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This study focuses on the development of a hybrid model to integrate roll compaction and ribbon milling op-
erations to design and control a continuous dry granulation process. The proposed hybrid model has three
features: (1) it compensates for underestimated roll gap measurements with knurled rolls, (2) it represents the
bimodal size distribution of granules using five fitting parameters of the bimodal Weibull distribution instead of
only using specific size percentiles, and (3) it considers the impact of rotor-screen gaps on granules. Furthermore,
the hybrid model facilitates the implementation of nonlinear model predictive control in a roller compactor

Alexanderwerk WP120. Compared to widely applied open-loop operations in the pharmaceutical industry,
nonlinear model predictive control demonstrates better performance, indicated by lower integral absolute errors
in controlling mass throughput and ribbon solid fraction, in which real-time measurements can be obtained using
a near-infrared sensor and a novel spectra selection approach.

1. Introduction

The dry granulation process is one of the important methods used in
the pharmaceutical industry for the production of solid dosage forms
such as tablets, capsules, and sachets. This method is preferred over wet
granulation when materials are sensitive to heat and moisture. In
addition, dry granulation is often a better candidate for continuous
manufacturing than wet granulation because of its faster process dy-
namics by virtue of not requiring the relatively slow drying step. The
main unit operation in the dry granulation process is the roller
compactor, which consists of two operations: (1) roll compaction in
which powder blends are compressed between two counter-rotating
rolls to form a ribbon, and (2) ribbon milling in which ribbons are
converted into granules.

The performance of the dry granulation process is determined by the
intermediate ribbon properties and final granule properties. The ad-
vantages of dry granulation include enhancing blend uniformity and
flowability by enlargement of particle size. Powder flowability plays an
essential role in influencing the performance of the tablet manufacturing
process and final drug product quality. For example, improvement of
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powder flowability can enhance the performance of die filling in the
tableting process and reduce variability in tablet weight (Van Snick
et al., 2018). Also, good powder flowability can reduce probe fouling
and enhance the performance of on-line process analytical technology
(PAT) tools, such as capacitance-based particulate flow rate sensor
(Huang et al, 2022a) and widely applied near-infrared (NIR)
spectroscopy-based composition sensors (Fonteyne et al., 2015). How-
ever, particle size over-enlargement or over-compression of powders can
compromise the tabletability because of reduced bonding areas or
granule hardening (also known as work hardening) (Herting and Klei-
nebudde, 2008; Sun and Kleinebudde, 2016). Finding the optimal bal-
ance between improving powder flowability and sacrificing powder
tabletability, which are highly affected by ribbon solid fraction (also
known as relative ribbon density) and granule size distribution (GSD),
becomes one of the challenges in designing a dry granulation process.
Therefore, an effective approach to predict ribbon solid fraction and
GSD is essential to optimally operate the roller compactor.
Model-based approaches are commonly employed for design space
analysis in pharmaceutical process and product development. Models
can generally be categorized into three types: mechanistic models (or
white-box models), data-driven models (or black-box models), and
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Nomenclature

Agr roller force calibration coefficient [kKN/bar]
Dgr roller diameter [mm]

F force factor [-]

K compressibility factor [-]

M mass throughput [kg/h]

Ng roller speed [rpm]

Py roller pressure [bar]

Prax peak pressure [MPa]

S roller gap [mm]

w roller width [mm]

a nip angle [rad] [°]

B relaxation factor [-]

%o pre-consolidation solid fraction [-]

76 ribbon solid fraction at the roller gap [-]
YR ribbon solid fraction [-]

O effective angle of internal friction [rad] [°]
Pr true density [g/cm3]

dw wall friction angle [rad] [*]

2] angular roll position [rad] [°]

o normal stress [MPa]

Q, cumulative bimodal Weibull distribution
a; weighting of the small mode [-]

p1 size parameters of the small mode [pum]
23 size parameters of the large mode [um]
my shape parameters of the small mode [-]
my shape parameters of the large mode [-]
Nusin mill speed [rpm]

Stower lower screen size [mm]

Supper upper screen size [mm]

Sm rotor-screen gap [mm]

Wy, Wy, weighting matrices
input variables

Au control movements

X estimates state variables

y output variables

y estimated output variables

Yep setpoints of the output variables

N, length of the control time window [-]
N, length of the prediction time window [-]
Npast length of the past time window [-]

Gy standard deviations of estimated model parameters
cov g parameter covariance matrix

dof degree of freedom [-]

RSS residual sum of squares

H Hessian approximation

hybrid models (or grey-box models). Firstly, mechanistic models are
based on fundamental understanding of the underlying mechanisms in a
system, and they typically incorporate relevant physical, chemical, and
biological principles. While these models possess good interpretability,
they may suffer from high computational expenses and plant-model
mismatch when describing a real process. Secondly, data-driven
models are developed purely from empirical data and generally
consist of statistically based relationships. When the underlying system
is not well understood or is too complex to be expressed by explicit
equations, data-driven models are preferred for their adaptability in
accurately predicting the system and easy development. However, the
main challenges for data-driven models lie in poor generalizability and
interpretability and the requirement of a large amount of data. Thirdly,
mechanistic models and data-driven models can be integrated to form a
hybrid model. This integration allows for incorporating the advantages
of mechanistic and data-driven models while mitigating their respective
drawbacks.

Mechanistic models such as Johanson’s model (Johanson, 1965) and
Reynolds’ model (Reynolds et al., 2010) are typically used to describe
roll compaction and predict the ribbon solid fraction produced. How-
ever, most ribbons can only be sampled and characterized once they exit
the roll gap. Due to elastic recovery, the increased ribbon volume re-
duces the ribbon density. Elastic recovery is a common phenomenon in
the field of powder compaction (e.g., roll compaction, tableting), and it
can continue for several hours or days after compaction in some mate-
rials (Keizer and Kleinebudde, 2020; Picker, 2001). In addition, (Mah-
mah et al., 2019) indicated that the variation in the elastic recovery is a
critical factor in ribbon splitting, which may cause adverse effects on the
mechanical strength and dissolution properties of the tablets formed
from the milled granules. While elastic recovery leads to uncertainty in
roll compaction process and unsatisfactory prediction accuracy of rib-
bon solid fraction, it is either not considered or assumed to be a constant
in the models reported in the literature.

In the ribbon milling step, the final GSD is determined by ribbon
properties (e.g., ribbon density or porosity) and milling conditions (e.g.,
milling type, milling speed, and screen size). The GSD can sometimes be
bimodal (Loreti et al., 2017; Mangal et al., 2016; Olaleye et al., 2020),
making its prediction more challenging. A population balance model

(PBM) can be used to describe the milling step and to predict GSD
(Amini et al., 2020; Mirti¢ and Reynolds, 2016; Olaleye et al., 2019), but
it is complicated to determine the breakage function in the PBM purely
based on ribbon fracture physics. In addition, it is generally challenging
to choose appropriate particle size intervals that balance the computa-
tional efficiency of solving the partial differential equations with model
accuracy. Given the complex three-step nature of the ribbon milling
process (ribbon crushing followed by upper and lower hammer milling),
machine learning (ML) is a preferred alternative to developing a
mechanistic model. For example, (Kazemi et al., 2016) demonstrated
that GSD in the oscillating milling process can be accurately predicted by
a genetic programming (GP) model or a neural network (NN) model.
Moreover, ML and mechanistic model components can be combined into
a hybrid model to maintain high physical interpretability and feasibility.
For instance, (Akkisetty et al., 2010) developed a hybrid model to pre-
dict GSD in conical milling by using a neural network model to find the
breakage function and selective function in PBM. However, the reported
ribbon milling models lack adequate consideration of roll compaction
parameters and ribbon properties. For the purpose of designing and
controlling a continuous dry granulation process, both roll compaction
models and ribbon milling models need to be integrated.

An integrated model is required not only for product design but also
for real-time process monitoring and control. While open-loop control is
still widely applied in the pharmaceutical industry, product quality can
be compromised because of process disturbances and variability in raw
materials properties. Advanced process control (APC) strategies can be
employed to correct deviations in product qualities or process behavior
as these occur. Model predictive control (MPC) is a common type of APC
strategy, which can accommodate process constraints and complex
processes involving multiple process inputs and outputs. To achieve
continuous manufacturing and real-time release testing, MPC has pro-
gressed from "nice-to-have" to "must-have" technology in the pharma-
ceutical industry (J. Huang et al., 2021). While MPC has been widely
applied in the processing industries (Lee, 2011; Lin et al., 2022; Qin and
Badgwell, 2003), its use is still in the infant stage in the pharmaceutical
manufacturing sector (Jelsch et al., 2021). Case studies of linear MPC
implementation have been reported for powder feeding-blending system
(Celikovic et al., 2020; Singh et al., 2014), the rotary tablet press (Su
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Fig. 1. Overview of the roller compactor model.
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Fig. 2. Schematic diagram of the roll compaction process.

et al., 2019), and end-to-end continuous manufacturing pilot plant from
chemical synthesis to tableting (Mesbah et al., 2017). Furthermore,
nonlinear model predictive control (NMPC) has been applied to control
a commercial-scale rotary tablet press in silico (Y. S. Huang et al., 2021)
as well as demonstrated in a physical pilot plant (Huang et al., 2022b)
and has been shown to achieve satisfactory control performance even
when plant-model mismatch exists. However, MPC implementation in
dry granulation processes has been limited. Singh and co-workers pro-
posed a process control strategy based on cascade PID control in the dry
granulation process. They indicated that MPC can be used to improve
performance when oscillatory responses are observed (Singh et al.,
2012).To the authors’ knowledge, only one case study of MPC imple-
mentation in a roller compactor has been published (Hsu et al., 2010a).
However, this study focused solely on controlling ribbon density and roll
gap without incorporating throughput and GSD in the process control
design.

The remainder of this article is structured as follows. The next section
introduces a hybrid roller compactor model which integrates the roll
compaction and ribbon milling processes and serves to predict RSF,
throughput, and GSD. The third section presents the formulation of the
NMPC problem and the process control system design. The fourth sec-
tion summarizes the specifics of the case studies reported in this study.
The results of model validation and NMPC implementation are pre-
sented in the fifth section. The final section summarizes the achieve-
ments of this paper and provides some future directions.

2. Roller compactor modeling

The roller compactor is the key unit operation of the continuous dry
granulation process. The process input and output variables of the roller
compactor are summarized in Fig. 1.

2.1. Roll compaction

According to Johanson’s model (Johanson, 1965), the regions con-
taining compacted materials can be divided into the slip region, where
the rollers move faster than the powder in the slip region, and the nip
region, where there is no slip between the roller and the powder as
shown in Fig. 2. The stress gradient in the slip region and nip region can
be expressed as follows:

40(Z — 6 — v |tandg
(%) _ (2 ) @
slip (1 + DLR — cos@) [cot(A — p) — cot(A + ﬂ)]
I (200s9 —1- —) tan@
5.
nip (1 + E%R — cos@) cos6
where
9 p
Aty €)

_l ol sing,, _
1/72 [ﬂ sin (sinég) ¢W} 4
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T O
F=iT2 ©
As the powder blend transitions from the slip condition to the non-
slip condition, the stress gradients in the slip region and nip region
become equal. The critical angular roller position at which this occurs is
known as the nip angle a and can be calculated from Egs. (1) and (2) and
solving Eq. (6):

4(7% —a— D) tandg K(Zcosa —-1- Di,() tana

cot(A — ) — cot(A +p) cosa

=0 (6)

where & is the effective angle of internal friction and ¢, is wall friction
angle, K is compressibility factor, S is roller gap, and Dy is roller diam-
eter. Given the roller diameter Dg and roller width W, the peak pressure
P.qx applied on the powders at the minimum roller gap S is computed as
follows:

2PyAgr
Py =
WDrF 7
with the force factor F, given by
K
r. K
F= / Dr cosO do ®)

0 <1 — & — cosG)cosG

where Py is the roller pressure (or hydraulic pressure) and Agy is the roll
force calibration coefficient. Assuming that compression follows a
power law, the ribbon solid fraction at the gap y; can be computed as
follows:

=

76 = 70(Puax) ©

where y,is the pre-consolidation solid fraction and the peak pressure has
to be divided by 1 MPa for a dimensionless value. However, y is not
readily measured in real time because the ribbon elastic relaxation
causes the ribbon density to decrease over some time period when rib-
bons are released from the rollers. Given the relaxation factor g, the
ribbon solid faction yyis represented as follows:

4]
_T 1
Tr Vi 10)
Considering mass balance around the roller gap and roller speed N,
the mass throughput can be calculated as follows:

M = DR W (S + Scom ) Nrp,ve = TDRW (S + Scomp ) Nrp B an

where p, is the powder true density. In this work, a compensation term
Scomp is proposed to correct the volume of the powders that are bounded
by rollers in cases when the roller surface is not smooth. When knurled
rollers are used, it is necessary to take into account the volumes of
powders which fill up the voids of the roller surface. The lower roller gap
makes the powders in the voids occupy a higher percentage. It should be
noted that elastic recovery and mass throughput calculations are not
part of the original Johanson’s model, described by Egs. (1-8).

2.2. Ribbon milling

The hammer milling step commonly produces granules with a
bimodal size distribution, which is not adequately described by only
using Do, Dso and Doy values. Therefore, a bimodal Weibull distribu-
tion is chosen to represent the entire size distribution where its cumu-
lative form Q,(x) can be expressed as follows:
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my

0.(x) = a (16()) +(1a1)<le(;z> ) 12)

with constraints 0 < a; < 1,0 < p; < pa, and 1 < my,ms. Here, a; is the
weighting of the smaller particle size portion, p; and p, are the size
parameters of the smaller portion (or called the fines mode) and the
larger portion (called coarse mode), respectively, whereas m;and m,
represent the shape parameters of the associated modes.

A neural network model is employed in this study to predict granule
size distribution. For the nonlinear activation function domain, linear
scaling with the range from 0.1 to 0.9 are applied to both input and
output variables as follows:

0.9-0.1
Z=———(z—2zun) +0.1 13)

Zmax — Zmin

where z and z are the raw and scaled values of process variables. The NN
model with three layers (input, hidden, and output layers) and hyper-
bolic tangent activation function is given by:

Y = Ly(tanh(L,U) + C)) + C, a4

where L; € RW*" [, € R"*™ C; € R™* ! and Cy € R* ! are fitting
model parameters. The NN model output Y is composed of five fitting
parameters of the bimodal Weibull distribution: Y = [a;,p1,p2, m1, mz]T.
The NN model inputs U include upper screen size, lower screen size, mill
speed, rotor-screen gap, and ribbon solid fraction: U =
[SUppen SLowen NMill7SM7]/R]T

3. Process control design
3.1. NMPC formulation

The PID control strategy, while well-established and extensively
applied in various industries for several decades, has some limitations.
These limitations stem from the fact that PID controllers are inherently
designed for linear single-input-single-output (SISO) systems. While PID
controllers can deliver satisfactory control performance in nonlinear
systems, provided that the operation region is linear or mildly nonlinear,
the control performance can deteriorate in multiple-input-multiple-
output (MIMO) systems. In such systems, strong process interactions
can make tuning PID controllers challenging. In addition, PID control-
lers rely on current measurements, and gross errors in sensor measure-
ments can thus compromise their control performance. These limitations
of PID controllers have spurred the interest in the development and
adoption of more advanced process control strategies to manage com-
plexities inherent in MIMO systems. The MPC algorithm utilizes a finite
time horizon over which to optimize the control inputs starting at the
current time interval. It outperforms typical PID control because MIMO
systems and process constraints can be easily handled within the MPC
optimization framework. Future process events can be anticipated with
the aid of process models, but such predictions do impose requirements
on model accuracy.

Linear MPC has been widely implemented in several industries
because it is relatively easy to develop linear models using data-driven
system identification techniques or linearization of nonlinear models.
The models commonly used are linear state space models, whose general
form facilitates quick prediction of process dynamics. Moreover, the
standardized form of linear state space models allows for applying a
generalized and systematic approach to assess critical aspects such as
stability, controllability, and robustness during the design of control
strategies (Dubljevic and Humaloja, 2020; Qin and Badgwell, 1997).
However, the control performance over a larger range of operations
obtained by linear models can degrade if the system is highly nonlinear.
Additionally, the physical interpretability of the parameters within a
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linear state space model could be compromised. By contrast, NMPC
obtained by using a high-fidelity nonlinear model can accurately
describe process trajectories but at the expense of higher computation
cost. Due to the lack of a standardized form in the nonlinear model
utilized in NMPC formulation, assessing stability or robustness becomes
more challenging compared to linear MPC. The decision to implement
linear MPC or NMPC should be based on a balance among computational
expense, accuracy requirements, and the degree of system nonlinearity.

Processes that take place in the continuous pharmaceutical
manufacturing systems are known to be nonlinear in nature. In the oral
solid dosage manufacturing processes, nonlinearity is evident across
various stages, such as organic synthesis (Mesbah et al., 2017), crys-
tallization (Orehek et al., 2021), filtration-washing-drying process
(Destro et al., 2021; Hur et al., 2024), feeding and blending (Liu et al.,
2018; Rehrl et al., 2016), dry granulation (Hsu et al., 2010b; Singh et al.,
2012; Souihi et al., 2015), tableting (Bachawala and Gonzalez, 2022;
Galbraith et al., 2019; Y. S. Huang et al., 2021; Singh et al., 2013), and
film coating (Mesbah et al., 2014). The nonlinear behavior observed in
these processes can be attributed to several factors, including complex
chemical reactions, heat and mass transfer, powder flowability, and
powder compression mechanisms.

Hsu et al.’s work (Hsu et al., 2010a) demonstrated that NMPC can
outperform both linear MPC and PID control in simulated studies,
particularly in terms of disturbance rejection and setpoint tracking for
controlling ribbon solid fraction. This study will focus on the experi-
mental implementation of NMPC and explore the extension of this
control strategy to ribbon milling processes.

The discrete formulation of the NMPC optimization problem at time t
= k can be described as:

k4N, kiNo—1

min J = ; G —yp) W, (5 —yy) + ; (Aul W, Au,) (15a)
subject to

Tt =f Riesss Urerjs 0) (15b)
Veri = h(Zei) + & (15¢)
Abtyyj = Upyjpr — Upsj (15d)
Xy €X, Uiy € U, Ay € Qpy (15e)
j=0,1, ... N, —1 (156)

where X, are the estimates of the state variables at time t. The variable y,
represents the estimated output variables and yy, are the setpoints of the
output variables. Control movements Au are constrained to lie in a
compact set Qa,. Wy and Wy, are the weighting matrices. N. and N, are
the length of the control time window and prediction time horizon,
respectively. The control window N, is usually smaller than the pre-
diction window N, and has to be chosen to compromise between the
computational time and control stability requirements. Control move-
ments Auy.; in control window N, vary according to results of optimi-

zation, but those beyond the control window are zero, i.e., Auyy, =

Alg N1 = = Alg.n,—1 = 0, which implies that Uin, = UkpN41 =

- = ﬂkmp- In other words, while the predicted ykﬂ- can still be calcu-
lated using Auy,; and ﬁkﬂ« in the prediction window N, only Au,; in
control window N, is considered in the objective function. For the
purpose of zero steady-state offset in controlled output variables y,
output disturbances {; at time t = k in Eq. (15¢) can be represented as
follows:

&= median{yk,,vﬂwﬂ- */y\ka,,m,H} forj=0, 1, ..., Npast (16)

where Np is the length of the past time window. It should be noted that

Computers and Chemical Engineering 183 (2024) 108586

Ribbon solid fraction yx

NMPC DCS Roller speed Ng
Roller pressure Py

‘\ v Rotor-screengap Sy

DELTAV

Granule size distribution §
ay, Py, P2, My, My

Mass throughput M

Fig. 3. Process control structure for the roller compactor.

while an error distribution of output variables y, — ¥, in the past time
window can be obtained, a single point estimate of the output is of most
interest in many applications (Rao et al., 2003). In this study, the median
of the error distribution in the past time window is used to represent
output disturbances.

3.2. NMPC implementation

The process control structure employed in this study is illustrated in
Fig. 3. The NMPC framework is implemented using MATLAB, and the
optimization problem in each iteration is solved using MATLAB’s built-
in fmincon function which employs an interior point algorithm. This
local optimization solver function can’t guarantee a global optimum, but
it can quickly ensure a reliable and satisfactory local solution at each
time interval. The Emerson DeltaV 13.3 distributed control system
(DCS) is utilized to integrate measurements from the roller compactor
and the PAT tools. The DCS’s OPC server acts as a bridge to collect
process data from the roller compactor and PAT tools, as well as to
transmit control commands to the roller compactor (Chen et al., 2023).
The performance of NMPC is evaluated through two case studies: (1)
focusing solely on the roll compaction process with two inputs and two
outputs, discussed in Section 5.3, and (2) examining the integrated roll
compaction and ribbon milling process with three inputs and seven
outputs, detailed in Section 5.4. A summary of the corresponding pro-
cess variables and control design can be found in Table 1.

Table 1
Summary of variables and details of NMPC implementation in the two case
studies.

Roll compaction Roll compaction + Ribbon milling

Section 5.3 5.4
Implementation ~ Experiments Simulation
Manipulated Roller speed Ng Roller speed Ng

variables (u) Roller pressure Py Roller pressure Py
Rotor-screen gap Sy
Mass throughput M Mass throughput M
Ribbon solid Ribbon solid fraction yg

fraction yg Granule size distribution a;, p1, p2,m;,my

Controlled
variables (y)

Hardware Intel®Xeon® CPU Intel® Core ™ i7-11800H @ 2.30GHz
E3-1246 v3 16GB RAM
@3.50GHz
8GB RAM
MATLAB version  2015b 2021b
Time window [30,10,30] [30,10,30]
length
[NP’NCa NPﬂSl]
Sampling time (s) 2
Computation time 1.4 1.3

s)
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Table 2

Properties of the feeding material (blend of MCC-102 and APAP) and the roller

compactor.
Properties Value
True density (p,) 1.5583 g/cm®
Dio 146.8 ym
Dso 301.6 ym
Dgo 492.5 um
Wall friction angle (¢,) 35.1°
Effective angle of internal friction (6g) 44.5°
Roller diameter (Dg) 120 mm
Roller width (W) 40 mm
Roll force calibration coefficient (Agr) 0.369 kN/bar

No measurement

Unstable

Computers and Chemical Engineering 183 (2024) 108586
4. Materials and methods
4.1. Materials and equipment

Acetaminophen Grade 0048 (APAP) was purchased from Mallinck-
rodt Pharmaceuticals (Raleigh, NC, USA). Avicel microcrystalline cel-
lulose Grade PH-102 (MCC-102) was purchased from IMCD US, LLC
(Piscataway, NJ, USA). The formulation used in this study is 10 wt%
APAP and 90 wt% MCC-102. To prepare feeding materials for the roller
compactor, a 3 kg blend of APAP and MCC-102 was mixed using a 5 L
Tote blender for 30 min.

The study utilizes an Alexanderwerk WP 120 roller compactor,
which is depicted in Fig. 3 and further detailed in Fig. 1. The equipment
is operated with knurled rollers with dimensions of 40 mm in width and
120 mm in diameter. The unit employs a two-stage hammer mill

Stable

[ [ [}
(%) o (%)
s s s
.01 £ 2
g g 2
Q Q Q
< -0.2 < .0.2 <
-0.3 -0.3 -0.3
1100 1350 1600 1850 2100 1100 1350 1600 1850 2100 1100 1350 1600 1850 2100
Wavelength (nm) Wavelength (nm) Wavelength (nm)
(b) 2500 - . T T
No measurement
2000 - 1
stable

£ 1500 | T

[ =

=]

o]

O 1000 unstable

500
0
0 0.05 0.1 0.15 0.2 0.25

Rangelndex = max(Abs) - min(Abs)

Fig. 4. Real-time monitoring of ribbon solid fraction with (a) raw spectra and (b) range index under different conditions.
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Fig. 5. Performance of NIR calibration model to predict real-time ribbon solid fraction (RSF) with (a) raw spectra, (b) pre-processed spectra, (c) score plot and (d)

parity plot.

equipped with two distinct screen sizes: an upper screen for pre-milling
and a lower screen for final milling. Screens are installed on rotating
cams, which can adjust the gap between the rotors and screens.
Although different rotor-screen gaps can be set for the pre-mill and final
mill, this study simplifies the process by assigning the same setpoints to
both mills.

The properties of the feeding material and the WP 120 roller
compactor are summarized in Table 2. The wall friction angle and the
effective angle of internal friction are estimated based on the work by
(Mahmabh et al., 2019).

4.2. Product characterization and experimental procedure

Three key instruments were utilized to validate the roller compactor
model to obtain the desired process outputs. Firstly, as an in-house real-
time flow rate sensor, a Mettler Toledo ME 4001E weighing scale was
positioned at the exit of the roller compactor. The weighing scale was
connected to a laptop via a RS232 cable, enabling the recording of the
total weight of accumulated granules using the MATLAB Instrument
Control Toolbox. By calculating the first-order derivative with respect to
time, the real-time flow rate can be determined. Secondly, the Geopyc
1360 pycnometer was employed to measure the ribbon envelop density
(p.). The ribbon solid fraction (yz) can be calculated as follows:

pﬂ
YTR="" 17)
T p,

where p, is the powder true density, which is measured by an Accupyc II
1340 pycnometer. Thirdly, the final GSD was measured using the Sol-
idSizer, manufactured by J.M. Canty Inc. Over 40 different types of size
and shape characteristics can be captured with the SolidSizer. In this
study, the projected area of each particle was chosen as a key charac-
teristic which was converted to the circular equivalent diameter to
represent the size of the feed powder blend and granules. It should be
noted that the cumulative frequency of the GSD was volume-based in
this study. Once the size percentiles (Ds, Dy, ..., Dgs) are obtained
through statistical analysis, the bimodal Weibull distribution parameters
can be computed by solving an optimization problem (Huang et al.,
2023):

min 18)
a, pi, pa.my.ngy

1= 3 (o))

p=5,10...

subject to 0 <a <1, 0<p <py, | <my, my

To evaluate the performance of the milling models, the mean abso-
lute percentage error (MAPE) of GSD is utilized and can be computed as
follows:

95

MAPE = Z Z

=1 p=5,10,..

red
Dp Dy — Dy,

x 100% 19

In conducting the experiments, a K-Tron QT20 loss-in-weight (LIW)
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Table 3

Experimental values of process inputs and outputs in the roll compaction process.

Computers and Chemical Engineering 183 (2024) 108586

Exp Process inputs Process outputs Ribbon status Role in model
Roller gap S [mm] Roller speed Ng[rpm] Roller pressure Py[bar] Ribbon solid fraction yg Mass throughput M [kg/h]

C1 1.20 4.0 44.9 0.761 6.35 Non-split Test

Cc2 1.20 4.0 73.9 0.816 7.45 Non-split Training
Cc3 1.36 4.0 30.5 0.660 6.53 Non-split Test

C4 1.40 4.0 36.9 0.696 7.39 Non-split Training
C5 1.40 4.0 58.9 0.743 7.57 Non-split Training
C6 1.40 4.0 74.1 0.812 7.97 Non-split Test

c7 1.60 4.0 30.6 0.681 7.67 Non-split Training
c8 1.60 4.0 37.0 0.684 7.81 Split Training
c9 1.80 4.0 30.6 0.640 7.67 Non-split Training
C10 1.80 6.0 28.6 0.601 12.60 Non-split Training
C11 1.80 8.0 28.7 0.632 15.41 Non-split Training
C12 1.80 4.0 44.8 0.745 8.55 Split Training
C13 1.80 6.0 44.6 0.664 11.25 Split Test
C14 1.80 8.0 44.9 0.717 16.66 Split Training
C15 2.00 4.0 30.6 0.648 9.17 Non-split Training
C16 2.00 4.0 44.6 0.699 10.06 Split Training
Cc17 2.20 4.0 30.6 0.648 9.80 Split Training
C18 2.40 4.0 28.6 0.617 10.01 Split Training

feeder was utilized to feed pre-blended materials into the roller
compactor continuously. The roller compactor was operated for
approximately three minutes to reach a steady state. Subsequently, an
additional three minutes of operation was dedicated to estimating the
average mass throughput. Finally, samples of the ribbons and granules
were collected from the roller compactor for measurements of ribbon
solid fraction and GSD.

4.3. Model parameter estimation

To estimate the parameters of the roll compaction model, the
MATLAB fmincon function with interior point algorithm was used to
minimize the error in the predicted mass throughput and ribbon solid
fraction. To increase the likelihood of finding a global solution, the
MATLAB GlobalSearch algorithm was used, under which the fmincon
function is repeatedly executed from multiple starting points. Instead of
employing several iterations in linear regression of Eq. (9) in logarithm
form to determine pre-consolidation solid fraction y, and compress-
ibility factor K, a combined optimization problem is formulated as fol-
lows to estimate model parameters:

)

- L
()

i=1

For the ribbon milling model, the training of the neural network
model was conducted using PyTorch, a Python-based machine learning
library, in Python 3.9 (Paszke et al., 2019). The objective was to mini-
mize the mean squared error in the five fitted Weibull parameters. To
construct the NN model, torch.nn.Sequential, torch.nn.Linear, and torch.
nn. Tanh were utilized. The weighting and constants for each neuron of
the NN model (i.e., L;, Ly, C;, C> in Eq. (14)) were trained using the
Adam optimizer (Kingma and Ba, 2014). The 5-fold cross-validation
method was applied to prevent overfitting. Three neurons were used
in the hidden layer. To develop the NN model, 23 datasets were desig-
nated for training and 6 datasets were used for testing, according to the
80/20 rule.

pred
YRi — VRi

VR

min (20)
K, vo, B. Scomp

4.4. NIR calibration for real-time measurements of ribbon solid fraction

The Geopyc 1360 pycnometer is effective for measuring ribbon solid
fraction but is limited to off-line analysis. For real-time measurement of
ribbon solid fraction, the Innopharma Multieye2 NIR spectrometer was
utilized with the fiber optic probe positioned on the platform above the
ribbon. The NIR light wavelength ranges from 1076 nm to 2102 nm, and
the integration time was set to 180 ms. In Fig. 4(a), three kinds of spectra

were observed during the operation of the roller compactor. When the
ribbon emerged and was detected by the NIR probe, stable spectra were
obtained as long as the distance between the probe and the ribbon
remained constant. However, when the ribbon came into contact with
the flake crusher, variations in the distance between the NIR probe and
the ribbon caused unstable spectra measurement. Finally, when the
ribbon was completely broken and no material was detected, the NIR
spectra displayed only the characteristics of the metal. To differentiate
between these three types of spectra quantitatively, a range index was
introduced, defined by the difference between the maximum and min-
imum absorbance values. The range index of all the collected spectra
exhibits a tri-modal distribution in Fig. 4(b), supporting the observance
of three types of spectra. Only range indexes larger than the threshold
value of 0.15 were considered to ensure that only stable spectra were
utilized for calibration model development. This choice balances model
reliability and sampling time, as setting the threshold too high would
increase sampling time.

Five ribbon solid fractions, ranging from 0.679 to 0.824, were
selected to calibrate the NIR model. Around 70 spectra were collected
for each ribbon solid faction. Fig. 5 summarizes the steps and analysis of
the calibration model. The averaged absorbance values of the raw
spectra for each ribbon solid fraction are depicted in Fig. 5(a), revealing
a clear trend of increasing absorbance with higher ribbon solid fractions.
To eliminate the negative impact of baseline shifts, the raw spectra were
normalized using the standard normal variate (SNV) method, where
each spectrum is subtracted by its mean and then divided by its standard
deviation. The normalized spectra were then employed to train a partial
least squares (PLS) regression model. Three principal components were
selected, and the first two components, t1 and t2, accounted for 99 % of
the total variance (93.3 % and 5.7 %, respectively), as shown in Fig. 5(c).
The resulting NIR calibration model demonstrated excellent perfor-
mance, as evidenced by the high R? value of 0.982 and low RMSE value
of 0.0071. This NIR model will be used to obtain the real-time process
control results reported in Section 5.3.

5. Results and discussion
5.1. Roll compaction model validation

For model development and validation, 80 % of the data was
randomly selected for training, and the remaining 20 % was used for
testing. In this work, two roll compaction models were validated and
evaluated using 14 sets of training data and 4 sets of test data, as indi-
cated in Table 3. All experiments were performed in gap-controlled
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Table 4

Estimated roll compaction model parameters and associated model evaluation.

Traditional Proposed model with compensated
model roll gap
K 4.189 + 0.412 4.828 + 0.624
70 0.307 + 0.027 0.291 + 0.025
p 1.244 4+ 0.021 1.051 4+ 0.091
Scomp [mm] 0 0.318 £ 0.175
RMSPE(yg)(training) [%]  2.86 2.77
RMSPE(yz) (test) [%] 3.47 3.51
RMSPE(M) (training) [%]  4.44 3.87
RMSPE(M) (test) [%)] 9.59 9.17
R?(yg) (training) 0.88 0.89
R%(yp) (test) 0.87 0.86
R?(M) (training) 0.97 0.98
R?(M) (test) 0.70 0.74

mode, where the roller compactor automatically adjusted the feed screw
speed to maintain the desired roller gap, roller speed, and roller pres-
sure. The operating region was determined to run the roller compactor
at low throughput, encompassing low roller gap, roller speed, and roller
pressure. The rationale for this was to extend the duration of the
experiment, providing a demonstration of the NMPC implementation
with the consumption of less input material. The setpoints for the roller
gap were established at [1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4] mm, while the
roller speed and roller pressure were set at [4, 6, 8] rpm and [30, 37, 45,
60, 75] bar, respectively. The values in Table 3 are real measurements,
which slightly deviate from setpoints. A design of experiments was
employed to investigate the effects of varying operational process pa-
rameters. Specifically, the impact of the roller gap was assessed through
datasets [C3, C7, C9, C15, C17, C18] and [C1, C12, C16]; the influence
of roller speed was examined via datasets [C9, C10, C11] and [C12, C13,
C14]; and the effect of roller pressure was explored through datasets
[C1, C2], [C3, C4, C5, C6], [C7, C8], and [C15, C16].

The estimated model parameters and their respective model perfor-
mance for both the traditional model and the proposed model are
summarized in Table 4. The traditional model estimated the mass
throughput without considering the surface texture of the rollers
(smooth or knurled). It assumed that the roller gap’s compensation term
Scomp in Eq. (11) was zero, as previously reported in some literature
(Reynolds et al., 2010; Toson et al., 2019). On the other hand, the
proposed model in this study incorporated this consideration if knurled
rollers are used. Based on the evaluation metrics of root mean squared
percentage error (RMSPE) and R? values, the proposed model demon-
strates similar prediction accuracy for the ribbon solid fraction and
slightly better prediction accuracy for the mass throughput than the
traditional model. To assess the model identifiability, the standard
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deviations of the estimated model parameters are presented in Table 4.
These standard deviations can be computed as follows (Casas-Orozco
et al., 2021):

09 = +/diag(cov 4) 21
with the parameter covariance matrix cov 4, given by
RSS
=—"H! 22
cov ¢ dof (22)

where the degree of freedom (dof) is equal to the difference between the
number of training data sets and the number of estimated parameters.
RSS is the residual sum of squares and H is the Hessian approximation. In
Table 4, the standard deviations of the model parameters in the pro-
posed model are higher than those in the traditional model, suggesting
higher level of uncertainty in the proposed model. This higher uncer-
tainty can be attributed to estimating one more parameter in the pro-
posed model when the same amount of training data is used.

Considering the physical implications when knurled rollers are used,
the proposed model offers better alignment with reality and avoids
violating the constraint that the ribbon solid fraction (y; and yz) should
be less than 1. The relaxation factor () may not be crucial when
focusing solely on predicting the ribbon solid fraction (yz) because it can
be lumped with pre-consolidation ribbon solid fraction (y,) to become ’}70,
however, it becomes significant for continuous manufacturing scenarios
where accurate mass throughput prediction is essential for achieving
state of control. The values of the relaxation factor obtained can be
significantly different depending on the approach used. It can be
determined based on the (1) ratio of ribbon thickness to roller gap, (2)
the ratio of mass flow rate to ribbon density, or (3) by solving an opti-
mization problem as done in this study. The use of knurled rollers makes
it challenging to accurately measure the ribbon thickness and roller gap.
Consequently, a modification was made to the mass throughput model
to account for the volumes of voids between the embossments on the
knurled rollers. Although these voids are small, they can constitute a
substantial percentage, especially when the roll gap is low.

When using the traditional model to achieve good predictions for
both the ribbon solid fraction (yz) and mass throughput, it may be
necessary to overestimate the ribbon solid fraction at the gap (y;) by
lowering K and increasing y,to compensate for the model’s disregard of
the underestimated volume between two knurled rollers. Although
increasing the relaxation factor () in the traditional model can improve
the prediction accuracy for the ribbon solid fraction, it risks violating the
physical meaning because the ribbon solid fraction should not exceed 1.
For instance, if # is equal to 1.244, the ribbon solid fraction () cannot
exceed 1/1.244 = 0.804, but Exp C2 and C6 in Table 3 show the
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Fig. 6. Performance of proposed roll compaction model to predict (a) ribbon solid fraction and (b) mass throughput.
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Fig. 7. Design space for (a) ribbon solid fraction and (b) mass throughput based on the proposed roll compaction model.

Experimental values of process inputs and outputs in the ribbon milling process.

Exp Process inputs Process outputs Fitting MAPE
Upper screen Lower screen Mill speed Rotor screen gap Predicted ribbon solid a j 2 D2 my my (sl
[pm] [pm] [rpm] [mm] fraction [pm] [pm]
M1 2500 800 25 1.0 0.694 0.892 592 714 224 1195 0.7
M2 2500 800 25 1.0 0.802 0.840 596 677 212 711 0.7
M3 2500 800 100 1.0 0.802 0.850 604 604 2.85 1.48 2.0
M4 2500 1250 25 1.0 0.636 0.400 410 1013 2,52  3.10 0.6
M5 2500 1250 25 1.0 0.643 0.488 385 1027 2.62  3.50 0.9
M6 2500 1250 25 1.0 0.644 0.432 395 1025 259 3.25 0.7
M7 2500 1250 60 0.5 0.664 0.194 404 919 274  4.20 0.3
M8 2500 1250 60 1.0 0.665 0.305 468 978 2.66  4.06 0.4
M9 2500 1250 60 1.5 0.664 0.285 440 999 275 4.39 0.6
M10 2500 1250 25 1.0 0.658 0.488 432 1074 2.54 415 0.8
M1l 2500 1250 25 1.0 0.703 0.328 460 1177 241 472 0.9
M12 2500 1250 25 1.0 0.736 0.380 360 1036 273 275 1.2
M13 3150 1250 25 1.0 0.764 0.237 408 1073 2.27 3.81 0.5
M14 3150 1250 100 1.0 0.764 0.245 432 996 2.28 4.22 0.4
M15 2000 1250 25 1.0 0.764 0.310 459 1143 230  4.40 0.4
M16 2000 1250 100 1.0 0.765 0.286 508 1181 2.18 4.86 0.3
M17 2500 1250 60 0.5 0.768 0.182 455 1095 214 4.32 0.7
M18 2500 1250 60 1.0 0.768 0.247 417 1126 230 438 1.9
M19 2500 1250 60 1.5 0.768 0.302 482 1106 222 4.82 0.5
M20 2500 1250 25 1.0 0.804 0.347 363 1103 258 331 1.1
M21 2500 1600 25 1.0 0.662 0.292 461 1390 2.22 4.36 0.8
M22 2500 1600 60 1.0 0.663 0.171 435 1496 2.28 3.64 1.0
M23 2500 1600 25 1.0 0.693 0.474 803 1502 1.98 5.85 0.7
M24 2500 1600 100 1.0 0.693 0.301 550 1445 2.07 4.10 0.9
M25 2500 1600 60 1.0 0.733 0.484 947 1560 1.89 576 0.6
M26 2500 1600 25 1.0 0.777 0.220 605 1527 2.04 4.45 1.0
M27 2500 1600 60 1.0 0.777 0.250 665 1506 1.99 4.80 1.5
M28 2500 1600 25 1.0 0.802 0.330 933 1532 1.76 4.72 0.7
M29 2500 1600 100 1.0 0.802 0.154 497 1382 2.33 445 0.8

violation in the traditional model. Therefore, the proposed model pro-
vides a more realistic representation, ensuring accurate predictions
without compromising the physical constraints of the system.

The proposed model exhibited satisfactory prediction accuracy
within the range of ribbon solid fraction [0.60, 0.82] and mass
throughput [6.4, 16.7] kg/h, as shown in Fig. 6. Furthermore, the model
can be used to explore the design space. Fig. 7(a) illustrates that higher
roller pressure increases ribbon solid fraction and flow rate. On the other
hand, a larger roller gap reduces ribbon solid fraction, but enhances
mass throughput due to the inclusion of more materials, as depicted in
Fig. 7(b), where the roller speed is 4 rpm.

5.2. Ribbon milling model validation

In this work, ribbon milling models were validated and evaluated

10

using the data shown in Table 5, including 23 sets of training data and 6
sets of test data (M7, M12, M16, M21, M22, M29). To develop a hybrid
model, the ribbon solid fraction predicted from the roll compaction
model is used as an input in the ribbon milling model. The measured
GSD is assumed to follow the bi-modal Weibull distribution, which can
be described by five parameters aj, p1, p2, M1, and my. These parameters
can be easily used to obtain traditional percentile values such as D,
Dsp, and Dgy. Two data-driven models were compared, namely, the
multiple linear regression (MLR) model and the NN model. When pre-
dicting five bimodal Weibull parameters, the NN model shows a better
accuracy, as shown in Fig. 8(a), particularly in predicting a;, p1, and my.
Despite the NN model’s ability to handle the nonlinearity in GSD pre-
diction better than the MLR model, the high RMSPE values in predicting
a;, p1, and my indicate the challenges associated with their prediction.
By contrast, the model can accurately predict p2, which can be attributed
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Fig. 8. Evaluations of ribbon milling models based on RMSPE of (a) five bimodal Weibull parameters and (b) percentiles of granule size as well as the parity plots

based on (¢) MLR and (d) NN models.

to the lower screen size determining the maximum size that can pass
through the screen mesh.

By converting aj, p1, P2, M1, and my to percentiles of granule size (Ds,
Dy, ..., Dgs), the model performance can be also evaluated based on the
RMSPE of size, as depicted in Fig. 8(b). The NN model outperforms the
MLR model by exhibiting lower RMSPE of D,y based on all the per-
centiles ranging from Ds, Djo, ... to Dgs. In addition, it is observed that
predicting low percentiles is more challenging than predicting high
percentiles, as evidenced by the highest RMSPE in D;o and the lowest
RMSPE in Dgy. This might be attributed to the uncertainty in powder
fines generation. Furthermore, predictions of all the percentiles ranging
from Ds, D1, ... to Dgs based on the MLR and NN models are displayed
in Fig. 8(c) and Fig. 8(d), respectively. The accuracy of predicting size
gradually improved from the smaller size to the larger size, again sug-
gesting that the model is better at predicting higher percentiles. Overall,
the NN model achieves an RMSPE of 11.0 % in predicting the entire size
distribution.

The ribbon milling model offers valuable insights for product design
and process control by predicting the entire GSD. Previous studies have
highlighted the significance of the entire GSD in predicting the flow-
abilities of granules produced through wet granulation (Lagare et al.,
2022) and dry granulation process (Lagare et al., 2023). In addition, the
ratio of fines to coarse granules is crucial in determining granule bulk
density and tabletability. Fig. 9 illustrates how the NN model can be
employed to explore the influence of process inputs on the GSD. Lower
screen size emerges as the most influential factor affecting the GSD, as
demonstrated in Fig. 9(a). Granules passing through smaller lower
screen sizes tend to exhibit unimodal GSD, while larger screen sizes
make the bimodal nature of GSD more obvious. Fig. 9(b) reveals that an
increase in ribbon solid fraction leads to increased granule size and a
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reduced percentage of fines. While larger granules are desirable for
improved flowability, excessive compaction of the ribbon should be
prevented since it can compromise tabletability. One of the novel as-
pects of this study is incorporating the rotor screen gap into the model to
predict the GSD. However, it should be noted that manipulation of the
rotor screen gap might not be available for all roller compactors. As
shown in Fig. 9(c), reducing the rotor screen gap decreases the per-
centage of fines. This can be attributed to the larger rotor screen gap
preventing the material from being fully pushed through the screen
within a single milling cycle. Fig. 9(d) illustrates that an increase in the
upper screen size can lead to a decrease in granule size. This phenom-
enon may be attributed to the fact that larger intermediate granules have
a higher likelihood of being further milled when passing through the
lower screen. Finally, Fig. 9(e) demonstrates that an increase in mill
speed can reduce the size of the granules. This reduction in size is likely
due to the granules being crushed more times at higher mill speeds.

In this study, an APAP-based formulation is used due to APAP being a
commonly used API model compound in the literature. Its well-
understood properties have been extensively studied. Additionally,
APAP is relatively inexpensive, enabling us to run multiple experiments
during the initial stages of developing new models or methods. This
study is focused on demonstrating a model that links process parameters
with GSD and ribbon solid fraction. For the ultimate objective of pre-
dicting granule flowability and tabletability in other formulations, these
steps might be considered in the future work: (1) Identifying critical
material properties, such as powder flowability, powder density, and
powder compressibility. (2) Developing a model that utilizes material
properties and process parameters to predict GSD and ribbon solid
fraction. (3) Establishing a model that incorporates material properties,
GSD, and ribbon solid fraction to predict granule flowability and
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Fig. 9. Granule size distribution in the ribbon milling process under the impact of (a) lower screen size, (b) ribbon solid fraction, (c) rotor screen gap, (d) upper

screen size, and (e) mill speed.

tabletability.

5.3. NMPC on roll compaction process (experiments)

An open-loop experiment was conducted to evaluate the perfor-
mance of the roll compaction model and real-time sensors, and the
corresponding time series data are presented in Fig. 10. The first
manipulated variable, roller speed, was fixed at 4 rpm, as shown in
Fig. 10(b). Three step changes were introduced to the second manipu-
lated variable, roller pressure, as shown in Fig. 10(c). Due to operating
the roller compactor in gap-controlled mode, the feed-screw speed was

12

automatically increased to feed more materials whenever roller pressure
was enhanced, as shown in Fig. 10(a). To prevent ribbon splitting, which
could potentially damage the NIR probe, a roll gap of 1.4 mm was
maintained throughout the experiment, as shown in Fig. 10(d). The
experimental results in Section 5.1 indicate that ribbon splitting can be
avoided by lowering the roll gap and roll pressure. It is also observed
that undershooting in the roll gap happens whenever the roll pressure
setpoint increases because the local PLC controller in the roller
compactor prioritizes reaching the roll pressure setpoint.

Fig. 10(e) illustrates the first process output variable, mass
throughput. Both the model and measurements capture the increasing
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Fig. 10. Open loop control of roll compaction process.

trend as the roll pressure is raised. Examining four time intervals (t1 =
160 ~240s, t2 = 310~450s, t3 = 480~640 s, and t4 = 670~830 s), the
model exhibits RMSPE values of 7.5 %, 12.3 %, 14.7 %, and 15.0 %
respectively. The model tends to underestimate the granule flow rate
more significantly over time. This underestimation can be attributed to
two possible reasons: (1) the model’s construction in Section 5.1 did not
allow enough time for the flow rate to reach an actual steady state
during experiments, and (2) sampling of ribbons and granules led to a
lower measured flow rate. Additionally, spikes in the flow rate were
observed due to the sudden drop of fines accumulated in the chamber.
Regarding the second process output variable, ribbon solid fraction, as
shown in Fig. 10(f), the model demonstrates excellent accuracy with an
RMSPE of 1.6 % for time t = 160 to 830 s. These satisfactory model
predictions and real-time process measurements provide a strong
foundation for NMPC implementation.

Fig. 11 illustrates the implementation of a 2-by-2 NMPC for the roll
compaction process. The granule flow rate was maintained at 10 kg/h,
as shown in Fig. 11(e), while the ribbon solid fraction was set to 0.73,
0.81, and 0.77, as shown in Fig. 11(f). Offsets were notably observed
when the control loop remained open before time t = 120 s. However,
once NMPC was initiated, it exhibited remarkable setpoint tracking
capabilities. The NMPC efficiently determined the optimal roller pres-
sure in response to new setpoints for the ribbon solid fraction. To
maintain a consistent flow rate, the roller speed was automatically
adjusted in the opposite direction to compensate for ribbon solid frac-
tion changes, particularly evident at time t = 300 s and t = 480 s. Given
the inherent disturbances in the roll compaction process arising from
fines accumulation and the discontinuity of ribbon production, the
NMPC demonstrated effective disturbance rejection abilities. In addi-
tion, it is important to note that since NMPC actively adjusts process
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inputs, it also resulted in increased variation in the roll gap. Fig. 11(d)
shows that the standard deviation of the roller gap increased from 0.012
mm (during time t = 50 ~ 100 s) to 0.034 mm (during time t = 180
~650 s). To quantify the control performance of open-loop control and
NMPC, Table 6 displays the integral absolute error (IAE) values for mass
throughput and ribbon solid fraction. The evaluation of the open-loop
control is based on the time window from t = 20~120 s, while that of
NMPC is conducted over the period t = 200~300 s in Fig. 11. The lower
IAE values observed for NMPC indicate its superior capability in setpoint
tracking and disturbance rejection compared to open-loop control.

5.4. NMPC of integrated dry granulation process (simulation)

In addition to controlling ribbon solid fraction and mass throughput
described in the previous section, GSD should be controlled in real time
to ensure the product qualities in the dry granulation process. The re-
sults of an in-silico NMPC implementation of a dry granulation process,
including roll compaction and ribbon milling, are illustrated in Fig. 12.
Specifically, Fig. 12 (a-c) represents the process behavior of three pro-
cess inputs: roller speed, roller pressure, and rotor-screen gap. Fig. 12 (d-
j) demonstrates the corresponding seven process outputs: mass
throughput, ribbon solid fraction, and GSD parameters (a;, p1, p2, M1,
and my). Such non-square control systems where the numbers of process
inputs and outputs are different provide another motivation for using
the NMPC framework.

There are three critical takeaways from Fig. 12. First, when the
control loop is open before time t = 200 s, noticeable offsets are
observed in all the process outputs. However, once NMPC is initiated, it
rapidly reaches all the setpoints for the process outputs. Secondly, at
time t = 400 s, the setpoint for the ribbon solid fraction is increased from
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Fig. 11. NMPC experimental implementation on roll compaction process.

Table 6
Comparison of control performance between open-loop control and NMPC in the
roll compaction process.

Open-loop control NMPC
IAE (Throughput) [s kg/h] 269.92 78.68
IAE (Ribbon solid fraction) [s] 1.22 0.54

0.7 to 0.8. This increase in ribbon solid fraction can disturb the GSD,
leading to a reduction in fines (e.g., decreasing a;) and an increase in
particle size (e.g., increasing p; and p;). With the aid of NMPC, the
controller identifies the necessary adjustment of the rotor-screen gap to
compensate for this effect. By increasing rotor-screen gap, more fines
can be produced to enable the GSD to remain closer to the setpoint. It is
important to note that a non-square control system has its limitations, as
offsets may occur if the setpoints are not within the feasible design
space. In this instance, the change in ribbon solid fraction was deliber-
ately increased. Nonetheless, in reality, disturbances in ribbon solid
fraction can often arise due to factors such as variability in powder
density and roller gap. Even in such cases, the actuator of the rotor-
screen gap can effectively mitigate its impact on GSD, showing the
robust disturbance rejection capability in this process control strategy.
Thirdly, at time = 1200s, a setpoint change is introduced to the GSD,
shifting the values from [a;, p1, p2, m1, my] = [0.29, 411, 1050, 2.49,
3.96] to [0.22, 368, 1066, 2.49, 4.20]. Since this new targeted GSD falls
within the feasible region, the controller can determine the optimal
rotor screen gap required to achieve it. Subsequently, another step
change for GSD is introduced at time = 1600s, adjusting the values to
[ai1, p1, p2, m1, my] = [0.37, 432, 985, 2.54, 3.64], and the ribbon solid
fraction is increased from 0.7 to 0.63. The NMPC successfully finds the
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optimal values for all three process inputs in each scenario, demon-
strating its satisfactory capability for setpoint tracking.

To move forward with the NMPC implementation in the physical dry
granulation process controlling GSD, several challenges must be
addressed. Firstly, the availability of real-time GSD measurements is
essential. Although attempts have been made to install a camera-based
system in the pilot plant, the occurrence of powder fouling hinders
measurement robustness. Despite the utilization of an air purging sys-
tem, the fouling still compromises the accuracy of the measurement. To
overcome this challenge, one possible solution is to incorporate at-line
measurements, such as the Canty Solidizer, and implement an auto-
mated granule sampling approach to obtain GSD measurements. In
addition, remote control of the rotor screen gap via the DCS is necessary.
For the roller compactor used in this study, the rotor screen gap can only
be adjusted through the local control panel’s human-machine interface.
By allowing remote control via the DCS, the NMPC framework could
fully control the entire GSD.

6. Conclusions

The hybrid model effectively predicts three critical outputs in the dry
granulation process: ribbon solid fraction, mass throughput, and GSD.
This model integrates a mechanistic roll compaction model with a
neural network-based ribbon milling model. The assessment of the
hybrid model reveals that incorporating a roll gap compensation term
not only aids in estimating a realistic ribbon relaxation factor but also
enhances the model’s accuracy in predicting ribbon solid fraction and
mass throughput. Furthermore, the model employs five bimodal Weibull
distribution parameters to comprehensively describe the entire GSD,
reducing the complexity of model output variables and providing a clear
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Fig. 12. NMPC performance of integrated dry granulation process including three process inputs (a-c) and seven process outputs (d-j).

understanding of how process parameters influence GSD. Reducing the
proportion of fines can be achieved by increasing the lower screen size
and ribbon solid fraction or decreasing the rotor screen gap. Utilizing the
proposed hybrid model, NMPC was successfully implemented to control
the dry granulation process effectively. The efficacy of NMPC was
demonstrated in two case studies. The first experimental case study
validated NMPC’s ability to control mass flow rate and ribbon solid
fraction, provided by the proposed NIR analysis approach to select stable
spectra. Moreover, in the second simulated case study, NMPC demon-
strated its ability to handle the entire GSD, rather than relying on a
representative size value like the median size. This simulated case study
showed how NMPC can handle a non-square system, again providing the
motivation to use NMPC instead of traditional open-loop control.

In future work, it is essential to incorporate constraints when
improving the ribbon milling model. The current limitation of the neural
network model is that if the operating conditions deviate significantly
from the training data set, the predicted GSD may violate the limitations
imposed by the bimodal Weibull distribution. In addition, efforts should
be made to enhance the accuracy in predicting smaller size percentiles
because the percentage of fines can impact tabletability. Furthermore,
additional modeling work is required to establish the relationship be-
tween granule properties and tablet properties. By integrating such a
model, NMPC can be effectively implemented on an end-to-end dry
granulation-based tableting line.
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