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This works aims to generate realistic wind data in urban spaces, which is essential in developing,
testing and ensuring the safe operations of Small Unmanned Aerial Systems (sUAS) using
Deep Learning (DL). This provides an alternative to existing turbulence models, specifically
aimed at urban air spaces. We devise and utilize a Non-Intrusive Reduced Order Model
(NIROM) approach to replicate and realistically predict wind fields in urban spaces. The
method uses Large Eddy Simulation data from well-established computational fluid dynamics
solvers like OpenFOAM to devise the NIROM. High-fidelity data generated from OpenFOAM
is decomposed using Proper Orthogonal Decomposition (POD) into its orthogonal modes
and basis. These orthogonal modes obtained over time are trained on specialized Recurrent
Neural Networks like Long-Term Short Memory (LSTM) to complete the NIROM formulation.
This method combined the traditional reduced order modeling approach with deep learning
techniques to devise a framework for easy building and application of Machine Learning (ML)
based Reduced Order Models (ROMs). A typical urban morphology subject to the wind is
chosen and considered a test case for demonstrating the method.

I. Introduction

Unmanned Aerial Systems(UAS) have seen unprecedented growth over the past few decades. While initially designed
and operated for military applications, with its availability in various configurations like heavier or lighter than air,
fixed-wing, and rotorcraft, UAS has also been a ubiquitous presence in various civilian applications. It has penetrated
into the domain of civilian operations for various applications like agricultural imaging[1], marine litter mapping[2],
cartography, disaster management[3], urban land usage mapping[4], urban traffic mapping [5] and urban delivery,
catering services[6]. The combination of ongoing urban expansion and ever-increasing interest in using Unmanned
Aerial Vehicles has created the need to use Unmanned Aerial Systems for urban applications. Unlike UAS applications
in other domains, their application in urban airspace is characterized by significant size and weight restrictions on
them due to expectations of a dense urban air mobility ecosystem. Small Unmanned Aircraft Systems have rapidly
evolved to tackle these limitations, but they remain susceptible to external factors like wind, gusts, and turbulent
wakes in urban wind fields. In recent years urban wind fields have also been studied for various configurations like
individual buildings[7], street canyons [8] or over limited areas using Computational Fluid Dynamics techniques[9, 10].
Researchers have also investigated the influence of wind on flight planning and trajectory[11, 12] to develop various
control strategies to minimize the effects. However, testing these algorithms and methods with realistic wind data is still
a significant challenge.

With advances in computing systems to perform efficient parallelization and develop consistent-stable numerical
schemes, researchers can now simulate and analyze complex real-world processes. It is possible to compute complex
flow fields with a high degree of accuracy and even collect flow-field data which cannot be gathered experimentally.
Using Direct Numerical Simulations (DNS), the range of spatial and temporal scales of turbulent flows of interest
could be resolved to obtain high-resolution data. However, in practice, Large Eddy Simulations (LES) are used to
decrease the extremely prohibitive computational cost associated with DNS. But, Large Eddy Simulations could still be
prohibitive in settings where large degrees of freedom need to be resolved or, when repeated, time-bound evaluations are
necessary. Various Reduced Order Modeling (ROM) and surrogate modeling techniques have been proposed to tackle
this challenge[13—15]. With the advent of machine learning/deep learning, a new class of Machine Learning based
Reduced Order Models (ML-ROMs) have emerged. Since then, ML-ROMs have been widely used in many applications
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like process simulation and optimization [16], flow control [13], and fluid flows[17]. Machine Learning based Reduced
Order Models (ROMs) use an efficient, robust methodology to generate Non-Intrusive Reduced Order Models for
complex dynamical systems. While traditional ROMs have been used previously for various applications, prior
knowledge of the governing equations or operator forms was required, especially for unsteady physics. Specialized neural
networks like LSTM eliminate this need for generating ROMs for unsteady physics, which propagate the information
learned from data in time. Moreover, other deep learning techniques like Convolutional Auto Encoders[18-20] allow the
spatial information to be learned by the neural networks by applied self-learned convolutional filters on the training data
have been useful for generating efficient NIROMs, similar to Proper Orthogonal Decomposition based methods[21-23].

In this work, we devise a ROM using deep learning and based on Proper Orthogonal Decomposition for flow
predictions. A typical urban morphology is chosen, and Large Eddy Simulation data generated from a computational
fluid dynamics solver is used to train the ML-ROM. We demonstrate the method for its utilization in making predictions
in time. This, in effect, provides a methodology to generate realistic wind data needed for UAS testing and validation
without expensive numerical simulations at all instances in time.

I1. Methodology
In this section, we discuss our approach starting with generating Large Eddy Simulation data and, subsequently a
proper orthogonal decomposition-based formulation of the ML-ROM used in this work. In Section II.A we briefly
describe the governing equations and turbulence closure for the LES method used along with details on the solver used

for generating the data. Section I1.B describes the details of the method used for generating the Machine Learning based
ROM used.

A. LES simulation

The incompressible fluid flow solver OpenFOAM][24] based on the finite volume method is used for generating
the computational data inside the flow domain. PIMPLE algorithm, which combines the SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations)[25] algorithm and the PISO (Pressure-Implicit with Splitting of Operators)
algorithm[26] is used for computation. All inviscid terms and the pressure gradient are approximated with second-order
accuracy. A first-order implicit Euler method is used for time integration together with the dynamic adjustable time
stepping technique to guarantee a local Courant number less than 0.8. A Geometric-Algebraic Multi-Grid (GAMG)
method is used for solving linear systems with a local accuracy of 1e~5 for all dependent variables at each time step.

1. Governing Equations
The continuity equation and momentum equation for the flow of an incompressible viscous fluid in Cartesian
coordinates are given by:
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where,
u;i(i = 1,2,3) represents the components of velocities,t;; is the sub-grid scale stress tensor.

Combined with the Boussinesq hypothesis, the sub-grid stress can be written as:
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where,
vy = %, Uy is the sub-grid scale turbulent viscosity coefficient.
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2. Turbulence closure

In this work, we use the Wall-Adaptive Local Eddy-viscosity model (WALE) Sub Grid Scale closure presented in
[27]. Compared with the Smagorinsky subgrid-scale (SGS) model, the WALE model considers the effects of turbulent
wall surface effect and momentum transfer. The sub-grid scale turbulent viscosity is zero in the pure shear flow region,
which ensures the accuracy of the flow field in the near-wall laminar flow region. The sub-grid scale turbulence viscosity
coeflicient is given by:
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B. Machine Learning based Reduced Order Model Methodology

As outlined in Algorithm 1, we initially obtain the modal coefficients in time by performing a Proper Orthogonal
Decomposition on the flow-field fluctuation data. Fluctuation data is calculated by subtracting the mean flow from
LES data. A relative information content (RIC) index is computed for all the modes obtained. An optimal number of
modal coefficients are chosen based on a user-specified threshold for training on a Recurrent Neural Network. RNNs
contain cyclic or recurrent connections that enable them to continuously learn characteristics from a series of data and
predict future outcomes. Closely following the methodology used in [21], we use Long Short-Term Memory (LSTM)
neural networks, better suited for learning long-term dependencies in the input data. After training the network for the
specified number of instances in time, model coefficients are predicted for future instances. These predictions are then
used with the POD basis previously generated for the fluctuation field. We then compute the flow by adding the mean
flow field from the neural network predictions to the fluctuation field.



Algorithm 1 ROM-LSTM approach

1: Obtain 3D solution data from Large Eddy Simulations for the domain of interest.
2: Compute the fluctuation flow field for the given number of snapshots, i.e. mean-subtracted flow field
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3: Compute the POD basis for the data matrix A made up from the data of the snapshot using Singular Value
Decomposition.
A = DXV

Where @ is the basis vectors matrix, X is a diagonal matrix with singular values.
4: Using relative information content of singular values, pick the optimal number of POD modes and basis vectors.
5: Find the modal coefficients using the optimal basis vectors matrix ®,, and data matrix A,

c=A"o,
6: Pre-process the data by scaling and re-arranging data for LSTM training with an appropriate look-back window.
7: Predict the modal coefficients with the trained network for future snapshots.
8: Using the optimal basis vectors calculate the fluctuation field, U’

U =o,CT

9: Compute the predicted flow field by adding the mean value to the predicted snapshot data.

II1. Results

A. Simulation Setup

For this study we setup a set of buildings in a three-dimensional domain, representing a typical urban morphology
for Large Eddy Simulation. The set of buildings used are from the publicly available OpenFOAM test case[28]. Initially
a block mesh of 30x20x10 cells is generated with three levels of refinement in the region with buildings. Further,
numerical grid generation was performed using the built-in snappyHexMesh, from building surface data file. The
tool generates a 3-dimensional mesh containing hexahedra (hex) and split-hexahedra (split-hex) automatically from
triangulated surface geometries[29]. The final snapped mesh has around 181000cells with 14000 polyhedra, 166000
hexahedra and 1000 prisms. The numerical grid used is depicted in Fig. 1. A constant vertical wind profile of
magnitude of 10m/s was chosen at the inlet. The y and z components of the velocity are chosen zero, with flow only in
the x-direction.

Domain size | Specification
x-direction 400m
y-direction 280m
z-direction 140m

Table 1 Domain details
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Fig.1 Left-Top view (xy-plane); Right-Side view (xz-plane) of the domain; Bottom-Isometric view of the domain

B. ML-ROM Results

We use the data from the Large Eddy Simulation using the domain in Fig. 1. The CFD simulation is run till a
quasi-stable state is obtained. To simplify the model, only the x-component of velocity u is utilized for this work.
The simulation data from this domain at every 1 second (snapshot data) is used for training the ML-ROM. Following
Algorithm 1, we pick a threshold for relative information content as 60% giving us 133 modes as shown in Fig 2. The
LSTM neural network is trained on the snapshot data for 500 seconds, and predictions are made for 100 more seconds;
some more details about the neural network architecture are listed in Table 2.
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Fig.2 Modes and their Relative Information Content; green-modes taken, red-modes neglected

A comparison is made between the true modal coefficients and ROM-LSTM predictions in Fig. 3 for the first
eight modes, selected based on relative information content. We see a close agreement in the predictions made from
ROM-LSTM and actual modes from the POD decomposition on the LES data. A mismatch is noticeable in the modal
predictions, especially in the amplitude. However, the general trend seems to be similar.
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Fig.3 Comparison between True and ROM-LSTM (ML) for first eight modes for demonstration;
Background colors: Tan/Orange - Training, White - Prediction

A contour plot of x-directions velocity is depicted for the top view (xy plane), and comparisons are made as shown
in Section III.B. A similar comparison is also made for a side view (xz plane) in the center of the domain in Section III.B.



Parameter Specification
Number of hidden layers 4
Number of neurons in each hidden layer 128
Activation function tanh
Lookback time-window 20
Recurrent dropout 0.8
Neuron dropout 0.0
Loss function MSE
Optimiser ADAM
Training-testing ratio 5:1

Table 2 Neural Network details

It could be noticed from the comparisons made in the contour plots that the finer structures in the flow are missing.
However, the ML-ROM can reasonably predict the larger structures and their movement in the domain. The model’s
performance deteriorates over time, but overall, the predictions closely resemble the actual flow field.

IV. Conclusions and Future work

In this work, we utilize deep learning to create a Machine Learning based Reduced Order Model for realistic
wind-field prediction. A demonstration of the method is made for a test case with typical urban morphology. We
notice a good agreement in the flow field predicted and the actual data from LES simulations. However, while the large
structures are well predicted, the finer structures in the flow field are missing. This could be attributed to the modes not
utilized for the prediction from Proper Orthogonal Decomposition. The corresponding results could be improved by
choosing a higher RIC threshold to incorporate more modes. The work could also be extended using Convolutional
Auto Encoders (CAE) or Variational CAE to decompose the data instead of POD, to enable the ML-ROM learning from
the spatial orientation of data in the flow domain. Furthermore, using a dynamic basis rather than a constant basis used
by POD could reduce the projection error over time and prevent the model predictions from deteriorating quickly.
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Fig. 4 x-direction velocity contour for top view of the domain
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