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Abstract 
The diagnosis of faults is crucial to ensure process safety and increased product quality. 
Faults can emerge with time across different unit operations due to changes in the process 
that the process controllers are unable to handle appropriately. This undesirable 
divergence in the variables of the system is found to adversely affect the product quality 
in process industries. In this work, a deep neural network (DNN) model driven by feature 
engineering on the process dataset using genetic programming is developed to classify 
faults in a process system. Feature extraction and construction using process data is 
carried out before the transformed features are used for fault diagnosis in a DNN. The 
DNN model performs fault diagnostics on the process data that contains the normal 
operating conditions and the abnormal operating conditions which arise due to variations 
in the characteristic quality of the system. The genetic programming driven DNN 
methodology is illustrated on a benchmark chemical process, where its effectiveness is 
evaluated by classifying faults in the Tennessee Eastman Process (TEP) and is compared 
against existing methodologies. 
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1. Introduction
Fault diagnosis refers to the identification of abnormality present in a system which 
implies determining the type, location, magnitude and time of the fault (Isermann R., 
1995). Therefore, a fault diagnosis methodology is essential for the elimination of faults. 
Several fault diagnosis methods have been proposed in the past and the approaches can 
be broadly categorized into three types namely quantitative model methods, qualitative 
model methods, and data driven methods (Venkatasubramanian et al., 2003b). The first 
two model methods are integrated with a priori domain knowledge which is derived from 
a fundamental understanding of the process dynamics. On the other hand, data driven 
methods require large amounts of process data. However, with the increase in complexity 
of modern processes, creating a mathematical model that accurately represents the 
dynamic behavior of the system becomes increasingly difficult. Therefore, data-driven 
methods, which depend on process data are getting increased attention 
(Venkatasubramanian et al., 2003a).  
The most crucial step in data driven methods is the feature extraction process which 
allows the transformation and conversion of the process data as priori knowledge to the 
fault diagnosis system. The transformed data can be used by the data driven model for 
fault diagnosis of the system by describing itself as a classification problem. Deep neutral 
networks (DNN) are a prominent data driven tool and has received significant interest in 
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machine learning community as a preferred method for monitoring of process systems. 
However, instead of using raw process data as an input to DNNs, the efficiency of this 
data driven method can be increased multifold by filtering out redundant and irrelevant 
information present in the process data, while reducing computational cost during the 
classification of faults. This can be carried out by using a suitable feature engineering step 
which essentially retains useful process variables and also constructs new features from 
the data. 
In this work, we propose a genetic programming (GP)-based methodology for 
construction/extraction of features from raw process data for classification of faults. The 
effectiveness of the approach is tested on a benchmark chemical process for fault 
diagnosis, the Tennessee Eastman process (TEP) as an illustrative example and the 
performance of the approach is compared with other data driven methods. 

2. Proposed methodology
Genetic programming (GP) is an evolutionary computation (EC) technique and a popular 
feature construction method. GP automatically and adaptably constructs high level 
features from low level ones using variable length tree-based representation. GP usually 
generates programs for feature construction using operators (like +, −, and ×) and given 
initial features (Vouk et al., 2023). The use of GP allows to gain insight into what features 
are important for construction and why the features that are constructed work well by 
interpreting the tree-based solutions of GP. These benefits have led to the development 
of many GP techniques that have shown promise in feature construction across a range 
of applications and therefore has been deployed in the current study. Figure 1 shows an 
example of a GP program which represents a mathematical expression (x1 – (x2 × x3)) + 
(x4 / x5), where the intermediate nodes (i.e., +, -, /, etc.) belong to the function set and 
leaf nodes such as arguments x1, x2, etc. belongs to the terminal set which can be 
associated with the process dataset in the current study. 

The GP based feature extractor starts with randomly initializing a population of tree 
programs in the search space, each evaluated by a fitness function. The evolutionary 
process generates a new population through Elitism, Crossover, and Mutation operations 
at each generation. The Elitism operation copies the best individuals from the current 
generation to the next, while the Selection operation selects individuals with better fitness 
values for Crossover and Mutation operations (Figure 1). The process is terminated when 
a termination criterion is met, and the best GP derived tree is returned. For the fitness 
calculation of individual GP trees, DNNs are employed to evaluate the fault 
classification/diagnosis performance by the extracted and constructed features. By 

Figure 1: (a) An example of GP individual; (b) Crossover operation; (c) Mutation operation 
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utilizing DNN, the GP technique may automatically extract and create significant features 
while avoiding redundant or unnecessary features. 
The evaluation process involves standardization of the extracted/constructed features 
from the process data by the GP individuals. The standardization ensures classification 
performance without singular values or feature bias. In addition, the five-fold cross-
validation method is used to improve the generalization ability of the features. The DNN 
is fed with the standardized features and is evaluated five times, using one-fold as the test 
set and the remaining four folds for training. The average test classification results of the 
five-folds are used as the fitness value of the individual GP tree. Figure 2 shows the 
schematic of the GP-DNN model for fault diagnosis. 
1.2 Fault diagnosis as a classification problem 
The fault classification problem can be formulated as a multiclass classification problem 
where the extracted features by GP can be used as inputs to the DNNs. The performance 
of the GP-DNN model can be assessed using accuracy and confusion matrix. The 
diagonal elements of the confusion matrix can be directly used to calculate the accuracy 
which serves as the fitness value for the GP. The final GP-DNN model is tested on an 
unseen test data set to calculate the model performance. 

3. Illustrative Example – Tennessee Eastman Process
In this section, we illustrate the effectiveness of the GP-DNN model using the Tennessee 
Eastman Process (TEP). The widely used TEP first introduced by Downs and Vogel, 1993 
is a realistic chemical plant simulation tool that serves as a standard for process control 
and monitoring research (Lagare et al., 2023). The process consists of five major unit 
operations, the reactor, separator, condenser, stripper, and compressor and produces two 
products G and H, a by-product F from four reactants A, C, D, and E along with an inert 
compound B. The process data has 41 process variables and 11 manipulated variables (52 
measurement variables) and a total of 21 different fault types. The process data which is 
available in Chiang et al. (2001), provides 21 training datasets that logs process 
measurements for 24 hours. Furthermore, for a 48-hour operating period, 21 test datasets 
were generated, with the faults appearing after 8 simulation hours. 

Figure 2: The main principle of GP-DNN model for fault diagnosis 
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Table 1: Genetic programming parameters 

The GP-DNN model uses the TEP data to extract features using GP and identify the best 
GP tree which describes the selected features (process variables) in the leaf nodes and the 
constructed feature(s) in the root node (top node). The selected features and the 
constructed features are fed as inputs to the DNN after standardization of the combined 
features. The DNN uses the combined features to classify the process sample into one of 
the 21 different faults. Therefore, the approach not only allows us to select relevant 
features but also construct useful new features from the process data. Before using DNN 
for evaluating the fitness of GP individuals, the hyperparameters of the neural networks 
such as learning rate, hidden layers, neurons, optimizer, and activation function can be 
fine-tuned to increase the performance of the GP-DNN model. Therefore, a single GP-
DNN model can be used to classify faults for the TEP. 
Table 2: Deep neural network parameters 

4. Results and Discussion
Our proposed GP-DNN selects certain features (process variables) from the process 
dataset using GP and it is noteworthy that in the current work, we have constructed only 
one feature from the selected features by GP for demonstration purposes. However, even 
the addition of a single constructed feature was found to be very useful for fault diagnosis. 
The feature extraction using GP is implemented using DEAP library in python and its 
parameters like the function set, terminal set, population size, generations, and other 
parameters are mentioned in Table 1. The DNNs are optimized using Bayesian 
optimization to identify the optimal learning rate, neurons, hidden layers, and also the 
optimizer and the activation function using the TEP dataset using bayes_opt library in 
python and is shown in Table 2. 
We demonstrate the effectiveness of the proposed approach for fault diagnosis in TEP. In 
order to carry out a fair comparison between different model performances, we have 
considered studies like Jing et al., 2014 and Eslamloueyan R., 2011, where a principal 
component analysis (PCA) model and a multilayer perceptron (MLP) model are used for 
classification of all 21 faults using a single model only, respectively. The results are 
reported in Table 3 after averaging the multiclass classification accuracy for 10 simulation 
runs on the unseen TEP test data set. The accuracy of our GP-DNN model is based on 25 
extracted features (averaged across 10 simulations) from the process data along with one 
constructed feature. The following observations can be made: First, our proposed 
approach results in a higher average accuracy across all 21 faults using a single model 
which is 7% and 40% more than the PCA and MLP method, respectively; Secondly, the 
average fault diagnosis accuracy of incipient faults such as 3, 9, 15 is also relatively higher 
compared to other techniques which are very difficult to diagnose due to absence of any 
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observable changes in means, variances or peak time.  It is to be noted that both these 
findings occur with lower number of features along with a constructed feature that 
assisted in increasing the performance by identifying what kind of feature operations in 
the GP tree would result in a better discrimination of faults. The confusion matrix, which 
measures performance of classification problems, for one of the simulations using the 
GP-DNN model is shown in Figure 3. 
Table 3: Fault classification accuracy of our proposed approach against single Principal 
component analysis (PCA) model (Jing et al., 2014), single multilayer perceptron (MLP) model 
(Eslamloueyan R. 2011). 

Fault type PCA MLP GP-DNN 
1 88 81 90 
2 89 82 89 
3 21 0 49 
4 81 79 83 
5 87 73 85 
6 89 84 91 
7 88 80 89 
8 83 48 86 
9 22 0 45 

10 76 12 80 
11 70 18 81 
12 87 25 87 
13 69 15 86 
14 88 29 86 
15 26 0 46 
16 73 15 77 
17 75 52 86 
18 73 75 84 
19 85 14 71 
20 79 48 73 
21 85 0 80 

Average (%) 73 40 80 

5. Conclusions
In this study, we proposed a GP-DNN model for fault diagnosis in process systems. It 
was shown that the GP-DNN model is capable of generating useful features and reducing 
redundant information in process data used to execute fault classification. The tree-based 
GP approach allows interpretability of which process variables are useful for classifying 
faults. The optimized DNN boosts performance when appropriate features are plugged in 
giving a balance of both model interpretation and high learning speed.  The GP-DNN 
model is also compared with existing technologies for fault diagnosis and is found to 
outperform most methods when all 21 faults are considered. Therefore, feature 
engineering can be a key step in transforming process data into useful a priori domain 
knowledge which is one of the major challenges in developing data driven methods for 
fault detection and diagnosis.  

Although, the results indicating that a single GP-DNN model can be used to diagnose all 
process faults seem to be promising, numerous points need to be addressed in future work 
to improve the effectiveness. First, the DNN needs to be tuned proportional to which 
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features in process data are deemed useful and optimizing the DNN using the entire 
dataset might not be efficient. Second, instead of constructing single feature from the 
selected features by GP, multiple constructed features can be concatenated for improved 
performance, in which case, the selected features may be not be needed at all. Finally, the 
DNNs could be replaced with recurrent neural network (RNN) models that are much more 
relevant to sequential data which occurs in process industries. 

Figure 3: Confusion matrix for test data using the GP-DNN model (the axes denote the fault 
classes from 1-21) 
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