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A B S T R A C T   

This study focuses on the development of a hybrid model to integrate roll compaction and ribbon milling op
erations to design and control a continuous dry granulation process. The proposed hybrid model has three 
features: (1) it compensates for underestimated roll gap measurements with knurled rolls, (2) it represents the 
bimodal size distribution of granules using five fitting parameters of the bimodal Weibull distribution instead of 
only using specific size percentiles, and (3) it considers the impact of rotor-screen gaps on granules. Furthermore, 
the hybrid model facilitates the implementation of nonlinear model predictive control in a roller compactor 
Alexanderwerk WP120. Compared to widely applied open-loop operations in the pharmaceutical industry, 
nonlinear model predictive control demonstrates better performance, indicated by lower integral absolute errors 
in controlling mass throughput and ribbon solid fraction, in which real-time measurements can be obtained using 
a near-infrared sensor and a novel spectra selection approach.   

1. Introduction 

The dry granulation process is one of the important methods used in 
the pharmaceutical industry for the production of solid dosage forms 
such as tablets, capsules, and sachets. This method is preferred over wet 
granulation when materials are sensitive to heat and moisture. In 
addition, dry granulation is often a better candidate for continuous 
manufacturing than wet granulation because of its faster process dy
namics by virtue of not requiring the relatively slow drying step. The 
main unit operation in the dry granulation process is the roller 
compactor, which consists of two operations: (1) roll compaction in 
which powder blends are compressed between two counter-rotating 
rolls to form a ribbon, and (2) ribbon milling in which ribbons are 
converted into granules. 

The performance of the dry granulation process is determined by the 
intermediate ribbon properties and final granule properties. The ad
vantages of dry granulation include enhancing blend uniformity and 
flowability by enlargement of particle size. Powder flowability plays an 
essential role in influencing the performance of the tablet manufacturing 
process and final drug product quality. For example, improvement of 

powder flowability can enhance the performance of die filling in the 
tableting process and reduce variability in tablet weight (Van Snick 
et al., 2018). Also, good powder flowability can reduce probe fouling 
and enhance the performance of on-line process analytical technology 
(PAT) tools, such as capacitance-based particulate flow rate sensor 
(Huang et al., 2022a) and widely applied near-infrared (NIR) 
spectroscopy-based composition sensors (Fonteyne et al., 2015). How
ever, particle size over-enlargement or over-compression of powders can 
compromise the tabletability because of reduced bonding areas or 
granule hardening (also known as work hardening) (Herting and Klei
nebudde, 2008; Sun and Kleinebudde, 2016). Finding the optimal bal
ance between improving powder flowability and sacrificing powder 
tabletability, which are highly affected by ribbon solid fraction (also 
known as relative ribbon density) and granule size distribution (GSD), 
becomes one of the challenges in designing a dry granulation process. 
Therefore, an effective approach to predict ribbon solid fraction and 
GSD is essential to optimally operate the roller compactor. 

Model-based approaches are commonly employed for design space 
analysis in pharmaceutical process and product development. Models 
can generally be categorized into three types: mechanistic models (or 
white-box models), data-driven models (or black-box models), and 
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hybrid models (or grey-box models). Firstly, mechanistic models are 
based on fundamental understanding of the underlying mechanisms in a 
system, and they typically incorporate relevant physical, chemical, and 
biological principles. While these models possess good interpretability, 
they may suffer from high computational expenses and plant-model 
mismatch when describing a real process. Secondly, data-driven 
models are developed purely from empirical data and generally 
consist of statistically based relationships. When the underlying system 
is not well understood or is too complex to be expressed by explicit 
equations, data-driven models are preferred for their adaptability in 
accurately predicting the system and easy development. However, the 
main challenges for data-driven models lie in poor generalizability and 
interpretability and the requirement of a large amount of data. Thirdly, 
mechanistic models and data-driven models can be integrated to form a 
hybrid model. This integration allows for incorporating the advantages 
of mechanistic and data-driven models while mitigating their respective 
drawbacks. 

Mechanistic models such as Johanson’s model (Johanson, 1965) and 
Reynolds’ model (Reynolds et al., 2010) are typically used to describe 
roll compaction and predict the ribbon solid fraction produced. How
ever, most ribbons can only be sampled and characterized once they exit 
the roll gap. Due to elastic recovery, the increased ribbon volume re
duces the ribbon density. Elastic recovery is a common phenomenon in 
the field of powder compaction (e.g., roll compaction, tableting), and it 
can continue for several hours or days after compaction in some mate
rials (Keizer and Kleinebudde, 2020; Picker, 2001). In addition, (Mah
mah et al., 2019) indicated that the variation in the elastic recovery is a 
critical factor in ribbon splitting, which may cause adverse effects on the 
mechanical strength and dissolution properties of the tablets formed 
from the milled granules. While elastic recovery leads to uncertainty in 
roll compaction process and unsatisfactory prediction accuracy of rib
bon solid fraction, it is either not considered or assumed to be a constant 
in the models reported in the literature. 

In the ribbon milling step, the final GSD is determined by ribbon 
properties (e.g., ribbon density or porosity) and milling conditions (e.g., 
milling type, milling speed, and screen size). The GSD can sometimes be 
bimodal (Loreti et al., 2017; Mangal et al., 2016; Olaleye et al., 2020), 
making its prediction more challenging. A population balance model 

(PBM) can be used to describe the milling step and to predict GSD 
(Amini et al., 2020; Mirtič and Reynolds, 2016; Olaleye et al., 2019), but 
it is complicated to determine the breakage function in the PBM purely 
based on ribbon fracture physics. In addition, it is generally challenging 
to choose appropriate particle size intervals that balance the computa
tional efficiency of solving the partial differential equations with model 
accuracy. Given the complex three-step nature of the ribbon milling 
process (ribbon crushing followed by upper and lower hammer milling), 
machine learning (ML) is a preferred alternative to developing a 
mechanistic model. For example, (Kazemi et al., 2016) demonstrated 
that GSD in the oscillating milling process can be accurately predicted by 
a genetic programming (GP) model or a neural network (NN) model. 
Moreover, ML and mechanistic model components can be combined into 
a hybrid model to maintain high physical interpretability and feasibility. 
For instance, (Akkisetty et al., 2010) developed a hybrid model to pre
dict GSD in conical milling by using a neural network model to find the 
breakage function and selective function in PBM. However, the reported 
ribbon milling models lack adequate consideration of roll compaction 
parameters and ribbon properties. For the purpose of designing and 
controlling a continuous dry granulation process, both roll compaction 
models and ribbon milling models need to be integrated. 

An integrated model is required not only for product design but also 
for real-time process monitoring and control. While open-loop control is 
still widely applied in the pharmaceutical industry, product quality can 
be compromised because of process disturbances and variability in raw 
materials properties. Advanced process control (APC) strategies can be 
employed to correct deviations in product qualities or process behavior 
as these occur. Model predictive control (MPC) is a common type of APC 
strategy, which can accommodate process constraints and complex 
processes involving multiple process inputs and outputs. To achieve 
continuous manufacturing and real-time release testing, MPC has pro
gressed from "nice-to-have" to "must-have" technology in the pharma
ceutical industry (J. Huang et al., 2021). While MPC has been widely 
applied in the processing industries (Lee, 2011; Lin et al., 2022; Qin and 
Badgwell, 2003), its use is still in the infant stage in the pharmaceutical 
manufacturing sector (Jelsch et al., 2021). Case studies of linear MPC 
implementation have been reported for powder feeding-blending system 
(Celikovic et al., 2020; Singh et al., 2014), the rotary tablet press (Su 

Nomenclature 

ARF roller force calibration coefficient [kN/bar] 
DR roller diameter [mm] 
F force factor [-] 
K compressibility factor [-] 
Ṁ˙ mass throughput [kg/h] 
NR roller speed [rpm] 
PH roller pressure [bar] 
Pmax peak pressure [MPa] 
S roller gap [mm] 
W roller width [mm] 
α nip angle [rad] [∘] 
β relaxation factor [-] 
γ0 pre-consolidation solid fraction [-] 
γG ribbon solid fraction at the roller gap [-] 
γR ribbon solid fraction [-] 
δE effective angle of internal friction [rad] [∘] 
ρt true density [g/cm3] 
ϕW wall friction angle [rad] [∘] 
θ angular roll position [rad] [∘] 
σ normal stress [MPa] 
Qv cumulative bimodal Weibull distribution 
a1 weighting of the small mode [-] 

p1 size parameters of the small mode [µm] 
p2 size parameters of the large mode [µm] 
m1 shape parameters of the small mode [-] 
m2 shape parameters of the large mode [-] 
NMill mill speed [rpm] 
SLower lower screen size [mm] 
SUpper upper screen size [mm] 
SM rotor-screen gap [mm] 
Wy, WΔu weighting matrices 
u input variables 
Δu control movements 
x̂ estimates state variables 
y output variables 
ŷ estimated output variables 
ysp setpoints of the output variables 
Nc length of the control time window [-] 
Np length of the prediction time window [-] 
Npast length of the past time window [-] 
σ̂θ standard deviations of estimated model parameters 
cov θ parameter covariance matrix 
dof degree of freedom [-] 
RSS residual sum of squares 
H Hessian approximation  
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et al., 2019), and end-to-end continuous manufacturing pilot plant from 
chemical synthesis to tableting (Mesbah et al., 2017). Furthermore, 
nonlinear model predictive control (NMPC) has been applied to control 
a commercial-scale rotary tablet press in silico (Y. S. Huang et al., 2021) 
as well as demonstrated in a physical pilot plant (Huang et al., 2022b) 
and has been shown to achieve satisfactory control performance even 
when plant-model mismatch exists. However, MPC implementation in 
dry granulation processes has been limited. Singh and co-workers pro
posed a process control strategy based on cascade PID control in the dry 
granulation process. They indicated that MPC can be used to improve 
performance when oscillatory responses are observed (Singh et al., 
2012).To the authors’ knowledge, only one case study of MPC imple
mentation in a roller compactor has been published (Hsu et al., 2010a). 
However, this study focused solely on controlling ribbon density and roll 
gap without incorporating throughput and GSD in the process control 
design. 

The remainder of this article is structured as follows. The next section 
introduces a hybrid roller compactor model which integrates the roll 
compaction and ribbon milling processes and serves to predict RSF, 
throughput, and GSD. The third section presents the formulation of the 
NMPC problem and the process control system design. The fourth sec
tion summarizes the specifics of the case studies reported in this study. 
The results of model validation and NMPC implementation are pre
sented in the fifth section. The final section summarizes the achieve
ments of this paper and provides some future directions. 

2. Roller compactor modeling 

The roller compactor is the key unit operation of the continuous dry 
granulation process. The process input and output variables of the roller 
compactor are summarized in Fig. 1. 

2.1. Roll compaction 

According to Johanson’s model (Johanson, 1965), the regions con
taining compacted materials can be divided into the slip region, where 
the rollers move faster than the powder in the slip region, and the nip 
region, where there is no slip between the roller and the powder as 
shown in Fig. 2. The stress gradient in the slip region and nip region can 
be expressed as follows: 

(
dσ
dθ

)

slip
=

4σ
(

π
2 − θ − ν

)
tanδE

(

1 + S
DR

− cosθ
)

[cot(A − μ) − cot(A + μ)]

(1)  

(
dσ
dθ

)

nip
=

Kσ
(

2cosθ − 1 − S
DR

)

tanθ
(

1 + S
DR

− cosθ
)

cosθ
(2)  

where 

A =
θ + ν + π

2
2

(3)  

ν =
1
2

[

π − sin−1
(

sinϕw

sinδE

)

− ϕW

]

(4) 

Fig. 1. Overview of the roller compactor model.  

Fig. 2. Schematic diagram of the roll compaction process.  
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μ =
π
4

−
δE

2
(5) 

As the powder blend transitions from the slip condition to the non- 
slip condition, the stress gradients in the slip region and nip region 
become equal. The critical angular roller position at which this occurs is 
known as the nip angle α and can be calculated from Eqs. (1) and (2) and 
solving Eq. (6): 

4
(

π
2 − α − ν

)
tanδE

cot(A − μ) − cot(A + μ)
−

K
(

2cosα − 1 − S
DR

)

tanα

cosα = 0 (6)  

where δE is the effective angle of internal friction and ϕW is wall friction 
angle, K is compressibility factor, S is roller gap, and DR is roller diam
eter. Given the roller diameter DR and roller width W, the peak pressure 
Pmax applied on the powders at the minimum roller gap S is computed as 
follows: 

Pmax =
2PHARF

WDRF
(7)  

with the force factor F, given by 

F =

∫α

0

⎡

⎢
⎢
⎣

S
DR(

1 − S
DR

− cosθ
)

cosθ

⎤

⎥
⎥
⎦

K

cosθ dθ (8)  

where PH is the roller pressure (or hydraulic pressure) and ARF is the roll 
force calibration coefficient. Assuming that compression follows a 
power law, the ribbon solid fraction at the gap γG can be computed as 
follows: 

γG = γ0(Pmax)
1
K (9)  

where γ0is the pre-consolidation solid fraction and the peak pressure has 
to be divided by 1 MPa for a dimensionless value. However, γG is not 
readily measured in real time because the ribbon elastic relaxation 
causes the ribbon density to decrease over some time period when rib
bons are released from the rollers. Given the relaxation factor β, the 
ribbon solid faction γRis represented as follows: 

γR =
γG

β
(10) 

Considering mass balance around the roller gap and roller speed NR, 
the mass throughput can be calculated as follows: 

Ṁ˙ = πDRW
(
S + SComp

)
NRρtγG = πDRW

(
S + SComp

)
NRρtβγR (11)  

where ρt is the powder true density. In this work, a compensation term 
SComp is proposed to correct the volume of the powders that are bounded 
by rollers in cases when the roller surface is not smooth. When knurled 
rollers are used, it is necessary to take into account the volumes of 
powders which fill up the voids of the roller surface. The lower roller gap 
makes the powders in the voids occupy a higher percentage. It should be 
noted that elastic recovery and mass throughput calculations are not 
part of the original Johanson’s model, described by Eqs. (1-8). 

2.2. Ribbon milling 

The hammer milling step commonly produces granules with a 
bimodal size distribution, which is not adequately described by only 
using D10, D50 and D90 values. Therefore, a bimodal Weibull distribu
tion is chosen to represent the entire size distribution where its cumu
lative form Qv(x) can be expressed as follows: 

Qv(x) = a1

(

1 − e
−

(

x
p1

)m1 )

+ (1 − a1)

(

1 − e
−

(

x
p2

)m2 )

(12)  

with constraints 0 ≤ a1 ≤ 1, 0 < p1 < p2, and 1 < m1,m2. Here, a1 is the 
weighting of the smaller particle size portion, p1 and p2 are the size 
parameters of the smaller portion (or called the fines mode) and the 
larger portion (called coarse mode), respectively, whereas m1and m2 
represent the shape parameters of the associated modes. 

A neural network model is employed in this study to predict granule 
size distribution. For the nonlinear activation function domain, linear 
scaling with the range from 0.1 to 0.9 are applied to both input and 
output variables as follows: 

z =
0.9 − 0.1
zmax − zmin

(z − zmin) + 0.1 (13)  

where z and z are the raw and scaled values of process variables. The NN 
model with three layers (input, hidden, and output layers) and hyper
bolic tangent activation function is given by: 

Y = L2(tanh(L1U) + C1) + C2 (14)  

where L1 ∈ RnN×nU , L2 ∈ RnY×nN , C1 ∈ RnN× 1 and C2 ∈ RnY× 1 are fitting 
model parameters. The NN model output Y is composed of five fitting 
parameters of the bimodal Weibull distribution: Y = [a1, p1, p2, m1, m2]

T. 
The NN model inputs U include upper screen size, lower screen size, mill 
speed, rotor-screen gap, and ribbon solid fraction: U =

[SUpper, SLower, NMill, SM, γR]
T
.

3. Process control design 

3.1. NMPC formulation 

The PID control strategy, while well-established and extensively 
applied in various industries for several decades, has some limitations. 
These limitations stem from the fact that PID controllers are inherently 
designed for linear single-input-single-output (SISO) systems. While PID 
controllers can deliver satisfactory control performance in nonlinear 
systems, provided that the operation region is linear or mildly nonlinear, 
the control performance can deteriorate in multiple-input-multiple- 
output (MIMO) systems. In such systems, strong process interactions 
can make tuning PID controllers challenging. In addition, PID control
lers rely on current measurements, and gross errors in sensor measure
ments can thus compromise their control performance. These limitations 
of PID controllers have spurred the interest in the development and 
adoption of more advanced process control strategies to manage com
plexities inherent in MIMO systems. The MPC algorithm utilizes a finite 
time horizon over which to optimize the control inputs starting at the 
current time interval. It outperforms typical PID control because MIMO 
systems and process constraints can be easily handled within the MPC 
optimization framework. Future process events can be anticipated with 
the aid of process models, but such predictions do impose requirements 
on model accuracy. 

Linear MPC has been widely implemented in several industries 
because it is relatively easy to develop linear models using data-driven 
system identification techniques or linearization of nonlinear models. 
The models commonly used are linear state space models, whose general 
form facilitates quick prediction of process dynamics. Moreover, the 
standardized form of linear state space models allows for applying a 
generalized and systematic approach to assess critical aspects such as 
stability, controllability, and robustness during the design of control 
strategies (Dubljevic and Humaloja, 2020; Qin and Badgwell, 1997). 
However, the control performance over a larger range of operations 
obtained by linear models can degrade if the system is highly nonlinear. 
Additionally, the physical interpretability of the parameters within a 
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linear state space model could be compromised. By contrast, NMPC 
obtained by using a high-fidelity nonlinear model can accurately 
describe process trajectories but at the expense of higher computation 
cost. Due to the lack of a standardized form in the nonlinear model 
utilized in NMPC formulation, assessing stability or robustness becomes 
more challenging compared to linear MPC. The decision to implement 
linear MPC or NMPC should be based on a balance among computational 
expense, accuracy requirements, and the degree of system nonlinearity. 

Processes that take place in the continuous pharmaceutical 
manufacturing systems are known to be nonlinear in nature. In the oral 
solid dosage manufacturing processes, nonlinearity is evident across 
various stages, such as organic synthesis (Mesbah et al., 2017), crys
tallization (Orehek et al., 2021), filtration-washing-drying process 
(Destro et al., 2021; Hur et al., 2024), feeding and blending (Liu et al., 
2018; Rehrl et al., 2016), dry granulation (Hsu et al., 2010b; Singh et al., 
2012; Souihi et al., 2015), tableting (Bachawala and Gonzalez, 2022; 
Galbraith et al., 2019; Y. S. Huang et al., 2021; Singh et al., 2013), and 
film coating (Mesbah et al., 2014). The nonlinear behavior observed in 
these processes can be attributed to several factors, including complex 
chemical reactions, heat and mass transfer, powder flowability, and 
powder compression mechanisms. 

Hsu et al.’s work (Hsu et al., 2010a) demonstrated that NMPC can 
outperform both linear MPC and PID control in simulated studies, 
particularly in terms of disturbance rejection and setpoint tracking for 
controlling ribbon solid fraction. This study will focus on the experi
mental implementation of NMPC and explore the extension of this 
control strategy to ribbon milling processes. 

The discrete formulation of the NMPC optimization problem at time t 
= k can be described as: 

min
Δut

J =
∑k+Np

t=k

(
ŷt − ysp

)T Wy
(

ŷt − ysp
)

+
∑k+Nc−1

t=k

(
ΔuT

t WΔuΔut
)

(15a)  

subject to 

x̂k+j+1 = f
(

x̂k+j, ûk+j, θ
)

(15b)  

ŷk+j = h
(

x̂k+j
)

+ ζk (15c)  

Δuk+j = ûk+j+1 − ûk+j (15d)  

x̂k+j ∈ X, ûk+j ∈ U, Δuk+j ∈ ΩΔu (15e)  

j = 0, 1, …, Np − 1 (15f)  

where x̂t are the estimates of the state variables at time t. The variable ̂yt 
represents the estimated output variables and ysp are the setpoints of the 
output variables. Control movements Δu are constrained to lie in a 
compact set ΩΔu. Wy and WΔu are the weighting matrices. Nc and Np are 
the length of the control time window and prediction time horizon, 
respectively. The control window Nc is usually smaller than the pre
diction window Np and has to be chosen to compromise between the 
computational time and control stability requirements. Control move
ments Δuk+j in control window Nc vary according to results of optimi
zation, but those beyond the control window are zero, i.e., Δuk+Nc =

Δuk+Nc+1 = ⋯ = Δuk+Np−1 = 0, which implies that ûk+Nc = ûk+Nc+1 =

⋯ = ûk+Np . In other words, while the predicted ŷk+j can still be calcu
lated using Δuk+j and ûk+j in the prediction window Np, only Δuk+j in 
control window Nc is considered in the objective function. For the 
purpose of zero steady-state offset in controlled output variables y, 
output disturbances ζk at time t = k in Eq. (15c) can be represented as 
follows: 

ζk = median
{

yk−Npast +j − ŷk−Npast+j

}
, for j = 0, 1, …, Npast (16)  

where Npast is the length of the past time window. It should be noted that 

while an error distribution of output variables yt − ŷt in the past time 
window can be obtained, a single point estimate of the output is of most 
interest in many applications (Rao et al., 2003). In this study, the median 
of the error distribution in the past time window is used to represent 
output disturbances. 

3.2. NMPC implementation 

The process control structure employed in this study is illustrated in 
Fig. 3. The NMPC framework is implemented using MATLAB, and the 
optimization problem in each iteration is solved using MATLAB’s built- 
in fmincon function which employs an interior point algorithm. This 
local optimization solver function can’t guarantee a global optimum, but 
it can quickly ensure a reliable and satisfactory local solution at each 
time interval. The Emerson DeltaV 13.3 distributed control system 
(DCS) is utilized to integrate measurements from the roller compactor 
and the PAT tools. The DCS’s OPC server acts as a bridge to collect 
process data from the roller compactor and PAT tools, as well as to 
transmit control commands to the roller compactor (Chen et al., 2023). 
The performance of NMPC is evaluated through two case studies: (1) 
focusing solely on the roll compaction process with two inputs and two 
outputs, discussed in Section 5.3, and (2) examining the integrated roll 
compaction and ribbon milling process with three inputs and seven 
outputs, detailed in Section 5.4. A summary of the corresponding pro
cess variables and control design can be found in Table 1. 

Fig. 3. Process control structure for the roller compactor.  

Table 1 
Summary of variables and details of NMPC implementation in the two case 
studies.   

Roll compaction Roll compaction + Ribbon milling 

Section 5.3 5.4 
Implementation Experiments Simulation 
Manipulated 

variables (u) 
Roller speed NR 

Roller pressure PH 

Roller speed NR 

Roller pressure PH 

Rotor-screen gap SM 

Controlled 
variables (y) 

Mass throughput Ṁ 
Ribbon solid 
fraction γR 

Mass throughput Ṁ 
Ribbon solid fraction γR 
Granule size distribution a1 , p1, p2,m1,m2 

Hardware Intel®Xeon® CPU 
E3–1246 v3 
@3.50GHz 
8GB RAM 

Intel® Core ™ i7–11800H @ 2.30GHz 
16GB RAM 

MATLAB version 2015b 2021b 
Time window 

length 
[Np, Nc, Npast ]

[30,10,30] [30,10,30] 

Sampling time (s) 2 2 
Computation time 

(s) 
1.4 1.3  
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4. Materials and methods 

4.1. Materials and equipment 

Acetaminophen Grade 0048 (APAP) was purchased from Mallinck
rodt Pharmaceuticals (Raleigh, NC, USA). Avicel microcrystalline cel
lulose Grade PH-102 (MCC-102) was purchased from IMCD US, LLC 
(Piscataway, NJ, USA). The formulation used in this study is 10 wt% 
APAP and 90 wt% MCC-102. To prepare feeding materials for the roller 
compactor, a 3 kg blend of APAP and MCC-102 was mixed using a 5 L 
Tote blender for 30 min. 

The study utilizes an Alexanderwerk WP 120 roller compactor, 
which is depicted in Fig. 3 and further detailed in Fig. 1. The equipment 
is operated with knurled rollers with dimensions of 40 mm in width and 
120 mm in diameter. The unit employs a two-stage hammer mill 

Table 2 
Properties of the feeding material (blend of MCC-102 and APAP) and the roller 
compactor.  

Properties Value 

True density (ρt) 1.5583 g/cm3 

D10 146.8 µm 
D50 301.6 µm 
D90 492.5 µm 
Wall friction angle (ϕW) 35.1◦

Effective angle of internal friction (δE) 44.5◦

Roller diameter (DR) 120 mm 
Roller width (W) 40 mm 
Roll force calibration coefficient (ARF) 0.369 kN/bar  

Fig. 4. Real-time monitoring of ribbon solid fraction with (a) raw spectra and (b) range index under different conditions.  
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equipped with two distinct screen sizes: an upper screen for pre-milling 
and a lower screen for final milling. Screens are installed on rotating 
cams, which can adjust the gap between the rotors and screens. 
Although different rotor-screen gaps can be set for the pre-mill and final 
mill, this study simplifies the process by assigning the same setpoints to 
both mills. 

The properties of the feeding material and the WP 120 roller 
compactor are summarized in Table 2. The wall friction angle and the 
effective angle of internal friction are estimated based on the work by 
(Mahmah et al., 2019). 

4.2. Product characterization and experimental procedure 

Three key instruments were utilized to validate the roller compactor 
model to obtain the desired process outputs. Firstly, as an in-house real- 
time flow rate sensor, a Mettler Toledo ME 4001E weighing scale was 
positioned at the exit of the roller compactor. The weighing scale was 
connected to a laptop via a RS232 cable, enabling the recording of the 
total weight of accumulated granules using the MATLAB Instrument 
Control Toolbox. By calculating the first-order derivative with respect to 
time, the real-time flow rate can be determined. Secondly, the Geopyc 
1360 pycnometer was employed to measure the ribbon envelop density 
(ρe). The ribbon solid fraction (γR) can be calculated as follows: 

γR =
ρe

ρt
(17)  

where ρt is the powder true density, which is measured by an Accupyc II 
1340 pycnometer. Thirdly, the final GSD was measured using the Sol
idSizer, manufactured by J.M. Canty Inc. Over 40 different types of size 
and shape characteristics can be captured with the SolidSizer. In this 
study, the projected area of each particle was chosen as a key charac
teristic which was converted to the circular equivalent diameter to 
represent the size of the feed powder blend and granules. It should be 
noted that the cumulative frequency of the GSD was volume-based in 
this study. Once the size percentiles (D5, D10, …, D95) are obtained 
through statistical analysis, the bimodal Weibull distribution parameters 
can be computed by solving an optimization problem (Huang et al., 
2023): 

min
a, p1 , p2 ,m1 ,m2

J =
∑95

p=5,10…

(
i

100
− Qv

(
Dp

)
)2

(18)  

subject to 0 ≤ a ≤ 1, 0 < p1 < p2, 1 < m1, m2 

To evaluate the performance of the milling models, the mean abso
lute percentage error (MAPE) of GSD is utilized and can be computed as 
follows: 

MAPE =
∑n

i=1

∑95

p=5,10,…

⃒
⃒
⃒
⃒
⃒

Dpred
p,i − Dp,i

Dp,i

⃒
⃒
⃒
⃒
⃒

× 100% (19) 

In conducting the experiments, a K-Tron QT20 loss-in-weight (LIW) 

Fig. 5. Performance of NIR calibration model to predict real-time ribbon solid fraction (RSF) with (a) raw spectra, (b) pre-processed spectra, (c) score plot and (d) 
parity plot. 

Y.-S. Huang et al.                                                                                                                                                                                                                               



Computers and Chemical Engineering 183 (2024) 108586

8

feeder was utilized to feed pre-blended materials into the roller 
compactor continuously. The roller compactor was operated for 
approximately three minutes to reach a steady state. Subsequently, an 
additional three minutes of operation was dedicated to estimating the 
average mass throughput. Finally, samples of the ribbons and granules 
were collected from the roller compactor for measurements of ribbon 
solid fraction and GSD. 

4.3. Model parameter estimation 

To estimate the parameters of the roll compaction model, the 
MATLAB fmincon function with interior point algorithm was used to 
minimize the error in the predicted mass throughput and ribbon solid 
fraction. To increase the likelihood of finding a global solution, the 
MATLAB GlobalSearch algorithm was used, under which the fmincon 
function is repeatedly executed from multiple starting points. Instead of 
employing several iterations in linear regression of Eq. (9) in logarithm 
form to determine pre-consolidation solid fraction γ0 and compress
ibility factor K, a combined optimization problem is formulated as fol
lows to estimate model parameters: 

min
K, γ0 , β, SComp

J =
∑n

i=1

[(
γR,i − γpred

R,i

γR,i

)2

+

(
Ṁi − Ṁpred

i

Ṁi

)2]

(20) 

For the ribbon milling model, the training of the neural network 
model was conducted using PyTorch, a Python-based machine learning 
library, in Python 3.9 (Paszke et al., 2019). The objective was to mini
mize the mean squared error in the five fitted Weibull parameters. To 
construct the NN model, torch.nn.Sequential, torch.nn.Linear, and torch. 
nn.Tanh were utilized. The weighting and constants for each neuron of 
the NN model (i.e., L1, L2, C1, C2 in Eq. (14)) were trained using the 
Adam optimizer (Kingma and Ba, 2014). The 5-fold cross-validation 
method was applied to prevent overfitting. Three neurons were used 
in the hidden layer. To develop the NN model, 23 datasets were desig
nated for training and 6 datasets were used for testing, according to the 
80/20 rule. 

4.4. NIR calibration for real-time measurements of ribbon solid fraction 

The Geopyc 1360 pycnometer is effective for measuring ribbon solid 
fraction but is limited to off-line analysis. For real-time measurement of 
ribbon solid fraction, the Innopharma Multieye2 NIR spectrometer was 
utilized with the fiber optic probe positioned on the platform above the 
ribbon. The NIR light wavelength ranges from 1076 nm to 2102 nm, and 
the integration time was set to 180 ms. In Fig. 4(a), three kinds of spectra 

were observed during the operation of the roller compactor. When the 
ribbon emerged and was detected by the NIR probe, stable spectra were 
obtained as long as the distance between the probe and the ribbon 
remained constant. However, when the ribbon came into contact with 
the flake crusher, variations in the distance between the NIR probe and 
the ribbon caused unstable spectra measurement. Finally, when the 
ribbon was completely broken and no material was detected, the NIR 
spectra displayed only the characteristics of the metal. To differentiate 
between these three types of spectra quantitatively, a range index was 
introduced, defined by the difference between the maximum and min
imum absorbance values. The range index of all the collected spectra 
exhibits a tri-modal distribution in Fig. 4(b), supporting the observance 
of three types of spectra. Only range indexes larger than the threshold 
value of 0.15 were considered to ensure that only stable spectra were 
utilized for calibration model development. This choice balances model 
reliability and sampling time, as setting the threshold too high would 
increase sampling time. 

Five ribbon solid fractions, ranging from 0.679 to 0.824, were 
selected to calibrate the NIR model. Around 70 spectra were collected 
for each ribbon solid faction. Fig. 5 summarizes the steps and analysis of 
the calibration model. The averaged absorbance values of the raw 
spectra for each ribbon solid fraction are depicted in Fig. 5(a), revealing 
a clear trend of increasing absorbance with higher ribbon solid fractions. 
To eliminate the negative impact of baseline shifts, the raw spectra were 
normalized using the standard normal variate (SNV) method, where 
each spectrum is subtracted by its mean and then divided by its standard 
deviation. The normalized spectra were then employed to train a partial 
least squares (PLS) regression model. Three principal components were 
selected, and the first two components, t1 and t2, accounted for 99 % of 
the total variance (93.3 % and 5.7 %, respectively), as shown in Fig. 5(c). 
The resulting NIR calibration model demonstrated excellent perfor
mance, as evidenced by the high R2 value of 0.982 and low RMSE value 
of 0.0071. This NIR model will be used to obtain the real-time process 
control results reported in Section 5.3. 

5. Results and discussion 

5.1. Roll compaction model validation 

For model development and validation, 80 % of the data was 
randomly selected for training, and the remaining 20 % was used for 
testing. In this work, two roll compaction models were validated and 
evaluated using 14 sets of training data and 4 sets of test data, as indi
cated in Table 3. All experiments were performed in gap-controlled 

Table 3 
Experimental values of process inputs and outputs in the roll compaction process.  

Exp Process inputs Process outputs Ribbon status Role in model 

Roller gap S [mm] Roller speed NR[rpm] Roller pressure PH[bar] Ribbon solid fraction γR Mass throughput Ṁ [kg/h] 

C1 1.20 4.0 44.9 0.761 6.35 Non-split Test 
C2 1.20 4.0 73.9 0.816 7.45 Non-split Training 
C3 1.36 4.0 30.5 0.660 6.53 Non-split Test 
C4 1.40 4.0 36.9 0.696 7.39 Non-split Training 
C5 1.40 4.0 58.9 0.743 7.57 Non-split Training 
C6 1.40 4.0 74.1 0.812 7.97 Non-split Test 
C7 1.60 4.0 30.6 0.681 7.67 Non-split Training 
C8 1.60 4.0 37.0 0.684 7.81 Split Training 
C9 1.80 4.0 30.6 0.640 7.67 Non-split Training 
C10 1.80 6.0 28.6 0.601 12.60 Non-split Training 
C11 1.80 8.0 28.7 0.632 15.41 Non-split Training 
C12 1.80 4.0 44.8 0.745 8.55 Split Training 
C13 1.80 6.0 44.6 0.664 11.25 Split Test 
C14 1.80 8.0 44.9 0.717 16.66 Split Training 
C15 2.00 4.0 30.6 0.648 9.17 Non-split Training 
C16 2.00 4.0 44.6 0.699 10.06 Split Training 
C17 2.20 4.0 30.6 0.648 9.80 Split Training 
C18 2.40 4.0 28.6 0.617 10.01 Split Training  
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mode, where the roller compactor automatically adjusted the feed screw 
speed to maintain the desired roller gap, roller speed, and roller pres
sure. The operating region was determined to run the roller compactor 
at low throughput, encompassing low roller gap, roller speed, and roller 
pressure. The rationale for this was to extend the duration of the 
experiment, providing a demonstration of the NMPC implementation 
with the consumption of less input material. The setpoints for the roller 
gap were established at [1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4] mm, while the 
roller speed and roller pressure were set at [4, 6, 8] rpm and [30, 37, 45, 
60, 75] bar, respectively. The values in Table 3 are real measurements, 
which slightly deviate from setpoints. A design of experiments was 
employed to investigate the effects of varying operational process pa
rameters. Specifically, the impact of the roller gap was assessed through 
datasets [C3, C7, C9, C15, C17, C18] and [C1, C12, C16]; the influence 
of roller speed was examined via datasets [C9, C10, C11] and [C12, C13, 
C14]; and the effect of roller pressure was explored through datasets 
[C1, C2], [C3, C4, C5, C6], [C7, C8], and [C15, C16]. 

The estimated model parameters and their respective model perfor
mance for both the traditional model and the proposed model are 
summarized in Table 4. The traditional model estimated the mass 
throughput without considering the surface texture of the rollers 
(smooth or knurled). It assumed that the roller gap’s compensation term 
SComp in Eq. (11) was zero, as previously reported in some literature 
(Reynolds et al., 2010; Toson et al., 2019). On the other hand, the 
proposed model in this study incorporated this consideration if knurled 
rollers are used. Based on the evaluation metrics of root mean squared 
percentage error (RMSPE) and R2 values, the proposed model demon
strates similar prediction accuracy for the ribbon solid fraction and 
slightly better prediction accuracy for the mass throughput than the 
traditional model. To assess the model identifiability, the standard 

deviations of the estimated model parameters are presented in Table 4. 
These standard deviations can be computed as follows (Casas-Orozco 
et al., 2021): 

σ̂ θ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
diag(cov θ)

√
(21)  

with the parameter covariance matrix cov θ, given by 

cov θ =
RSS
dof

H−1 (22)  

where the degree of freedom (dof) is equal to the difference between the 
number of training data sets and the number of estimated parameters. 
RSS is the residual sum of squares and H is the Hessian approximation. In 
Table 4, the standard deviations of the model parameters in the pro
posed model are higher than those in the traditional model, suggesting 
higher level of uncertainty in the proposed model. This higher uncer
tainty can be attributed to estimating one more parameter in the pro
posed model when the same amount of training data is used. 

Considering the physical implications when knurled rollers are used, 
the proposed model offers better alignment with reality and avoids 
violating the constraint that the ribbon solid fraction (γG and γR) should 
be less than 1. The relaxation factor (β) may not be crucial when 
focusing solely on predicting the ribbon solid fraction (γR) because it can 
be lumped with pre-consolidation ribbon solid fraction (γ0) to become γ0

β , 
however, it becomes significant for continuous manufacturing scenarios 
where accurate mass throughput prediction is essential for achieving 
state of control. The values of the relaxation factor obtained can be 
significantly different depending on the approach used. It can be 
determined based on the (1) ratio of ribbon thickness to roller gap, (2) 
the ratio of mass flow rate to ribbon density, or (3) by solving an opti
mization problem as done in this study. The use of knurled rollers makes 
it challenging to accurately measure the ribbon thickness and roller gap. 
Consequently, a modification was made to the mass throughput model 
to account for the volumes of voids between the embossments on the 
knurled rollers. Although these voids are small, they can constitute a 
substantial percentage, especially when the roll gap is low. 

When using the traditional model to achieve good predictions for 
both the ribbon solid fraction (γR) and mass throughput, it may be 
necessary to overestimate the ribbon solid fraction at the gap (γG) by 
lowering K and increasing γ0to compensate for the model’s disregard of 
the underestimated volume between two knurled rollers. Although 
increasing the relaxation factor (β) in the traditional model can improve 
the prediction accuracy for the ribbon solid fraction, it risks violating the 
physical meaning because the ribbon solid fraction should not exceed 1. 
For instance, if β is equal to 1.244, the ribbon solid fraction (γR) cannot 
exceed 1/1.244 = 0.804, but Exp C2 and C6 in Table 3 show the 

Table 4 
Estimated roll compaction model parameters and associated model evaluation.   

Traditional 
model 

Proposed model with compensated 
roll gap 

K 4.189 ± 0.412 4.828 ± 0.624 
γ0 0.307 ± 0.027 0.291 ± 0.025 
β 1.244 ± 0.021 1.051 ± 0.091 
SComp [mm] 0 0.318 ± 0.175 
RMSPE(γR)(training) [%] 2.86 2.77 
RMSPE(γR) (test) [%] 3.47 3.51 
RMSPE(Ṁ) (training) [%] 4.44 3.87 
RMSPE(Ṁ) (test) [%] 9.59 9.17 
R2(γR) (training) 0.88 0.89 
R2(γR) (test) 0.87 0.86 
R2(Ṁ) (training) 0.97 0.98 
R2(Ṁ) (test) 0.70 0.74  

Fig. 6. Performance of proposed roll compaction model to predict (a) ribbon solid fraction and (b) mass throughput.  
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violation in the traditional model. Therefore, the proposed model pro
vides a more realistic representation, ensuring accurate predictions 
without compromising the physical constraints of the system. 

The proposed model exhibited satisfactory prediction accuracy 
within the range of ribbon solid fraction [0.60, 0.82] and mass 
throughput [6.4, 16.7] kg/h, as shown in Fig. 6. Furthermore, the model 
can be used to explore the design space. Fig. 7(a) illustrates that higher 
roller pressure increases ribbon solid fraction and flow rate. On the other 
hand, a larger roller gap reduces ribbon solid fraction, but enhances 
mass throughput due to the inclusion of more materials, as depicted in 
Fig. 7(b), where the roller speed is 4 rpm. 

5.2. Ribbon milling model validation 

In this work, ribbon milling models were validated and evaluated 

using the data shown in Table 5, including 23 sets of training data and 6 
sets of test data (M7, M12, M16, M21, M22, M29). To develop a hybrid 
model, the ribbon solid fraction predicted from the roll compaction 
model is used as an input in the ribbon milling model. The measured 
GSD is assumed to follow the bi-modal Weibull distribution, which can 
be described by five parameters a1, p1, p2, m1, and m2. These parameters 
can be easily used to obtain traditional percentile values such as D10, 
D50, and D90. Two data-driven models were compared, namely, the 
multiple linear regression (MLR) model and the NN model. When pre
dicting five bimodal Weibull parameters, the NN model shows a better 
accuracy, as shown in Fig. 8(a), particularly in predicting a1, p1, and m2. 
Despite the NN model’s ability to handle the nonlinearity in GSD pre
diction better than the MLR model, the high RMSPE values in predicting 
a1, p1, and m2 indicate the challenges associated with their prediction. 
By contrast, the model can accurately predict p2, which can be attributed 

Fig. 7. Design space for (a) ribbon solid fraction and (b) mass throughput based on the proposed roll compaction model.  

Table 5 
Experimental values of process inputs and outputs in the ribbon milling process.  

Exp Process inputs Process outputs Fitting MAPE 
[%] 

Upper screen 
[µm] 

Lower screen 
[µm] 

Mill speed 
[rpm] 

Rotor screen gap 
[mm] 

Predicted ribbon solid 
fraction 

a1 p1 

[µm] 
p2 

[µm] 
m1 m2 

M1 2500 800 25 1.0 0.694 0.892 592 714 2.24 11.95 0.7 
M2 2500 800 25 1.0 0.802 0.840 596 677 2.12 7.11 0.7 
M3 2500 800 100 1.0 0.802 0.850 604 604 2.85 1.48 2.0 
M4 2500 1250 25 1.0 0.636 0.400 410 1013 2.52 3.10 0.6 
M5 2500 1250 25 1.0 0.643 0.488 385 1027 2.62 3.50 0.9 
M6 2500 1250 25 1.0 0.644 0.432 395 1025 2.59 3.25 0.7 
M7 2500 1250 60 0.5 0.664 0.194 404 919 2.74 4.20 0.3 
M8 2500 1250 60 1.0 0.665 0.305 468 978 2.66 4.06 0.4 
M9 2500 1250 60 1.5 0.664 0.285 440 999 2.75 4.39 0.6 
M10 2500 1250 25 1.0 0.658 0.488 432 1074 2.54 4.15 0.8 
M11 2500 1250 25 1.0 0.703 0.328 460 1177 2.41 4.72 0.9 
M12 2500 1250 25 1.0 0.736 0.380 360 1036 2.73 2.75 1.2 
M13 3150 1250 25 1.0 0.764 0.237 408 1073 2.27 3.81 0.5 
M14 3150 1250 100 1.0 0.764 0.245 432 996 2.28 4.22 0.4 
M15 2000 1250 25 1.0 0.764 0.310 459 1143 2.30 4.40 0.4 
M16 2000 1250 100 1.0 0.765 0.286 508 1181 2.18 4.86 0.3 
M17 2500 1250 60 0.5 0.768 0.182 455 1095 2.14 4.32 0.7 
M18 2500 1250 60 1.0 0.768 0.247 417 1126 2.30 4.38 1.9 
M19 2500 1250 60 1.5 0.768 0.302 482 1106 2.22 4.82 0.5 
M20 2500 1250 25 1.0 0.804 0.347 363 1103 2.58 3.31 1.1 
M21 2500 1600 25 1.0 0.662 0.292 461 1390 2.22 4.36 0.8 
M22 2500 1600 60 1.0 0.663 0.171 435 1496 2.28 3.64 1.0 
M23 2500 1600 25 1.0 0.693 0.474 803 1502 1.98 5.85 0.7 
M24 2500 1600 100 1.0 0.693 0.301 550 1445 2.07 4.10 0.9 
M25 2500 1600 60 1.0 0.733 0.484 947 1560 1.89 5.76 0.6 
M26 2500 1600 25 1.0 0.777 0.220 605 1527 2.04 4.45 1.0 
M27 2500 1600 60 1.0 0.777 0.250 665 1506 1.99 4.80 1.5 
M28 2500 1600 25 1.0 0.802 0.330 933 1532 1.76 4.72 0.7 
M29 2500 1600 100 1.0 0.802 0.154 497 1382 2.33 4.45 0.8  
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to the lower screen size determining the maximum size that can pass 
through the screen mesh. 

By converting a1, p1, p2, m1, and m2 to percentiles of granule size (D5, 
D10, …, D95), the model performance can be also evaluated based on the 
RMSPE of size, as depicted in Fig. 8(b). The NN model outperforms the 
MLR model by exhibiting lower RMSPE of Dtotal based on all the per
centiles ranging from D5, D10, … to D95. In addition, it is observed that 
predicting low percentiles is more challenging than predicting high 
percentiles, as evidenced by the highest RMSPE in D10 and the lowest 
RMSPE in D90. This might be attributed to the uncertainty in powder 
fines generation. Furthermore, predictions of all the percentiles ranging 
from D5, D10, … to D95 based on the MLR and NN models are displayed 
in Fig. 8(c) and Fig. 8(d), respectively. The accuracy of predicting size 
gradually improved from the smaller size to the larger size, again sug
gesting that the model is better at predicting higher percentiles. Overall, 
the NN model achieves an RMSPE of 11.0 % in predicting the entire size 
distribution. 

The ribbon milling model offers valuable insights for product design 
and process control by predicting the entire GSD. Previous studies have 
highlighted the significance of the entire GSD in predicting the flow
abilities of granules produced through wet granulation (Lagare et al., 
2022) and dry granulation process (Lagare et al., 2023). In addition, the 
ratio of fines to coarse granules is crucial in determining granule bulk 
density and tabletability. Fig. 9 illustrates how the NN model can be 
employed to explore the influence of process inputs on the GSD. Lower 
screen size emerges as the most influential factor affecting the GSD, as 
demonstrated in Fig. 9(a). Granules passing through smaller lower 
screen sizes tend to exhibit unimodal GSD, while larger screen sizes 
make the bimodal nature of GSD more obvious. Fig. 9(b) reveals that an 
increase in ribbon solid fraction leads to increased granule size and a 

reduced percentage of fines. While larger granules are desirable for 
improved flowability, excessive compaction of the ribbon should be 
prevented since it can compromise tabletability. One of the novel as
pects of this study is incorporating the rotor screen gap into the model to 
predict the GSD. However, it should be noted that manipulation of the 
rotor screen gap might not be available for all roller compactors. As 
shown in Fig. 9(c), reducing the rotor screen gap decreases the per
centage of fines. This can be attributed to the larger rotor screen gap 
preventing the material from being fully pushed through the screen 
within a single milling cycle. Fig. 9(d) illustrates that an increase in the 
upper screen size can lead to a decrease in granule size. This phenom
enon may be attributed to the fact that larger intermediate granules have 
a higher likelihood of being further milled when passing through the 
lower screen. Finally, Fig. 9(e) demonstrates that an increase in mill 
speed can reduce the size of the granules. This reduction in size is likely 
due to the granules being crushed more times at higher mill speeds. 

In this study, an APAP-based formulation is used due to APAP being a 
commonly used API model compound in the literature. Its well- 
understood properties have been extensively studied. Additionally, 
APAP is relatively inexpensive, enabling us to run multiple experiments 
during the initial stages of developing new models or methods. This 
study is focused on demonstrating a model that links process parameters 
with GSD and ribbon solid fraction. For the ultimate objective of pre
dicting granule flowability and tabletability in other formulations, these 
steps might be considered in the future work: (1) Identifying critical 
material properties, such as powder flowability, powder density, and 
powder compressibility. (2) Developing a model that utilizes material 
properties and process parameters to predict GSD and ribbon solid 
fraction. (3) Establishing a model that incorporates material properties, 
GSD, and ribbon solid fraction to predict granule flowability and 

Fig. 8. Evaluations of ribbon milling models based on RMSPE of (a) five bimodal Weibull parameters and (b) percentiles of granule size as well as the parity plots 
based on (c) MLR and (d) NN models. 
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tabletability. 

5.3. NMPC on roll compaction process (experiments) 

An open-loop experiment was conducted to evaluate the perfor
mance of the roll compaction model and real-time sensors, and the 
corresponding time series data are presented in Fig. 10. The first 
manipulated variable, roller speed, was fixed at 4 rpm, as shown in 
Fig. 10(b). Three step changes were introduced to the second manipu
lated variable, roller pressure, as shown in Fig. 10(c). Due to operating 
the roller compactor in gap-controlled mode, the feed-screw speed was 

automatically increased to feed more materials whenever roller pressure 
was enhanced, as shown in Fig. 10(a). To prevent ribbon splitting, which 
could potentially damage the NIR probe, a roll gap of 1.4 mm was 
maintained throughout the experiment, as shown in Fig. 10(d). The 
experimental results in Section 5.1 indicate that ribbon splitting can be 
avoided by lowering the roll gap and roll pressure. It is also observed 
that undershooting in the roll gap happens whenever the roll pressure 
setpoint increases because the local PLC controller in the roller 
compactor prioritizes reaching the roll pressure setpoint. 

Fig. 10(e) illustrates the first process output variable, mass 
throughput. Both the model and measurements capture the increasing 

Fig. 9. Granule size distribution in the ribbon milling process under the impact of (a) lower screen size, (b) ribbon solid fraction, (c) rotor screen gap, (d) upper 
screen size, and (e) mill speed. 
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trend as the roll pressure is raised. Examining four time intervals (t1 =
160 ~240 s, t2 = 310~450 s, t3 = 480~640 s, and t4 = 670~830 s), the 
model exhibits RMSPE values of 7.5 %, 12.3 %, 14.7 %, and 15.0 % 
respectively. The model tends to underestimate the granule flow rate 
more significantly over time. This underestimation can be attributed to 
two possible reasons: (1) the model’s construction in Section 5.1 did not 
allow enough time for the flow rate to reach an actual steady state 
during experiments, and (2) sampling of ribbons and granules led to a 
lower measured flow rate. Additionally, spikes in the flow rate were 
observed due to the sudden drop of fines accumulated in the chamber. 
Regarding the second process output variable, ribbon solid fraction, as 
shown in Fig. 10(f), the model demonstrates excellent accuracy with an 
RMSPE of 1.6 % for time t = 160 to 830 s. These satisfactory model 
predictions and real-time process measurements provide a strong 
foundation for NMPC implementation. 

Fig. 11 illustrates the implementation of a 2-by-2 NMPC for the roll 
compaction process. The granule flow rate was maintained at 10 kg/h, 
as shown in Fig. 11(e), while the ribbon solid fraction was set to 0.73, 
0.81, and 0.77, as shown in Fig. 11(f). Offsets were notably observed 
when the control loop remained open before time t = 120 s. However, 
once NMPC was initiated, it exhibited remarkable setpoint tracking 
capabilities. The NMPC efficiently determined the optimal roller pres
sure in response to new setpoints for the ribbon solid fraction. To 
maintain a consistent flow rate, the roller speed was automatically 
adjusted in the opposite direction to compensate for ribbon solid frac
tion changes, particularly evident at time t = 300 s and t = 480 s. Given 
the inherent disturbances in the roll compaction process arising from 
fines accumulation and the discontinuity of ribbon production, the 
NMPC demonstrated effective disturbance rejection abilities. In addi
tion, it is important to note that since NMPC actively adjusts process 

inputs, it also resulted in increased variation in the roll gap. Fig. 11(d) 
shows that the standard deviation of the roller gap increased from 0.012 
mm (during time t = 50 ~ 100 s) to 0.034 mm (during time t = 180 
~650 s). To quantify the control performance of open-loop control and 
NMPC, Table 6 displays the integral absolute error (IAE) values for mass 
throughput and ribbon solid fraction. The evaluation of the open-loop 
control is based on the time window from t = 20~120 s, while that of 
NMPC is conducted over the period t = 200~300 s in Fig. 11. The lower 
IAE values observed for NMPC indicate its superior capability in setpoint 
tracking and disturbance rejection compared to open-loop control. 

5.4. NMPC of integrated dry granulation process (simulation) 

In addition to controlling ribbon solid fraction and mass throughput 
described in the previous section, GSD should be controlled in real time 
to ensure the product qualities in the dry granulation process. The re
sults of an in-silico NMPC implementation of a dry granulation process, 
including roll compaction and ribbon milling, are illustrated in Fig. 12. 
Specifically, Fig. 12 (a-c) represents the process behavior of three pro
cess inputs: roller speed, roller pressure, and rotor-screen gap. Fig. 12 (d- 
j) demonstrates the corresponding seven process outputs: mass 
throughput, ribbon solid fraction, and GSD parameters (a1, p1, p2, m1, 
and m2). Such non-square control systems where the numbers of process 
inputs and outputs are different provide another motivation for using 
the NMPC framework. 

There are three critical takeaways from Fig. 12. First, when the 
control loop is open before time t = 200 s, noticeable offsets are 
observed in all the process outputs. However, once NMPC is initiated, it 
rapidly reaches all the setpoints for the process outputs. Secondly, at 
time t = 400 s, the setpoint for the ribbon solid fraction is increased from 

Fig. 10. Open loop control of roll compaction process.  
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0.7 to 0.8. This increase in ribbon solid fraction can disturb the GSD, 
leading to a reduction in fines (e.g., decreasing a1) and an increase in 
particle size (e.g., increasing p1 and p2). With the aid of NMPC, the 
controller identifies the necessary adjustment of the rotor-screen gap to 
compensate for this effect. By increasing rotor-screen gap, more fines 
can be produced to enable the GSD to remain closer to the setpoint. It is 
important to note that a non-square control system has its limitations, as 
offsets may occur if the setpoints are not within the feasible design 
space. In this instance, the change in ribbon solid fraction was deliber
ately increased. Nonetheless, in reality, disturbances in ribbon solid 
fraction can often arise due to factors such as variability in powder 
density and roller gap. Even in such cases, the actuator of the rotor- 
screen gap can effectively mitigate its impact on GSD, showing the 
robust disturbance rejection capability in this process control strategy. 
Thirdly, at time = 1200s, a setpoint change is introduced to the GSD, 
shifting the values from [a1, p1, p2, m1, m2] = [0.29, 411, 1050, 2.49, 
3.96] to [0.22, 368, 1066, 2.49, 4.20]. Since this new targeted GSD falls 
within the feasible region, the controller can determine the optimal 
rotor screen gap required to achieve it. Subsequently, another step 
change for GSD is introduced at time = 1600s, adjusting the values to 
[a1, p1, p2, m1, m2] = [0.37, 432, 985, 2.54, 3.64], and the ribbon solid 
fraction is increased from 0.7 to 0.63. The NMPC successfully finds the 

optimal values for all three process inputs in each scenario, demon
strating its satisfactory capability for setpoint tracking. 

To move forward with the NMPC implementation in the physical dry 
granulation process controlling GSD, several challenges must be 
addressed. Firstly, the availability of real-time GSD measurements is 
essential. Although attempts have been made to install a camera-based 
system in the pilot plant, the occurrence of powder fouling hinders 
measurement robustness. Despite the utilization of an air purging sys
tem, the fouling still compromises the accuracy of the measurement. To 
overcome this challenge, one possible solution is to incorporate at-line 
measurements, such as the Canty Solidizer, and implement an auto
mated granule sampling approach to obtain GSD measurements. In 
addition, remote control of the rotor screen gap via the DCS is necessary. 
For the roller compactor used in this study, the rotor screen gap can only 
be adjusted through the local control panel’s human-machine interface. 
By allowing remote control via the DCS, the NMPC framework could 
fully control the entire GSD. 

6. Conclusions 

The hybrid model effectively predicts three critical outputs in the dry 
granulation process: ribbon solid fraction, mass throughput, and GSD. 
This model integrates a mechanistic roll compaction model with a 
neural network-based ribbon milling model. The assessment of the 
hybrid model reveals that incorporating a roll gap compensation term 
not only aids in estimating a realistic ribbon relaxation factor but also 
enhances the model’s accuracy in predicting ribbon solid fraction and 
mass throughput. Furthermore, the model employs five bimodal Weibull 
distribution parameters to comprehensively describe the entire GSD, 
reducing the complexity of model output variables and providing a clear 

Fig. 11. NMPC experimental implementation on roll compaction process.  

Table 6 
Comparison of control performance between open-loop control and NMPC in the 
roll compaction process.   

Open-loop control NMPC 

IAE (Throughput) [s kg/h] 269.92 78.68 
IAE (Ribbon solid fraction) [s] 1.22 0.54  
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understanding of how process parameters influence GSD. Reducing the 
proportion of fines can be achieved by increasing the lower screen size 
and ribbon solid fraction or decreasing the rotor screen gap. Utilizing the 
proposed hybrid model, NMPC was successfully implemented to control 
the dry granulation process effectively. The efficacy of NMPC was 
demonstrated in two case studies. The first experimental case study 
validated NMPC’s ability to control mass flow rate and ribbon solid 
fraction, provided by the proposed NIR analysis approach to select stable 
spectra. Moreover, in the second simulated case study, NMPC demon
strated its ability to handle the entire GSD, rather than relying on a 
representative size value like the median size. This simulated case study 
showed how NMPC can handle a non-square system, again providing the 
motivation to use NMPC instead of traditional open-loop control. 

In future work, it is essential to incorporate constraints when 
improving the ribbon milling model. The current limitation of the neural 
network model is that if the operating conditions deviate significantly 
from the training data set, the predicted GSD may violate the limitations 
imposed by the bimodal Weibull distribution. In addition, efforts should 
be made to enhance the accuracy in predicting smaller size percentiles 
because the percentage of fines can impact tabletability. Furthermore, 
additional modeling work is required to establish the relationship be
tween granule properties and tablet properties. By integrating such a 
model, NMPC can be effectively implemented on an end-to-end dry 
granulation-based tableting line. 
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