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Abstract: We present a systematic and automatic approach for integrating tableting reduced-order
models with upstream unit operations. The approach not only identifies the upstream critical material
attributes and process parameters that describe the coupling to the first order and, possibly, the
second order, but it also selects the mathematical form of such coupling and estimates its parameters.
Specifically, we propose that the coupling can be generally described by normalized bivariate rational
functions. We demonstrate this approach for dry granulation, a unit operation commonly used to
enhance the flowability of pharmaceutical powders by increasing granule size distribution, which,
inevitably, negatively impacts tabletability by reducing the particle porosity and imparting plastic
work. Granules of different densities and size distributions are made with a 10% w/w acetaminophen
and 90% w/w microcrystalline cellulose formulation, and tablets with a wide range of relative
densities are fabricated. This approach is based on product and process understanding, and, in
turn, it is not only essential to enabling the end-to-end integration, control, and optimization of dry
granulation and tableting processes, but it also offers insight into the granule properties that have a
dominant effect on each of the four stages of powder compaction, namely die filling, compaction,
unloading, and ejection.

Keywords: dry granulation; tableting; reduced-order models; bivariate rational functions; granule
size distribution; ribbon density

1. Introduction

The pharmaceutical industry is transitioning from batch manufacturing to continuous
manufacturing. The Quality by Design (QbD) framework guidelines, introduced by the
Food and Drug Administration (FDA) in 2004, have been instrumental in redefining the
pharmaceutical industry’s approach to product development and manufacturing. QbD
ensures product quality by design rather than by inspection, thereby mitigating risks and
reducing the likelihood of defects or manufacturing deviations [1,2]. Complementing
the QbD paradigm is the concept of Quality by Control (QbC), which underscores the
importance of real-time monitoring and control of critical process parameters in continuous
manufacturing [3,4].

By way of illustration, Figure 1 shows the continuous solids-processing pilot plant
situated at Purdue University. Within this experimental setup, the Active Pharmaceutical
Ingredients (APIs) and the excipients are fed through K-Tron and Schenck feeders, respec-
tively. The powders are then homogeneously mixed in a Gericke GCM-250 continuous
blender. Following this step, the choice between direct compaction or dry granulation
dictates the path for the powdered blend, involving the utilization of a K-Tron MT12
micro-screw lubricant feeder or an Alexanderwerk WP120 roller compactor. Finally, the
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production of solid tablets is achieved by utilizing a Natoli NP-400 rotary tablet press. In
continuous manufacturing, the variations in the upstream unit operations have a cascading
effect on the downstream unit operations. Particularly in the dry granulation manufac-
turing route, changing the roller compactor settings will affect the granule properties,
eventually affecting the downstream tableting critical process parameters (CPPs) and tablet
critical quality attributes (CQAs). Here, for simplicity, the tablet CQAs are weight, tensile
strength, and tablet relative density. The CPPs are the process variables that directly impact
the tablet CQAs, such as the compaction force and in-die relative density of the tablet.

Real-time monitoring and control of unit operations require accurate models to predict
intermediate product properties and tablet CQAs. Tableting models under the direct
compaction route in Figure 1 have been extensively studied [5–7]. Semi-mechanistic
models used to capture the effects of lubricant or glidant feeding on tablet weight, strength,
and density have been proposed by Bachawala and Gonzalez [6]. Furthermore, Ferdoush
and Gonzalez [7] proposed semi-mechanistic reduced-order models (ROMs) to predict
changes in the dissolution profile due to process disturbances in tablet weight, porosity,
and lubrication conditions. These nonlinear mechanistic models were further used to
develop and implement nonlinear model predictive control (NMPC) to control a tablet
press in silico [4] and were demonstrated in the physical pilot plant [8] using the Natoli
NP-400 rotary tablet press.

In the dry granulation–tableting line illustrated in Figure 1, the roller compactor
converts powder to granules, which are then passed into the tablet press to form tablets.
In the roller compactor, powder is first compressed to a ribbon, which is then milled
to form granules. Dry granulation improves blend uniformity and flowability due to
the enlargement of granules. The downside is that the tabletability of the granules is
significantly reduced due to the work hardening the granules during roll compaction [9].
Therefore, as tableting mechanistic ROMs have been instrumental in implementing NMPC
for direct compaction, developing mechanistic models to predict tablet CQAs for the dry
granulation and tableting line is of paramount importance.

Existing mechanistic models for roller compaction [10,11] and direct compaction [6,12]
are typically independent of each other. However, when the roller compactor and tablet
press are used simultaneously, the tablet CQAs directly correlate with granule properties.
For example, the bulk density of the powder blend must be replaced with the bulk density
of the granules, among other considerations [6]. There have been successful attempts to
predict tablet CQAs based on roller compactor CPPs, such as roll force and screw speed,
using regression models [13,14]. However, regression models are not translatable to other
equipment or formulations.

In this work, we present a systematic and automatic approach for integrating tableting
ROMs with upstream unit operations that not only identifies the upstream critical material
attributes (CMAs) and CPPs that describe the first- and, possibly, second-order coupling,
but also selects the mathematical form of such coupling and estimates its parameters.
Specifically, we propose that the coupling can be generally described by normalized bi-
variate rational functions. This approach is illustrated by integrating tableting ROMs with
dry granulation CMAs and CPPs. To this end, a design of experiments is carried out to
capture the effect of roller compactor CPPs (such as roll force and gap) and CMAs (such
as ribbon relative density) on the tableting process. Effects on compaction force and the
tablet’s elastic recovery, density, and tensile strength are studied, and model parameters
are estimated. Granules with 10% acetaminophen and 90% microcrystalline cellulose are
fabricated using an Alexanderwerk WP120 roller compactor, and tablets are fabricated
using a Natoli NP-400 tablet press. It is worth noting that a salient aspect of the proposed
approach is that it can be extended and applied to any other roller compactor, tablet press,
or product formulation. Lastly, these ROMs are essential in realizing the end-to-end inte-
gration, control, and optimization of dry granulation and tableting processes, beyond the
scope of this work.
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Figure 1. The continuous solids-processing pilot plant at Purdue University involves several steps:
(i) K-Tron and Schenck feeders are used to feed the APIs and excipients, respectively, ensuring
a uniform blend in a Gericke GCM-250 blender; (ii) based on the manufacturing process (direct
compaction or dry granulation), the powder blend is mixed with a lubricant feed from the K-Tron
MT12 micro-screw lubricant feeder or fed to an Alexanderwerk WP120 roller compactor for dry
granulation; and (iii) the final step involves the production of solid tablets using a Natoli NP-400
rotary tablet press.

The rest of this paper is organized as follows. Section 2 outlines the experimental
preparation and characterization of granules and tablets used in this study. Section 3
presents the mechanistic and semi-mechanistic tableting ROMs adopted for each of the
four stages of powder compaction, namely die filling, compaction, unloading, and ejection.
Section 4 introduces an approach to couple these tableting ROMs with upstream unit oper-
ations systematically and to automatically select the mathematical form of such coupling,
i.e., of the normalized bivariate rational function, and estimate its parameters. Section 5
shows how effective this approach is in building ROMs that integrate dry granulation
and tableting processes. The mathematical form of the optimal models selected, their
parameters, and the mechanistic insights that emerge from them are presented in Section 6.
Conclusions and remarks are addressed in Section 7. Finally, future work and areas for
improvement are discussed in Section 8.

2. Materials and Methods
2.1. Preparation and Characterization of Granules

The formulation was composed of 90% by mass of microcrystalline cellulose Avicel
PH-102 (MCC), from IMCD Group US, and 10% by mass of acetaminophen Grade 0048
(APAP), from Mallinckrodt Pharmaceuticals. Lubricants and glidants, such as magnesium
stearate and colloidal silica, were not used. In turn, the true density of the formulation ρt,
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as measured with the Accupyc II 1340 pycnometer, was 1.558 g/cc. Six different batches of
granules were prepared by employing an Alexanderwerks WP120 roller compactor with
varying roll pressures (namely 30, 60, and 90 bar) and roll gaps (namely 2 and 3 mm).

Three-kilogram batches with the mixture of 10% APAP and 90% MCC were first pre-
blended in a five-liter Tote blender for 30 min. A Schenck Accurate feeder was used to feed
the pre-blend into a Gericke GCM-250 continuous blender, operating at 150 rpm, and next
into the roller compactor. The powder blend was compressed into ribbons as the granulator
feedscrew pushed powder through two counter-rotating rolls. Next, a two-stage hammer
mill with two screens, namely 2.5 and 1.25 mm, crushed the ribbons into granules. The
hydraulic roll pressure and the roll gap are control variables for which setpoints can be
varied continuously by virtue of two control modules, referred to as feedback gap control
and pressure control. The operating range of the Alexanderwerks WP120 roller compactor
is 1–4 mm for the roll gap and 0–230 bar for the roll pressure. In this study, the roller
compactor was operated for two minutes after startup to reach steady-state conditions,
the roll and mill speeds were kept constant at 4 and 25 rpm, respectively, and granules
were collected at the output of the roller compactor for characterization purposes and for
making tablets in the rotary tablet press.

To model the effect of roller compactor settings on CQAs, we first mapped the ribbon
and granule properties (CMAs) of the in-process material, i.e., the granules, with the roll
pressure, roll gap, roll speed, mill speed, and screen size values (CPPs). Specifically, the
model developed by Huang et al. [15] was used to estimate the ribbon relative density
ρribbon and granule size distributions (GSDs) of each batch. This hybrid model combines
Johanson’s model [16] for roll compaction with a machine learning (ML) model to maintain
high physical interpretability and feasibility. The model accounts for elastic recovery of the
ribbon to estimate the ribbon relative density ρribbon, i.e., the ratio of the apparent density
of the ribbon to the true density of the blend ρt. The GSD produced by the roller compactor
hammer mill was approximated using a bimodal Weibull distribution, as follows:

P(x) = α

[
k1

λ1

(
x

λ1

)k1−1
e−
(

x
λ1

)k1
]
+ (1 − α)

[
k2

λ2

(
x

λ2

)k2−1
e−
(

x
λ2

)k2
]

, (1)

where α is the fraction corresponding to the small mode, λ1 and k1 are the size and shape
parameters of the small mode, and λ2 and k2 are those of the large mode. Hence, the mean
granule size µGSD is obtained from the mean size of each component of the bimodal Weibull
distribution (i.e., µ1 and µ2) as

µGSD = αµ1 + (1 − α)µ2, (2)

with
µ1 = λ1Γ(1 + 1/k1)

µ2 = λ2Γ(1 + 1/k2),

where Γ(·) is the gamma function, defined as Γ(x) =
∫ ∞

0 sx−1e−sds.
The hybrid model was calibrated by Huang et al. [15] using experimental data for the

same formulation used in this work, under processing conditions similar to those used in
this work. Table 1 lists the hybrid model parameters, and Figure 2a,b show the estimated
GSDs for 30, 60, and 90 bar of roll pressure and 2 and 3 mm of roll gap. Lower roll pressures
result in lower ribbon densities, and a higher percentage of fines. It is worth noting that a
1.5 mm roll gap produces a GSD very similar to the one obtained using a 2 mm roll gap.
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Table 1. Hybrid model parameters for the six different granules, and the corresponding granule size
of the small mode, the large mode, and the mean granule size.

Roll Pressure [bar] Roll Gap [mm] α λ1 [µm] λ2 [µm] k1 k2 µ1 [µm] µ2 [µm] µGSD [µm] ρribbon

30 2 0.54 524 1055 2.25 5.32 457 991 696 0.640
30 3 0.57 518 1019 2.25 5.43 325 999 667 0.613
60 2 0.46 541 1170 2.24 4.98 479 1074 800 0.739
60 3 0.58 517 1009 2.26 5.46 458 931 658 0.708
90 2 0.44 546 1202 2.23 4.89 484 1102 830 0.803
90 3 0.50 533 1114 2.24 5.15 472 1024 747 0.770

0 500 1000 1500 2000 2500 3000

Size [ m]

0

0.2

0.4

0.6

0.8

1

1.2

S
iz

e
 d

e
n

s
it
y
 [

1
/

m
]

10
-3

30 bar RP

60 bar RP

90 bar RP

(a) 2 mm roll gap.

0 500 1000 1500 2000 2500 3000

Size [ m]

0

0.5

1

1.5

S
iz

e
 d

e
n

s
it
y
 [

1
/

m
]

10
-3

30 bar RP

60 bar RP

90 bar RP

(b) 3 mm roll gap.
Figure 2. Granule size distributions for different roll pressure and roll gap processing conditions
estimated using the hybrid model of Huang et al. [15].

It is worth noting that these CMAs can be measured off-line, at-line, and in-line. The
ribbon envelope density can be measured off-line using the GeoPyc 1360 pycnometer. The
GSD of granule samples can be measured using the Canty SolidSizer, which measures the
size and area of each particle [15]. The ribbon relative density and particle size can be
measured in-line using near-infrared (NIR) monitoring [17–19]. The Innopharma Eyecon2,
which uses a high-speed imaging technique, has also been used to measure the granule
size distribution in real time [20].

2.2. Preparation and Characterization of Tablets

The granules produced by the roller compactor were further used to make tablets.
Tablets were manufactured in a Natoli NP-400 tablet press using a doubly convex D-type
tool with a standard cup depth of h = 0.3302 mm and a diameter of D = 7.94 mm, as
illustrated in Figure 3. The turret speed, feed-frame speed, and pre-compression thickness
were kept constant at 25 rpm, 40 rpm, and 5 mm, respectively. For each of the six batches of
granules generated with the roller compactor, we made tablets of four different relative
densities. In this section, we first describe the steps taken to create the design of experiments,
and subsequently, we describe the tableting process and how product data are acquired.

The operating ranges of control variables in the tablet press are (i) 6–14 mm for the
dosing position, (ii) 1–5 mm for the pre-compression and main compression thickness, and
(iii) 5–60 rpm for the turret and feed-frame speed. The maximum punch tip force is 50 kN.
However, it is challenging to choose dosing position and main compression thickness
values that create tablets of the desired relative density within the operating limit of the
punch force. It requires the knowledge of prior experimental data, which is not always
available. Here, we used the tableting models established by Bachawala et al. [6] for
direct compaction of the same formulation to guide the estimation of dosing position and
main compression thickness values conducive to safe operation conditions. Specifically,
the objective was to target a broad range of tablet relative densities, namely from 0.6 to
0.95, while not exceeding the maximum tool force of the punches. Given a target relative
density, the bulk density of the granules is needed to, in turn, guide the estimation of the
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dosing position and main compression thickness. Hence, a 500 mg sample of each batch
was divided into eight sub-samples using a Retsch PT100 spin riffler, and the weight and
volume of each sub-sample were measured. Similarly, given a target relative density, the
compaction force needed for direct compaction [6] was used to guide the estimation of
an upper limit. Once these limits were established, we proceeded to make tablets with
the least and highest relative densities. In most cases, tablet strength was developed at
the lowest relative density value, and the limit of the punch tip force was not exceeded
at the highest one. Had we identified that any of these limits were incorrect, we would
have increased/decreased the dosing position in increments of 0.5 mm, until safe operation
conditions were established. Following this procedure, the main compression and dosing
position limits were chosen for each batch of granules, as shown in Table 2.

Table 2. Roller compactor and tablet press setpoints for different granules and tablets.

Roller Compactor Settings Tablet Press Settings

Batch Roll Pressure [bar] Roll Gap [mm] Dosing Position [mm] Main Compression
Thickness [mm]

1 30 2 7.0–8.5 2.5–3.0
2 30 3 7.0–8.0 2.5–3.2
3 60 2 7.5–9.0 2.5–3.0
4 60 3 7.0–8.0 2.5–3.2
5 90 2 8.0–9.0 3.5–4.0
6 90 3 7.0–7.3 3.0–3.3

As shown in Figure 1, the equipment used to manufacture pharmaceutical tablets at
Purdue’s continuous manufacturing pilot plant is lined up vertically with provisions for
in-line, at-line, and off-line measurements of CQAs and CMAs. For each tableting run, a
SOTAX AT4 tablet tester was used to measure the thickness, diameter, weight, and hardness
of 100 tablets under steady-state manufacturing conditions. Tablet press control variables
and critical process parameters were measured and collected in real time by the Delta-V
data historian. Therefore, the pre-compression thickness tpc, in-die main compression
thickness tin−die, pre-compression force Fpc, and main compression force Fpunch values for
each run are stored in the Delta-V data historian. At-line measurements for the weight
W, thickness Htablet, diameter D, and hardness F of doubly convex tablets (Figure 3) were
obtained from the SOTAX AT4 tablet tester. Tablet CQAs, tablet density, and tensile strength
were further calculated from the SOTAX AT4 measurements.

Figure 3. Diametrical compression of doubly convex tablets.

During the die-filling process, the fill depth or dosing position tfill is met by positioning
the bottom convex punch, while the scraper wipes off the excessive powder. Next, the upper
punch compresses the powder bed at the pre-compression and the main compression stages
using preset thicknesses, i.e., tpc and tin−die, respectively. Upon unloading and ejection, the
tablet relaxes elastically to a tablet thickness ttablet. The corresponding tablet volumes are
given by

Vfill =
πD2tfill

4
+

πh
12

(
3D2

4
+ h2

)
(3)
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Vpc =
πD2tpc

4
+

πh
6

(
3D2

4
+ h2

)
(4)

Vin−die =
πD2tin−die

4
+

πh
6

(
3D2

4
+ h2

)
(5)

Vtablet =
πD2ttablet

4
+

πh
6

(
3D2

4
+ h2

)
, (6)

with ttablet = Htablet − 2h (see Figure 3). For a given filling weight W, the corresponding
relative densities are given by

ρpc|in−die|tablet =
W

ρt Vpc|in−die|tablet
. (7)

Lastly, the tensile strength σt for convex tablets is obtained from Pitt’s model [21] as
recommended by Razavi et al. [12] using the measured hardness F, i.e.,

σt =
10F

πD2
[
2.84

(
Htablet/D

)
0.126

(
Htablet/ttablet

)
+ 3.15

(
ttablet/D

)
+ 0.01

] . (8)

It bears emphasis that not all measurements are available on-line to implement real-time
control under the QbC paradigm [4]. Therefore, one needs predictive models to estimate
the CMAs and CQAs, which are available at-line or off-line [6,7]. These models can then be
deployed to control the equipment and the process in real time under the QbC framework,
if beyond the scope of this paper. Tableting reduced-order models that predict the tablet
CQAs are described in the next section.

3. Tableting Reduced-Order Models

The development of mechanistic and semi-mechanistic reduced-order models (ROMs),
resulting from a trade-off between complexity and performance but still based on product
and process understanding, forms an essential cornerstone for process design, optimization,
and control in pharmaceutical manufacturing. Tableting ROMs have been developed for
each of the four stages of compaction (see Figure 4). For ideal filling conditions, the tablet
weight W can be estimated from the bulk density ρb (measured off-line) and the fill volume
of the die Vfill, i.e., from W = ρbVfill. In the rotary tablet press, however, the efficacy of
the filling process depends on the flowability of the powder blend and the turret and
feed-frame paddle speeds. In addition, the bulk density might not be equal to the one
measured off-line, due to segregation and mixing taking place inside the feed frame [22].
These two effects are lumped into a filling efficacy coefficient η, defined as follows:

η =
W

ρbVfill
. (9)

During the main compaction stage, the tablet is compacted to the desired thickness, and,
consequently, the desired in-die tablet relative density ρin−die. The compaction force Fpunch
model proposed by Kawakita and Lüdde [23], which is based on powder compression
mechanisms, has been modified by Bachawala and Gonzalez [6] to depend on the critical
in-die relative density ρc at which jamming occurs and particle-level deformations begin [6].
The model has the following form:

Fpunch =
πD2

(
ρin−die − ρc

)
4b
(
ρin−die(a − 1) + ρc

) , (10)

where the parameters a, b [1/MPa] are model parameters related to material properties.
During the unloading stage, the tablet expands and undergoes elastic recovery. The model
found by Gonzalez [5] for elastic recovery ϵρ is generalized to
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ϵρ = ϵ0

(
ρin−die − ρc,ϵ

1 − ρc,ϵ

)n

, (11)

where ϵ0 is the in-die elastic recovery at full compaction (or zero porosity), ρc,ϵ is the
smallest in-die tablet relative density at which elastic recovery is observed, and n is an
exponent that accommodates for nonlinearities and generalizes the otherwise linear trend.
Hence, the out-of-die tablet relative density is computed from the elastic recovery using

ρtablet = ρin−die(1 − ϵρ). (12)

Lastly, the tensile strength of a tablet σt is estimated using Leunberger’s model [24], i.e., by

σt = σ0

[
1 −

(
1 − ρtablet

1 − ρc,σt

)
e(ρtablet−ρc,σt)

]
, (13)

where ρtablet is the tablet relative density after elastic relaxation, σ0 is the theoretical max-
imum tensile strength for a tablet relative density of one (or zero porosity), and ρc,σt is
the smallest tablet relative density at which a tablet with adequate strength is formed.
The model is based on the concept of effective bonding contact points across the cross-
sectional area of the compact and it assumes that the relative change in bonding points is
proportional to the relative change in tablet density [24].

Figure 4. Stages of tablet compaction. Image courtesy of [5].

These semi-empirical or semi-mechanistic formulae are in remarkable agreement with
calculations that use the particle mechanics approach for modeling the consolidation of
powders under large deformations [5]. These three-dimensional mechanistic calculations
utilize generalized loading–unloading contact laws for elasto-plastic spheres with bonding
strength to describe inter-particle interactions, and thus they depend on two elastic, two
plastic, and one fracture particle-level properties. The main focus of this work is to eluci-
date a systematic and automatic approach for integrating these tableting ROMs with dry
granulation CMAs and CPPs.

4. Model Selection and Parameter Estimation

The systematic integration of tableting ROMs with upstream unit operations requires
not only the identification of upstream CMAs and CPPs that describe the first- and, pos-
sibly, second-order coupling, but also to select the mathematical form of such coupling
and estimate its parameters. We first propose that such coupling is solely through the
model parameters

ξ of the tableting reduced-order model M(ξ) by means of a nonlinear function of
upstream CPP|CMA and its parameters θ, that is,

M(ξ) ◦ ξ(CPP|CMA; θ) → M(CPP|CMA; θ) ≡ M(θ). (14)

For example, for tablet tensile strength, M ≡ σt and ξ = {σ0, ρc,σt}. Since upstream CMAs
and CPPs have different units and order of magnitude, we next propose the following
normalization and mapping to automate model selection and parameter estimation:
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CPP|CMA : x ∈ [lb, ub] → X =

(
x − lb
ub − x

)rX

∈ [0,+∞), (15)

where lb and ub are lower and upper bounds for the CPP|CMA x, and rX is a model
parameter that accommodates for nonlinearities. For example, if the ribbon relative density
is chosen as a CMA relevant to the coupling, then it has upper and lower bounds amenable
to physical interpretation, i.e.,

CPP|CMA ≡ ρribbon ∈ (ρc,rib, 1),

where the lower bound is the smallest density or porosity at which a ribbon is formed
and the upper bound corresponds to a ribbon of no porosity or a relative density of 1.
Lastly, we propose that the coupling can be generally described by multivariate rational
functions, which have been used to successfully interpolate and extrapolate sparse data in
many applications [25,26]. Specifically, the following normalized bivariate rational function
f (X, Y) is adopted:

ξ(CPP|CMA; θ) → f (X, Y) =
p1XY + p2X + p3Y + p4

q1XY + q2X + q3Y + 1
, (16)

such that θ = {pi, qj, rX , rY}, with i = 1, 2, 3, 4, j = 1, 2, 3, are the parameters of the coupling
to be estimated, in general. This simple and versatile bivariate rational function has a
limiting behavior that is amenable to physical interpretation, in as much as the upper and
lower bounds identified for the CPP|CMA do. This limiting behavior is given by

f (0, 0) = p4 (17)

f (0,+∞) = p3/q3 (18)

f (+∞,+∞) = p1/q1 (19)

f (+∞, 0) = p2/q2, (20)

and, for example, for the tensile strength model parameter σ0, the functions

f (0, Y) = (p3Y + p4)/(q3Y + 1) (21)

f (+∞, Y) = (p1Y + p2)/(q1Y + q2) (22)

describe the dependency of the maximum tensile strength σ0 of tablets made of granules
whose relative density is equal to ρc,rib (i.e., X = 0) and 1 (i.e., X → +∞), respectively, on a
second CPP|CMA y mapped to Y, e.g., on some aspect of the GSD. The interpretability of
some model parameters is a salient feature of the proposed approach. It is worth noting
that these properties are retained if the rational function is simplified by equating to zero
any subset of model parameters θ, which in turn adds versatility to the proposed approach
for model selection and parameter estimation. By way of example, Figure 5 shows the
case of CPP|CMA ≡ {x, y} ∈ [0.3, 1]× [0, 1]} and θ = {p1, p2, p3, p4, q1, q2, q3, rX, rY} =
{15, 10, 5, 10, 1, 2, 4, 1, 1}. Model selection and parameter identification then reduce to
resolving a trade-off between model complexity, e.g., given by the number of model
parameters Np, and the goodness of the model predictions, e.g., given by the sum of
squared errors (SSE) between model prediction M(θ) and experimental observation E . This
is effectively quantified using the Akaike Information Criterion [27,28], defined as follows:

AIC = n ln
(

SSE
n

)
+ 2Np = n ln

(
1
n

n

∑
i=1

(Mi(θ)− E i)2

)
+ 2Np, (23)

where n is the number of experimental data points. The model with the lowest AIC
is the best. Therefore, a library of rational functions F can be built by progressively
simplifying f (X, Y) for each of the two CPPs|CMAs adopted and, in turn, reducing the
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number of model parameters Nm
p in θm, for model m in the library. For example, if the

tensile strength model parameter σ0 is known to depend only on the ribbon density, then
p1 = p3 = q1 = q3 = 0 and is removed, together with rY, from θ. Therefore, the optimal
model m̄ and its corresponding parameters θ̄ are given by

{m̄, θ̄} = arg min
m∈F

[
n ln

(
1
n

min
θm∈Dm

n

∑
i=1

(Mi(θm)− E i)2

)
+ 2Nm

p

]
, (24)

where Dm are nonlinear inequality constraints for the accepted range of model parameters
θm. In this work, we use MATLAB’s genetic algorithm (ga) fmincon and global search
(GlobalSearch) in that specific order to solve the constrained nonlinear optimization
problem and obtain parameters. This ensures that the estimated parameters are not biased
to the initial guess and represent the global solution. The identification of two CPPs|CMAs,
their upper and lower bounds, and an appropriate model library F for integrating dry
granulation and tableting processes is discussed next.
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Figure 5. Contour and surface plots of ξ(CPP|CMA; θ) with {CPP|CMA #1, CPP|CMA #2} ≡
{x, y} ∈ [0.3, 1]× [0, 1]} and θ = {p1, p2, p3, p4, q1, q2, q3, rX , rY} = {15, 10, 5, 10, 1, 2, 4, 1, 1}.

We close by noting that regardless of the units used for M and E in the estimation of
SSE, the model with the lowest AIC value will be the same. Hence, for simplicity, units of
SSE values reported hereafter are omitted.

5. Reduced-Order Models to Integrate Dry Granulation and Tableting Processes

The systematic integration of the tableting ROMs presented in Section 3 with dry
granulation is carried out by following the model selection and parameter estimation
approach proposed in Section 4. Firstly, the ribbon relative density ρribbon and mean
granule size µGSD are identified as the two upstream CPPs|CMAs that describe to the first
and second orders the coupling between unit operations. Next, upper and lower bounds
for the ribbon relative density are set to be 1 (i.e., granules with no porosity) and ρc,rib
(i.e., the smallest density or porosity at which a ribbon is formed). Forming a ribbon is
equivalent to forming a direct compression tablet. Therefore, ρc,rib is set to be 0.566, which
is the critical density obtained from the tensile strength model for direct compression [6].
Similarly, the upper bound for the mean granule size is set according to the ASTM D4767
standard, which indicates that for proper die filling and consistent tablet properties, the
mean particle size must be less than one-sixth of the die diameter D. The lower bound for
the mean granule size is set to zero because the crystal size of APAP (35 µm) and MCC
PH102 (100 µm) are small compared to mean granule sizes. Table 3 summarizes the first
step of the proposed approach.
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Model parameters ξ of the tableting ROMs M(ξ), except for tablet weight, are then
modeled as bivariate rational functions of X and Y (see Table 4). In turn, the tableting
models presented in Section 3 depend on the dry granulation CPP|CMA, as follows

Fpunch =
πD2

(
ρin−die − ρc(X, Y)

)
4b
[
ρin−die(a(X, Y)− 1) + ρc(X, Y)

] (25)

ϵρ = ϵ0(X, Y)

(
ρin−die − ρc,ϵ(X, Y)

1 − ρc,ϵ(X, Y)

)n

(26)

σt = σ0(X, Y)

[
1 −

(
1 − ρtablet

1 − ρc,σt(X, Y)

)
e(ρtablet−ρc,σt (X,Y))

]
. (27)

Lastly, a model library F is built by progressively simplifying the bivariate rational function
f (X, Y) in Equation (16). Specifically, nine rational functions, presented in Table 5, are
considered. For simplicity and computational efficiency, the model library F contains only
twenty-five pairs (one for each model parameter in ξ; see Table 4), out of all eighty-one
possible combinations. The models in F are presented in Table 6.

Table 3. Normalization of the mean granule size µGSD and ribbon relative density ρribbon.

CPP|CMA Lower Bound (lb) Upper Bound (ub) Normalized CPP|CMA

Ribbon relative density: ρribbon ρc,rib 1 X =
(

ρribbon−ρc,rib
1−ρribbon

)rX

Mean granule size: µGSD 0 D/6 Y =
(

µGSD

D/6−µGSD

)rY

Table 4. ROM parameters, ξ, modeled as bivariate rational functions of X and Y.

Compaction Force Elastic Recovery Tensile Strength
M Fpunch ϵρ σt

ξ a(X, Y) ϵ0(X, Y) σ0(X, Y)
ρc(X, Y) ρc,ϵ(X, Y) ρc,σt (X, Y)

Table 5. Constrained variants of the normalized bivariate rational function f (X, Y).

Model Number Rational Function No. of Parameters

1 f (X, Y) 9
2 rX = rY = 1 7
3 p3 = q3 = 0 7
4 p3 = q3 = 0, rX = rY = 1 5
5 p2 = q2 = 0 7
6 p2 = q2 = 0, rX = rY = 1 5
7 p2 = p3 = q2 = q3 = 0 5
8 p2 = p3 = q2 = q3 = 0, rX = rY = 1 3
9 Constant − f (X, Y) = p4, rX = rY = 1 1

The integration of tableting ROMs for die filling and tablet weight with dry granulation
can be pursued, borrowing mechanistic insight from studies of the packing fraction of
polydisperse powders. Specifically, for the same turret and feeder speeds, we propose
that the filling efficacy η in Equation (9) only depends on changes in the polydispersity
of the bimodal size distribution of the granules produced by the roller compactor (see
Section 2.1), i.e.,

W = ηρb Vfill ≡ ϕ(X, Y)ρtρ
ribbon Vfill, (28)
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where ϕ(X, Y) is the packing fraction and the normalized variables X and Y depend on the
mean size of small and large modes of the bimodal Weibull distribution, i.e., on µ1 and
µ2, respectively, and the fraction of the small mode α. Brouwers and co-workers proposed
an analytical expression for the packing fraction of bimodal hard monodispersed spheres
arranged in crystalline structures [29] and randomly packed [30]. For µ2/µ1 being small
and equal to the size ratio of the two modes, the proposed relation is given by

ϕ(µ2/µ1, α) =
ϕrp{(1 − α)

[
1 − (µ2/µ1)

3]+ (µ2/µ1)
3}

C (1 − α)α[(µ2/µ1)3 − 1] + (1 − α)[(1 − (µ2/µ1)3)] + (µ2/µ1)3 , (29)

where ϕrp is the random packing fraction of unimodal spheres, and C is a constant that
depends on the mode of random packing (e.g., loose, close). We extend this relationship
to a bimodal Weibull distribution of non-spherical deformable granules by retaining the
mathematical form and relaxing constraints on model parameters, that is,

ϕ(X, Y) =
p2X + p4

q1XY + q2X + 1
, (30)

with X = (1 − α)(1 − µ3
1/µ3

2) ∈ [0, 1] and Y = α ∈ [0, 1]—which have the same order
of magnitude, i.e., they are normalized. It is worth noting that for α = 1 and α = 0, the
mixture becomes unimodal. If the modes are monodispered [30], then the packing fraction
is ϕrp. If the modes correspond to Weibull distributions, we propose that the packing
fraction is p4, that is, we constrain p2 to be equal to q2 p4. Therefore, for tablet weight, the
model library F has only one model with p1 = p3 = q3 = 0, rX = rY = 1, and p2 = q2 p4.
Meng et al. [31] show an increase in packing fraction with a decrease in the particle size
ratio µ1/µ2, for any value of α and sizes of the same order of magnitude (here assumed
valid for µ1/µ2 ∈ [0.2, 1]), that is, ϕ ≥ ϕrp, as reported for other mixtures [30,32].

Table 6. Model library F : pairs of constrained variants of bivariate rational functions used by
compaction force, elastic recovery, and tensile strength.

Function Variant 1 2 3 4 5 6 7 8 9

1 ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓ ✓
5 ✓ ✓
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6. Results and Discussion

The CMAs, CPPs, and CQAs measured and collected as part of the experimental
campaign described in Section 2 were used to identify ROMs and their parameters for
integrating dry granulation and tableting processes. Specifically, the models presented in
Section 5 were adopted, i.e., the models that emerged from the systematic application of the
model selection and parameter estimation approach proposed in Section 4 to the tableting
ROMs presented in Section 3. The weight, dimensions, and tensile strength were measured
for a total number of 2400 tablets, corresponding to 24 different tableting conditions,
under which the compaction force, dosing position, and in-die main compression thickness
are available.

The resulting ROMs for each of the four stages of compaction are presented next,
in turn.
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6.1. Tablet Weight

The model library F has only one model, given by

ϕ(X, Y) = p4
q2X + 1

q1XY + q2X + 1
, (31)

with X = (1 − α)(1 − µ3
1/µ3

2) and Y = α. The inequality constraints D are given by p4 > 0
and q1 < 0, since ϕ(X, Y) ≥ p4 > 0. Figure 6a shows that the goodness of the tablet weight
prediction is high, with R2 = 0.946. Figure 6b shows predictions of this packing fraction
model for tablets formed with granules of different size ratios µ1/µ2 and fractions of the
small mode α. It is evident from this figure that the packing density is maximum when the
fraction α of the small mode is around 0.7. Furthermore, for values of α between 0.6 and 0.9,
the packing density increases as the size ratio µ1/µ2 decreases. This region of the design
space is highly sensitive to changes in the operating conditions of the roller compactor.

The measured tablet weight exhibits a relative standard deviation equal to 1.6% on
an average across the different 24 tableting conditions. Hence, the weight is modeled by
a normal distribution with a mean equal to (28), using (31), and with a relative standard
deviation equal to 1.6%. In turn, the standard deviation of the CQAs and CPPs for the other
three stages of compaction will be estimated using a simple Monte Carlo approach and
10,000 weight samples. Specifically, compaction force, tablet density, and tensile strength
are estimated as normal distributions with mean and standard deviations resulting from
the Monte Carlo analysis.
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Figure 6. Tablet weight model.

6.2. Compaction Force

The model selection and parameter estimation approach proposed in Section 4 identi-
fies model (7, 7) as optimal within the model library F for a and ρc (see Tables 6, 7 and 11),
with X = [(ρribbon − ρc,rib)/(1 − ρribbon)]rX and Y = [µGSD/(D/6 − µGSD)]rY . The inequal-
ity constraints D are given by pi > 0, qj > 0 with i = 1, 4, j = 1, and r ∈ (0, 10]. The total
number of model parameters is then Np = 9, i.e., 3 parameters for a; 3 parameters for
ρc; rX and rY; and parameter b. Furthermore, the nonlinear constraints ρin−die − ρc > 0
and ρin−die(a − 1) + ρc > 0 are imposed to ensure that the estimated compaction force is
positive, for the values of ρin−die used experimentally. Figure 7a shows with symbols that
the goodness of the compaction force prediction is high, with R2 = 0.985. Figure 7b shows
predictions of this model for tablets formed with granules of different ribbon densities and
different mean granule sizes. The figure also shows predictions of the model proposed by
Bachawala and Gonzalez [6] for tablets formed by direct compaction using 10% APAP, 90%
MCC, and no lubricant or glidant. It is evident from the figure that the compaction force is
lower for granules with a lower ribbon density, and significantly lower compared to the
tablets formed using direct compaction.

The critical ribbon density, i.e., the smallest density at which a ribbon is formed by the
roller compactor, is fixed to be a constant ρc,rib = 0.566, which is the smallest tablet density
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at which a tablet with adequate strength is formed by direct compaction (i.e., ρc,σt = 0.566
from Bachawala and Gonzalez [6]). This value is also used in the elastic recovery and
tensile strength models.

The critical or jamming relative density ρc varies slightly for different granules and it
is greater than the critical density observed in direct compaction, which can be attributed
to a granule size distribution that packs and consolidates better than the wide GSD of 10%
APAP and 90% MCC used in direct compaction. In contrast, the Kawakita parameter a,
which is known to approximate the total degree of compression or total compressibility
of the granular system [23,33], varies significantly for different granules (see Figure 7c).
Specifically, it is evident from the figure that there is a strong dependency on ribbon density
ρribbon and a weak dependency on the mean granule size µGSD. The value of a decreases as
the granule density increases, i.e., the ability of the granules to compress decreases as more
plastic work is imparted during granulation [34,35]. Additionally, the product of Kawakita
parameters a and b is known to approximate the degree of particle rearrangement during
compression. The degree of particle rearrangement for direct compression (a = 0.824
and b = 97.38 GPa−1) is higher compared to the granules studied here (a ∈ [0.66, 0.76]
and b = 61.39 GPa−1 from Figure 7c), which can be reconciled with the observation that
the critical or jamming density for direct compression is smaller than the one for the
granulated material.
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Figure 7. Compaction force model.

Next, the tablet weight model, i.e., Equations (28) and (31), and the compaction force model,
i.e., Equation (25), are composed using the Monte Carlo approach to generate 10,000 force
predictions for each tableting condition. The mean and standard deviation values of the
estimates are shown in Figure 7a along with the standard deviation in the measurements.
It is interesting to note that the estimated and measured standard deviations are similar for
most tableting conditions. This suggests that the range of measured compaction forces can be
attributed to variability in tablet weight. Naturally, the figure also shows that errors in the
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composed models are compounded cf. the symbols estimated from the measured weight with
standard deviation bounds obtained from an estimated weight distribution.

Table 7. Top five best models within the model library F for parameters a and ρc of the compaction
force ROM (see Tables 5 and 6).

a(X, Y) ρc(X, Y) Np SSE R2 AIC

7 7 9 5.539 0.985 −79.37
6 9 7 6.707 0.982 −74.57
4 9 7 6.79 0.982 −74.00
4 4 11 5.903 0.984 −72.44
8 8 7 7.053 0.981 −72.26

6.3. Elastic Recovery and Tablet Density

The model selection and parameter estimation approach proposed in Section 4 identifies
model (4, 9) as optimal within the model library F for ϵ0 and ρc,ϵ (see Tables 6, 8 and 11), with
X = [(ρribbon − ρc,rib)/(1 − ρribbon)]rX and Y = [µGSD/(D/6 − µGSD)]rY . The inequality
constraints D are given by pi > 0, qj > 0 with i = 1, 2, 4, j = 1, 2, and r ∈ (0, 10]. Further-
more, the constraints 0 < pi < qi with i = 1, 2, 3, 4 are imposed to ensure ϵ0 ∈ (0, 1), and
ρc,ϵ ∈ (ρ̄c, 1), with ρ̄c being the lower bound of the compaction critical relative density, to
ensure consistency. Figure 8a shows with symbols that the goodness of the tablet density
prediction is high, with R2 = 0.976. Figure 8b shows predictions of this model for tablets
formed with granules of different ribbon densities and mean granule sizes. The figure
also shows predictions of the model proposed by Bachawala and Gonzalez [6] for tablets
formed by direct compaction using 10% APAP, 90% MCC, and no lubricant or glidant.

The onset of elastic recovery ρc,ϵ = 0.334 is constant for all granules. This study
suggests that elastic recovery, i.e., ϵρ = 1− ρtablet/ρin−die, is sensitive to both ribbon density
and mean granule size. Specifically, lower elastic recovery is observed in tablets made
from granules of a smaller size (cf. solid and dashed lines in Figure 8c) and with higher
density (cf. different colors in Figure 8c). Additionally, compared to direct compaction, the
elastic recovery of tablets formed through dry granulation is significantly higher, resulting
in tablets with lower relative density. This can be attributed to the brittle nature of the
granules [34].

Table 8. Top five best models within the model library F for parameters ϵ0 and ρc,ϵ of the tablet
density and elastic recovery ROM (see Tables 5 and 6).

ϵ0(X, Y) ρc,ϵ(X, Y) Np SSE R2 AIC

4 9 7 0.004 0.976 −185.5
8 9 5 0.005 0.968 −182.6
2 9 9 0.004 0.977 −181.6
3 9 9 0.004 0.976 −181.5
6 9 7 0.005 0.970 −180.3

Next, the tablet weight model, i.e., Equations (28) and (31), and the elastic recovery
model, i.e., Equation (26), are composed using the Monte Carlo approach to generate
10,000 tablet density predictions for each tableting condition. The mean and standard
deviation values of the estimates are shown in Figure 8a along with the standard deviation
in the measurements. It is interesting to note that the estimated and measured standard
deviations are similar for most tableting conditions. As was the case for the compaction
force, this suggests that the range of measured tablet densities can be attributed to variability
in tablet weight. In this case, however, the figure indicates that compounding errors
do not have a strong impact on the mean values, cf. the symbols estimated from the
measured tablet density with standard deviation bounds obtained from an estimated tablet
density distribution.
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Figure 8. Tablet density and elastic recovery models.

6.4. Tensile Strength

The model selection and parameter estimation approach proposed in Section 4 identifies
model (1, 1) as optimal within the model library F for σ0 and ρc,σ (see Tables 6, 9 and 11), with
X = [(ρribbon − ρc,rib)/(1 − ρribbon)]rX and Y = [µGSD/(D/6 − µGSD)]rY . The inequality
constraints D are pi > 0, qj > 0 with i = 1, 2, 3, 4, j = 1, 2, 3, and r ∈ (0, 10]. Furthermore,
the nonlinear constraints ρc,σ > ρc,ϵ are imposed to ensure that the tensile strength values
are positive for the values of ρtablet used experimentally. However, the goodness of this
model is poorer than that of previous models, cf. R2 = 0.906 with other values. This
observation calls for the examination of the results from Nordström et al. [36] showing that
tensile strength depends on the size ratio and the percentage of large particles, rather than
the mean granule size, and that these two effects are coupled with each other. In contrast,
studies on the effect of granule size on the tensile strength of tablets are mostly limited
to monodisperse granules or narrow sieve cuts with different mean granule sizes. For
example, Herting and Kleinebudde [9] showed that smaller sieve sizes of MCC granules
lubricated with magnesium stearate form stronger tablets, and Mitra et al. [34] observed
that the granule size has no significant effect on the tensile strength of granules.

Therefore, following the approach presented in Section 4, the model library is ex-
panded with models that depend on X = [(ρribbon − ρc,rib)/(1 − ρribbon)]rX and
Z = [(ϕ − ϕmin)/(ϕmax − ϕ)]rZ , i.e., on ribbon density and packing fraction ϕ. In turn, the
(1, 1) model added to the library emerges as optimal with R2 = 0.9103 (see Tables 9 and 11,
and Figure 9a). Figure 9b shows predictions of this model for tablets formed with granules
of different ribbon densities and mean granule sizes. It is evident from this figure that a
higher initial packing fraction results in a lower tablet strength, which is in agreement with
observations from Johansson and Alderborn [37] indicating that higher initial bulk densities
of MCC granules lead to tablets with lower tensile strength. Similarly, a higher granule
relative density results in lower tensile strength despite the low elastic recovery. This is in
agreement with observations from Nordström and Alderborn [38] for MCC granules. The
figure also shows predictions of the model proposed by Bachawala and Gonzalez [6] for



Pharmaceuticals 2024, 17, 1158 17 of 22

tablets formed by direct compaction using 10% APAP, 90% MCC, and no lubricant or gli-
dant. Evidently, there is a loss in tabletability as a result of the dry granulation process. The
powder is subjected to plastic work while the ribbon is formed inside the roller compactor,
and it thus loses its ability to be further compacted during tableting to form inter-granule
interfaces with enough bonding strength [39,40].

Next, the tablet weight model, i.e., Equations (28) and (31), the elastic recovery model, i.e.,
Equation (26), and the tensile strength model, i.e., Equation (27), are composed using the Monte
Carlo approach to generate 10,000 tensile strength predictions for each tableting condition. The
mean and standard deviation values of the estimates are shown in Figure 9a along with the
standard deviation in the measurements. It is interesting to note that the estimated standard
deviations are smaller than the measured values for most tableting conditions. In contrast
to the compaction force and tablet density, this suggests that the range of measured tensile
strength values cannot solely be attributed to variability in tablet weight.

Table 9. Top five best models within the model library F for parameters σ0 and ρc,σ of the tensile
strength ROM (see Tables 5 and 6).

σ0(X, Y) ρc,σt(X, Y) σ0(X, Z) ρc,σt(X, Z) Np SSE R2 AIC

1 1 0.913 177 16 −5302
1 1 0.906 193 16 −5123

3 3 0.903 197 12 −5082
3 3 0.900 205 12 −5004

7 7 0.881 243 8 −4639
2 2 0.873 259 14 −4497
5 5 0.873 260 12 −4491

1 9 0.862 281 10 −4327
2 2 0.856 293 14 −4229
4 4 0.848 309 10 −4122
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Figure 9. Tensile strength model. (a) Goodness of the tablet tensile strength prediction. (b) Predictions
of the tablet tensile strength model.

6.5. Discussion

The ROMs presented above are based on product and process understanding, and
their integration with dry granulation offers the opportunity to gain insight into the granule
properties that have a dominant effect on each of the four stages of compaction. Hence,
for each CPP and CQA, we examine which of the granule properties (namely the ribbon
density ρribbon and the granule size distribution characterized by the mean granule size
µGSD, the size ratio µ1/µ2, or the fraction of the small mode α) appear consistently in the
top five ranked models. This granule property is said to have the most dominant effect or
first-order effect on the observed CPP or CQA. The first- and second-order effects of granule
properties on tableting CPPs and CQAs are listed in Table 10. The tablet weight is more
sensitive to the size ratio µ1/µ2 and linearly proportional to ribbon density. On the other
hand, the compaction force, elastic recovery, and tensile strength are more sensitive to the
ribbon density compared to the average granule size. Yohannes et al. [41] showed that the
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elastic recovery, compaction force, and tensile strength were not affected by the amount of
fines in the powder bed. Perez-Gandarillas et al. [42] reported that the tablet properties were
significantly affected by roll compaction, but not the milling stage. Therefore, ribbon density
prevails over granule size when it comes to the compaction force, elastic recovery, and tensile
strength of tablets, which is in agreement with model predictions. In fact, for all six granules,
the mean size of the small mode varies more than the mean size of the large mode (cf. ±15%
and ±6%, and see Table 1). Interestingly, the second-order effect of granule size on the tensile
strength is through the packing fraction, and thus is mainly through the size ratio.

Table 10. First- and second-order effects of granule properties on tableting CPPs and CQAs.

Granule Properties Tablet Weight Compaction Force Elastic Recovery Tensile Strength

ρribbon 1st 1st 1st 1st
µGSD — 2nd 2nd —
µ1/µ2 1st — — 2nd
α 2nd — — —

Table 11. Summary of the best models for tablet CQAs and CPPs with the corresponding parameters.

Weight W = ϕρtρ
ribbon Vfill

X = 1−α
1−µ3

1/µ3
2

, Y = α

ϕ = p4
q2X + 1

q1XY + q2X + 1
p4 = 0.367; q1 = 6.08; q2 = 7.33

X =

(
ρribbon−ρc,rib

1−ρribbon

)rX

, Y =
(

µGSD

D/6−µGSD

)rY
ρc,rib = 0.566

Z =
(

ϕ−ϕmin
ϕmax−ϕ

)rZ
ϕmin = 0.367; ϕmax = 0.631

Compaction force Fpunch =
πD2(ρin−die − ρc

)
4b
(
ρin−die(a − 1) + ρc

)
rX = 10; rY = 2.39

b = 61.39GPa−1

a =
p1XY + p4

q1XY + 1
p1 = 18.50 ; q1 = 27.69
p4 = 0.765

ρc =
p1XY + p4

q1XY + 1
p1 = 8.73; q1 = 21.38
p4 = 0.33

Elastic recovery ϵρ = ϵ0

(
ρin−die − ρc,ϵ

1 − ρc,ϵ

)n

rX = 1; rY = 1
n = 0.472

ϵ0 =
p1XY + p2X + p4

q1XY + q2X + 1

p1 = 5.04; q1 = 18.78
p2 = 0.243; q2 = 16.10
p4 = 0.597

ρc,ϵ = p4 p4 = 0.334

Tensile strength σt = σ0

[
1 −

(
1 − ρtablet

1 − ρc,σt

)
e(ρtablet−ρc,σt )

]
rX = 8.26; rZ = 1.98

σ0 =
p1XZ + p2X + p3Z + p4

q1XZ + q2X + q3Z + 1

p1 = 0.33 MPa; q1 = 1.79
p2 = 124.23 MPa; q2 = 8.90
p3 = 0.18 MPa; q3 = 0.04
p4 = 5.90 MPa

ρc,σt =
p1XZ + p2X + p3Z + p4

q1XZ + q2X + q3Z + 1

p1 = 50.92 MPa; q1 = 79.66
p2 = 14.82 MPa; q2 = 41.28
p3 = 0.02 MPa; q3 = 0.02
p4 = 0.51 MPa
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7. Conclusions

We have presented a systematic and automatic approach for integrating tableting
reduced-order models with upstream unit operations. The approach not only identifies
the upstream critical material attributes and process parameters that describe the coupling
to the first and second orders, but it also selects the mathematical form of such coupling
and estimates its parameters. Specifically, we have proposed that the coupling can be
generally described by normalized bivariate rational functions. By restricting attention
to a library comprising a finite number of functions, we have posed model selection and
parameter identification as a trade-off between model complexity (i.e., the number of model
parameters) and the goodness of the model prediction (i.e., the sum of squared errors)
using the Akaike Information Criterion. We have demonstrated this approach for dry
granulation, a unit operation commonly used to enhance the flowability of pharmaceutical
powders by improving the granule size distribution, which, inevitably, negatively impacts
the tabletability by reducing particle porosity and imparting plastic work. Granules of
different densities and size distributions were made with a 10% w/w acetaminophen and
90% w/w microcrystalline cellulose formulation, and tablets with a wide ranges of relative
densities were fabricated using an Alexanderwerk WP120 roller compactor and a Natoli
NP-400 tablet press. Since our approach is based on product and process understanding,
it is not only essential to enabling the end-to-end integration, control, and optimization
of dry granulation and tableting processes, but it also offers insights into the granule
properties that have a dominant effect on each of the four stages of powder compaction,
namely die filling, compaction, unloading, and ejection. Specifically, for each CPP and
CQA, we have examined which of the granule properties (namely the ribbon density
ρribbon and the granule size distribution characterized by the mean granule size µGSD, the
size ratio µ1/µ2, or the fraction of the small mode α) appear consistently in the top five
ranked models in the library, i.e., we have identified the most dominant effect or first-
order effect on the observed CPP or CQA. The tablet weight was observed to be more
sensitive to the size ratio and linearly proportional to the ribbon density. On the other
hand, the compaction force, elastic recovery, and tensile strength were observed to be more
sensitive to the ribbon density compared to the average granule size. Interestingly, the
second-order effect of the tensile strength on the granule size was rather observed to be
through the packing fraction, and thus mainly through the size ratio. It is worth noting that
these CMAs are available at-line from indirect measurements using NIR monitoring and
high-speed imaging and/or from soft sensors built from hybrid mechanistic/ML-based
models that use CPP measurements. Therefore, by building redundancy in the PAT sensor
network, model-based data reconciliation based on process understanding emerges as an
effective real-time process management tool for accomplishing robust process monitoring
and control.

8. Future Work

The limitations of the proposed methodology and the corresponding mitigation strate-
gies for future work are discussed below.

Firstly, the direct compaction tableting ROMs presented in Section 3 are optimal for
formulations with elasto-plastic properties similar to MCC. For materials with different
compaction profiles, such as lactose [43,44], these ROMs must be replaced with models that
more accurately capture the relevant compaction trends [45–47]. Secondly, we identified
two upstream CMAs, namely ribbon density and granule size, that impact the tablet
CQAs. However, other relevant CMAs must be considered for different formulations or
upstream unit operations, such as formulations with a lubricant that require mixing and
blending [6]. Furthermore, if more than two CMAs were identified as required to describe
the first- and second-order coupling, the bivariate rational function would then need to be
replaced with a multivariate rational function. Lastly, we considered µGSD and µ1/µ2 as
the representative parameters of the granule size distribution. While this is appropriate
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for a bimodal distribution, other particle/granule size or shape characteristics should be
identified for more complex formulations and processes.

We close by pointing out that, given the nonlinear nature of these models, real-time
control in continuous solids processing is typically implemented using moving-horizon
estimation and nonlinear model predictive control (MHE-NMPC) rather than traditional
PID control. For example, Huang et al. [4,8] demonstrated MHE-NMPC control of the direct
compaction route when a glidant is added to the blend (see Figure 1 for an illustration
of this process). Specifically, the ROMs developed by Bachawala and Gonzalez [6] were
used to predict the tablet weight, compaction force, and production rate. Huang et al. [8]
integrated these predictions into the NMPC framework to control the tablet press’ dosing
position, compression thickness, and turret speed. Similarly, predictions made by the
ROMs described in this work can be used to control the tablet press using an NMPC
framework. In addition, Huang et al. [11] implemented an NMPC framework for the roller
compactor using a hybrid model for ribbon density and granule size. Therefore, one can
speculate that end-to-end continuous control can be demonstrated using an MHE-NMPC
framework that combines the tableting ROMs proposed here and the roller compactor
hybrid model. Alternatively, future efforts may also consider incorporating in-line mea-
surements of ribbon density and granule size using sensors such as Innopharma Multieye2
and SentroPAT, respectively.
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