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ABSTRACT Trust is a critical factor in the safe and effective deployment of Artificial Intelligence
(AI) models in essential tasks. With AI models increasingly being employed in domains such as self-
driving cars, medicine, defense, and information technology, there is a pressing need to improve their
explainability, trustworthiness, and interpretability. Feature Visualization (FV) is an approach that generates
images to highlight the learned features of deep neural networks. However, numerous FV methods exist,
and there is currently no standard framework to evaluate their effectiveness in improving model trust.
This paper introduces a novel method, Integrating Activations to Evaluate Faithfulness (IntActEval), which
quantitatively assesses FV methods by analyzing the faithfulness and accuracy of their visualizations to
the model itself. We examined five FV methods across seven convolutional neural network (CNN) models.
The Vanilla (unregularized) and Gaussian Noise (regularized) FV techniques produced the most faithful
explanations for all seven models, with statistical significance for the tested data. In our CNN experiments,
robustly trained models achieve the most plausible results. This paper provides a general guide to current
FV methods and identifies the most reliable and effective techniques for enhancing the debugging and
improvement of AI models.

INDEX TERMS Explainability, robustness, feature visualization, faithfulness.

I. INTRODUCTION AND MOTIVATION
Machine learning (ML) and artificial intelligence (AI) have
positively influenced the global economy and have rapidly
gained interest from companies, universities, healthcare insti-
tutions, government agencies, and the general public in the
past decade. Its use in our daily lives is only accelerating with
widespread applications that include but are not limited to
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biometrics [1], finance [2], online shopping [3], self-driving
cars [4], healthcare [5], [6], autonomous drones to deliver
shipments [7], social media [8], smart home devices [9],
natural language processing [10], computer vision [11],
military [12], transportation [13], and information technol-
ogy [14]. These advancements have almost exclusively been
through the use of Deep Neural Networks (DNN). The crucial
question of how one can trust the decisions of these models
often arises, especially for mission-critical tasks. The field of
eXplainable Artificial Intelligence (XAI) seeks to elucidate
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how a model arrived at a decision, thereby enhancing public
trust. There is a legal aspect to user trust in that the General
Data Protection Regulation (GDPR) has been adopted by
the European Union in May 2018 [15], [16]. Within this
law, it outlines the need for an explanation provided to
stakeholders for algorithmic decision-making systems that
make decisions with legal effects when operating without
human intervention [15], [16].
There have been numerous attempts to create visual

explanations of what a machine learning model actually
learns [17], [18], [19], [20]. When a machine learning
model makes a decision, it takes into account information
from all input features. However, some features contribute
more to a model’s decision than others (known as feature
importance). One class of XAI methods, called attribution
mapping, creates a map of importance scores attributed to
each pixel in the input. This score reflects the significance of
each pixel in generating a model decision. There have been
some attempts to evaluate the faithfulness (measure of how
precise the attribution map is to the model) of attribution
methods [21], [22], [23], [24]. The Evaluating Attributions
by Adding Incrementally (EvalAttAI) approach establishes
consistency in quantitatively evaluating the faithfulness of an
attribution map [22].
Another class of methods is based on feature visualization

(FV). FV generates an image that depicts the learned abstract
features that are vital in making a decision. Layer by
layer, a DNN learns new and increasingly complex features
that an FV will illustrate. FV commonly uses activation
maximization (AM) that iteratively adjusts the input to
maximize the activation of a neuron or layer of a DNN.
This adjusted input provides a comprehension of the learned
features. The problem of AM was first formulated in [25].

Figure 1 depicts FVs obtained using five different methods.
In all five cases, the ResNet18 [26] convolutional neural
network (CNN) with the same model weights was used.
Also, the FV was taken at the last layer of the CNN. The
Vanilla approach (see Fig. 1) is the simplest form of AM
that uses only the gradient to maximize the activation of the
neuron or layer of interest (referred to in the sequel as Vanilla
AM). This is an example of an unregularized technique. The
other four approaches illustrated in Fig. 1 include the use
of a regularization term alongside the gradient which helps
prevent the FV map from getting stuck in local minima.
Frequency Penalization (FP) incorporates any regularization
term that minimizes the variance among neighboring pixels
of the FV [17], [27], [28] to maintain spatial continuity
that reflects real-world data. Transformation Robustness (TR)
techniques perturb the image slightly at each iteration prior
to the forward pass through the model [27], [29], [30] such
that a larger feature space can be explored. The TR and FP
techniques are combined and referred to later as TRNFP. The
Gaussian noise FV methods use only the gradient, but as a
regularization step, add Gaussian noise to the input image.
This is done prior to the forward pass at each step to simulate
noisy data not seen during training.

FIGURE 1. Comparison of FV methods on ResNet18 [26]. Each FV was
generated via activation maximization (AM) from the final convolutional
layer.

The trustworthiness of FV methods is questionable since
the five approaches produce drastically different visualiza-
tions as shown in Fig. 1. This problem has been discussed in
the literature as the disagreement problem [31], [32], where
these differences in explanations are quantified. Since the
same model was used for each method, the inconsistency
in the results reveals that not all techniques are faithful.
There have been some attempts to evaluate the faithfulness of
attribution methods [21], [22], [23], [24]. Such a quantitative
assessment is lacking for FVs and motivates our work.

In order to trust these models for critical tasks, we must
also utilize robust machine learning to resist noise and
adversarial attacks [33], [34], [35]. Compared to their non-
robust counterparts, robust models maintain a relatively high
accuracy on data that has a different distribution than what
is seen during training. Robust models have also been shown
to produce explanations that look more visually plausible to
a human observer than their non-robust counterparts [36],
[37]. This is significant because plausibility indicates that
the model is learning the relevant features. However, it has
been shown that these more visually plausible explanations
generated by robust networks are not necessarily more
faithful to the model itself [22]. For models and their
explanations to be trusted, it is important to emphasize the
need for visualizations to be both plausible and faithful.
This will require robust models to produce more faithful
visualizations, rather than varying the methods of FV and
optimizing for plausibility alone.

In our prior work, EvalAttAI [22], we introduced a novel
quantitative faithfulness metric for evaluating attribution
maps. In this paper, we address a significant research chal-
lenge by proposing a new approach to assess the faithfulness
of FVs. The novel contributions of this paper are as follows:
• We introduce a novel approach for quantitatively assess-
ing the faithfulness of FVs and denote it as Integrating
Activations to Evaluate Faithfulness (IntActEval).
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• We conduct a comparative study to identify the most
faithful FV method.

• We provide insights into the methods, model architec-
tures, and training schemes that should be taken into
account when attempting to explain a model.

• We investigate the potential correlation between the
robustness of models and the faithfulness of their
corresponding FVs.

The outline of this paper is as follows. Section II
provides a concept map and overview of all explainability
concepts and terminology relevant to our novel evaluation
method. We also provide background on FV methods, their
limitations, and how they relate to the broader ideas of XAI.
Section III discusses the guiding principles for evaluating
FV approaches. We will then detail the mathematics and
methodology relating to the FV methods used and our
IntActEval approach in Section IV. In Section V, we will
discuss the results of our evaluation of multiple FV methods,
providing a ranking of which explanations are most faithful.
Section VI records the conclusions of the investigation.

II. BACKGROUND
To motivate the IntActEval method, we provide impor-
tant contexts, including local and global explainability,
FV methods, limitations of the approaches, qualitative and
quantitative evaluations, and explainability notions. Figure 2
shows a concept map that connects these XAI concepts. All
explainability concepts explored in this section are discussed
primarily as applied to image classification models. In the
following sections, the words ‘‘model’’, ‘‘neural network’’,
and ‘‘network’’ are used interchangeably. In the field of XAI,
the two main approaches for explaining a model are global
and local explainability (see Fig. 2). Both of these concepts
are covered, but the primary contribution of this work focuses
on evaluating global explanations.

A. LOCAL EXPLAINABILITY AND ATTRIBUTION MAPPING
Local explainability creates a visualization that represents
what the model is seeing for a specific input and output [36].
The most common approach for local explainability is
attribution mapping. For local explanations, there are a
handful of papers that introduce quantitative measures for
evaluating their faithfulness [21], [22], [23], [24]. While
our prior work (EvalAttAI) [22] focuses on evaluating
the faithfulness of local explainability, this paper explores
evaluating global explainability as discussed in the next
subsection.

B. GLOBAL EXPLAINABILITY AND FEATURE
VISUALIZATION
Feature visualization is an example of a global explainability
technique that is used to create a visual representation of
the learned features in a neural network, irrespective of any
specific input. It does this by maximizing the activations of a

single neuron, filter, or layer of a DNNmodel [17], [38]. This
allows for the visualization of the features that these specific
parts of the network are sensitive to. This procedure reveals:
(1) what features and patterns the network has learned, (2)
how the network processes information and classifies images,
and (3) where the model is prone to error. The technique
is to begin with an input image of random Gaussian noise
and iteratively add the gradient such that a specific neuron or
layer activation is maximized over multiple passes through
the model [38]. As a result, all neurons in those influential
layers or filters are maximally activated together. FV has
also been used to find failure modes for image classification
tasks [39].

There are four main categories of FV that include unregu-
larized, regularized, learned prior, and dataset examples as
shown in Fig. 2. The first three use AM. As mentioned
earlier, the Vanilla AM is an unregularized approach that
only uses the gradient. In contrast, the regularized approaches
(Gaussian noise, FP and TR) also use AM but either apply a
modification to the input image before each pass through the
model, or include a regularization term that is added to the
gradient. These approaches are visualized in Fig. 1. Learned
prior methods introduce additional layers at the input of the
network that are backpropagated when generating the FV.
Finally, dataset example approaches choose samples from the
data that highly activate the neuron(s) of interest to achieve a
FV. Some popular implementations of these FV approaches
include Deep Dream [29], Searching for High Activation
Training Images [40], Priors and Generative Models [41],
[42], and those that are AM based [43], [44].

C. EVALUATING EXPLAINABILITY: CRITERIA AND
DEFINITIONS
There are a multitude of FV methods [25], [27], [29],
[30], [38], [40], [41], [42], [43], [45], many of which
produce vastly different results.While many of thesemethods
have been researched, evaluating these explanations is a
largely overlooked topic. In this section, we introduce the
explainability criteria of robustness, plausibility, and most
importantly for this paper, faithfulness. Our method, IntActE-
val, is a quantitative metric for assessing the faithfulness of a
FV method.

1) ROBUSTNESS
As mentioned earlier, a robust model implies an acceptable
classification accuracy on noisy data, adversarial examples,
and data that has not been seen during training. However,
robustness can have a negative impact on the accuracy of
the model on clean data [46], [47]. Robustness can also have
a significant effect on explainability. In fact, robust models
have been shown to produce more visually plausible and
interpretable results [22], [36], [37], [47]. Some models are
designed with robustness in mind, resulting in an architecture
that is inherently resilient to noise and attacks. One such
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FIGURE 2. A visual representation of the connections between the various explainability concepts and techniques explored in this study.

model is PremiUm-CNN [33] which propagates uncertainty
through each layer.

Achieving a robust model via training is the most common
approach, as it can be applied to any existing model. Models
can be robustly trained by adding noise to the input data
before training. This noise can be, but is not limited to,
Gaussian noise, salt and pepper noise, and adversarial attacks.
In this paper, we used Gaussian noise, and the adversarial
attack method of Projected Gradient Descent (PGD) [48] to
robustly train our models.

2) PLAUSIBILITY
The plausibility of an explanation is most often a subjective
criterion that describes how pertinent the explanation looks
to a human observer. For instance, a highly plausible FV
of a bird would contain many features that a human could
recognize as pertaining to a bird. These may include patterns
such as beaks, feathers, and wings. Generally, this criterion
is only measured qualitatively. There are some quantitative
metrics to evaluate the plausibility of attribution maps [49],
[50]. However, a similar quantitative standard has yet to be
established for FV. Studies have demonstrated that robustly
trained models produce more plausible explanations [36],
[37], [47], [51], [52]. This is a logical outcome, given that
robust models learn features that enable them to correctly
categorize data beyond their training distribution, thereby
focusing on relevant features rather than high-frequency
noise. Our results in this paper are consistent with this as
well. It must be noted that plausibility and faithfulness do
not appear to be correlated. However, it is important for
explanations to be both plausible and faithful so that we can
trust the explanations while also confirming that the model
is recognizing relevant features. However, the focus of this
paper is on faithfulness, as discussed next.

3) FAITHFULNESS
A faithful explanation is one that is highly accurate to
the model itself. For an explanation to be useful for
understanding and debugging, it must be faithful. In the

context of FVs, this means that the explanation should truly
maximize the activation for the neuron or layer of interest
the most. Our novel approach, called IntActEval, uses this
concept and provides a score and ranking for a range of FV
methods.

D. LIMITATIONS
For this paper, we assess the limitations of FV methods
through the lens of faithfulness.

1) REGULARIZATION
The unregularized method of FV (uses AM) and the
regularized method based on adding Gaussian noise tend to
produce less plausible explanations than other regularized
and learned prior methods. However, this paper focuses
on finding which methods are most faithful to the model
itself. Therefore, less plausible explanations indicate that the
learned features of the model are less salient and should not
reflect negatively on the explainability methods. As we will
discuss in the results, certain regularized methods produce
less faithful explanations, at least after many iterations. This
is due to the fact that these regularizers restrict the gradient,
which in turn makes it harder for the model to optimize
towards a faithful representation of the object specified. This
impedes the explanations from producing larger activations
beyond a certain scale of perturbation.

2) LEARNED PRIOR
The learned prior approach also introduces amajor limitation,
which is that it requires additional layers that are not present
in the actual model during training or testing. Therefore, this
approach creates a visualization for a slightly different model.
This visualization might be faithful to that modified model,
but not to the original model being explained.

3) DATASET EXAMPLES
Finally, using highly activating dataset examples also has the
limitation of being unable to produce large activation scores
when compared to other approaches, and thus they are not as
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faithful. In addition, these examples do not help show how
well the model will deal with out-of-distribution data, as the
examples are from the distribution it was trained on.

E. RELATED WORK
The challenge of ensuring that explanations from eXplainable
AI (XAI)methods are faithful to amodel’s underlying reason-
ing has spurred a significant body of research. However, the
existing evaluation landscape is overwhelmingly dominated
by methodologies designed for local explainability, which
assess why a model made a specific decision for a single
input [53], [54]. This includes popular techniques like
DeConvNet [55], Class Activation Mapping (CAM) [50],
and Gradient-weighted Class Activation Mapping (Grad-
CAM) [56], which produce attribution maps highlighting
important input regions. Consequently, the prevailing evalu-
ation paradigms—including perturbation-based metrics like
ROAR [21], axiomatic approaches [57], synthetic ground-
truth frameworks [58], and sanity checks [59]—all share
this focus on local, attribution-based explanations. While
foundational, these methods are fundamentally designed to
assess where in a given input the model focuses. This leaves
a conspicuous gap, as there is no established quantitative
framework for assessing the faithfulness of global explana-
tions, such as Feature Visualization (FV), which aim to show
what a model has learned in general, independent of any
single input.

This lack of appropriate tooling has meant that the evalu-
ation of global, generative FV methods often reverts to sub-
jective assessments of visual plausibility [60], a criterion that
can bemisleading and has been shown to be uncorrelatedwith
faithfulness [61]. Our work, IntActEval, directly addresses
this critical research gap. Unlike the local attribution-focused
methods, IntActEval provides the a novel quantitative,
continuous, and objective framework specifically designed
to evaluate global FV techniques. It assesses the core claim
of any FV method: that the generated image maximally
activates the model unit it purports to represent. By using
the model’s own activation outputs as the ground truth,
IntActEval introduces a much-needed, objective benchmark
for a class of explainability methods that has, until now,
largely escaped rigorous faithfulness assessment.

III. FEATURE VISUALIZATION EVALUATION
There is currently a strong absence of quantitative methods
for evaluating the faithfulness of FV techniques. Generally,
papers on the topic evaluate the FV maps subjectively
based on the perceived plausibility of the explanations [17],
[38]. The absence of standardized criteria for evaluating
faithfulness across these diverse methods currently limits
confidence in their widespread deployment. This issue
motivates our work.

We now introduce some key principles of FV faithful-
ness evaluations, informed by prior work in explainability
assessment [22]. The IntActEval method is underpinned

by a set of propositions that establish a benchmark for
evaluating the faithfulness of an explanation. The widespread
lack of ground-truth explanations and standardized evaluation
protocols has created a landscape of heterogeneous and often
contradictory evaluation results. The IntActEval method
operationalizes the following propositions, which aim to
address common pitfalls in explanation evaluation:

• Self-Tested: A credible faithfulness evaluation should
leverage the information provided by the model itself
to assess and score the explanation. This principle con-
fronts the subjectivity and scalability crisis of human-
centric evaluations [62]. Relying on human annotators
is resource-intensive and slow, introduces bias and low
reproducibility [63], and often confuses faithfulness
with plausibility [64]. By using a functionally-grounded
approach with the model’s own outputs as the evaluation
signal, the self-tested principle ensures objectivity and a
direct link to the model’s computational behavior rather
than human perception.

• Iterative: Given that FVs generate explanations in an
iterative manner, any corresponding assessment should
also evaluate the visualization at each stage to cap-
ture the complete narrative. Evaluating an explanation
at a single point in time can be misleading. The
faithfulness of an explanation can change significantly
during its generation, similar to how attribution method
performance varies across different network layers [65].
A longitudinal evaluation design is necessary to provide
a comprehensive understanding of the explanation’s
behavior over time.

• Continuity: To ensure continuity, all scores at each
iteration should contribute to the final faithfulness
score. IntActEval accomplishes this by calculating
the area under the curve (AUC) of the activations
over time. Simpler metrics like the final score or a
simple average discard important information about the
explanation’s quality trajectory. The use of AUC is a
well-established technique to summarize performance
over an interval [66]. It provides a holistic measure that
rewards methods for achieving and maintaining high
faithfulness throughout the entire process. By maintain-
ing continuity, the evaluation remains intact and is the
inspiration for the name IntActEval.

• Fairness: In the interest of fairness, each FV method
should be assessed using the same initial image (in our
case, random noise). Furthermore, the perturbations at
each step should be normalized to maintain the same
mean and variance, preventing any FV method from
gaining an unfair advantage due to more significant
changes at each step. To ensure a fair comparison,
all methods must start from an identical, information-
neutral point to control for initialization effects [65].
Normalizing the update step ensures that performance
differences are due to the quality of the method’s
guidance, not the magnitude of its perturbations.
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FIGURE 3. The process of generating FVs using TRNFP and evaluating the faithfulness of the FVs using IntActEval. The left panel
illustrates FV generation, while the right panel details the IntActEval scoring process (see Pseudocode 1 for implementation).
Identical evaluation steps are applied to all FV methods compared in this study: Vanilla (no regularizers), TR-only, FP-only, and
Gaussian. Gradients are zeroed before each forward pass to prevent their accumulation and to isolate the computation for each pass.

IV. METHODOLOGY AND EXPERIMENTS
This section provides a comprehensive overview of the
FV methods used, the novel IntActEval approach, the
investigated models, the dataset utilized, the training methods
employed, and the convergence and running time aspects of
the iterative IntActEval method.

Figure 3 depicts (1) the FV generation and (2) the IntActE-
val method for the FV evaluation that is accomplished by
inputting the FVs to the model. Although Fig. 3 depicts one
particular FV generation method (TRNFP, which is a combi-
nation of TR and FP), the concept carries over to the other
approaches. All FVs are generated prior to any evaluation by
the model. However, this is also equivalent to evaluating the
FVs after each iteration, thereby minimizing memory usage
for explanations. For clarity of presentation, we describe the
process as distinct stages of FV generation and evaluation.

A. FEATURE VISUALIZATION METHODS
As artificial intelligence becomes more integrated into
our daily lives via mainstream technology, it is crucial
to understand the underlying principles that govern them.
FV can aid in this understanding. There are four main
classes of FV approaches, as described earlier in Section II-B.
The approaches explored in this study include Vanilla
AM [25], Transformation Robustness (TR) [29], Frequency
Penalization (FP) [27], combination of TR and FP (TRNFP),
and adding Gaussian noise [41]. These approaches can be
seen visually in Fig. 1.
The first step of each approach uses an input image x0 of

random zero-meanGaussian noise (denoted asN (0, σ ) where
σ = 0.5) to generate the first FV x1. All subsequent steps use
the FV generated in the previous iteration as the input. The
TR and FP methods also use regularization. Equation 1 is a
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general expression for updating the FV xt at iteration t to the
FV xt+1 at iteration t + 1 as given by

xt+1 = f (xt , ε ∗
∂a(w, xt )

∂xt
) (1)

where f describes a function of xt and the gradient ( ∂a(w,xt )
∂xt

)
which is the partial derivative of the activation function
(denoted as a(w, xt )) with respect to the model input. This
function f is defined for each particular FV method in Eqs. 2
to 6. Note thatw represents the model weights and ε is a small
value that is multiplied by the gradient to control the step
size of each iteration (ε is assigned the same value across all
methodologies to ensure fairness). The gradient is calculated
via backpropagation. This iterative process of getting xt+1
from xt repeats until the desired number of FVs are generated.
The activation function (a(w, xt )) is the output of the

chosen node, layer, or channel that we are seeking to
maximize. In our case, it is the mean of all activations that are
output from the final convolutional layer of the model. This
value is known as the activation score. This layer was selected
due to its ability to yield distinct FVs which effectively
represent a composite of high-level learned features when
its activations are maximized for [17], [67]. The process of
maximizing the activation function within the model results
in the FV at each iteration being a better visual representation
of the learned features compared to the preceding iteration.

In the experiments, each FV method was run for 250 (i.e.
n = 250) iterations over 10 generations, such that all the
methods were fairly evaluated. The Vanilla method gives a
baseline with no regularizers. All FVmethods were generated
on both standard and robustly trained models as described
later.

1) VANILLA AM
Vanilla AM is the simplest approach, and serves as the basis
for all other FVmethods used in this paper. Equation 2 depicts
one iteration for the Vanilla AM FV method as

xt+1 = xt + ε ∗
∂a(w, xt )

∂xt
. (2)

When using Vanilla AM, the resulting visualizations often
appear to contain more high-frequency noise than other more
complex methods of FV. However, despite the more plausible
looking explanations from more sophisticated approaches
that use regularization to reduce noise, these methods might
not be as faithful to the model. The subsequently described
FV methods (FP, TR and Gaussian) all use regularization
strategies, but only the first two reduce noise.

2) TRANSFORMATION ROBUSTNESS (TR)
The TR approach applies regularization to the image prior to
the forward pass of the model. When using the TR approach,
Eq. 2 is modified as given by Eq. 3:

xt+1 = RT (xt )+ ε ∗
∂a(w,RT (xt ))

∂RT (xt )
, (3)

where RT is the regularizer applied to the input FV xt . This
regularizer is only applied every few iterations to allow for
the maximization to occur, as the transformations decrease
the activation scores that we are seeking to maximize.

TR techniques apply a transformation to the image with
approaches such as stochastic jitter, rotation, or image
scaling [29]. Although the perturbations are applied before
any optimization takes place, the aim is to maximize the
specified activations. This has proven to result in noticeably
more visually appealing and plausible FVs [29]. Stochastic
jitter (± 4 pixels) and rotation (± 5 degrees) were used for
the generation of the FVs in our experiments. The jitter was
applied every 10 iterations, and the rotation was applied every
20 iterations.

3) FREQUENCY PENALIZATION (FP)
FP methods aim to reduce the variation of pixels in the image
by implementing a variety of regularization techniques. Some
commonly used regularizers include L2 decay [68], [69],
bilateral blur [45], normalized and contribution crop [28],
and total variation [27]. This in turn mitigates high-frequency
noise in the generated visualizations. When using the FP
approach, we apply the regularizer RF after the optimization
step as defined in Eq. 4 as

xt+1 = RF (xt + ε ∗
∂a(w, xt )

∂xt
). (4)

Reducing the high-frequency noise also results in a more
visually appealing and plausible FV [27], similar to TR.
However, the resulting FV has been modified post-hoc for FP,
rather than directly showing the input as maximized by the
gradient. This disconnect could be the reason why FP creates
more visually appealing explanations, but possibly at the cost
of decreasing faithfulness.

In the experiments, the FVs were regularized with L2
decay (1E-5), bilateral blur (color and spatial blur at 0.5,
kernel size of 3), normalized crop (15th percentile), and
contribution crop (15th percentile). All FP regularizers were
applied every iteration except for bilateral blur which was
applied every 3rd iteration. Applying bilateral blur more often
produces color artifacts on the FV. This was also seen if the
color blur parameter was much higher than the spatial blur
parameter.

4) TRANSFORMATION ROBUSTNESS AND FREQUENCY
PENALIZATION (TRNFP)
We also apply both TR and FP together to generate FVs as
depicted in Fig. 3. This is defined in Eq. 5 as

xi+1 = RF (RT (xi)+ ε ∗
∂a(w,RT (xi))

∂RT (xi)
), (5)

where RF and RT denote the FP and TR regularizers
respectively. In Eq. 5, the TR regularizer is applied prior
to optimization and the FP regularizer is applied after opti-
mization. The regularizers utilized align with the definitions
provided for TR and FP earlier. The concurrent application
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of both regularizers exerts a more significant influence on
the final FV. This can enhance the visual appeal, but carries
the potential risk of compromising the faithfulness due to
the substantial modifications introduced both pre- and post-
optimization.

5) GAUSSIAN NOISE
A regularization approach introduced in [41] adds a small
amount of random Gaussian noise to the image during AM.
These random perturbations allow for the visualizations to
explore a larger feature space, thereby improving image
diversity and avoiding local minima. However, this might
lead to less plausible looking explanations due to the noisy
character of these visualizations.

The Gaussian approach to FV is defined in Eq. 6 as

xt+1 = xt + ε ∗
∂a(w, xt )

∂xt
+ N (0, σ ), (6)

where the zero-mean Gaussian noise added to the input is
represented as N (0, σ ) and σ signifies the variance of the
distribution. The noise is generated with the same dimensions
as the input x. This noise is applied at every iteration. For
our experimentation, σ = 0.5. Notably, this regularization
approach adds noise to the image rather than reducing
it like TR or FP. Similar to Vanilla AM, the Gaussian
method produces less plausible looking FVs than their less
noisy alternatives, which could have the inverse effect on
faithfulness.

B. INTEGRATING ACTIVATIONS TO EVALUATE
FAITHFULNESS (INTACTEVAL)
We propose a novel method of evaluating the faithfulness of
FVs quantitatively. It is an iterative process that stores and
then evaluates the FVs generated at each step as described
above and depicted in Fig. 3. The FVs are generated using
Vanilla AM, TR, FP, TRNFP, and Gaussian Noise and then
compared with respect to faithfulness.

Once FV generation has been completed, the model
gradient is set to zero before the individual FVs are passed
through the same network to obtain the activation functions
(a(w, xt )) (see Fig. 3). At each iteration number t , the
resulting activation score (mean of all activations that are
output from the final convolutional layer), activt , is obtained.
The result is an activation score curve of activt versus t . Next,
the trapezoidal rule is used to calculate the area under the
curve (AUC) of the activation score graph. This AUC denotes
the faithfulness score or equivalently the IntActEval score.
It is an approximation of the integral of the activations from
which the name of our new quantitative evaluation method is
derived.

Using the AUC is crucial because it provides a holistic
measure of faithfulness, capturing the cumulative activation
across the entire process rather than relying on a single,
potentially misleading point like peak activation. A higher
AUC signifies that the generated feature vectors consistently
and strongly align with the model’s internal representations,

offering a more robust and comprehensive assessment of the
explanation’s faithfulness to the model’s reasoning.

Pseudocode 1 FV and IntActEval Process
Initialization, Initial FV is random Gaussian noise

1: x0 ← N (0, σ ), σ = 0.5
2: RT (·)← regularizer(TR) ▷ TR Regularizer
3: RF (·)← regularizer(FP) ▷ FP Regularizer

Input number of iterations n
Generate FVs

4: for t in 0 : n do
Zero the gradient before each forward pass

5: modelgradient ← 0
Vanilla

6: a(w, xt )← model(xt )
7: xt+1 ← xt + ε ∗

∂a(w,xt )
∂xt

or TR
a(w,RT (xt ))← model(RT (xt ))
xt+1 ← RT (xt )+ ε ∗

∂a(w,RT (xt ))
∂RT (xt )

or FP
a(w, xt )← model(xt )
xt+1 ← RF (xt + ε ∗

∂a(w,xt )
∂xt

)
or TRNFP

a(w,RT (xt ))← model(RT (xt ))
xt+1 ← RF (RT (xt )+ ε ∗

∂a(w,RT (xt ))
∂RT (xt )

)
or Gaussian

a(w, xt )← model(xt )
xt+1 ← xt + ε ∗

∂a(w,xt )
∂xt

+ N (0, σ = 0.5)
8: end for return xt for t = 0 : n

IntActEval Scoring
9: for t in 0 : n do

Zero the gradient before each forward pass
10: modelgradient ← 0
11: a(w, xt )← model(xt )

Activation score at iteration t
12: activt ← a(w, xt )
13: end for return activ

Calculate IntActEval score
14: IntActScore← AUC(activ)

Pseudocode 1 shows the experimental procedure used to
generate and evaluate FVs. It depicts an algorithmic narrative
of Fig. 3. The IntActEval method satisfies the four criteria
established in Section III by being self-tested, iterative,
continuous, and fair. Adherence to the self-tested principle
is achieved by using the model as the ultimate arbiter of the
explanation’s quality. By propagating the generated FV from
each iteration back through the network and measuring the
target neuron’s subsequent activation, IntActEval provides a
functionally-grounded score.

The framework addresses the Iterative principle by assess-
ing the FV at every step of its generative process, thus
capturing the complete temporal narrative of the explanation
rather than a potentially misleading static snapshot. This
longitudinal data is then integrated into a final score with
Continuity by calculating the Area Under the Curve (AUC)
of the activation values over all iterations. This use of AUC
provides a holistic and robust measure that rewards sustained
faithfulness, effectively preventing the information loss that
would occur with simpler metrics like the final activation
value or a simple average.
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To ensure a fair and standardized comparison, IntActEval
enforces a level playing field. All FV methods are initialized
from an identical starting point—a random noise image
(x0)—to control for initialization effects. Crucially, fairness
is maintained throughout the process by normalizing the
perturbation applied at each step, ensuring that no method
gains an undue advantage from the magnitude of its
updates. This protocol guarantees that observed performance
differences are attributable to the quality of the guidance
from the FV method itself, not to artifacts of the evaluation
setup.

C. MODELS AND DATA
The seven models used in this paper include Efficient-
Net [70], ResNet18 [26], AlexNet [71], [72], DenseNet [73],
GoogLeNet [74], SqueezeNet [75], and MobileNetV2 [76].
All of these models are widely used CNNs and come built-in
with the Torchvision library [77]. We selected CNNs for
evaluation due to (1) their widespread usage in computer
vision and image classification, and (2) the availability of
numerous FV methods specifically designed and tested using
this architecture. We also decided to use CIFAR-10 [78] as
the dataset of choice for training and evaluation. CIFAR-10
consists of 10 different classes and contains full color images
that are 32 by 32 pixels in size. This dataset was chosen due
to its relatively low resource requirements and its widespread
use in CNN training.

D. TRAINING
In order to compare the faithfulness of FVs, seven different
models were trained both standardly and robustly using the
CIFAR-10 dataset. In standard training, the model is trained
on clean data. In robust training, we applied adversarial noise
to the data, using the same hyperparameters as the standard
trained model. Adversarial attacks apply small perturbations
to the input to trick the model into incorrect classification.
Adversarial training was tested because this approach leads
to a significant performance improvement for data outside of
the training distribution [79], [80], [81]. Adversarial attacks
were generated using the Projected Gradient Descent (PGD)
method [79].
By training models with and without adversarial attacks,

we are able to evaluate how model robustness affects FVs.
We also train multiple models to account for differences in
CNN model architectures.

For both standard and robust training, transfer learning [82]
was implemented by starting with ImageNet-pretrained
weights from the Torchvision library. All models were
then trained on the CIFAR-10 dataset. This method of
training was selected to reduce computational complex-
ity. All layers were unlocked and trained during transfer
learning, and the final output layer was altered to fit ten
classes [83].

TABLE 1. Test accuracy (%) of the seven models using CIFAR10.

The test accuracies of each of the seven trained models can
be seen in Table 1. All 10,000 images from the test batch of
the CIFAR-10 dataset were used.

E. CONVERGENCE AND TIME CONSIDERATIONS
The IntActEval method is iterative but there is no mathe-
matical guarantee of convergence. We selected 250 iterations
as the point to stop the algorithm. This was based on an
empirical calculation that compares the activation score at
iteration t (activt ) with the activation score at iteration t − 1.
Specifically, 1 as defined in Eq. 7

1 =
|activt − activt−1|

activt
(7)

was found to be less than 0.001 for all FV methods applied to
MobileNetV2 after 250 iterations.

We investigate the time taken to run 250 iterations on
our Quadro RTX 8000 GPU. Five FV methods were applied
to both standard and robustly trained models. There are
seven model architectures used in this study. This results in
70 time measurements. The number of time measurements is
augmented to 700, since 10 trials were conducted for each
FV method. The average time taken across these 700 time
measurements is 7.90 seconds, indicating that the algorithms
are both fast and accurate. Subjectively, FVs generated
by each method at each iteration beyond 250 showed no
observable difference for all the models used.

V. RESULTS AND DISCUSSION
This section presents the results of the faithfulness evaluation
for multiple robust and non-robust models. The faithfulness
score of each FVwas analyzed using IntActEval, as described
in Section IV. The results in this section can be broken
down into three main parts: activation versus iterations plots,
AUC (IntActEval score) of those activation curves, and a
visual analysis of the FVs. The AUC bar plots show the
final IntActEval scores for each method and model. We also
discuss some FV usage recommendations and future work at
the end of this section.

A. ACTIVATION RESULTS
In this subsection, we analyze the activation results and
explain the calculation of the IntActEval score, which is
derived from the AUC of the activation plots. During the
IntActEval process outlined in Section IV-B, we generate FVs
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FIGURE 4. Example feature generation process showing how points on the activation plot relate to the FV images generated using Vanilla AM on ResNet.
The FVs at the top correspond to xt , where t is equal to each iteration in the graph below them.

over multiple iterations. The FVs are then evaluated for their
activation scores. This process is reflected in Fig. 4 where the
FVs (using Vanilla AM) and their corresponding activations
are plotted together for a standard and robust model (ResNet).
In Fig. 4, the activation curves are relative to the FVs that were
generated at that specific iteration. For example, iteration
3 in Fig. 4 corresponds to an activation score of 0.75 for the
robust model. This process is also depicted in Fig. 3, where
iterations correspond to t and activations correspond to activt .
The individual FVs for each iteration (xt ) are presented at the
top of Fig. 4. These FVs are then individually input back into
the model to get the activation score shown in the activation
curve below each FV.

The activation curves generated by these FVs are useful to
understand, as they are the basis of the IntActEval method.
We present the activation results for the two best performing
FV methods in Fig. 5 for GoogLeNet. The IntActEval score
is calculated by taking the AUC of the activation plots, where
the AUC of Fig. 5a and 5b correspond to the bar plots in
Fig. 5c for Gaussian Noise and Vanilla respectively. For each
activation curve, we use the trapezoidal rule to calculate
AUC. The process is then repeated using the standard and
robust models for each FV method. The FVs were generated
10 times for each method to get an average activation at
each step. We also show the statistical significance of each
method using the 95% confidence interval (CI) as seen in
Fig. 5.

Examining the IntActEval results in Fig. 5c, we observe
no statistically significant difference between the robust and
standard trained models for each FV method. This finding
holds true across all five FV methods for the ResNet model.
However, when comparing the five FV methods themselves,
we do find statistically significant differences. For example,
there is a glaring difference between the FP and TR methods
for both the standard and robust cases. These observations are

consistent across all tested models, as we will further discuss
in the following subsection.

B. INTACTEVAL (AUC) RESULTS
The IntActEval score, also referred to as AUC or faithfulness
score, is derived from the FV activation scores, as described
in the preceding subsection. For our tests, we first grouped
the results by model type (standard, robust) and then by
FV type (Gaussian, TRNFP, Vanilla, TR, and FP). Each FV
was generated 10 times for each method and model, and
the averages were calculated. This enabled us to compute
confidence intervals and perform statistical analysis.

Using the IntActEval results presented in Fig. 6, we con-
duct a comparative analysis of different methods to identify
the most suitable FV for enhancing model trust by determin-
ing which method is most faithful. The larger the IntActEval
score is, the more faithful the FV method is determined to
be. For the IntActEval results presented in these bar plots,
we found no statistically significant difference between the
robust and standard trained models for any particular FV
method. This shows that adversarial training using the PGD
attack does not affect the faithfulness of FVs. More testing is
needed to confirm whether this is true for all robust training
schema.

When comparing the IntActEval scores for the five FV
methods, we did find statistically significant variation among
them. This is clearly shown for all models in Fig. 6.
Notably, the TR, FP, and TRNFP regularizers performed
worse than the Vanilla and Gaussian Noise approaches. These
lower-performing regularizers involved the reduction of noise
in the FV image, suggesting that the model assigns higher
activation scores to images with a high degree of noise.
Furthermore, some of the stronger regularizers, such as TR,
have been shown to produce more plausible results [17].
This could indicate that plausibility and faithfulness of FV
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FIGURE 5. Result plots depict the activations versus AUC comparison for
each FV method on GoogLeNet standard and robust. The bar plots for
Gaussian Noise in (c) depicts the AUC of the activations in (a). Similarly,
the AUC bar plots for Vanilla in (c) correspond to the activations in (b). All
plots also show the 95% confidence interval (CI).

methods may be at odds with each other for these CNN
models.

As illustrated in Fig. 6, a significant variance is observed
in the relative performance of the TR and FP methods across
different network architectures. For instance, the TR method
yields a substantially higher AUC score for DenseNet,
whereas the converse is true for SqueezeNet. We hypothesize
that this discrepancy arises from an interaction between the
filtering technique and the model-specific features learned
by each network. If a method filters out features—such as
specific textures, shapes, or patterns—that are integral to
a particular model’s predictive capability, a corresponding
degradation in AUC will occur. Therefore, the observed
fluctuation in performance is likely due to the unique feature
dependencies of each model and which of those features are
preserved by the TR and FP methods.

Next, we used the IntActEval score to rank the faithfulness
of different methods. As shown in Fig. 7, the best performing
FV methods were Gaussian Noise (regularized) and Vanilla
(unregularized). These two methods performed similarly,
with Gaussian Noise performing the best for five of the
seven total models, and Vanilla performing best for the two
remaining models. The number of iterations used to generate
the explanation also affects the results, so this factor should
be considered when choosing an FV method.

The third and fourth-ranked methods were FP and
TR, respectively, with both methods performing nearly
identically, except FP performed better on one additional
model than TR. The worst-performing method in terms
of faithfulness was TRNFP. For the models and datasets
tested in this paper, we suggest that Gaussian or Vanilla
FV methods should be used when faithful explanations
are needed. If a more visually plausible but less faithful
explanation is needed, other methods can be considered.

C. VISUAL COMPARISON OF FV METHODS
This subsection presents a visual comparison of FV methods
by analyzing the explanations depicted in Figs. 8 through 14.
All examples were generated after 250 (n = 250) iterations.
Based on the IntActEval results, we can draw conclusions
about how visual aspects of the FV methods relate to the
faithfulness and the learned features of the model.

A key observation from the figures is that the Vanilla and
Gaussian methods exhibit substantially more noise compared
to TRNFP, FP, and TR. For example, Fig. 10 demonstrates
that Vanilla and Gaussian produce irregular pixel-wise color
transitions, whereas the other threemethods display smoother
and more consistent gradients. Notably, these latter methods
also achieve higher faithfulness scores, as established earlier
in this section.

We argue that the models in this study learn noise as a
discriminative feature for decision-making. This aligns with
prior work demonstrating that neural networks can exploit
adversarial noise as a deceptive feature, leading to erroneous
predictions [84].

D. FV METHOD USAGE RECOMMENDATIONS
It is important that we use faithful explanations and robust
models to achieve the most trustworthy and plausible results.
It is critical that our explanations be true to the model while
still depicting relevant features. Robustness plays a large role
in plausibility and thus should be a significant consideration.
It is important that we use faithful explanations and robust
models for the most trustworthy and plausible results.

Robust models generally produce more plausible results
[17], [51], [85], [86], indicating that they likely recognize
more relevant features. For example, robust models generally
perform better on out-of-distribution data, and perform far
better than their non-robust counterparts when faced with
high-frequency noise or adversarial attacks. Therefore, robust
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FIGURE 6. Comparison of IntActEval scores across different models evaluated using various FV techniques, demonstrating the difference
between robust and standard methods. The plots are in logarithmic scale to fit the large variance in activation scores. The error bars depict
a 95% confidence interval (CI).

models should be used in most situations when possible,
especially for explainability.

Faithful explanations are vital for understanding what the
model is really looking at. While regularized FV methods
have a tendency to produce more plausible explanations [38],
our IntActEval results demonstrate that highly regularized
techniques (e.g., TR, FP, and TRNFP) tend to sacrifice

faithfulness. Conversely, robust models inherently yield more
plausible visualizations without compromising faithfulness.

To balance plausibility and faithfulness, we recommend
pairing the most faithful FV methods with robust models.
In our experiments, Vanilla and Gaussian FVs exhibited
comparable performance. However, the Gaussian approach
resulted in more pronounced noise artifacts, thereby making
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FIGURE 7. Rank comparison of IntActEval scores from Fig. 6 across each model. The methods are ranked from most (1)
to least faithful (5).

FIGURE 8. FV methods on standardly trained AlexNet generated via AM
from the final convolutional layer.

FIGURE 9. FV methods on standardly trained DenseNet generated via AM
from the final convolutional layer.

FIGURE 10. FV methods on standardly trained efficientnet generated via
AM from the final convolutional layer.

FIGURE 11. FV methods on standardly trained GoogLeNet generated via
AM from the final convolutional layer.

Vanilla the preferable choice. Furthermore, we advocate
for the application of IntActEval to assess prospective
FV methods, ensuring their reliability and faithfulness are
consistent with the specific use cases.

E. PRODUCING FAITHFUL EXPLANATION
Our results found that robustness is not correlated to
faithfulness with any statistical significance, based on the

FIGURE 12. FV methods on standardly trained MobileNetV2 generated via
AM from the final convolutional layer.

FIGURE 13. FV methods on standardly trained ResNet18 generated via
AM from the final convolutional layer.

FIGURE 14. FV methods on standardly trained squeezenet generated via
AM from the final convolutional layer.

95% confidence intervals (CI) shown in Fig. 6. Given our
objective to maximize both plausibility and faithfulness,
we propose that future research in this domain should
consistently employ the use of robustly trained models or
robust architectures to achieve the most plausible results
without sacrificing faithfulness. These models should be used
alongside either Gaussian or Vanilla methods of FV, which
were found to produce the most faithful explanations.

F. FUTURE WORK
To advance the development of truly reliable and interpretable
AI, future work must extend the IntActEval framework along
three critical research paths. First, to establish IntActEval as
a standard benchmark, its applicability must be broadened by
evaluating more diverse model architectures, such as Vision
Transformers (ViTs), and additional FV methods, including
learned priors and dataset examples. This comprehensive
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analysis is necessary to validate how faithfulness varies
across the wider machine learning landscape. Second, a sys-
tematic investigation into the relationship between robustness
and faithfulness is required. Applying IntActEval to models
trained with various adversarial and data augmentation
techniques is crucial to identify the conditions under which
a correlation emerges, as understanding this interplay is
fundamental to building models that are both secure and
transparent. Finally, to be practically useful, explanations
must be both faithful and intelligible. Therefore, the final,
essential path is to quantify the observed trade-off between
faithfulness and plausibility by integrating a quantitative
plausibility metric, thereby creating a holistic evaluation that
jointly measures a visualization’s fidelity to the model and its
human interpretability.

VI. SUMMARY AND CONCLUSION
The results of our novel evaluation revealed that there
are notable differences in the faithfulness of different FV
techniques. We found that Vanilla and Gaussian Noise FV
methods produced the most faithful explanations overall, and
this was consistent across all models tested. We also showed
that robust training did not have a statistically significant
effect on faithfulness.We noted earlier in the paper that robust
models produce more plausible results on the tested data.
Therefore, we recommend that the community use robust
training to achieve the most plausible explanations without
sacrificing faithfulness.

We also found that the most faithful methods also
contained the most noise. This likely indicates that models
which use a CNN architecture are learning to identify the
presence of noise as an important feature when making a
decision.

Trust is necessary when generating explanations, which is
why the faithfulness of FVmethodsmust be considered when
discussing and developing these techniques in the future. Our
novel faithfulness metric of IntActEval allows for this to be
quantitatively assessed. Having an explanation be faithful is
paramount if an approach is to be used for understanding deep
learning models and what they truly learn.
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