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Abstract— Recently, the pharmaceutical manufacturing is 

going through a transition from classic batch manufacturing to 

continuous manufacturing, that is a faster as well as a more 

effective approach. The presented work establishes the 

foundation for cutting-edge advanced Quality-by-Control 

model-based predictive control strategies applied on a 

continuous manufacturing rotary tablet press process. 

Advanced model predictive control strategies are capable in 

facilitating the switch to Industry 4.0 by assuring a Quality-by-

Control approach. To control the continuous manufacturing of 

solid dosage forms within the pharma industry different 

advanced model based predictive control strategies including 

unconstrained as well as constrained MPC are developed and 

implemented. The model that is used to design the control 

strategies is calibrated and validated by using actual data taken 

from a pilot plant. The results present good performances of the 

developed controllers: increased efficiency of the process as well 

as flexibility, a decrease in the environmental impact even when 

accounting for uncertainties in the process, measurement sensor 

noise as well as disturbances 

Keywords— process control, model based predictive control, 

pharmaceuticals, rotary tablet press, Quality by Control 

I. INTRODUCTION 

The pharmaceutical industry is composed of very 
complex processes that are required to work close to 
regulatory and operational constraints which have to meet 
high standards of quality for its products. Moreover, it has a 
very unique economic and regulatory environment and it has 
to deal with highly intricate as well as integrated processes, 
product variations, uncertainty in the process/model, 
production targets that vary, and raw material variability [1–
3]. Pharmaceutical manufacturing has traditionally used a 
batch processing type of approach, in which the quality 
control is done in a quality-by-testing type of manner where 
quality of the drug product is evaluated in the last step of the 
process of each individual batch. 

Continuous manufacturing is begining to substitute batch 
manufacturing within the pharma industry. This shift is 
driven by the necessity for enhanced sustainability, cost-
effectiveness, developing economically viable routs for 
personalized medicine such as tailored treatments for smaller 
patient groups along with innovations in the latest 
manufacturing technology [4–6]. As a result of this transition 
there will be a progression towards quality-by-control (QbC) 
which is composed in the design and operation of robust 
manufacturing systems which use active process control 
systems based on robust process design. This change 
represents a significant step toward smart manufacturing [7–
11].  

The presented work represents the basis for cutting edge 
Quality-by-Control model predictive control (MPC) 
techniques for a continuous tablet manufacturing process. To 
begin with, a model of the process has to be determined, then 
using real plant data the model has to be calibrated and 
validated. This model is then used for the design of advanced 
MPCs with an emphasis on robustness, specifically in 
managing uncertainties, efficient rejection of disturbances, 
time delays that are variable, as well as explicit incorporation 
of constraints. As a result, the pharmaceutical manufacturing 
industries will benefit greatly from this, especially in light of 
the strict rules set out by the FDA (Food and Drug 
Administration). 

This paper has the following structure: the development 
of the mathematical model for the process, the model based 
predictive control method as well as the predictive algorithm 
design are presented in the second Section. The next Section 
depicts the performance analysis for the developed control 
strategies for step setpoint changes, measurement noise 
influence and disturbances rejection. Finally, Section IV 
concludes the main result of this paper. 
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Fig. 1. The control diagram of the rotary tablet press 
 

II. THEORETICAL BACKGROUND 

A. Process Model 

The lubricant/glidant feeder, as well as the the rotating 
tablet press, constitutes a crucial element in the 
pharmaceutical manufacturing industry. Its primary role is to 
decrease frictional forces and enhance powder flow 
throughout die filling, which facilitates the mechanical 
compression necessary for forming solid tablets. Mechanistic 
models are employed to monitor as well as control key tablet 
characteristics, like tensile strength and tablet porosity, by 
assessing the impact of glidants during both the die filling and 
compression phases [12].  

Equation (1) is applied to calculate the convex tablet 
weight (W), considering the shallow cup depth of the Natoli 
D-type tooling 

 =  1 − 



+ 


    (1) 

 

In equation (1) Vfill , ρb,, Hfill, nT, nF, and D are the die cavity 
volume, powder bulk density, dose position, turret speed, feed 
frame speed, and the die diameter.The parameters ξ1 and ξ2 
represent model parameters which are determined from 
experimental data. The bulk density is influenced by the 
glidant concentration and the mixing conditions. For Natoli D-
type tooling, the die cavity volume is determined using the 
following expression: 

2
2
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fill

fill

D
h h
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V

π
π

 
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 
= +       (2) 

, h denotes the cup depth. To calculate the production rate of 

the tablet, (
tabletm& ) the following equation is used: 

 

  = ,                       (3) 
 

where Nstation denotes the number of the turret stations that are 
accessible.To compute the pre-compression force (PCF) we 
will use: 

( )

2

4 1

pc

c
pc pc

c

D
F

b a

ρ ρπ

ρ ρ

 −
=  

− + 

           (4) 

The constants a and b denote the Kawakita constants [13]. 
The critical density is ρc and ρpc, corresponds to the relative 
density during pre-compression, determined using: 

pc

pc

t

W
p

V ρ
=  (5) 

and 
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4

4 3

pc
pc

D
h h
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V

π
π

 
+ 

 
= +         (6) 

Hpc is the true powder density, while ρt defines the thickness 
of the pre-compression. As a result, the main compression 
force (Fpunch), is calculated with:  

( )

2

4 1

in die

c
punch in die

c

D
F

b a

ρ ρπ

ρ ρ

−

−

 −
= +  

− + 
       (7) 

The in-die relative density ρin-die is obtained by the subsequent 
relation: 
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and  
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The thickness during main compression, Hin-die is utilized to 
calculate the tablet density ρtablet, through the elastic recovery, 

ερ: 

( )1tablet in die

ρρ ε ρ −= − .  (10)  

 
Mixing conditions of the glidant have minimal effect on 

the elastic recovery, which is determined using: 

,

0

,1

in die

c

c

ε

ρ

ε

ρ ρ
ε ε

ρ

− −
=

−
                      (11) 

The relative density without elastic recovery is denoted by ρc,ε 
while the in-die elastic recovery when at full contraction is ε0. 
Tensile strength σt which is influenced by lubricant 
conditions, is calculated using the expression: 
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.   (12) 

The parameter σ0 represents tensile strength at zero porosity, 
while σc, σt represents the relative critical densities if no tensile 
strength is exhibited by the tablets. 

The concentration of the glidant cl dependent on bulk density, 
is determined through the following equation: 

, , 0

,
1

b b

b b

p

p p
p p

C

∞

∞

−
= −

+
        (13) 

ρb,0 and ρb,∞ denote bulk densities at zero and infinite shear 
strain, respectively. The lumped parameter Cp reflecting 
glidant conditions, can be calculated using: 

( ) 21

0

3

rr

l

p

c
C

r

γ γ+
=   (14) 

γ represents the shear applied on the powder during mixing 
and γ0 represents initial shear strain prior to mixing. 
Moreover, parameters r1, r2, and r3 are fitting parameters. 

For this study, a Natoli NP-400 tablet press as well as a 
SOTAX AT4 tablet tester are utilized for the production of 
tablets as well as  for data experiment data collection that are 
performed under steady-state conditions. To estimate actual 
model parameters, which were subsequently used to calibrate 
and refine the model for simulation purposes, data collected 
from the performed experiments is used. 

B. Extended Prediction Self Adaptive Control 

Figure 1 illustrates the hierarchical control system layers 
developed for the study. The Model Predictive Control (MPC) 

was implemented using the Extended Prediction Self 
Adaptive Controller (EPSAC) method, as detailed in [14]. 
The predictive control algorithm has four inputs and also four 
outputs. The control algorithm was derived through the 
minimization of the cost function: 

  =    +  −  + 








+    λ ∙  + |







     15 

 

where U represents a vector containing the controller outputs, 
ri represents the setpoints sequences, ui represent the 
controller outputs/process inputs and yi represent the outputs 
of the process. 

If J(U) is minimized with respect to the U vector, the 
optimal problem solution is given, and the current control 
actions can be determined for unconstrained conditions. 

When process constraints are present, the control action 
calculation becomes a constrained optimization problem, 
represented as (15) subjected to a linear form inequality 
A∙U<b, where A represents a predefined matrix and b a 
predefined vector, both dependent on the considered 
constraints. This optimization task, known as quadratic 
programming, is commonly addressed using quadratic 
programming methods. Constrained optimization typically 
delivers superior results compared to basic clipping 
procedures [14]. 

C. Control Design 

To design the predictive control algorithm, the following 
parameters were used: the control horizons of the four outputs 
Nui=1 and the process output prediction horizons N21=5, N22= 
N23= N24=10. To select the output control horizons as well as 
the prediction horizons one must consider the process 
characteristics and the requested closed-loop performances. 
For the case where we have processes that do not have 
unstable or underdamped poles, such as the current case, 
Nu=1 is usually adequate when Nu is set up. Measured data is 
obtained from the plant at every 1 second therefore the 
sampling time was set up to Ts = 1 second. All manipulated 
inputs will be subject to constraints. One of the most important 
advantages in using model predictive controllers is that is the 
seamlessly integration of these constraints. The specific 
constraints applied to the manipulated inputs for the process 
include: dosing position, which can be in the range [6mm - 
14mm], pre-compression thickness which can be in the range 
[0.5mm - 14mm], main compression thickness which can be 
in the range [0.5mm - 6mm], and turret speed which can be in 
the range [0 rpm - 60 rpm]. 

III. RESULTS 

This study implements the process mathematical model 
described in Section II.A, which involves four inputs of the 
process and four outputs. A toolbox of the MATLAB (System 
Identification) is utilized to develop a linear process model 
with multiple inputs and multiple outputs (MIMO). This linear 
representation is subsequently employed for the predictive 
controller design. The predictive algorithm controls four key 
variables of the process: the weight of the tablet (Twei), the 
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pre-compression force (Pcom), the rate of production (Prod), 
and tensile strength (Tstr). The controller outputs/process 
inputs include dosing position (Dose), pre-compression 
thickness (Ptck), main compression thickness (Mtck), and 
turret speed (Tret). For the strength of the tensile, sensor 
measurements are recorded every second. The process 
parameters used in this model, determined using extensive 
experimental measurements, include: ρb=0.365 [g/cm3], ρc= 
0.26, a = 0.81, 1/b= 10.26 [Mpa], ε0= 0.08, ρt = 1.532 [g/cm3], 
ρc,ε, = 0.57, ρ0=0.57, ρ∞=0.61, σ0 = 11.67 [Mpa], b1 = 0.31, b1 
= 0.38, b1 = 8.4, ρb,∞ = 0.45 [g/cm3], ρb,0 = 0.33 [g/cm3], r1 = 
0.36, r2 = 1.384, r3 =23.319, ξ1 = 0.036,  ξ2 = 0.03.  

A. Setpoint tracking 

The performances of the control strategy designed in this 
work is evaluated through setpoint changes. At time t = 50 
seconds, the tablet weight setpoint shifts from 0.225 g to 0.255 
g; at the moment t = 100 seconds, the pre-compression force 
changes from 370 N to 670 kN; at t = 200 seconds, the 
production rate increases to 8.4 kg/h from a value of 7.4 kg/h; 
and at t=300 seconds, the tensile strength setpoint rises from 
5.6 MPa to a value of 6.4 MPa. 

One of the biggest advantages in using model predictive 
controllers is their capability of incorporating constraints 
explicitly. For a more in depth understanding of the 
differences of the unconstrained and constrained MPC two 
cases are considered for setpoint changes in this work: (i) 
unconstrained MPC, presented in Figure 2 and 3 and (i) 
constrained MPC, presented in Figure 4 and 5. 

Fig. 2 and 3 depict the response of the closed loop system 
to changes in the setpoint using the unconstraint EPSAC 
controller when no noise is present in the measured outputs. 
Fig. 2 highlights the step response for the controlled variables, 
revealing the interdependence of the outputs. A change in one 
output influences the others, which is observable in both 
constrained and unconstrained MPCs. Fig. 3 demonstrates the 
control action, where the strongest effect on all outputs is 
triggered by a tablet weight setpoint change at 50 seconds. For 
the unconstrained case it can be observed from Fig 3 that the 
outputs have no limits on them therefore the control strategies 
present a fast response time. 

 
Fig. 2. No constraints reference tracking - process outputs  

 

 

Fig. 3. No constraints reference tracking - controller outputs. 

The response of the closed-loop system when dealing with 
setpoint changes under the constrained EPSAC control, 
without noise in the measured outputs, is presented in Fig. 4 
and 5. If constraints are incorporated in the model of the 
controller, the compensation speed for the applied step 
changes increases. Moreover since the control actions are 
limited to certain values and the process is highly 
interconnected the controller will try to compensate for this by 
making changes in the other control actions. 

The EPSAC controller shows favourable performance, 
characterized by fast settling times, minimal undershoot and 
overshoot, and accurate reference tracking during consecutive 
reference changes. Being a multivariable control algorithm, it 
effectively manages input-output interdependencies, 
minimizing deviations from setpoints in other outputs when 
one output's reference changes. 

Under constrained MPC conditions, the controller outputs 
stay within predefined limits. All changes presented in this 
work are both feasible and realistic within the regular 
operating circumstances of the considered process. 

 
Fig. 4. Constraint reference tracking– process outputs  
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Fig. 5. Constraint reference tracking - controller outputs  

 

B. Disturbance Rejection and Noise Influence 

For an in-depth analysis of the closed-loop performances, 
transducers measurement noise is introduced into the process. 
For the noise simulation, a normally distributed zero mean and 
variance determined using historical plant data is included in 
the variability of the real sensor. Fig. 6 and 7 depict the 
controller performance results for the controlled variables as 
well as the control actions, respectively. It can be observed 
that despite the presence of noise, the developed EPSAC 
controller presents good performances, maintaining good 
dynamic and steady-state performance. If the design 
parameters are appropriately selected the oscillations that arise 
from the measurement noise can be attenuated while also 
keeping a balance between oscillations amplitude and the 
response time. To dampen these oscillations for all the 
controlled variables, controller aggressiveness on the 
corresponding loops has to be reduced which can be done by 
selecting suitable design parameters. 

 

Fig. 6. Reference tracking – process outputs noisily  

 
Fig. 7. Reference tracking – controller outputs considering the measurement 

noise  

Monitoring the density of the powder bulk is critical in 
rotary tablet press operations, because it impacts the tablet 
characteristics. Moreover, disturbances may arise at any point 
and through any of the upstream unit operation such as: inside 
the feeder unit operation, throughout refill, while the feeder 
switches between gravimetric and volumetric mode. This can 
result in bulk density changes, either through compression 
(increased density) or aeration (decreased density) [15]. To 
implement the disturbance on the density of the bulk positive 
and negative step increases in the concertation of the silica are 
given: (i) at time t=250 seconds from the nominal value of 
0.2% to 0.35% and (ii) at time t=300 seconds from 0.2% to 
0.05%. To evaluate how the controller’s performances are 
impacted by the direction of the disturbances, the chances in 
step are given in both directions.  

 

 
Fig. 8. Disturbance rejection – process outputs with sensor measurement 
noise  
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Fig. 9. Disturbance rejection - controller outputs with sensor 

measurement noise  

The closed loop responses of the outputs of the process as 
well as the manipulated variables in the presence of these 
disturbances are presented in Fig. 8 and Fig. 9. The developed 
EPSAC control strategy shows good performances under 
disturbances, by bringing back the process to the imposed 
setpoint values. 

To increase the performances of the controller, the model 
predictive controller can be given different tunning 
parameters. The aggressiveness and fast response of the 
developed controller response can be changed by choosing 
different prediction horizons and different penalties for the 
control actions. 

IV. CONCLUSIONS 

In alignment with the goals of Industry 4.0 and the 
transition to smart manufacturing, the pharmaceutical 
industry must adopt a Quality-by-Control approach. This 
research aims to develop, implement, and evaluate advanced 
model-based predictive control strategies for continuous 
pharmaceutical manufacturing in rotary tablet press 
processes, employing the Quality-by-Control paradigm. 

The EPSAC model predictive controller developed in this 
study is implemented in a simulation environment using a 
high-fidelity model, that has been validated and calibrated 

with pilot plant data. The controller’s performance is assessed 
under both constrained and unconstrained conditions, 
focusing on (i) setpoint changes (e.g., variations in dosing 
position, pre-compression thickness, main compression 
thickness, and turret speed), (ii) sensor noise rejection, and 
(iii) bulk density disturbance rejection. 

The developed EPSAC control strategies exhibit strong 
performance, with rapid settling times, minimal overshoot or 
undershoot, and no offset errors. These results hold true even 
under the influence of sensor noise and process disturbances, 
indicating enhanced process efficiency, greater flexibility, as 
well as a decreased environmental impact. The controller 
demonstrates robust performance even under uncertainties, 
noise, and disturbances, contributing to improved process 
reliability. 
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