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Abstract— Recently, the pharmaceutical manufacturing is
going through a transition from classic batch manufacturing to
continuous manufacturing, that is a faster as well as a more
effective approach. The presented work establishes the
foundation for cutting-edge advanced Quality-by-Control
model-based predictive control strategies applied on a
continuous manufacturing rotary tablet press process.
Advanced model predictive control strategies are capable in
facilitating the switch to Industry 4.0 by assuring a Quality-by-
Control approach. To control the continuous manufacturing of
solid dosage forms within the pharma industry different
advanced model based predictive control strategies including
unconstrained as well as constrained MPC are developed and
implemented. The model that is used to design the control
strategies is calibrated and validated by using actual data taken
from a pilot plant. The results present good performances of the
developed controllers: increased efficiency of the process as well
as flexibility, a decrease in the environmental impact even when
accounting for uncertainties in the process, measurement sensor
noise as well as disturbances

Keywords— process control, model based predictive control,
Pharmaceuticals, rotary tablet press, Quality by Control

I. INTRODUCTION

The pharmaceutical industry is composed of very
complex processes that are required to work close to
regulatory and operational constraints which have to meet
high standards of quality for its products. Moreover, it has a
very unique economic and regulatory environment and it has
to deal with highly intricate as well as integrated processes,
product variations, uncertainty in the process/model,
production targets that vary, and raw material variability [1—
3]. Pharmaceutical manufacturing has traditionally used a
batch processing type of approach, in which the quality
control is done in a quality-by-testing type of manner where
quality of the drug product is evaluated in the last step of the
process of each individual batch.
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Continuous manufacturing is begining to substitute batch
manufacturing within the pharma industry. This shift is
driven by the necessity for enhanced sustainability, cost-
effectiveness, developing economically viable routs for
personalized medicine such as tailored treatments for smaller
patient groups along with innovations in the latest
manufacturing technology [4—6]. As a result of this transition
there will be a progression towards quality-by-control (QbC)
which is composed in the design and operation of robust
manufacturing systems which use active process control
systems based on robust process design. This change
represents a significant step toward smart manufacturing [7—
11].

The presented work represents the basis for cutting edge
Quality-by-Control model predictive control (MPC)
techniques for a continuous tablet manufacturing process. To
begin with, a model of the process has to be determined, then
using real plant data the model has to be calibrated and
validated. This model is then used for the design of advanced
MPCs with an emphasis on robustness, specifically in
managing uncertainties, efficient rejection of disturbances,
time delays that are variable, as well as explicit incorporation
of constraints. As a result, the pharmaceutical manufacturing
industries will benefit greatly from this, especially in light of
the strict rules set out by the FDA (Food and Drug
Administration).

This paper has the following structure: the development
of the mathematical model for the process, the model based
predictive control method as well as the predictive algorithm
design are presented in the second Section. The next Section
depicts the performance analysis for the developed control
strategies for step setpoint changes, measurement noise
influence and disturbances rejection. Finally, Section IV
concludes the main result of this paper.
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Fig. 1. The control diagram of the rotary tablet press
II. THEORETICAL BACKGROUND .
Meablet = WntNstations (3)

A. Process Model

The lubricant/glidant feeder, as well as the the rotating
tablet press, constitutes a crucial element in the
pharmaceutical manufacturing industry. Its primary role is to
decrease frictional forces and enhance powder flow
throughout die filling, which facilitates the mechanical
compression necessary for forming solid tablets. Mechanistic
models are employed to monitor as well as control key tablet
characteristics, like tensile strength and tablet porosity, by
assessing the impact of glidants during both the die filling and
compression phases [12].

Equation (1) is applied to calculate the convex tablet
weight (W), considering the shallow cup depth of the Natoli
D-type tooling

Hpi
W = ppVen (1—512—;"‘52%) (1)

In equation (1) Vs, pr,, Hpn, nr, nr, and D are the die cavity
volume, powder bulk density, dose position, turret speed, feed
frame speed, and the die diameter.The parameters 1 and &2
represent model parameters which are determined from
experimental data. The bulk density is influenced by the
glidant concentration and the mixing conditions. For Natoli D-
type tooling, the die cavity volume is determined using the
following expression:

2
s ah| 2Py
_7rD H/‘fll+ 4

V/'ill 4 6
, h denotes the cup depth. To calculate the production rate of
the tablet, (m ) the following equation is used:

@)

tablet

where Nyarion denotes the number of the turret stations that are
accessible.To compute the pre-compression force (PCF) we
will use:

=7Z'D2 P’ —p, (4)
P 4b | pP(a-1)+p,

The constants a and b denote the Kawakita constants [13].
The critical density is p. and p*¢, corresponds to the relative
density during pre-compression, determined using:

.w
pr=—r=0
Vep,

and

3D?

+h2)
(6)

HP< is the true powder density, while p, defines the thickness
of the pre-compression. As a result, the main compression
force (Fpunch), 1s calculated with:

zD’
Fpunch = +|:

, .. Th
. TD H"
= +
4 3

Ve

in—die __
in—ISie pc (7)
p" (a=1)+p,

The in-die relative density p"“¢ is obtained by the subsequent
relation:

4b
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The thickness during main compression, H"-%¢ is utilized to
calculate the tablet density p™@**, through the elastic recovery,
&)t

in—die

plablet — (1 _ gp )p (10)

Mixing conditions of the glidant have minimal effect on
the elastic recovery, which is determined using:

in—die

p _pc,é‘
1_pc,8

The relative density without elastic recovery is denoted by pc,
while the in-die elastic recovery when at full contraction is &.
Tensile strength o; which is influenced by lubricant
conditions, is calculated using the expression:

_ tablet tablet _
o =0, 1—{11”7]3(” pea) | (12)

E,=&, (11)

The parameter oy represents tensile strength at zero porosity,
while o, - represents the relative critical densities if no tensile
strength is exhibited by the tablets.

The concentration of the glidant ¢; dependent on bulk density,
is determined through the following equation:

Py T Pho

(13)
1+Cp

Py = Ppo

pr0 and pp . denote bulk densities at zero and infinite shear
strain, respectively. The Iumped parameter Cp reflecting
glidant conditions, can be calculated using:

4

y represents the shear applied on the powder during mixing
and yp represents initial shear strain prior to mixing.
Moreover, parameters r;, r2, and r3 are fitting parameters.

For this study, a Natoli NP-400 tablet press as well as a
SOTAX AT4 tablet tester are utilized for the production of
tablets as well as for data experiment data collection that are
performed under steady-state conditions. To estimate actual
model parameters, which were subsequently used to calibrate
and refine the model for simulation purposes, data collected
from the performed experiments is used.

B. Extended Prediction Self Adaptive Control

Figure 1 illustrates the hierarchical control system layers
developed for the study. The Model Predictive Control (MPC)

was implemented using the Extended Prediction Self
Adaptive Controller (EPSAC) method, as detailed in [14].
The predictive control algorithm has four inputs and also four
outputs. The control algorithm was derived through the
minimization of the cost function:

JW =" ) I+ =yt + P
i=1 k=Nqj
4 Nyj—-1

£ N [+ ko] as)
j=1 k=0

where U represents a vector containing the controller outputs,
r; represents the setpoints sequences, u; represent the
controller outputs/process inputs and y; represent the outputs
of the process.

If J(U) is minimized with respect to the U vector, the
optimal problem solution is given, and the current control
actions can be determined for unconstrained conditions.

When process constraints are present, the control action
calculation becomes a constrained optimization problem,
represented as (15) subjected to a linear form inequality
A-U<b, where A4 represents a predefined matrix and b a
predefined vector, both dependent on the considered
constraints. This optimization task, known as quadratic
programming, is commonly addressed using quadratic
programming methods. Constrained optimization typically
delivers superior results compared to basic clipping
procedures [14].

C. Control Design

To design the predictive control algorithm, the following
parameters were used: the control horizons of the four outputs
N,i=1 and the process output prediction horizons N2;=5, N2»=
N23= N24=10. To select the output control horizons as well as
the prediction horizons one must consider the process
characteristics and the requested closed-loop performances.
For the case where we have processes that do not have
unstable or underdamped poles, such as the current case,
Nu=1 is usually adequate when N, is set up. Measured data is
obtained from the plant at every 1 second therefore the
sampling time was set up to Ts = 1 second. All manipulated
inputs will be subject to constraints. One of the most important
advantages in using model predictive controllers is that is the
seamlessly integration of these constraints. The specific
constraints applied to the manipulated inputs for the process
include: dosing position, which can be in the range [6mm -
14mm], pre-compression thickness which can be in the range
[0.5mm - 14mm], main compression thickness which can be
in the range [0.5mm - 6mm], and turret speed which can be in
the range [0 rpm - 60 rpm].

III. RESULTS

This study implements the process mathematical model
described in Section II.A, which involves four inputs of the
process and four outputs. A toolbox of the MATLAB (System
Identification) is utilized to develop a linear process model
with multiple inputs and multiple outputs (MIMO). This linear
representation is subsequently employed for the predictive
controller design. The predictive algorithm controls four key
variables of the process: the weight of the tablet (Twei), the
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pre-compression force (Pcom), the rate of production (Prod),
and tensile strength (Tstr). The controller outputs/process
inputs include dosing position (Dose), pre-compression
thickness (Ptck), main compression thickness (Mtck), and
turret speed (Tret). For the strength of the tensile, sensor
measurements are recorded every second. The process
parameters used in this model, determined using extensive
experimental measurements, include: p»=0.365 [g/cm?®], p=
0.26,a=0.81, 1/b=10.26 [Mpa], &= 0.08, p,= 1.532 [g/em?],
Pee = 0.57, pp=0.57, p=0.61, 0o = 11.67 [Mpa], b; = 0.31, b;
=0.38, b; = 8.4, pyw = 0.45 [glem?], pyo = 0.33 [g/em’], r1=
0.36, r>=1.384, r3=23.319, & = 0.036, & =0.03.

A. Setpoint tracking

The performances of the control strategy designed in this
work is evaluated through setpoint changes. At time t = 50
seconds, the tablet weight setpoint shifts from 0.225 g to 0.255
g; at the moment t = 100 seconds, the pre-compression force
changes from 370 N to 670 kN; at t = 200 seconds, the
production rate increases to 8.4 kg/h from a value of 7.4 kg/h;
and at t=300 seconds, the tensile strength setpoint rises from
5.6 MPa to a value of 6.4 MPa.

One of the biggest advantages in using model predictive
controllers is their capability of incorporating constraints
explicitly. For a more in depth understanding of the
differences of the unconstrained and constrained MPC two
cases are considered for setpoint changes in this work: (i)
unconstrained MPC, presented in Figure 2 and 3 and (i)
constrained MPC, presented in Figure 4 and 5.

Fig. 2 and 3 depict the response of the closed loop system
to changes in the setpoint using the unconstraint EPSAC
controller when no noise is present in the measured outputs.
Fig. 2 highlights the step response for the controlled variables,
revealing the interdependence of the outputs. A change in one
output influences the others, which is observable in both
constrained and unconstrained MPCs. Fig. 3 demonstrates the
control action, where the strongest effect on all outputs is
triggered by a tablet weight setpoint change at 50 seconds. For
the unconstrained case it can be observed from Fig 3 that the
outputs have no limits on them therefore the control strategies
present a fast response time.
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The response of the closed-loop system when dealing with
setpoint changes under the constrained EPSAC control,
without noise in the measured outputs, is presented in Fig. 4
and 5. If constraints are incorporated in the model of the
controller, the compensation speed for the applied step
changes increases. Moreover since the control actions are
limited to certain values and the process is highly
interconnected the controller will try to compensate for this by
making changes in the other control actions.

The EPSAC controller shows favourable performance,
characterized by fast settling times, minimal undershoot and
overshoot, and accurate reference tracking during consecutive
reference changes. Being a multivariable control algorithm, it
effectively manages input-output interdependencies,
minimizing deviations from setpoints in other outputs when
one output's reference changes.

Under constrained MPC conditions, the controller outputs
stay within predefined limits. All changes presented in this
work are both feasible and realistic within the regular
operating circumstances of the considered process.
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B. Disturbance Rejection and Noise Influence

For an in-depth analysis of the closed-loop performances,
transducers measurement noise is introduced into the process.
For the noise simulation, a normally distributed zero mean and
variance determined using historical plant data is included in
the variability of the real sensor. Fig. 6 and 7 depict the
controller performance results for the controlled variables as
well as the control actions, respectively. It can be observed
that despite the presence of noise, the developed EPSAC
controller presents good performances, maintaining good
dynamic and steady-state performance. If the design
parameters are appropriately selected the oscillations that arise
from the measurement noise can be attenuated while also
keeping a balance between oscillations amplitude and the
response time. To dampen these oscillations for all the
controlled variables, controller aggressiveness on the
corresponding loops has to be reduced which can be done by
selecting suitable design parameters.
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Monitoring the density of the powder bulk is critical in
rotary tablet press operations, because it impacts the tablet
characteristics. Moreover, disturbances may arise at any point
and through any of the upstream unit operation such as: inside
the feeder unit operation, throughout refill, while the feeder
switches between gravimetric and volumetric mode. This can
result in bulk density changes, either through compression
(increased density) or aeration (decreased density) [15]. To
implement the disturbance on the density of the bulk positive
and negative step increases in the concertation of the silica are
given: (i) at time t=250 seconds from the nominal value of
0.2% to 0.35% and (ii) at time t=300 seconds from 0.2% to
0.05%. To evaluate how the controller’s performances are
impacted by the direction of the disturbances, the chances in
step are given in both directions.
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The closed loop responses of the outputs of the process as
well as the manipulated variables in the presence of these
disturbances are presented in Fig. 8 and Fig. 9. The developed
EPSAC control strategy shows good performances under
disturbances, by bringing back the process to the imposed
setpoint values.

To increase the performances of the controller, the model
predictive controller can be given different tunning
parameters. The aggressiveness and fast response of the
developed controller response can be changed by choosing
different prediction horizons and different penalties for the
control actions.

IV. CONCLUSIONS

In alignment with the goals of Industry 4.0 and the
transition to smart manufacturing, the pharmaceutical
industry must adopt a Quality-by-Control approach. This
research aims to develop, implement, and evaluate advanced
model-based predictive control strategies for continuous
pharmaceutical manufacturing in rotary tablet press
processes, employing the Quality-by-Control paradigm.

The EPSAC model predictive controller developed in this
study is implemented in a simulation environment using a
high-fidelity model, that has been validated and calibrated

with pilot plant data. The controller’s performance is assessed
under both constrained and unconstrained conditions,
focusing on (i) setpoint changes (e.g., variations in dosing
position, pre-compression thickness, main compression
thickness, and turret speed), (ii) sensor noise rejection, and
(ii1) bulk density disturbance rejection.

The developed EPSAC control strategies exhibit strong
performance, with rapid settling times, minimal overshoot or
undershoot, and no offset errors. These results hold true even
under the influence of sensor noise and process disturbances,
indicating enhanced process efficiency, greater flexibility, as
well as a decreased environmental impact. The controller
demonstrates robust performance even under uncertainties,
noise, and disturbances, contributing to improved process
reliability.

REFERENCES

[1]1 Q. Su, S. Ganesh, D.B. Le Vo, A. Nukala, Y. Bommireddy, M. Gonzalez,
G.V. Reklaitis, Z.K. Nagy, ESCAPE 46 (2019) 1327-1332.

[2] Y. Chen, P. Bhalode, Y. Ou, M. lerapetritou, in: Y. Yamashita, M. Kano
(Eds.), Computer Aided Chemical Engineering, Elsevier, 2022, pp. 21-24.
[3] Y.-S. Huang, M.Z. Sheriff, S. Bachawala, M. Gonzalez, Z.K. Nagy, G.V.
Reklaitis, in: Y. Yamashita, M. Kano (Eds.), Computer Aided Chemical
Engineering, Elsevier, 2022, pp. 2149-2154.

[4] 1. Nascu, N.A. Diangelakis, S.G. Muiioz, E.N. Pistikopoulos, Computers
& Chemical Engineering 173 (2023) 108212.

[5] F. Destro, M. Barolo, International Journal of Pharmaceutics 620 (2022)
121715.

[6] L. Nascu, N.A. Diangelakis, E.N. Pistikopoulos, in: L. Montastruc, S.
Negny (Eds.), Computer Aided Chemical Engineering, Elsevier, 2022, pp.
1159-1164.

[7]1 Q. Su, S. Ganesh, M. Moreno, Y. Bommireddy, M. Gonzalez, G.V.
Reklaitis, Z.K. Nagy, Computers & Chemical Engineering 125 (2019) 216—
231.

[8] I. Nascu, N. Diangelakis, Y.-S. Huang, Z. Nagy, 1. Birs, 1. Nascu, in:
2023, pp. 3540-3545.

[9]1 N. Diangelakis, I. Pappas, E. Pistikopoulos, in: 2023, pp. 1711-1716.
[10] E.N. Pistikopoulos, A. Barbosa-Povoa, J.H. Lee, R. Misener, A. Mitsos,
G.V. Reklaitis, V. Venkatasubramanian, F. You, R. Gani, Computers &
Chemical Engineering 147 (2021) 107252.

[11] M. Ierapetritou, G. Reklaitis, F. Muzzio, AIChE Journal 62 (2016) n/a-
n/a.

[12] R.Z.C. de Meira, A.B. Maciel, F.S. Murakami, P.R. de Oliveira, L.S.
Bernardi, Int J Anal Chem 2017 (2017) 2951529.

[13] K. Kawakita, K.-H. Liidde, Powder Technology 4 (1971) 61-68.

[14] R. De Keyser, Invited Chapter in UNESCO Encyclopaedia of Life
Support Systems (EoLSS) Article contribution 6.43.16.1 (2003).

[15] C.A. Blackshields, A.M. Crean, Pharm Dev Technol 23 (2018) 554—
560.

Authorized licensed use limited to: Purdue University. Downloaded on January 06,2026 at 20:38:48 UTC from IEEE Xplore. Restrictions apply.



