithm or is shared among a set of
participating nodes for distributed learning. However, in many applications, data
cannot be shared with the cloud or other participating nodes due to privacy or
legal restrictions, especially when multiple organizations are involved. Federated
Learning (FL) allows multiple parties, such as clients or devices, to collabora-
tively train machine learning models without sharing raw training data [21].
All selected clients train the global model on their local datasets and send the
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local model updates to an aggregator. The aggregator then aggregates all the
local model updates and sends the new global model to all the clients selected
for the next round of training until convergence is reached. The FL framework
is suitable for many Al-driven applications where data is sensitive or legally
restricted, such as smart healthcare (e.g., cancer prediction [15]), smart trans-
portation (e.g., autonomous driving), smart finance (e.g., fraud detection), and
smart life (e.g., surveillance object detection).

However, the federated nature of FL enables malicious clients to influence a
trained model by injecting error model updates. For example, adversaries can
control a set of clients to launch Byzantine attacks [4,6] (i.e., sending arbitrary
model updates to make the global model converge to a sub-optimal model), or
backdoor attacks [1,3,27,29] (i.e., manipulating local model updates to cause the
final model to misclassify certain inputs with high confidence).

Towards model poisoning attacks in FL, existing defenses focus on designing
robust aggregation rules by:

— clustering and removing. This approach identifies malicious model updates
by clustering model updates (e.g., Krum [4], AFA [22], FoolsGold [12] and
Auror [25]). However, they only work under specific assumptions about the
underlying data distribution of malicious clients and benign clients. For ex-
ample, Krum and Auror assume that the data of benign clients are indepen-
dent and identically distributed (iid), whereas FoolsGold and AFA assume
the benign data are non-iid. Moreover, these defenses cannot detect stealthy
attacks (e.g., constraint-and-scale attacks [1]) or adaptive attacks (e.g., Krum
attack [9]).

— clipping and noising. This approach clips individual weights with a certain
threshold and adds random noise to the weights so that the impact of poi-
soned model updates on the global model can be reduced [1,23]. In [23], the
authors propose FLAME, which first applies clustering to filter model up-
dates and then uses clipping and noising with an adaptive clipping threshold
and noise level. However, the clipping and noising also eliminate the contri-
butions from benign clients with underrepresented datasets.

— trimming and averaging. This approach finds the mean or median of each
weight in the remaining model updates after removing some values that are
bigger /smaller than some thresholds (trimmed mean or median [31]) or with
low frequency (FreqFed [11]). However, the trimmed mean or median can be
easily bypassed using adaptive attacks (e.g., Trim attack [9]).

— adjusting aggregation weights using root data [5]. This approach assigns
different weights based on the distance between each model update and
the benign model update from the root dataset. However, it requires the
aggregator to access the benign root dataset.

Recently, several works [10,13,17] have been proposed to achieve provable Byzan-
tine robustness by integrating variance-reduced algorithms and byzantine-resilient
aggregation algorithms. However, they require prior knowledge of the variance
of the gradients [13,17] or only focus on existing byzantine-resilient aggregation
algorithms.



Motivation: Based on the above-discussed defenses, we have the following
observations:

1. Without knowing clients’ local datasets or a benign root dataset, it is difficult
to determine whether an outlier is a malicious update or a significant con-
tribution from an underrepresented dataset, especially when local datasets
are non-iid. It is not a good idea to remove or clip a benign outlier model
update with a significant contribution from under-representative data.

2. Only one representative model update is chosen as the global model in many
existing Byzantine-resilient aggregation algorithms (e.g., Krum [4], trimmed
median [31]), which means the global model is trained with only a single
local dataset in each round. In other words, the efforts and contributions of
other clients are wasted;

3. Due to various qualities of data and trained local model, it is unfair to treat
all the clients equally (e.g., FLAME [23], FreqFed [11]) or evaluate client
contributions based on the size of the training dataset (e.g., FedAvg [21])
during the model aggregation.

This paper aims to design a generic solution to defend against model poi-
soning attacks in FL with the following properties: 1) it does not have specific
assumptions on benign or malicious data distribution or accessing to a benign
root dataset; 2) it considers potential contributions from all the benign clients
(including those with under-representative data); and 3) it reduces the impacts
of poisoned model updates from malicious clients. Specifically, we propose a new
model aggregation algorithm, namely FedTruth, which enables the aggregator
to find the truth among all the received local model updates. The basic idea of
FedTruth is inspired by truth discovery mechanisms [19, 20, 24, 32], which are
developed to extract the truth among multiple conflicting pieces of data from
different sources under the assumption that the source reliability is unknown
a priori. In each round of FedTruth, the global model update (i.e., ground-truth
model update) will be computed as a weighted average of all the local model up-
dates with dynamic weights.

The contributions of this paper are summarized as follows:

— We develop FedTruth, a generic solution to defend against model poisoning
attacks in FL. Compared with existing solutions, FedTruth eliminates the
assumptions of benign or malicious data distribution and the need to access
a benign root dataset.

— We propose a new approach to estimating the ground-truth model update
among all the model updates with dynamic aggregation weights in each
round. Different from the FedAvg [21] (where the aggregation weight is
determined by the size of training dataset) or FLAME [23] (where equal
aggregation weight is used regardless of the size of training dataset), the
aggregation weights in FedTruth are dynamically chosen based on the dis-
tances between the estimated truth and local model updates, following the
principle that higher weights will be assigned to more reliable clients.



— We extensively evaluate the robustness of our FedTruth against both Byzan-
tine attacks (model-boosting attack, Gaussian noise attack, and local model
amplification attack) and backdoor attacks (distributed backdoor attack,
edge case attack, projected gradient descent attack) under three attack-
ing strategies (base attack, with model-boosting, and with constrain-and-
scaling). The experimental results show that FedTruth can reduce the im-
pacts of poisoned model updates against both Byzantine and backdoor at-
tacks. Moreover, FedTruth works well on both iid and non-iid datasets.

— We further evaluate the efficiency of the FedTruth in terms of the number of
iterations to reach FedTruth convergence and the time consumption for two
deployments: FedTruth (with entire model updates as inputs) and Fed Truth-
layer (deploy FedTruth in each layer of the model). The results show that
our methods are efficient in large-scale FL systems.

The remainder of this paper is organized as follows: Section 2 presents the
problem statement in terms of the system model, threat model, and design goals.
Then, we describe the technical overview of our proposed FedTruth, followed by
the concrete formulation. Section 4 shows the key experimental results against
both Byzantine attacks and Backdoor attacks. Section 5, we describe the related
work. Section 6 concludes the paper.

2 Problem Statement

Federated Learning: A general FL system consists of an aggregator and a set
of clients S. Let Dy, be the local dataset held by the client k (k € S). The typical
FL goal [21] is to learn a model collaboratively without sharing local datasets
by solving

min F'(w) = Zak - Fi(w), s.t. Zak =1 (ax > 0),
Y kes kes

where
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is the local objective function for a client k& with n; = |Dy| available samples.

ay is the aggregation weights, which are usually set as ar = nx/ ) cq 1k (€.8.,

FedAvg [21]). The FL training process usually contains multiple rounds, and a

typical FL round consists of the following steps:

1. client selection and model update: a subset of clients S; is selected, each of

which retrieves the current global model w; from the aggregator.
2. local training: each client k trains an updated model w,gk) with the local
dataset Dy, and shares the model update A,gk) = wy— w,gk) to the aggregator.
3. model aggregation: the aggregator computes the global model updates as
Ay = Zkest akAEk) and update the global model as w1 = w; —n4,, where
7 is the server learning rate.
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Fig. 1: System Model

FedAvg [21] is the original aggregation rule, which averages all local model
weights selected based on the number of samples the participants used. FedAvg
has been shown to work well when all the participants are benign clients, but is
vulnerable to model poisoning attacks.

System Model: As shown in Figure 1, we consider a typical FL setting,
which consists of two entities:

— Clients: FL clients are users who participate in the FL process with their
end devices, e.g., mobile devices, computers, and vehicles. When selected in
an FL round, the clients will train the model based on their local datasets
and send local model updates to the aggregator. Due to personal schedules
and device status, the group of clients will change dynamically in each FL
round. For example, some clients may not be able to send model updates
due to low battery or unstable network, and some clients may join the FL
task in intermediate FL rounds.

— Aggregator: The aggregator is an entity that runs the FL algorithm with
the clients, including distributing the initial model to all the selected clients,
aggregating local model updates, and sending the global model to the clients
selected in a new round.

Threat Model: In this paper, we assume that the aggregator will aggre-
gate all the local model updates honestly in each FL round. However, the clients
may be compromised by adversaries and collude to launch Byzantine attacks
and backdoor attacks. We assume that the adversaries cannot compromise more
than half clients selected in each round. When launching an attack, the adver-
saries can directly modify their local models (model poisoning attack) and local
datasets (data poisoning attack) while having full knowledge about the system
(having direct access to any information shared through the system training).
However, the adversaries cannot access the benign clients’ devices or data. Dur-
ing a Byzantine attack, the adversarial goal is to degrade the global model or
prevent it from convergence, while the backdoor attack aims to manipulate the
global model by injecting it with a targeted backdoor.



Design Goals: We aim to design a generic solution to defend against
model poisoning attacks in FL with the following properties: 1) it does not
have specific assumptions on benign or malicious data distribution or accessing
to a benign root dataset; 2) it considers the potential contributions from all the
benign clients (including those with under-representative data); and 3) it reduces
the impacts of poisoned model updates from malicious clients.

3 FedTruth: Truth of Global Model

3.1 Technical Overview

In FedAvg [21], the aggregation weight is determined by the size of the training
dataset (i.e., ar = ng/ Y p—q k) where ng = |Di|. In some other works, such
as FLAME [23], equal aggregation weight is used regardless of the size of the
training dataset (i.e., ar = 1/m). However, neither FedAvg nor equal aggrega-
tion weights can reflect the performance of a client. In FLTrust [5], the authors
proposed using dynamic aggregation weights to calculate the global model. The
aggregation weights are estimated based on the trust values, which are calcu-
lated based on the similarity between each model update with a ground-truth
model update. This ground-truth model update is trained by the aggregator using
a benign root dataset. However, this benign root dataset may not be practical
in many applications.

Without a benign root dataset, it is challenging to obtain the ground-truth
model update among all the local model updates in an FL round. We propose a
new model aggregation algorithm, namely FedTruth, which enables the aggrega-
tor to uncover the truth among all the received local model updates. The basic
idea of FedTruth is inspired by truth discovery mechanisms [19,20,32], which are
developed to extract the truth among multiple conflicting pieces of data from
different sources under the assumption that the source reliability is unknown a
priori. Unlike FLTrust, in FedTruth, we do not obtain the ground-truth model
update and use it to calculate the aggregated weights. Instead, the ground-truth
model update is actually the aggregated global model update, which is computed
as the weighted average of all the local model updates with dynamic aggregation
weights for each round. The aggregation weights in FedTruth are dynamically
calculated based on the distances between the estimated truth and local model
updates, following the principle that higher weights will be assigned to more
reliable clients.

Although the truth discovery approach has been used in RobustFed [26] and
TDFL [30], they simply apply the Conflict Resolution on Heterogeneous Data
(CRH) truth discovery algorithm [18] which may still suffer from Byzantine
attack or potentially magnifying the local model updates, see the related work
for details. Here, we present a generic formulation with a coefficient function
and a linear constraint, establishing the necessary conditions for the coefficient
function to ensure the convexity and convergence of FedTruth. Furthermore, we
demonstrate that our proposed FedTruth is also effective in defending against
backdoor attacks, such as the Edge Case [27], DBA [29], and PGD [27] attacks.



3.2 Formulation of FedTruth

Suppose the aggregator receives n; different model updates A,(fl), s A§"t) in
FL round t. To find the global update A, we formulate an optimization problem
aiming at minimizing the total distance between all the model updates and the
estimated global update:

puin D4y zg ) a(a;, aY) zp<k>—1 m
Pt

where d(-) is the distance function and g(+) is a non-negative coefficient function.
pgk) is the performance of the local model Agk) which is calculated based on the
distance. Note that, to better understand the performance of each client, our

optimization problem is formulated based on the performance values pgk) rather

than directly on the aggregation weights agk). The aggregation weights can be
easily calculated based on the performance value.

There are many different choices of the distance function d(-), e.g., Euclidean
distance (d(A;ZA ) || A — Agk)H) and cosine distance (d(A;‘,AEk)) =1-
Se (A7, AE ), where S, is the cosine similarity.

3.3 Solving the optimization problem

We iteratively compute the estimated truth AF and the performance values p*

using coordinate descent approach [2]. Specifically, given an initial global model
update A} (can be the result of FedAvg or simple average), the algorithm will
update the performance values p® to minimize the objective distance function.
Then, it updates aggregation weight values agk) and uses them to further estimate
the new global model update Aj.

— Updating Aggregation Weights: Once the truth A} is fixed, we first
calculate the performance of each model update {pgk)}(k =1,--+,n) as

pgk) = d(Af,Agk))/ i d(AZ‘,AEk/)). Then, the aggregation weights can be
k=1
updated as

(") /Zg ). (2)

— Updating the Truth: Based on the new aggregation weights {a(l), e ,agn‘)},

the truth of global update can be estimated as A} =3 " | a (k) Agk)
The global model update and aggregation weights will be updated iteratively
until convergence criteria are met. It is easy to see that the longer the dis-
tance between the local model update and the estimated truth, the smaller the
aggregation weight will be assigned in calculating the truth. This principle can
minimize the impacts of malicious model updates and keep certain contributions
from a benign outlier model update.



3.4 Convergence Guarantee of FedTruth

We use the Lagrange multipliers to solve the optimization problem. Under the

linear constraint Y ,*, pgk) =1, we can define the Lagrangian function of Eq. 1
as
k) n e k NG ~ (k
LAp Y N =Y gi™) - d(ag, A7) + A0 p - 1),
k=1 k=1

where )\ is a Lagrange multiplier. To solve the optimization problem, we set the

partial derivative with pgk) to zero:

g () - d(A7, AP) + A =0 3)
Then, the Eq. 3 can be reformulated as:
Y COVE YY) (4)

Since the linear constraint is >, , pgk) =1, the A\ and pgk) can be derived from
Eq. 4.

We can see that g(-) must be monotonous and differentiable in the aggre-
gation weight domain in order to guarantee the existence of g’~1(-). Moreover,
according to the principle of truth discovery, ¢(-) should be a decreasing function.

Some simple but effective coefficient functions are as follows:

g0 =1/p or g(®) = —1og(pi™). (5)

Therefore, we say that as long as the coefficient function g(-) is monotonous,
decreasing, and differentiable in the aggregation weight domain, the convexity
and convergence of FedTruth can be guaranteed. From our experiments, we find
that after 5 to 40 iterations of coordinate descent, the estimated truth is close
to the converged value.

3.5 Proof of Byzantine-Resilience

In [10], the authors proposed a formal definition of Byzantine-resilience of ag-
gregation algorithm, namely (f, \)-Resilient Averaging.

Definition 1 ((f, \)-Resilient Averaging [10]) For f < n and real value
A > 0, an aggregation rule F is (f, \)-Resilient Averaging if for any collection
of n vectors x1,- -+ ,x,, and any set S C {1,--- ,n} of size n — f, the following
condition holds

||F(‘T17"' 7$n)_z
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Under this definition, we show the Byzantine-resilience of FedTruth as in the
following theorem:



Theorem 1 FedTruth is (f,1)-resilient averaging, where f < n/2.

Proof. In FedTruth, the aggregated global model (i,e., the truth) is calculated
as the weighted average of all the model updates:

FedTruth(zy, -+ ,xn) = Z a;x;

where the aggregation weights a; are dynamically calculated and ) . jefn] % = 1.

For an arbitrary set S € {1,---,n} of size n — f, we can rewrite the average
of those weights in the set S as

Znifxl':Zbixi where bi:n% and Zb =1.

€S €S €S

Then, we can obtain the difference between the truth and the average of set

S as

||F(x1,---,xn)—zn Faill = | S gy =Y bl
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Because S is an arbitrary set of size n — f, we say that
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Then, we have
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3.6 Resisting against Adaptive Attack on FedTruth

In an adaptive attack targeting the Euclidean distance metric, an attacker might
be capable of designing an alternative local model, denoted as w*, such that its
Euclidean distance from the baseline model (for instance, the ground truth G)
is identical to the Euclidean distance between the actual local model w and
the baseline model G. This scenario is feasible if the baseline model remains
static and is accessible to the attacker. However, in the FedTruth framework,
the baseline model is not a constant; instead, it evolves and is progressively
estimated over multiple iterations.



The effectiveness of FedTruth relies on the assumption that the majority of
clients are reliable and diverse. If an adversary compromises more than 50% of
the clients, they can dominate the results of FedTruth. From our experimental
results, we find that when an adversary compromises 40% (4 out of 10) clients
in each round, FedTruth can still prevent Byzantine attacks, as seen in Figure 2.
However, when the non-iid degree is further increased to 95%, as shown in Fig-
ure 5, the accuracy drops and convergence speed becomes slow because some
uncompromised clients may perform poorly with highly non-iid training data,
leading to a bad estimation of the ground truth by FedTruth. However, our
results outperformed all other aggregation algorithms during this experiment,
excluding FLTrust.

To counter this, we propose strategies like filtering out inputs from histori-
cally unreliable clients, thereby reducing malicious influence. Although FedTruth
and FedTruth-layer aim to consider the contributions of all clients, it may be
necessary to exclude inputs from clients who have a bad reputation or low reli-
ability in previous FL tasks. To evaluate the reputation or reliability of clients,
we need to assess the contributions of each client in an FL task. This motivated
us to formulate FedTruth with linear constraints. In practice, we can trim the
clients’ inputs who have been identified as untrustworthy or unreliable based on
their past contributions to FL tasks. By doing so, we can further improve the
accuracy and robustness of the global model by preventing the contributions
of bad actors from affecting the overall performance. We should also be aware
that trimming inputs from clients may have unintended consequences, such as
reducing the diversity of the training data and reducing the number of participat-
ing clients, potentially leading to overfitting and decreased overall performance.
Therefore, we need to carefully evaluate the trade-offs between trimming in-
puts and maintaining the diversity of the training data. Additionally, leveraging
clustering algorithms to categorize model updates before aggregation can help
FedTruth remain effective even when faced with a majority of malicious clients.

3.7 Deploying FedTruth in Each Layer

One major challenge in truth discovery is data heterogeneity, which may include
non-structured data and missing values. However, this challenge is not applicable
to FedTruth because all the local model updates are in the same structure.
For example, in deep neural networks, the model updates can be represented
as multiple-layer tensors. FedTruth can be run just once by the aggregator to
compute the truth of model updates by feeding all the local model updates into
the FedTruth algorithm. This deployment treats the local model update as an
observed value in the truth discovery algorithms. Also, we can deploy FedTruth
on each layer to estimate the truth of that single layer, which means that the
weights allocated to all the clients may vary on different layers. We denote this
deployment as FedTruth-layer. Such layer-wise deployment seems reasonable, it
also brings the computation overhead which is linear to the number of layers.
We compare the efficiency between FedTruth and FedTruth-layer in Section 4.6.



4 Experimental Results

We compare the performance of FedTruth with the state-of-the-art aggregation
algorithms: FedAvg [21], Krum [4], Trimmed mean [31], Median [31], FLTrust [5]
and FLAME [23].

4.1 Experimental Settings

The experimental settings are as follows:

Datasets: We conduct the experiments with MNIST [7], FMNIST [28], and
CIFAR-10 [16] datasets. FMNIST and MNIST are comprised of 60,000 black-
and-white labeled images of size (28x28). During the Edge-Case attack experi-
ment, we used the Arkiv Digital Sweden (ARDIS) [17] dataset as the adversarial
backdoor images. This dataset is suitable for targeted images when inserting
backdoors into MNIST, as ARDIS consists of naturally occurring edge cases.

Clients: When crafting the clients’ local datasets, we draw their datapoints
randomly from a non-iid distribution. We use a non-iid distribution because it
better represents clients’ data in practice than an id distribution. The client’s
local data is generated a non-iid distribution, where the bias parameter default
is 0.8. In each FL round, we randomly select 10 clients and choose a subset of
these selected clients as adversarial clients.

Models: We constructed a Convolutional Neural Network (CNN) classi-
fier for all the experiments considered in this work. It includes an input layer
(28x28x1), two convolutional layers with ReLU activation (20x5x1 and 4x4x50),
two max pooling layers (2x2), a fully connected layer with ReLU (500 units), and
a final fully connected layer with Softmax (10 units). The ResNet-18 model was
used when running experiments using the CIFAR-10 dataset. We ran both the
MNIST and CIFAR10 experiments on an AWS (g6.xlarge) EC2 instance. When
running the FedTruth and FedTruth-layer experiments, we set our convergence
threshold to 1le—6.

4.2 Byzantine Attacks

This section presents experimental results for two attacks: the model-boosting
and Gaussian noise attacks, conducted on various FL frameworks. In these at-
tacks, only the model updates (the difference between the newly trained lo-
cal model and the global model in the previous round) are communicated.
For Byzantine experiments performed on the FMNIST and CIFAR-10 datasets,
please see our full verion [8].

Model-boosting Attack: The model-boosting attack seeks to degrade the
model’s performance by boosting the adversary’s local updates by a multiple
of 10. The subset of compromised clients are randomly selected each round.
We conducted experiments with varying percentages of compromised clients in
each round to evaluate the robustness of different aggregation algorithms under
different attacking scenarios.
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Fig. 2: Model Boosting Attack (MNIST, x10 boosting factor)

Figure 2a shows how all of the aggregation algorithms perform when there are
no adversaries present. Figure 2b presents the results when 10% of the clients are
compromised in each round. We observe that all of the aggregation algorithms
performed well except for FedAvg. However, when the percentage of compro-
mised clients increases to 30%, as shown in Figure 2c, the FedTruth methods
remain unaffected by the attack, regardless of the number of adversaries. How-
ever, Trimmed-mean, similar to FedAvg, is significantly impacted at this stage
and does not reach convergence.

The results in Figure 2d show that increasing the number of adversaries per
iteration to 40% slows the convergence rate for the FedTruth, FedTruth-layer,
and Median aggregation algorithms. However, they are still able to reach an
accuracy of 80% after the 100-th iteration. The FedAvg and Trimmed-mean
algorithms were compromised during this version of the experiment as well, pre-
venting them both from reaching any convergence when at least 20% of the
clients are adversarial. In contrast, the remaining algorithms (FLTrust, Krum,
FLAME) were not affected during this attack regardless of the number of ad-
versaries we selected.

Gaussian Noise Attack: The Gaussian noise attack aims to degrade the
performance of the global model by adding Gaussian noise to the model. The
noise is drawn from a multivariate Gaussian distribution N(0,0%I) [4,5] and is
added directly to the adversaries’ model before sending it to the aggregator.

In Figure 3a, we show the accuracy and convergence speed of the model for
all the aggregation algorithms against the Gaussian noise attack, where three
adversaries launch this attack per round. Our findings are as follows: 1) Fed Truth
can defend against the Gaussian noise attack without significantly slowing down
the convergence speed; 2) FedTruth can achieve the same model accuracy as
FLTrust, which requires a benign dataset, showing that our FedTruth can ac-
tually find the ground truth of the model updates; 3) The convergence speed is
impacted in FLAME and Krum, and the model accuracy of FLAME and Krum
is not as high as that of FedTruth and FLTrust; and 4) FedAvg cannot converge
within 100 rounds under the Gaussian noise attack. In Figure 3b, we combine



(a) Gaussian Noise Attack (base attack) (b) Gaussian Noise Attack (model-boosting attack)
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Fig. 3: Gaussian Noise Attack (MNIST, 3 adversaries)

the Gaussian noise attack with the model-boosting attack, which also does not
degrade the performance of FedTruth or FedTruth-layer. However, FedAvg and
Trimmed-mean do not perform well against this attack.

4.3 Backdoor Attacks

This section presents our experimental results for the Distributed Backdoor,
Projected Gradient Descent, and Edge Case attacks. During each attack, a trig-
ger was added to all of the adversarial images at the last pixel in the bottom
right corner of the image. In our full version [8], we provide results for all attacks
combined with the model-boosting and constrain-and-scale attacks.

Distributed Backdoor Attack (DBA): The DBA attack distributes a
portion of an adversarial background image (shards) among all malicious clients
who collude with one another each round. The shards are then added to the
background of the individual adversaries’ data.

Figure 4a shows that Krum and FLAME failed to converge on the main
task. Therefore, we will disregard their backdoor accuracy, as the models were
unable to reach convergence. All of the remaining algorithms were able to reach
convergence with a final main task accuracy after 100 rounds at or above 80%.
Both of our aggregation algorithms (FedTruth and Fed Truth-layer) finished with
a final backdoor task accuracy below 10%. Fed Truth-Layer does seem to perform
slightly better than FedTruth, with the backdoor accuracy never exceeding 20%.

Edge-case Attack: Based on the attacks presented in [27], we implemented
a similar attack for the MNIST dataset that used the Arkiv Digital Sweden
(ARDIS) [17] dataset as the adversarial edge-cases that are being injected into
the models. During every round of FL, the attackers examined their benign
local data points to locate those corresponding to the targeted labels. Using
this knowledge, each adversarial client incorporated additional adversarial data
points into their training dataset, which represented targeted edge-cases. The
number of these added data points was set to be equal to 20% of the matching
benign data points.

Figure 4c shows our results for the main task accuracy during the edge-
case attack, and we observed that all algorithms reached convergence with an
accuracy that is approximately 90% for all aggregation algorithms after 100
iterations. Figure 4d presents the backdoor accuracy for each of the aggregation
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Fig.4: Backdoor Attacks (MNIST, 3 adversaries)

algorithms selected. The final backdoor accuracy for FedTruth and FedTruth-
layer are below 10%, similar to Krum and FLAME. Interestingly, FLTrust had a
higher backdoor accuracy after 100 iterations, finishing with a backdoor accuracy
of 20% close to the final accuracy of FedAvg, which we assume is due to the non-
iid sampling being set to 80%. Finally, we observe that the Trimmed mean and
Median finish with a backdoor accuracy above 40%.

Projected Gradient Descent Attack (PGD): We implemented the PGD
attacks with the Torch Attacks [14] library, which creates a generative model that
will take as input an image and returns a perturbed version of the image. We
set the max perturbation (e = .3), which is how the adversaries determine how
far an image can be noised while generating the adversarial model. Then, we set
the step size (v = .03) and the number of steps (10).

Figure 4e presents the main task accuracy for the PGD attack, where we
see a decrease in the main task accuracy when using the Krum and FLAME
algorithms. The remaining aggregation algorithms are able to train the main
task during this attack.

Figure 4f shows the targeted task accuracy during the PGD attack. Not
considering the algorithms that could not converge on the main task (Krum and
FLAME), we look at the effectiveness of this attack on the remaining algorithms.
Trimmed mean allows for the backdoor to be injected in the 20th iteration;
however, it does seem to be able to remove the adversarial artifact after the
100th iteration. FedAvg also seems not to be able to remove the backdoor artifact
during this attack, as it finishes with a backdoor accuracy of 80%. FedTruth and
FedTruth-Layer are able to remove the adversarial artifact after 30 iterations,
with the accuracy never exceeding 20% after that round.
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Fig. 5: Non-iid Impact on Model Boosting Attack (MNIST, 3 adversaries,
x 10 boosting factor)

4.4 The Impact of non-iid on FedTruth

To perform our non-iid experiments, we used label skew, where each of the clients
had an equal number of data points. However, each client has a primary label
from which the majority of their data points will come. By changing how many
data points come from a client’s primary, we are able to change the degree to
which their data is non-iid.

Figure 5 shows how various non-iid bias parameters affect the experiments
when adversaries apply the model-boosting attack. During these experiments,
three adversaries were selected in each round. Our methodology for sampling
non-iid data was specifically engineered to replicate varying degrees of label
bias, thus enabling an in-depth analysis of its influence on federated learning
model efficacy. We manipulated a bias parameter to adjust the label proportions
within each client’s local dataset. For instance, setting the bias parameter to
0.9 indicated that 90% of a client’s dataset contained instances of their primary
label, with the remaining 10% consisting of instances from other labels, allocated
based on a Gaussian distribution. For this experiment, we set the bias parameters
as 0.1, 0.3, 0.5, 0.8, and 0.95.

The results of the experiments, as seen in Figure 5, suggest that FedTruth
can mitigate the impacts of the boosted model regardless of the non-iid degree of
the datasets. The FedTruth and FedTruth-layer algorithms do experience some
performance degradation as the non-iid degree increases, which is to be expected.
However, as seen in Figure 5, after 100 FL iterations, both algorithms reach a
top accuracy regardless of the non-iid bias degree.

4.5 Distance Function in FedTruth

From the FedTruth formulation (i.e., Equ. 1), we can see that the distance func-
tion plays a significant role in separating benign and malicious model updates.
This section discusses how FedTruth performs with different distance functions.
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Due to page limits, we only present the results of model boosting, Gaussian
Noise attack (base attack), and DBA (base attack) here. For more detailed re-
sults, please refer to our full version [8].

We evaluate the performance of FedTruth against both Byzantine and back-
door attacks using the following distance functions: 1) two metrics that compute
the difference between the angles of two vectors (angular distance = arccos(cosine
similarity) /7 and cosine distance = 1 - cosine similarity); 2) two metrics that de-
termine the difference between two points (Euclidean and Manhattan distances);
and 3) one custom distance that combines the angular distance and the Euclidean
distance, which we combine half and half in our results.

Figures 6a and 6b show how the choice of distance measure affects FedTruth
and FedTruth-layer during Byzantine attacks. As expected, the two metrics
that determine the difference between two points (Euclidean and Manhattan
distances) performed the best-reaching convergence in both cases since these
approaches can easily determine the adversarial model furthest from the benign
ones as they are boosted or have additional random noise inserted into them.
However, since the angular distance and cosine distance metrics do not take
into consideration the magnitude of a model, it is ineffective during the model
boosting attack Figures 6a and since the Gaussian noise attack will only slightly
modify the angle, it is not completely effective at removing the adversarial mod-
els during this attack.

Figures 6¢c and 6d present our results for all our distance metrics during a
backdoor (DBA) attack. These results indicate that the inverse-cosine similarity
or angular distance functions perform the best, as they are able to quickly re-
move any backdoors injected into the model. However, our main and backdoor
accuracy results look good for the models that determine the distance between
two points. The custom distance unexpectedly cannot properly train the main
task during this experiment.



4.6 Efficiency Evaluation of FedTruth and FedTruth-layer

To compare the computational efficiency, especially in large-scale FL settings,
we further evaluate the average aggregation time for 10, 100 and 1000 clients
in a single FL round in Table 1, where the aggregation time is calculated as
the average of 100 FL rounds. We can see that FedTruth and FedTruth-layer
are as efficient as FLTrust (which requires a benign dataset) and much more
efficient than FLAME (which also does not require a benign dataset). FLAME
becomes very slow when there are 1000 clients in each round. From Table 1, it is
easy to see that our FedTruth algorithm can efficiently eliminate the impacts of
Byzantine and backdoor attacks, while it does not require a benign root dataset.

Table 1: Comparison of Average Aggregation Time (Model Boosting Attack, 3
Adversaries, MNIST)

Clients Average Aggregation Time (s)
Per |l ped Avg|FedTruth|F ed L U0 lpp ANE|FLTrust| Krum |[Median| med
round Layer Mean
10 0.006 0.107 0.777 0.194 0.033 4.06 0.041 0.027
100 0.047 0.518 3.498 8.813 0.313 824.803 | 0.173 0.414
1000 1.554 4.903 29.88 824.549 | 3.468 |83172.343| 2.849 6.547

5 Related Work

Defending against model poisoning attacks in federated learning has been an
area of active research, with many efforts focusing on designing robust aggrega-
tion rules. One approach to identifying and removing malicious model updates
involves clustering methods (e.g., Krum [4], AFA [22], FoolsGold [12], and Au-
ror [25]). Although effective, these methods rely on specific assumptions about
the underlying data distribution among clients. For example, Krum and Au-
ror assume that benign clients’ data are independent and identically distributed
(iid), whereas FoolsGold and AFA assume non-iid benign data. Additionally,
these defenses may be ineffective against stealthy attacks, such as constraint-
and-scale attacks [1], or adaptive attacks, such as the Krum attack [9].

Another approach aims to reduce the impact of poisoned model updates
on the global model by clipping individual weights to a certain threshold and
adding random noise [1,23]. For instance, FLAME [23] combines clustering with
adaptive clipping and noising to mitigate poisoning attacks. However, this tech-
nique may unintentionally suppress contributions from benign clients, partic-
ularly those with underrepresented datasets. Other methods find the mean or
median of model update weights by excluding values based on thresholds (e.g.,
trimmed mean or median [31]) or frequency of occurrence (FreqFed [11]). De-
spite their robustness, these approaches are vulnerable to adaptive attacks, such
as the Trim attack [9], which exploit these methods’ limitations.

Some defenses adjust aggregation weights based on the distance between
model updates and a benign root dataset [5]. FLTrust assumes that there is a
benign root dataset available to the aggregation server, who will also train and



output a server model in each FL round. Upon receiving all the local model
updates from clients, the server calculates a Trust Score using the ReLLU-clipped
cosine similarity between each local model update and the server model update.
The global model update is computed as the average of the normalized local
model updates weighted by the trust scores.

In [26], the authors proposed RobustFed that applies the truth discovery
approach to estimate the reliability of clients in each round. Then, the esti-
mated reliability is used to compute the next round aggregated model. This
method suffers from the following two drawbacks. 1) RobustFed applies truth
discovery to calculate the reliability rf:i of each client ¢; in round ¢, and uses
it to aggregate the global model for round t + 1 (see Eq.11 in RobustFed,
wi = wh + Yt oy - 6771). In this case, an attacker can behave hon-
estly to obtain a high reliability score in round ¢, and launch the Byzantine
attack in the next round ¢ 4 1; and 2) Even revising the method to calculate
the reliability in the same round, the reliability cannot be directly added to the
FedAvg in RobustFed. The reliability is defined by a negative logarithm function
of the difference between its local model updates and the truths (ranges between
0 and 1). So, the reliability is a real number ranging between 0 and +oo. The
global model aggregation in RobustFed directly adds the reliability on top of
the FedAvg, potentially magnifying the local model updates if the reliability is
a large number.

TDFL [30] also relies on Truth Discovery to aggregate the global model
but, it mainly focuses on applying clustering and clipping filters as shown in
FLAME [23] before the truth discovery procedure to defend against Byzantine
attacks. However, akin to RobustFed, it simply uses the negative exponential reg-
ulation function as detailed in the CRH truth discovery [18]. Recently, several
works [10,13,17] have been proposed to achieve provable Byzantine robustness
by integrating variance-reduced algorithms and byzantine-resilient aggregation
algorithms. However, they require prior knowledge of the variance of the gradi-
ents [13,17] or only focus on existing byzantine-resilient aggregation algorithms.
In this paper, we propose a generic and robust model aggregation algorithm by
computing the aggregation weight dynamically, which is also effective in defend-
ing against backdoor attacks, such as DBA [29] and PGD [27].

6 Conclusion

In this paper, we developed FedTruth, a generic solution to defend against model
poisoning attacks in FL. Compared with existing solutions, FedTruth eliminates
the assumptions of benign or malicious data distribution and the need to ac-
cess a benign root dataset. Specifically, a new approach was proposed to esti-
mate the ground-truth model update (i.e., the global model update) among all
the model updates with dynamic aggregation weights in each round, following
the principle that higher weights will be assigned to more reliable clients. The
experimental results show that FedTruth and FedTruth-layer can efficiently re-
duce poisoned model updates’ impacts against Byzantine and backdoor attacks.
Moreover, FedTruth works well on both iid and non-iid datasets.
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