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Abstract

Subcritical crack growth can occur under a constant applied load below the threshold value for 
catastrophic failure, also known as static fatigue. Here we report how a crack grows under a 
combination of stress intensity factor (K) and temperature in a model brittle glass using molecular 
dynamics simulations. The model glass is under dry conditions thus avoiding the complexity of 
corrosion chemistry. The crack growth rate is shown to be inconsistent with the commonly used 
subcritical crack growth model rooted in the transition state theory (TST), in which the applied 
stress intensity factor reduces the transition barrier. A new subcritical crack growth model is 
proposed with a constant barrier and a K-dependent prefactor in TST, representing the size of the 
region for potential bond breaking. The thermomechanical condition for subcritical crack growth 
is also mapped in the K-T domain, in between elastic deformation and catastrophic fracture regimes. 
Finally, we show substantial crack self-healing once the applied load is removed, under the 
thermodynamic driving force of surface energy reduction. Our findings provide new insights into 
the mechanochemical coupling during static fatigue and call for experimental investigation of 
whether the activation energy is K-dependent.

Keywords: molecular dynamics, subcritical crack growth, deformation map, transition state 
theory, static fatigue.
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1. Introduction

Brittle solids such as window glass break abruptly without apparent plastic deformation, while 
ductile solids such as copper exhibit extensive plastic deformation before the ultimate failure. The 
fracture of brittle solids is highly sensitive to the presence of defects, leading to the concept of 
stress intensity factor (dependent on both external loading and defect size) as the proper 
mechanical stimuli for fracture. The conventional picture is that, as the applied stress-intensity 
factor increases monotonically, no crack growth is expected until the stress-intensity factor reaches 
a threshold value otherwise known as the fracture toughness. Contradicting to the above simplified 
narrative, crack growth is possible at least for some brittle solids even when the applied stress-
intensity factor is below its fracture toughness, which is termed subcritical crack growth, or 
delayed fracture. The subcritical crack growth under a constant load is termed “static fatigue”,[1] 
while crack growth under a varying load is termed “cyclic fatigue”. Chemicals present in the 
environment can significantly affect the subcritical crack growth, involving complex interplay of 
diffusion, reaction and deformation, which is generally termed “stress-corrosion cracking”. 
Subcritical crack growth is of primary importance affecting long-term reliability of glassy 
materials under stress. For instance, thermally or chemically tempered glasses with substantial 
internal stress distribution; nuclear waste glass [2] subjected to elevated temperature, high pressure 
and corrosive environment over a thousand to one million years of intended service duration; glass 
substrates need to withstand high temperature during processing [3] and elevated/cryogenic 
temperature during service.

There have been considerable research efforts both experimentally and theoretically to 
understand subcritical crack growth in glasses. Experimentally, both double-cantilever cleavage 
[4,5] and single pre-cracked beam method [6] can be used to achieve stable crack growth. 
Wiederhorn carried out double-cantilever cleavage experiments on six different glasses in vacuum, 
under various loads and temperatures.[4] Subcritical crack growth was observed in four glasses, 
but not in fused silica nor borosilicate glass. Both fused silica and borosilicate glass were classified 
by Wiederhorn to be “abnormal glasses”, as Wiederhorn reasoned, due to “abnormal” thermal and 
mechanical properties. Wiederhorn extended the formulation of Charles and Hillig[7–10] on how 
crack growth rate is governed by thermomechanical stimuli. Similar theory has also been 
developed by Wan, Lathabai and Lawn.[11] The essence of these formulations roots in the 
transition state theory to describe chemical reaction, which is thermally activated with a barrier 
that is dependent on mechanical stimuli in terms of the stress intensity factor. The current 
subcritical crack growth theory relies heavily on continuum description of the stress distribution 
around ideal-shaped cracks. For instance, Wiederhorn’s theory[4] considered a perfect elliptical 
crack which has a curvature of 0.5 nm, at which scale continuum mechanics formula is no longer 
valid due to the atomic discreteness. Recent experimental work on glass fiber bundle under static 
fatigue provides useful yet indirect crack growth information. [12] On the simulation side, there 
have been active development of phase-field modeling to describe fatigue crack growth by 
improving existing formulation to enable crack growth subcritically. [13,14] In addition, a new 
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kinetic model has been proposed combining existing crack growth model with viscoelastic 
relaxation leading to a thresholding behavior. [15] However, these modeling works provide limited 
insights into the thermomechanical origin of crack extension at the atomic level. There are a 
number of works on subcritical crack growth in wet conditions. Silva, et al, have employed multi-
scale simulation with classical and semi-empirical molecular orbital methods to study effect of 
water in deformation of silica nanorod, in which they show the reaction barrier is reduced by the 
applied stress.[16] ReaxFF force field has been used to model the fracture of a nm-sized quartz 
crystal under stress with water.[17,18] Unfortunately, there appears to be very little atomic-level 
modeling work on dry subcritical crack growth in glasses. Rimsza, et al, reported crack growth in 
silica in both dry and wet conditions, yet under a varying applied stress intensity factor.[19] 
Probably due to the small system size without controlling the stress intensity factor, crack velocity 
as a function of stress intensity factor is not reported. It should be noted that experimental and 
computational investigations on dynamic crack propagation [20,21] generally focus on crack 
velocity regime that is on the order of the velocity of sound. Such crack growth cannot be 
considered as subcritical crack growth, even with apparently low velocities, without the knowledge 
of the instantaneous applied stress intensity factor. 

Here, we report a systematic study on subcritical crack growth under dry conditions in a model 
glass using molecular dynamics (MD) simulations. Importantly, we utilized a new simulation 
protocol of constant stress intensity factor (constant-K) to control the loading of a pre-cracked 
sample in a microtension setup. Together with a thermostat, the crack growth rate can be reliably 
measured for a given combination of K and T. Our simulations show that subcritical crack growth 
under dry conditions is indeed thermally activated yet does not conform to the original 
Wiederhorn’s theory. Consequently, an alternative crack growth rate formula was proposed which 
is also derived from the transition state theory. In addition, a simple classification of deformation 
modes based on crack extension was proposed: no crack extension (elastic deformation), stable 
and slow crack extension (subcritical crack growth), unstable crack extension (catastrophic failure). 
Such classification enables the creation of a deformation mechanism map in the domain of K and 
T. Lastly, upon unloading, self-healing was observed in samples undergoing subcritical crack 
growth.

2. Simulation methodology

2.1. Interatomic potential

Our MD simulations are carried out in LAMMPS [22] with customized force fields. In this 
work, we employed a modified binary Lennard-Jones (LJ) potential 𝜙𝑚𝐿𝐽 , which is based on 
Wahnstrom’s binary LJ potential [23] with a shorter cutoff to include only the first nearest 
neighbors. The additional energy penalty term is motivated by Dzugutov potential, somewhat 
mimicking the Friedel’s oscillations.[24–27] We have demonstrated that, by controlling this energy 
penalty term, the intrinsic ductility of model glass can be tuned from ductile to brittle.[28–32] The 
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alloy consists of two equimolar species, which will be referred to as S and L for small and large 
atoms. For completeness, the formulation and parameterization are as follows. The species 
dependent pair-wise interaction (𝛼, 𝛽 represents species) consists of a conventional LJ form 𝜙𝐿𝐽 
shifted and truncated at a pair-dependent cutoff 𝑟𝑐,𝛼𝛽 , with an additional energy penalty term 𝜙𝐵𝑢𝑚𝑝 effective only between 𝑟𝑠,𝛼𝛽 and 𝑟𝑒,𝛼𝛽.𝜙𝑚𝐿𝐽(𝑟) = 𝜙𝐿𝐽(𝑟) + 𝜙𝐵𝑢𝑚𝑝(𝑟) (1)

𝜙𝐿𝐽(𝑟) = {4𝜀𝛼𝛽 (𝜎𝛼𝛽12𝑟12 − 𝜎𝛼𝛽6𝑟6 ) − 4𝜀𝛼𝛽 ( 𝜎𝛼𝛽12𝑟𝑐,𝛼𝛽12 − 𝜎𝛼𝛽6𝑟𝑐,𝛼𝛽6 ) , 𝑟 < 𝑟𝑐,𝛼𝛽0, 𝑟 ≥ 𝑟𝑐,𝛼𝛽 (2)

𝜙𝐵𝑢𝑚𝑝(𝑟) = {  
  0,                                         r < 𝑟𝑠,𝛼𝛽𝜀𝐵𝜀𝐿𝐿 ⋅ 𝑠𝑖𝑛2 (𝜋 𝑟𝑐,𝛼𝛽−𝑟𝑟𝑐,𝛼𝛽−𝑟𝑠,𝛼𝛽) , 𝑟𝑒,𝛼𝛽 >  𝑟 ≥ 𝑟𝑠,𝛼𝛽0,                                                 r ≥ 𝑟𝑒,𝛼𝛽 (3)

The potential parameters are listed in Table 1, normalized by internal units of 𝜀0, 𝜎0 and m0 for 

energy, length and mass, respectively. The reference time scale is 𝑡0 = 𝜎0√𝑚0𝜀0 . The two types of 

atoms have different masses: 𝑚𝐿 = 2𝑚0, 𝑚𝑠 = 𝑚0 . All physical quantities will therefore be 
expressed in SI units following the conversion in a previous report [28]: 𝜎0 ≈ 2.7 Å; m0≈ 46 amu; 𝜀0≈ 0.151 eV; t0 ≈ 0.5 ps. A standard velocity Verlet integrator was used with a timestep of 2.5 fs.

Table 1: List of potential parameters.𝜀𝛼𝛽 𝜀0⁄ 𝜎𝛼𝛽 𝜎0⁄ 𝑟𝛼𝛽,𝑠 𝜎0⁄ 𝑟𝛼𝛽,𝑒 𝑟𝛼𝛽,𝑐⁄ 𝜀𝐵 𝑟𝛼𝛽,𝑐/𝜎0
2.2. Sample preparation

The glassy samples were prepared by quenching a well-equilibrated liquid at 2105 K to 28 K 
isochorically for a total cooling time of 2500 ps, consistent with prior studies.[29] Generally higher 
cooling rate leads to more disordered local structure and less brittle glass.[28] The glass transition 
for the model glass is around 800 K. The glass transition temperature was estimated as the 
temperature corresponding to the peak of the specific heat at constant volume during cooling, at 
which the system loses a considerable number of degrees of freedom. The average atomic volume 
of the system during cooling in an NVT ensemble is a constant at 0.0173 nm3, which was chosen 
to reach a near-zero final pressure for the final glassy sample. It should be noted that there was a 
compressive pressure during cooling. The periodic boundary conditions (PBCs) were applied in 
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three-dimensions during the cooling process. Any minute residual stress from cooling will be 
relaxed using an NPT ensemble such that the final glassy sample is stress-free. Temperature control 
and stress control during the MD simulations follow the standard Nose-Hoover formulation.[33,34] 
The density of the glassy sample is 6.59 g/cc. Its average atomic volume is about 0.0174 nm3. 

For conventional uniaxial tension 
test, we prepared a glassy sample using 
the above procedure with a geometry of 
5.2 nm by 5.2 nm by 15.5 nm, consisting 
of 24000 atoms. The sample was first 
subjected to uniaxial tension test. As 
shown in Figure 1, the glassy sample 
deforms elastically then fails brittlely at 
about 14% of strain. From the uniaxial 
tension test, the Young’s modulus was 
measured to be about 95 GPa, and the 
Poisson’s ratio was measured to be about 
0.26. The longitudinal wave speed is 
about 4.2 km/s.

For microtension test to investigate subcritical crack growth, we prepared a glassy sample with 
a pre-crack as shown in Figure 2A. We first prepared a glassy sample with a geometry of 15.6 nm 
by 15.5 nm by 2.6 nm with the same cooling procedure containing 36000 atoms, then replicated 
the sample 6 times in both X and Y direction to obtain a final sample of 94 nm by 93 nm by 2.6 
nm. As the stress field due to the pre-crack is highly inhomogeneous, there is no artificial 
periodicity in deformation morphology arising from the replication. The z-direction was 
intentionally set to be very thin to extend the sample in X and Y direction while maintaining a 
manageable system size. The pre-crack was created by removing any atom within a through-the-
thickness diamond-shaped region in the center of the sample, with a height of 4.0 nm and a length 
of 18.9 nm. The diamond-shaped pre-crack was also used in our earlier work.[28,31]

2.3. Constant-K microtension test

The glassy sample as shown in Figure 2A is subjected to tension in the Y direction, while 
maintaining zero stress in the X direction. The thickness was kept constant mimicking the plane 
strain condition. Periodic boundary conditions were applied in all three directions. It has been well 
established that continuum elastic description is highly consistent with MD simulation results for 
amorphous systems, even better than crystalline systems.[35] We have also carefully examined the 
critical stress-intensity factor KIC (as well as critical J-integral for fracture JIC) measured from MD 
is a material property, independent of the pre-crack size.[31] Figure 2B shows the local normal 
stress distributions (𝜎𝑦𝑦) at different loadings agree well the Westergaard’s solution,

Figure 1. Uniaxial tension test of a glassy sample 
showing brittle fracture with its stress-strain curve 
(left) and deformation morphologies at four 
different strains (right). Red and blue denote L and 
S particles, respectively.
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 𝜎𝑦𝑦 = 𝜎𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑/√1 − (𝑐𝑥)2 (4) 𝜎𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 is the far-field stress (measured in MD simulations over a horizontal slice farthest away 
from the crack with a height of 2.2 nm and throughout the thickness). x is the distance away from 
the crack center. c is the half crack size. To identify the crack tips, we calculated the local density 
averaged over a grid size of 0.5 nm by 0.68 nm by 2.6 nm. Going from left to right, the left crack 
tip is where the local density decreases to about 70% of the bulk value, while the right crack tip is 
where the local density increases to about 70% of the bulk value. The crack tip is allowed to deviate 
vertically (Y direction) from the original pre-crack by up to 3 nm, as the crack growth is not ideally 
horizontal. Figure 2B shows that, for our glassy sample with the pre-crack, continuum fracture 
mechanics are valid, and the stress-intensity factor KI is the appropriate representation of the 

Figure 2. (A) Glassy sample geometry for microtension test. (B) Local normal stress (𝜎𝑦𝑦) 
distribution along the center of the sample (averaged over 1.35 nm in Y direction and the 
entire thickness) as a function of distance away from the center of the crack for KI=0.22, 0.38 
and 0.54 MPa∙ √𝑚 , colored as blue, green and red. The dashed lines are Westergaard’s 
solutions with 𝜎𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 measured as 1.2, 2.2, and 3.1 GPa. The temperature was kept at 52 K 
to suppress crack growth. (C) Applied stress-intensity factor KI stabilizes at the target value 
of 0.38 MPa∙ √𝑚. (D) The crack size increases over time under a constant KI. The temperature 
was kept at 210 K for MD simulation in panes (C, D).

shiy2-admin
Highlight
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mechanical stimuli for the microtension test. KI is calculated as follows, with the Feddersen 
analytical form [36] of finite width correction (almost identical to Isida’s correction factor from 
numerical calculation [37], with higher accuracy [38] than Irwin’s correction [39,40]):

𝐾𝐼 = 𝜎𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑 √𝜋𝑐 (𝑠𝑒𝑐 (𝜋𝑐𝑊))12 (5)

W is the sample width along X direction. If the instantaneous KI is lower than the target value, a 
tensile strain rate proportional to the difference was applied, and vice versa. For instance, the initial 
tensile strain rate for a target KI of 0.38 MPa∙ √𝑚  is 1.9E-4 ps-1. In this way, a constant KI 
microtension test can be achieved as shown in Figure 2C. A stable crack growth under the target 
KI is shown in Figure 2D. Note that, although the nominal crack length is 18.9 nm (i.e., the length 
of the diamond-shaped pre-crack), the actual measured crack is slightly shorter (~16.8 nm) due to 
atomic rearrangement near the tip in response to the creation of the pre-crack. Together with a 
thermostat controlling the temperature, the crack growth rate can be measured for a given 
thermomechanical condition.

3. Results

3.1. Subcritical crack growth rate

Utilizing the constant-K microtension test, we systematically measured the subcritical crack 
growth rate over a range of stress intensity factors and a range of temperatures. The crack velocity 
can be obtained as the slope of crack length (up to 32.4 nm) over time (up to 25 ns) once the stress 
intensity factor stabilizes. In addition, five independent glass samples were used to obtain an 

Figure 3. (A) Subcritical crack growth velocity appears to be exponentially dependent on the 
applied stress intensity factor. (B) Subcritical crack growth appears to be thermally activated 
in an Arrhenius plot, with a constant activation energy independent of the stress intensity factor. 
Solid lines are best fitting lines according to Eq. (7).
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averaged crack growth rate to reduce fluctuation in crack growth probably due to structural 
heterogeneity.

To facilitate the discussion, the crack extension velocity (v) according to the existing subcritical 
crack growth theory, developed by Wiederhorn, Charles, Hillig, Lawn, and others [1,4,7–10,41–
43] can be written as,𝑣 = 𝑣0𝑒−∆𝐻‡−𝐾𝐼𝑏𝑅𝑇 (6)

Here, 𝑣0 , ∆𝐻‡ , 𝐾𝐼 , R, T is a velocity constant, activation enthalpy, stress intensity factor, gas 
constant, and temperature, respectively. b is a material conjugate variable to the stress intensity 
factor, assumed to be a constant.

Figure 3A shows the crack growth rate as a function of KI at different temperatures, which is 
quite similar to experimental results by Wiederhorn on “normal” oxide glass under dry conditions. 
That is, the crack growth rate depends on KI exponentially. It should be noted that, the slope in 

Figure 3A  𝑑𝑙𝑛(𝑣) 𝑑𝐾𝐼⁄  appears to be a constant (v=d(2c)/dt is the crack growth rate). This is in 

disagreement with Wiederhorn’s subcritical crack growth model in which the slope is inversely 
proportional to the temperature (−𝑏/𝑅𝑇 , according to Eq. 6). In fact, a closer examination of 

Wiederhorn’s data on aluminosilicate (Figure 2D in [4]), the slope of 𝑑𝑙𝑛(𝑣) 𝑑𝐾𝐼⁄  seems also to be 

a constant. Moreover, the fitting by Wiederhorn for the highest two temperatures are noticeably 
worse than the other three temperatures. 

To further examine Wiederhorn’s model, the same crack growth data was presented in an 
Arrhenius plot under various KI, which is shown in Figure 3B. It is clear that the activation energy 
is a constant regardless of the applied stress intensity factor. In other words, the stress intensity 
factor does not lower the reaction barrier, as assumed by Wiederhorn.[4] Instead, it appears that 
the stress intensity factor controls the prefactor of the overall crack growth (i.e. vertical shift in the 
Arrhenius plot as shown in Figure 3B), not coupled to the temperature. The common “mechanical 
assisted chemical reaction” picture, works well for high temperature creep,[44,45] yet seems to be 
not applicable for subcritical crack growth. It should be noted that the stress field in subcritical 
crack growth is highly inhomogeneous, while the stress field in high temperature creep is 
homogeneous. That is, KI controls the size of the region for potential bond rupture and crack 
growth, not the actual amount of bond extension. Based on Figure 3, we propose the following 
crack growth model rooted also in transition state theory, yet with a constant reaction barrier. In 
this model, the effect of mechanical stimuli controls only the pre-factor of the chemical reaction. 
The crack growth rate is assumed to be proportional to chemical reaction rate,𝑣 = 𝑣0exp (𝐾𝐼𝐾0) exp (− ∆𝐻‡𝑅𝑇 ) (7)
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Here, 𝑣0 , ∆𝐻‡ , 𝐾𝐼 , R, T is a velocity constant, activation enthalpy, stress intensity factor, gas 
constant, and temperature, respectively. K0 here serves as a reference stress intensity factor. Here, 
the activation enthalpy should be comprehended as the averaged activation energy over a bond 
stretching distribution at the pre-crack region. The solid lines in Figure 3 are from the new crack 
growth model, which agree with our MD simulation results. The best fit value for 𝑣0, ∆𝐻‡, 𝐾𝐼 are 
2.0 m/s, 0.090 eV, and 0.076 MPa∙ √𝑚 , respectively. It should also be noted that, Eq. (6) is 
equivalent to Eq. (7) under the condition that the parameter b is proportional to temperature.

3.2. Deformation mechanism map

As Wiederhorn discovered earlier,[4] brittle solids may either exhibit subcritical crack growth, 
or exhibit sudden failure without subcritical crack growth. Therefore, it is useful to understand, for 
the current model glass, the thermomechanical conditions on which subcritical crack growth mode 
is allowed. A total of 122 combinations of temperature and stress intensity factor were investigated 
using one glassy sample. The simulation time is up to about 4 ns. A simple deformation 
classification is described as follows, with examples shown in Figure 4A. If the crack grows from 
the initial 16.8 nm without load to less than 18.2 nm at the end of the simulation, the deformation 
mode is classified as elastic (blue diamonds in Figure 4A). The 1.4 nm crack extension can be 
considered as the atomic rearrangement of the crack tip upon tensile loading. If the crack grows 
uncontrollably across the entire sample within 4 ns, the deformation mode is classified as fracture 
(red triangles in Figure 4A). The stress intensity factor for sample undergoing fracture never 
reaches the intended target value in our constant-K simulations. For steady crack growth beyond 
1.4 nm over 4 ns, the deformation mode is classified as subcritical crack growth (green disks in 
Figure 4A). As only one glassy sample was used to generate the deformation mechanism map, it 
is useful to examine sample-to-sample variation from our existing data of five independent samples 
discussed in Section 3.2. The other four independent samples agree with Figure 4B for all of the 
temperature and stress intensity factor combinations with one exception. For temperature of 116 
K and stress intensity factor of 0.38 MPa∙ √𝑚  (very close to the boundary), two samples are 
classified as elastic agreeing with Figure 4B, while the other two are classified as subcritical crack 
growth.

As shown in Figure 4B, the deformation mechanism of the brittle solid with a pre-crack 
sensitively depends on both the stress-intensity factor and the temperature. At a given temperature, 
as the applied stress-intensity factor increases, the solid exhibits elastic deformation, subcritical 
crack growth and then fracture. Therefore, the boundary between the elastic regime and subcritical 
crack growth regime is the fatigue limit (dotted line in Figure 4B), while the boundary between 
the subcritical crack growth regime and the fracture regime is the fracture toughness (dashed line 
in Figure 4B). The fatigue limit seems to decrease as temperature increases, consistent with 
thermally activated bond rupture picture. The fracture toughness appears to increase first with 
temperature, which is probably due to toughening (for instance, local shear is promoted by the 
elevated temperature). At even higher temperatures, the subcritical crack growth rate is already 
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high enough to be classified as fracture, at which the fracture toughness reduces as the temperature 
increases.

It should be noted that both the fatigue limit and the fracture toughness are identified using 
criteria convenient to use for our MD simulations, which are consequently biased. For instance, 
our fatigue limit is likely to be overestimated, as MD simulation cannot detect very low crack 
velocity. Nonetheless, this deformation mechanism map shows that brittle solids can exhibit 
subcritical crack growth over large thermomechanical regime. More importantly, the range of 
stress intensity factor to induce subcritical crack growth seems to be very sensitive to the 
temperature. At the limiting case of zero Kelvin, there is no subcritical crack growth due to the 
absence of thermal agitation. These results suggest that the classification of glasses, based on 
whether they exhibit subcritical crack growth, need to take temperature into consideration.

3.3. Self-healing

Self-healing in oxide glasses have been observed by Wiederhorn [46] and Tomozawa.[5] 
Generally speaking, due to the driving force of minimizing surface energy, crack propagation can 
be reversed upon the removal of the applied load. Here, we first subjected a glassy sample with a 
K=0.54 MPa∙ √𝑚 of stress intensity factor for about 22 ns at 131 Kelvin, during which the crack 
extends from 16.8 nm to about 28.0 nm in length. Subsequently, this sample with 28 nm crack was 
then tested with different amounts of unloading to observe how the crack will evolve. Figure 5 
shows the crack length as a function of time under various stress intensity factors including a 

Figure 4. (A) MD simulations showing the crack growth behavior under three different stress 
intensity factors at a temperature of 210 K, showing elastic, subcritical crack growth and 
catastrophic facture behaviors. (B) Deformation mechanism map on K-T domain showing the 
subcritical crack growth regime. The boundary separates the elastic regime and the subcritical 
crack growth regime is essentially the fatigue limit (dotted line), while the boundary separates 
the subcritical crack growth regime and the fracture regime is the fracture toughness dashed 
line).
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compressive stress intensity factor. The crack seems to maintain its length at 28 nm for K=0.46 
and 0.30 MPa∙ √𝑚, and fluctuate towards healing for K=0.14 MPa∙ √𝑚. Only under K=0.0 and -
0.14 MPa∙ √𝑚, the crack heals substantially. The crack healing process also resembles the crack 
growth process, both of which are constituted by stochastic discrete bond formation or bond 
breaking events. It is likely that the crack healing kinetics is also governed by a rate equation based 
on transition state theory. It is important to note that, the healing is not ideal as there are a number 
of atomic-level voids present along the original crack path as shown in Fig. 5. This is not surprising 
given the temperature for self-healing is very low, and over a very short amount of time. 

4. Discussions

The model glass we used in this investigation is generally considered to be a model metallic 
glass. However, to our best knowledge, there is no experimental report of static fatigue in metallic 
glasses. This is likely due to the fact that typical metallic glasses are ductile locally (as opposed to 
brittle globally for instance under uniaxial tensile test) such that persistent crack growth cannot 
occur with a constant load subcritically. Our model glass was tuned to be extremely brittle by 
increasing the bump height 𝜀𝐵 to reduce local plasticity near the crack tip such that the crack can 
grow subcritically. A higher bump height leads to additional energy penalty of bond swapping, 
thus prohibiting plastic flow, which is also sensitively reflected by the Poisson’s ratio.[28] The 

Figure 5. Self-healing of a crack that has grown subcritically under K=0.54 MPa∙ √𝑚 and 
T=131 Kelvin for 22 ns from 16.8 nm to about 28.0 nm. Left pane shows the crack closing 
under different stress intensity factors from 0.46 to -0.14 MPa∙ √𝑚. Right pane shows the crack 
closing morphology under -0.14 MPa∙ √𝑚. Atomic-level voids can be seen along the healed 
crack. 
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current model glass with 𝜀𝐵 of 1.1 has a Poisson’s ratio of 0.26 (much lower than typical metallic 
glasses ~0.3 or higher [29]). We have also tested a model glass with 𝜀𝐵 of 0.2, with a Poisson’s 
ratio of 0.28, which exhibits no subcritical crack growth. Although the subcritical crack growth 
experiments were conducted typically on oxide glasses, the fundamental physical process of 
mechanically assisted chemical reaction also presents in our model glass. Therefore, the our 
subcritical crack growth formula can in principle be applied to oxide glasses. Our results call for 
experimental measurement of the activation energy as a function of stress intensity factor for oxide 
glasses to examine different formulations of subcritical crack growth. In addition, we plan to 
investigate subcritical crack growth in model oxide glasses in the near future.

The lowest crack growth rate measured here is close to 0.01 m/s (the MD simulation takes 
roughly two weeks), which is roughly two or more orders of magnitude higher than the highest 
subcritical crack growth rate measured in experiments. This gap is common between MD 
simulations and experiments, primarily due to the limited time scale MD simulation can access. 
Various characterization techniques, already used to measure the speed for dynamic cracks,[21] 
could help narrow this gap. As there is no other known competing subcritical crack growth 
mechanism to be activated at lower stress intensity factor, we fully anticipate that the crack growth 
rates for our model glass will follow the same trend to much lower values.

Lastly, for our new subcritical crack growth formula Eq. (7), KI controls the size of the region 
for potential bond rupture and crack growth. It should be noted that this region (where bond rupture 
occurs) may be related but likely not identical to the fracture process zone (commonly identified 
as where local yield occurs). The precise spatial extension of this region is difficult to identify as 
one must distinguish between bond ruptures that ultimately lead to crack growth and bond rupture 
that only result in bond swapping or local shear.  Further quantitative analysis is needed to identify 
such zone, the atomic-level criterion to identify such zone, and the precise spatial extent as a 
function of different stress intensity factors, so as to understand the exponential dependency 
according to Eq. (7).

5. Conclusions

We have systematically investigated the crack behavior of a model glass with a pre-existing 
crack under dry conditions, as a function of temperature and applied stress intensity factor using 
molecular dynamics simulations. A deformation mechanism map was given delineating elastic, 
subcritical crack growth and fracture regimes. Our model glass exhibits subcritical crack growth 
over a sufficiently wide thermomechanical regime, enabling the extraction of activation energy, 
which was found to be independent of the applied stress intensity factor. These findings suggest a 
new crack growth velocity formula, different from the commonly used Wiederhorn’s model. Our 
results call for experimental measurement of the activation energy (via Arrhenius plot) as a 
function of stress intensity factor to ultimately judicate different formulations of subcritical crack 
growth.
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