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Abstract. We demonstrate a spatial hypergraph model that allows us
to vary the amount of higher-order structure in the generated hyper-
graph. Specifically, we can vary from a model that is a pure pairwise
graph into a model that is almost a pure hypergraph. We use this spatial
hypergraph model to study higher-order effects in epidemic spread. We
use a susceptible-infected-recovered-susceptible (SIRS) epidemic model
designed to mimic the spread of an airborne pathogen. We study three
types of airborne effects that emulate airborne dilution effects. For the
scenario of linear dilution, which roughly corresponds to constant venti-
lation per person as required in many building codes, we see essentially
no impact from introducing small hyperedges up to size 15 whereas we
do see effects when the hyperedge set is dominated by large hyperedges.
Specifically, we track the mean infections after the SIRS epidemic has
run for a while so it is in a “steady state” and find the mean is higher
in the large hyperedge regime whereas it is unchanged from pairwise to
small hyperedge regime.

Keywords: hypergraphs - epidemic spread - higher-order epidemics -
spatial hypergraph model - SIRS epidemic

1 Introduction

One of the key questions regarding epidemic spread on higher-order graph mod-
els is whether the higher-order structure is relevant to macroscopic properties of
the epidemic. On the one hand, epidemic spread is inherently a pairwise behav-
ior in which a real or virtual pathogen spreads from one individual to another
in an infection event. On the other hand, pathogens spread via airborne routes
have obvious group-relevant interactions [18]. Theoretical and empirical studies
on these findings have been mixed. As shown by [15], without strong hyperedge-
dependent infection effects, hyperedge transmission models reduce to weighted
pairwise transmission models. Studies of human mobility and SARS-CoV-2
showed that super-spreading and the associated group interactions were key
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routes of transmissions [9,11]. However, there are issues with each of these pro-
cedures. Theoretical models often assume probabilistic epidemics that smooth
out behaviors; empirical data tend to be a messy mixture of multiple different
processes. Suffice it to say, studying epidemics is challenging with multiple trade-
offs among approaches [1]. Put plainly, we wished to understand if there is an
easy-to-understand scenario where hypergraph epidemic spreading was relevant
in order to assist in future studies of more fine-grained behavior and mechanisms.

In this paper, we seek to study epidemic processes in an idealized case to
demonstrate the magnitude of the possible difference in epidemic behavior in
the light of group structure on hypergraphs. This is important because our find-
ings will shed light on what types of differences distinguish pairwise spread from
hypergraph spread. To make our findings concrete, we will adopt a simple spatial
hypergraph model — which we will discuss in future sections — that incorporates
degree heterogeneity as well as local clustering, both key properties of empirically
observed human behavior. The model works by running a clustering algorithm
on the nearest neighbors for each node. Each cluster becomes a hyperedge. By
varying a parameter of the clustering algorithm, we can interpolate between
purely pairwise edges (putting each neighbor into a single cluster) and entire
hyperedges (one cluster for the entire neighborhood). We divide this parameter
space into two regions, one that interpolates from pairwise edges to small hyper-
edges and another that interpolates from small hyperedges to big hyperedges.

We study these networks with a discrete-time susceptible-infected-recovered-
susceptible (SIRS) epidemic model that has been extended to account for spread-
ing in hypergraphs. Specifically, the hypergraph extension is designed to model
airborne spread and also incorporate airborne dilution effects. Our idea is that
the study of hypergraph spread corresponds to a hypergraph model where the
hyperedges represent a group interaction, and so bigger groups must meet in
larger areas or areas with additional ventilation (which is typically specified per
person in many building codes). Since this is a SIRS epidemic, there is an initial
spike in infections in the entirely susceptible population. Following this spike,
and some additional transients, the behavior enters a “steady state” where infec-
tions per time step are roughly constant. We use the average behavior in this
steady state as a proxy for a relevant epidemic property that is macroscopically
evident.

We find that these SIRS epidemics show a clear impact in the big hyperedge
regime. In particular, the mean average infections over the last period of epi-
demic simulation is higher for big hyperedges (Fig.5). This finding holds even
though the total epidemic forcing due to edges in a pairwise projected model
of the hypergraph epidemic is constant and the spectral epidemic growth fac-
tor Ay of the pairwise projected model is constant or lower. Consequently, these
demonstrate the scenario we sought: a simple scenario that nonetheless causes a
macroscopically relevant impact.
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2 Preliminaries on Graphs and Hypergraphs

To evaluate the impact of higher-order structures on epidemic spread, we consider
models of both graphs and hypergraphs. As mentioned in the introduction, we
will introduce a model in the next section that allows us to smoothly interpolate
between a purely pairwise graph and a hypergraph in a natural fashion. To that
end, we briefly review the notation for graphs and hypergraphs.

An undirected graph G = (V, E) consists of a set of vertices V' and a set of
edges E, where each edge e € F connects two vertices from V. The degree of a
vertex v € V is defined as the number of edges incident to it. We allow repeated
edges to exist as well. A hypergraph H = (V, E) extends this concept, where V'
remains a vertex set and now the set F is a hyperedge set. A hyperedge, unlike
a standard edge, may connect more than two vertices. The degree of a vertex in
a hypergraph is typically defined as the number of hyperedges that contain it.

The projected graph of a hypergraph, obtained through clique expansion, is a
pairwise graph in which each hyperedge is replaced by a clique of fully connected
vertices (we do not include self-edges). When computing clique expansions, we
may sometimes wish to weight the expansion such that the total weight of each
hyperedge is bounded. In this case, when we compute the clique expansion, we
associate each edge of the clique with a weight w(e) and treat repeated edges from
multiple cliques as distinct. There is a relationship between weighted projected
graphs and the fractional degrees of a hypergraph [16].

3 The Spatial Hypergraph Model

We propose a new random spatial hypergraph model in a fashion that allows us
to easily interpolate among multiple possible graph to hypergraph realizations.
The idea is that we have a set of points in space that represent the vertices.
Vertices connect up to nearby vertices in a nearest neighbor fashion. We induce
hypergraph and group structure by clustering the regions of nearby vertices.

Suppose there are n vertices. Each vertex v is associated with a d-dimensional
vector x, and a positive scalar parameter r,, both of which are randomly gener-
ated. The vector x, indicates the position of vertex v. A straightforward way to
generate these coordinate vectors is to distribute n vertices uniformly at random
within the unit hypercube [0, 1]¢. In this study, we focus on d = 2 and position
each vertex within the unit square, although the model can be easily gener-
alized to higher dimensions or arbitrary point placements. To mitigate border
effects, one could use a wrap-around or hyper torus distance in this space [6,7,12].
Using alternative point distributions would also work. The parameter r, should
be understood as the range of activity of vertex v and directly corresponds to
the number of neighbors that a vertex will have in the network. This reflects
the social power or exposure range of a given vertex. These values are ran-
domly sampled from a predefined probability distribution; we use log-normal
distributions.

To construct hyperedges, we proceed as follows. For each vertex v, we first
find its k, = min{ceil(r,),n — 1} nearest neighboring vertices (the adjustments



46 O. Eldaghar et al.

to r, guarantee we get an integer that isn’t too large). If k, = 1, we add an edge
between v and its closest vertex. If k,, > 1, we apply the DBSCAN algorithm [13]
to these k, vertices to detect local clusters around v. For each local cluster
identified, we add a hyperedge that includes v and the vertices in that cluster.

Fig. 1. Hyperedges formed around vertex v = 1 with increasing neighborhood radius
parameter in DBSCAN (left to right), where k, = 8 nearest neighboring vertices (within
the red circle) are considered. Pairwise links form at a small parameter (leftmost), tran-
sitioning to a single large hyperedge at a larger parameter (rightmost), with interme-
diate stages shown in between.

The proposed hypergraph model enables an interpolation between near-
est neighbor graphs and hypergraphs whose projections yield nearest neighbor
graphs via the neighborhood radius parameter £ (notice that this is different from
r, introduced above) in the DBSCAN algorithm. An illustration is provided in
Fig. 1. When this parameter is set very small, each vertex v treats its surrounding
k. vertices as separate clusters, forming k, simple pairwise edges. This results in
a simple nearest neighbor graph. Conversely, a large neighborhood radius merges
all k,, vertices into a single cluster, generating one hyperedge connecting v to all
its k, neighbors.

We note that any other clustering method would work here as well, our choice
of DBSCAN is because it mirrors our intuition about spatially proximity inter-
actions: groups of nearby points should be connected together into a hyperedge.
Also, using a distance parameter avoids directly choosing a number of clusters
as in k-means, which is slightly easier to reason about in this model. The reason
we like this model for understanding epidemic behavior is that the number of
neighbors k, is independent of the group structure. This allows us to vary the
neighborhood radius parameter as a proxy for the strength of group interactions.
One challenge here is to normalize this region by the total activity of a node,
which we discuss in Sect. 3.1.

Flexibility Within the Model. We conclude by noting that this is a fairly flexi-
ble and customizable model. In the interest of space, we do not explore many
of these ideas, but wish to mention them for others. (1) Vertex positions can
be randomly sampled from bounded regions with various shapes, such as disks
or spheres, using different probability distributions. Alternatively, vertex place-
ment can follow population distributions observed in real-world datasets. (2)
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The model parameters {r,} can be drawn from distributions other than the
log-normal. (3) As mentioned earlier, the neighborhood radius parameter in the
DBSCAN algorithm can be tuned to influence the hyperedge formation process,
thereby affecting the resulting hyperedge sizes. Other clustering methods can
also be considered. (4) In addition, we can introduce a probability parameter p
to control whether every hyperedge generated by the model is kept or rejected:
with probability p, a hyperedge is kept; otherwise, it is rejected. This introduces
more randomness to the model and allows for control over the hyperedge den-
sity in the final hypergraph. (5) Also, the distance functions used for computing
nearest neighbors can be customized.

3.1 Varying Between Pairwise and Higher-Order Effects

The goal of this paper is to study this model from the perspective of demonstrat-
ing higher-order impacts. Consequently, we wanted a simple way to interpolate
between small clusters and large clusters. As we alluded to, there’s a challenge
here because each node has a different choice of k,. This choice corresponds to
a distinct region of space for the nearest neighbors. Fixing a single value of ¢ for
all nodes would work, but would not let them adapt to being randomly assigned
to less dense regions of the network. This scenario is illustrated in Fig. 2.

5 5 5
6,7°,4 6,7°,4 4
3iz 8 8 8

[ ] [ L]
9° 9° 9°

Fig. 2. Hyperedges formed around vertex v = 1 as the number of nearest neighbors
kv considered increases (left to right). We want the neighborhood radius parameter
in DBSCAN to adjust with k, and influencing the hyperedge formation. Note that in
each case we pick two or three hyperedges. In our experiments, we use €, to control
this behavior.

In this paper, we then want the neighborhood radius parameter in DBSCAN
to scale with the number of nearest neighbors k, as well as the actual distance
from the node to those neighbors. We then let d;** denote the maximum distance
from v to its k, nearest neighbors. To combine the two, we use the following
function

a.dznax/m 0<a<l1
ARy + (o= 1) - (@5 — a2 VR 1< <2,

Note that g¢ is zero for all values, so this reflects the pairwise case. Likewise, &5 is
', so this reflects the case when the entire set of &, neighbors will correspond

Ea(dy™, ky) = {
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to a single hyperedge. When o = 1, we set an intermediate value designed to
create about \/k, hyperedges from those k, points. Specifically, this is the value

dvmax/\/E.
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Fig. 3. For a case with n = 50, 000 vertices that mirrors the experiments in the results
section, we show the number of hyperedges and the distribution of hyperedge sizes. This
shows that for a = 1, we start transitioning from exclusively from pairwise information
into small hyperedge data whereas for a = 2, there the pairwise data is gone. The
reason the number of hyperedges goes down as a function of « is that by making
bigger clusters (what « controls in a local fashion) we can only reduce the number of
clusters formed, and hence, reduce the number of hyperedges created. Nonetheless, this
will keep the projected graph weights constant, see Fig. 6.

We illustrate the impact of « in Fig.3. This shows how the clusters (i.e.
the hyperedge sizes) increase with « whereas the total number of hyperedges
decreases with « because they capture the same set of neighboring vertices.

3.2 Related Models

The proposed model draws inspiration from the geometric protean model [7]
and its simplified variant [6], among others [23]. We use the idea from these
papers that vertices have influence regions of varying sizes, while we go further
by considering local clusters within these regions to form hyperedges.

There are several random geometric models in existing work for hypergraphs,
as well as for simplicial complexes, which are a special type of hypergraphs with a
nested structure (where any subset of a hyperedge is also a hyperedge). One way
to generate random geometric hypergraphs is via random geometric bipartite
graphs [10], where random points are split into two sets, and edges are formed
between vertices from different sets if their distance is within a certain thresh-
old. The two sets can then represent the hypergraph’s vertices and hyperedges,
respectively. Another approach introduces a radius parameter 7y, for each hyper-
edge size k [23]. For any combination of k vertices, a hyperedge is established
if the intersection of their respective ri-radius balls is non-empty. In general,
the radius parameter r; is set to increase with the hyperedge size k, in order to
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generate non-simplicial hypergraphs. When the radius parameters are set equal,
the resulting hypergraph is actually a simplicial complex, which is known as the
Cech complex. Similar models include the Vietoris-Rips complex and the Alpha
complex [4,17,19]. Compared to these models, our proposed model enables an
interpolation between geometric graphs and hypergraphs, making it more effec-
tive for studying how higher-order interactions affect epidemic processes.

4 The Epidemic Simulation

We model a standard SIRS epidemic simulation. This is a compartmental model
with three states: susceptible, infected, and recovered. Nodes represent individ-
uals and they move through these states in order. Recovered nodes represent
people who are temporarily immune from infection. A node will move back to
susceptible after a sufficiently long time. We study these all with a discrete event
simulator that operates on individual time steps. At each time step,

1. with probability 3, a susceptible node is infected by an infectious neighbor;
2. with probability =, a node recovers from infected to recovered;
3. with probability 4, a node transitions from recovered to susceptible

We run this update for each node based on the state of infected nodes at the
start of the time step. The expected length of an infection is then 1/ and this is
binomially distributed. Likewise, the expected length of immunity and recovery
is 1/6 and is similarly binomially distributed. The overall epidemic defines a
memoryless process over the vector of states for each vertex in the graph.

We also add one more feature, which is a source of exogenous infections. Since
the populations we are modeling are small relative to the global population, we
want to account for infected nodes arising from outside our small population.
Consequently, we add a parameter 6 and set a susceptible node to infected with
probability 6. Typically, this is very small. For this setup, we view the graph or
hypergraph as a set of contact that the node visits during each time period.

4.1 The Hypergraph Extension

Our goal in modeling a hypergraph epidemic diffusion is to model an airborne
infection that would potentially infect a group of contacts. The model we adopt is
that each hyperedge represents a group interaction with shared air. Consequently,
a single infected individual in the hyperedge could infect any other individual in
the hyperedge. Note that the only term that needs to be adjusted is the infection.

Our choice for this specific case is that guided by the airborne scenario rel-
evant to group interactions. First, if there are I infected nodes in a hyperedge,
then we should model the case of being infected by any of them. Second, how-
ever, if there are I people in a space, then we assume it has an increased clean
air supply [2]. This means that we reduce the chance of infection by a linear
fraction. A more accurate model would use the adjusted risk ratios from recent
work on airborne spread [20], but our goal is to be simple enough to reason
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about without unnecessary complexities. Consequently, the way that we adapt
the infection probability is that we change it to f(8, I, m), where m denotes the
total number of nodes in the hyperedge, I is the total number of infected nodes
in the hyperedge, and ( is the pairwise infection probability. In particular, we
use

FB,1,m) = (1= (1=p)") /g(m),

where g(m) is either linear, g(m) = m, or g(m) = m? or g(m) = /m. The

linear scenario should correspond to a decrease in risk in a hyperedge setting
due to improved ventilation with a crude airflow dilution whereas g(m) = /m
corresponds to worse ventilation and g(m) = m? corresponds to both ventilation
and volume impacts (i.e., big groups need both more air and more space/volume).
To implement this, we simply run over all nodes and examine the hyperedges
they are in. We then compute f(3,I,m) for each hyperedge and infect the node
with that probability. Otherwise, we implement the state transitions from the
standard SIRS model.

We designed this model such that the epidemic model is closely related to a
pairwise projected graph version of the hypergraph, where multiple edges would
correspond with repeated possible infection attempts. The key difference is that
we handle the airborne dilution after accounting for the increased infection prob-
ability due to multiple infected individuals.

4.2 Related Work on Epidemic Simulation

Existing work on epidemic spreading over hypergraphs often simulates epidemics
using individual-level stochastic models or mean-field approximations of the
continuous-time process [5,15,22]. While these approaches share similarities with
discrete event simulations, there are some notable differences in the pairwise case
regarding fine-scaled information and homogeneity assumptions [3,14,24]. For
this reason, we make use of a discrete event simulator to more accurately model
fine-scaled epidemic behavior. Thus where other efforts use a rate of infection in
continuous time (and the ensuing non-linear term), we directly use probabilities
for each discrete time step.

Another notable distinction in our approach is how we treat infections within
hyperedges. Related research uses an infection rate that depends on the number
of infected neighbors [5]. More precisely, the rate at which a node is infected
due to a particular hyperedge is given by f(3, ), which uses both an infection
parameter 3 and the number of infected nodes in the hyperedge, I. The function
f(B,I,m) that we adopt varies based on the size of the hyperedge as well. We
note that [15] uses a partitioned model that allows a different function for each
value of m, but their analysis is based on a continuous-time formulation.

5 Results

The goal of our experiments is to show that the hypergraph structure changes
a key macroscopic parameter for the epidemic. We first explain our parameters
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(Sect. 5.1), then we illustrate an example epidemic trajectory in the large hyper-
edge case o = 2 to illustrate how the normalization g(m) impacts the behavior
(Sect. 5.2, Fig.4). Next, we show how the number of trailing infections changes
among these models as we vary a (Fig.5). For both of these, we consider how
g(m) impacts the results.

Since it is well known that both the average degree and value of A\; (the
largest eigenvalue of the adjacency matrix) [8,21] are important parameters for
an epidemic, we show both of these parameters for the weighted pairwise projec-
tion of the hypergraph. The graph projection was described in the preliminary
section and as we noted, our hypergraph epidemic doesn’t precisely correspond
to a weighted pairwise epidemic. Nonetheless, they show relevant information
on how much the graph portion of the hypergraph is contributing to epidemic
forcing. We compare both weighted projected degree and A; in Figs. 6, 7.

5.1 Parameter Setting and Simulation Details

In the interest of space, we investigate a single graph size, n = 50000 and
d = 2. We use a log-normal distribution for r, with mean neighborhood size
log(3) and standard deviation 1. This produces a largest neighborhood of some-
where between 75 and 500. We set 4 = 0.9,7 = 0.1,6 = 0.01. We also set
6 = 5/1,000,000 so that we expect one exogenous infection every four time
steps. The epidemics are simulated for 3650 time steps.

Note that when we investigate distributions over a, we keep both the values
of 7, and the coordinates z,, fixed as we vary the hypergraph constructed with
.

5.2 Epidemic Results
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Fig. 4. From left to right the average (line) and extreme values (ribbon) from 25 SIRS
epidemics by time for the specified g(m) for the purely hyperedge case (o = 2). The
differences are due to changes in the influence of hyperedges in the spread.

Examples of epidemic trajectories are shown in Fig. 4. In this case, we gener-
ate one graph and compute 25 realizations of the SIRS epidemic. These figures
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Fig. 5. Figure showing differences in the average trailing infections (y-axis) as we vary
« (x-axis) for different normalization terms - g(m). Markers indicate the average with
the band indicating the min and max over 25 simulations for each value of a.

plot the total number of people in the infected state at each time step. Note that
there is an initial spike as most of the network is infected, then this settles off to
a steady state. This figure, for a = 2, shows that in the large hyperedge regime,
there is only a small difference between normalizing infection probabilities by
v/m compared to m.

Next, we look at the average number of infections in the steady state regime in
Fig. 5. To be precise, we take the last 1000 time steps of each epidemic trajectory
and compute the average number of people in the infected state in each step over
this time period. As we vary «, we can see a distinct effect, namely that average
trailing infections are barely changed in the small hyperedge regime (a < 1) for
all the cases, whereas it grows distinctly for g(m) = m and g(m) = /m in the
large hyperedge regime (« > 1) and drops distinctly for g(m) = m?. These all
show clear impacts on the epidemic information in the large hyperedge regime.

5.3 Average Degrees and Largest Eigenvalues of the Projected
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Fig. 6. From left to right, the projected degrees for the spatial hypergraph model
generated using the same spatial data and degree information for 1) a linear projection,
2) a square root projection, and 3) a squared projection. Lines show the 10th, 25th,
50th, 75th, and 90th percentiles.
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Fig. 7. From left to right, the dominant eigenvalue for the spatial hypergraph model
generated using the same spatial data and degree information for 1) a linear projection,
2) a square root projection, and 3) a squared projection. Lines show the 10th, 50th,
and 90th percentiles and the gray bands denote the max and min over 25 trials.

As previously mentioned, both the average degree and largest eigenvalue
are known to be key features of epidemic spread in networks. To assess their
impact on this experiment, we compute the weighted projected graph of these
hypergraphs using the weighting function g(m). Figure 6 shows the total degree
volume of the projected graphs from these hypergraphs as we vary a. Recall
that all graphs share the same spatial information and sampled degrees in this
example. The degree-projected graph is constant for the linear normalization
term g(m) = m and increasing/decreasing for the square root/squared function
as one would expect. In Fig.7 we see the same information for the dominant
eigenvalue of the weighted, projected adjacency matrix. All of these show trends
that are mot captured in the actual epidemic behavior. This shows that the
difference in impact is directly due to the higher-order spreading patterns.

6 Discussion

There are two key contributions of this paper. The first is a flexible spatial
hypergraph model. The second is a demonstration of how that model can be
used to study higher-order impacts in epidemic spreading. Here, we see a clear
case where the higher-order structure causes much higher epidemic prevalence
than in the pairwise model. Pairwise projections are insufficient to explain this.
To aid reproducibility, the code and data used in this study are publicly available
at https://github.com/oeldaghar/spatial-hypergraph-epidemics.

We believe this demonstrates a clear case where higher-order spreading is
relevant to epidemics — especially in the case of linear normalization (g(m) =
m), although we acknowledge that our study currently only treats a limited
parameter regime and does not yet explain a mechanism by which the average
infections are higher. In the future, we plan to explore mechanisms underlying
the difference.

In a different direction, we could make the epidemic simulation or the graph
generation more realistic. For instance, we could use point distributions sampled
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from population densities in a city. In terms of the epidemic spread, we could
directly model the infection risk with shared air in terms of the relative risk
indices [20]. We could also attempt to directly model potential mixing in large
groups. Accuracy here is fraught as many parameters are extremely difficult
to set. A more interesting direction is to explore the dynamics of viral shedding
within a single infection wherein certain people are much more contagious at cer-
tain stages of their infection [11]. Finally, interventions can substantially change
the picture of epidemic spread and how it interacts with network structure [12].
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