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Abstract

Deep Learning (DL) holds great promise in reshaping the industry owing to its preci-
sion, efficiency, and objectivity. However, the brittleness of DL models to noisy and
out-of-distribution inputs is ailing their deployment in sensitive fields. Current mod-
els often lack uncertainty quantification, providing only point estimates. We propose
SUPER-Net, a Bayesian framework for trustworthy image segmentation via uncer-
tainty propagation. Using Taylor series approximations, SUPER-Net propagates the
mean and covariance of the model’s posterior distribution across nonlinear layers. It
generates two outputs simultaneously: the segmented image and a pixel-wise uncer-
tainty map, eliminating the need for expensive Monte Carlo sampling. SUPER-Net’s
performance is extensively evaluated on MRI and CT scans under various noisy and ad-
versarial conditions. Results show that SUPER-Net outperforms state-of-the-art mod-
els in robustness and accuracy. The uncertainty map identifies low-confidence areas
affected by noise or attacks, allowing the model to self-assess segmentation reliability,
particularly when errors arise from noise or adversarial examples.
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1. Introduction

Driven by the superior performance achieved in many areas, various deep learning
(DL) models have been advanced to analyze medical data, e.g., radiological images
and pathology slides. Several methods have achieved, if not surpassed, prognosis par-
ity with specialized medical personnel [1]. However, their successful deployment in
clinical settings remains limited. While several autonomous algorithms are doubtlessly
employed for many everyday tasks — e.g., spam filters for emails or biometrics that
unlock our cellphones —, there is a less assertive willingness to utilize the same algo-
rithms for risky, sensitive data, such as medical images.

The main challenge that hinders the widespread and effective use of DL in clini-
cal settings is the lack of reliable and trustworthy predictions [2]. For example, when
encountering test examples that differ significantly from its training data, a DL sys-
tem will still produce a prediction. However, without uncertainty information, there
is no way to determine how reliable that prediction is. This concern is further exacer-
bated by the vulnerability of DL models to adversarial inputs — perturbations that are
imperceptible to human observers yet cause a trained DL model to produce erroneous
predictions [3]. In the literature, there are studies highlighting the vulnerability of med-
ical models to adversarial perturbations [4]. As a result, DL in medicine is particularly
susceptible due to both technical weaknesses and financial incentives [4].

Addressing these challenges requires DL models not only to produce accurate pre-
dictions but also to quantify the uncertainty associated with those predictions. Uncer-
tainty Quantification (UQ) serves as a key mechanism for assessing the reliability of
predictions, allowing users to be aware of the level of confidence in the models’ predic-
tions. UQ could be very useful when the DL model is essentially guessing at random
due to excessive noise in the input or possible adversarial attacks. Unfortunately, as
most DL models are inherently deterministic, a measure of confidence or uncertainty
is not readily available at their output.

Estimating the confidence of a model requires a probabilistic interpretation of the
model’s parameters, i.e., treating model parameters as random variables endowed with

a probability distribution. Through Bayesian inference, the posterior distribution of the



model parameters can be found. At test time, the second moment, i.e., the covariance,
of the predictive distribution can serve as a measure of confidence or uncertainty in the
predicted output. Several Bayesian models have been developed for the classification
and regression problems [5]. Trade-offs between prediction accuracy, confidence es-
timation, and scalability are at the heart of these different approaches [5]. Recently,
Dera et al. proposed a variational moments’ propagation (VMP) framework that pro-
vides a meaningful and scalable framework for uncertainty propagation and estimation
in Convolutional neural network (CNN) classifiers [6].

A relatively small amount of work focuses on quantifying uncertainty in pixel-level
segmentation tasks using Bayesian DL models. The challenge in learning uncertainty
for each pixel arises from propagating high-dimensional posterior distributions of the
model’s parameters through multiple stages of non-linearities in the encoder-decoder
architecture. Furthermore, the model must provide an instantaneous uncertainty map at
test time, i.e., simultaneously output the prediction (the segmentation) and correspond-
ing pixel-level uncertainty map without resorting to expensive Monte Carlo sampling
techniques or model averaging (ensemble).

Previous work focused solely on uncertainty quantification in classification neu-
ral network models, notably Convolution Neural Networks (CNNs) [6]. The mathe-
matical derivations presented in [6] are not sufficient for uncertainty propagation in
encode-decoder-based segmentation neural networks. The challenges in adopting the
VMP framework in segmentation lie in the nature of the learning task: semantic seg-
mentation requires the extraction of both global and local contextual information by
encoding and then decoding the input data. Consequently, segmentation networks are
fundamentally different than classification networks, e.g., CNNs. The mathematical
derivations for the decoder part were never presented previously, and the flow of un-
certainty from the encoder to the decoder was never considered within an analytical
and systematic framework. The decoder presents specific non-linearities and opera-
tions, e.g., up-sampling, padding, and concatenation, that require new mathematical
derivations to track the propagation of the uncertainty. In addition, our previous work
estimated a scalar (or a vector) value of variance that is associated with the predicted

class [6]. This work introduces the notion of a dense, pixel-level uncertainty map that



is provided simultaneously along with the predicted segmentation.

In this paper, we develop a VMP framework for segmentation tasks, SUPER-Net,
and extensively evaluate it for various medical imaging datasets under various noisy
and adversarial conditions. By leveraging key concepts from probability density track-
ing in nonlinear and non-Gaussian systems [7], we propagate the first and the second
moments of the posterior distribution of network parameters through the nonlinear lay-
ers of an encoder-decoder type segmentation architecture. The developed approach is
tested using various medical segmentation datasets consisting of Magnetic Resonance
Images (MRIs) and Computed Tomography (CT) scans. The proposed VMP formula-
tion and the derived mathematical relationships presented in the paper are applicable
to various DNN architectures.

The contributions of this paper are summarized as follows:

(1) Formalize a scalable Bayesian framework that simultaneously learns pixel-wise
prediction and confidence in encoder-decoder segmentation networks by analytically
approximating and maximizing the evidence lower bound (ELBO). Using first-order
Taylor series approximation, we derived closed-form expressions to propagate the first
two moments (mean and covariance) of the posterior distribution of the model param-
eters given the training data and update them during backpropagation; thus, effectively
learning the intrinsic uncertainty of the model. We derive mathematical relations for
all operations involved, rendering a method that is adaptable to other models, e.g.,
Variational Autoencoders, and to other tasks as well.

(2) Develop a Bayesian DL architecture that instantaneously outputs two maps:
(1) the segmented image and (2) the uncertainty map of the predicted segmentation.
These two maps are delivered simultaneously and without requiring any Monte Carlo
sampling at inference time. That is, the generated uncertainty was intrinsically learned
by the model rather than estimated post-training.

(3) Extensively evaluate the performance of the proposed SUPER-Net for various
medical segmentation tasks and under various signal-to-noise ratios (SNRs) and con-
ditions. A thorough robustness analysis is conducted by assessing the performance of

the model and uncertainty map under these perturbations of the input data.



2. Related Work

Image segmentation is a fundamental problem in computer vision with applications
ranging from medical image analysis to scene understanding for autonomous vehicles.
DL techniques, particularly Fully Convolutional Networks (FCNs), have been widely
used for pixel-level segmentation [8]. FCNs modify traditional CNN architectures by
replacing fully connected layers with upsampling operations to generate segmentation
masks. Encoder-decoder architectures have since become the dominant paradigm for
semantic segmentation [9]. The encoder extracts low-dimensional (salient) features of
the data, while the decoder reconstructs the spacial information to perform pixel-wise
classification. Various improvements have been introduced, e.g., skip connections with
attention mechanisms [10], dilated convolutions [11], wide contest blocks or compres-
sion extraction modules [12].

More recently, Transformer-based architectures have been explored for segmenta-
tion, leveraging attention mechanisms to capture long-range dependencies [13]. Read-
ers interested in further details are directed to recent surveys on the application of
Transformers to various segmentation tasks [14], particularly within the medical do-
main [15]. Inspired by the success of foundational models in natural language pro-
cessing, the Segment Anything Model (SAM) [16] introduced a zero-shot approach to
segmentation, which has also been evaluated for medical imaging tasks [17].

These architectural advances, however, focused on improving accuracy which, no
doubt, is an important metric but it does not convey the full picture. Reliability, robust-
ness, and trustworthiness are important metrics for these models. An unreliable model
can jeopardize the clinical system by exposing it to technical vulnerabilities, financial
risks, and even patient harm [4]. In the context of semantic segmentation, there are two
main approaches for UQ: Monte Carlo (MC) dropout [18] and model ensemble [19].

MC dropout is widely used due to its simplicity and compatibility with existing NN
architectures [18]. The uncertainty information is obtained, at inference time, from the
sample variance of multiple MC forward passes through the network. Several stud-
ies have applied this technique for various segmentation tasks [20]. For instance, a

full-resolution residual network is used for brain segmentation in [21], the QuickNAt



architecture is used in [22], and a 3D U-Net is proposed in [23].

In ensemble methods [19], after training multiple networks, usually with random
initialization, several segmentation estimates are produced, and their variation is used
as a measure of confidence. For example, [24] uses a ResUNet architecture with soft
dice loss and two regularization terms to diversify the ensemble members. Authors
in [25] generate diversity in the ensemble by considering predictions generated by
different architectures and models. Other researchers proposed weighting ensemble
members based on sensitivity and precision to improve calibration [26]. Some works
combined the two approaches; for example, in [27] ensemble members are generated
by changing the dropout rate. Other techniques, e.g., hierarchical probabilistic models
[28], Evidential Deep Learning [29] and Normalized Softmax Entropy [30], have also
been explored to quantify uncertainty. However, most existing UQ approaches share
common limitations.

Post-hoc methods estimate uncertainty only at inference time—using multiple for-
ward passes or MC sampling—rather than integrating it into training. This prevents
the model from refining uncertainty estimates based on training data. Moreover, these
methods approximate uncertainty through empirical sample variance, which may not
reflect true confidence, leading to overconfident incorrect predictions. They are also
computationally expensive, requiring multiple forward passes at test time or training
multiple models in ensemble methods. Lastly, many approaches lack robustness eval-
uation, as they are often assessed on clean datasets without considering adversarial
attacks or noisy inputs

In contrast, the proposed SUPER-Net framework learns uncertainty during train-
ing and outputs simultaneously the predicted segmentation and its uncertainty map.
A framework to learn the variance is proposed in [6], but derivations are limited to
CNNs, rendering the approach unsuitable for the more complex end-to-end segmenta-
tion tasks. Building upon this work, we develop a Bayesian framework that propagates
the first and the second moment of the variational posterior distribution across all layers
of a segmentation DL model. At test time, the uncertainty in the predicted segmenta-
tion is produced by the network as the covariance matrix of the predictive distribution

simultaneously alongside the segmentation without resorting to multiple runs.
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Figure 1: An illustration of the SUPER-Net model, where all mathematical operations are performed on
random variables. The mean and covariance matrices are propagated through each operation. The output of
SUPER-Net consists of the predicted segmented image and a covariance matrix, which is used to generate

the associated uncertainty map.

3. SUPER-Net: Segmentation with Uncertainty Propagation in Encoder-decodeR

Networks

We derive a Bayesian framework where the first two moments of the posterior dis-
tribution are learned simultaneously by (forward and backward) propagation through
the network layers. For scalability and efficiency of the proposed approach, we adopt
the Variational Inference (VI) technique, but rather than estimating the expected log-
likelihood using expensive Monte Carlo sampling, we approximate its first two mo-
ments with a first-order Taylor-series expansion. In the sequel, we present our mathe-

matical results. An illustration of the SUPER-Net model is presented in Figure 1.

3.1. Mathematical Notations

Scalars are represented by lower-case letters, e.g., x, x;. Vectors are represented
by bold lower-case letters, e.g., y. All vectors are column vectors. y; denotes the i
element of vector y. Matrices are represented by bold upper-case letters, e.g., A. Tr(-)
denotes the trace of a matrix, i.e., the sum of its diagonal elements. T denotes the trans-
pose operator, and vec(-) denotes the vectorization operator. The Hadamard product,

i.e., the element-wise product, is denoted with ®, while X represents the matrix-matrix



or matrix-vector product. Tensors with three or more dimensions are represented by
curly bold upper-case letters, e.g., X. If x is a random variable, E[x] denotes the ex-
pected value of x. We use WY to represent the k" convolutional kernel of the ¢
layer. K. denotes the total number of kernels in layer c¢. The subscripts e and d repre-

sent the encoder and decoder path operations, respectively.

3.2. Bayesian Deep Learning and Variational Inference

In Bayesian statistics, the unknown parameters are fully characterized by their pos-
terior distribution given the observations. In Bayesian DL, the network parameters Q
are endowed with a prior probability distribution p(€2) and all information about the
parameters is embedded in the posterior distribution p(Q|D) given the (training) data
D = {Xi, yi}f\i - Once the posterior is estimated, the predictive distribution, i.e., the

distribution of the test data, can be derived as:
p(yIX*, D) = f p(y'IX*, Q) p(QD) dQ, (D

where X* is the input, y* is its corresponding predicted output and p(y*|X*, Q) is the
likelihood.

Unfortunately, direct inference of the posterior is intractable due to the large pa-
rameter space and nonlinear nature of DL architectures. A popular approximation tech-
nique, known as VI, formulates the problem of posterior inference as an optimization
problem [31]. The VI approach considers a simple family of distributions over the net-
work parameters and attempts to find a distribution, called the variational distribution
q¢(L2), within this family that is “close” to the true unknown posterior. The notion of
distributional closeness is captured by the Kullback-Leibler (KL) divergence, and the

optimization is performed with respect to the variational distribution parameters 6:

q6(£2)
pQpDIQ)

By rearranging terms in (2), the well-known ELBO objective function is obtained [32]:

KL (q0(Q)|p(Q]D)) = f q0(Q) log @)
L(8) = — Egy(@ [log(p(DIQ)] + KL (g9(Q)|p(©).- 3)

Most Bayesian DL frameworks that use the VI approach sample one set of param-

eters @ and perform a deterministic forward pass and backpropagation. The second



moment or the variance of the predictive distribution is obtained post-training using
MC samples at inference time [33]. This practice is based on the assumption that the
single set of sampled parameters @ represents the variational distribution gg(Q2) with

sufficient accuracy, which has no theoretical grounds [6].

3.3. Encoder Operations

We define a multivariate Gaussian distribution as a prior distribution for all con-
volution kernels. We assume that kernels are independent within each layer as well
as across layers in both the encoder and decoder paths. The independence assumption
results in a single additional parameter (variance) for each kernel, limiting the increase
in the number of parameters due to the Bayesian formulation. Moreover, independent
kernels help extract uncorrelated features and better explore the input space [6].
Convolution Between Input and Network Parameters: The convolution operation in
the first layer is performed between the input data (initially assumed deterministic for
simplicity) and the network parameters (random variables). We assume that network
parameters (ng“ follow a Gaussian distribution, i.e., vec(fozk‘)) ~ N (mik'),):g”)).
We write the convolution as a matrix-vector multiplication, where X denotes the matrix
having rows equal to the vectorized sub-tensors of the input X. Then, the convolution
operation is expressed as zgk‘) =X X vec((ng‘)), for ky = 1,---, K;. Thus, the output
of the first convolutional layer follows a Gaussian distribution where the mean and

covariance are given by:
2 ~ N (Xm{), X20X"). 4)

Convolution Between Two Random Variables: We consider a generic case of convo-
lution between two random variables. Let B be the incoming input to any convolution
layer, except the first layer, i.e., ¢ # 1. The convolution operation is expressed as a
matrix-vector multiplication; however, in this case both the input and the kernels are
random tensors. We form B by vectorizing the sub-tensors of the incoming input 5,
ie,B=[bl,bl, ... bT]", where bJT. represents /™ row of B. Let up, and Zy, represent
the mean and covariance of b;. Then, the output of the convolution is formulated as

z(ek“) =B x Vec(’Vng")) with vec('WE,k")) ~N (mgkf) ,ng”)) fork. =1,---,K. . Given



that the input B (feature map) is independent from the subsequent layer kernels, we
compute elements of the mean of ng") as the product of the two mean vectors, pp, and
m(ek“), ie.,

o)) =y ml, =1, )

The elements of the covariance matrix X «. are derived as:

Non-diagonal elements (i # j) : pg’_ Zg,k“)/,tbi, 6)

Diagonal elements (i = j):  Tr(Zp E5)) + pg[ =y, + mETE, m&. (7

Nonlinear Activation Function: Convolutional layers are commonly followed by an
element-wise nonlinear activation function, e.g., Rectified Linear Unit (ReLU). Let y
denote the activation function and ggk") denote the output of the activation function, i.e.,
ggk”) = lp[zgk")] for k. = 1,--- , K. . We use the first-order Taylor series approximation

. . . k) -
to derive the mean and covariance of the random variable g(e ), ie.,

Mo = lﬁ(ﬂzgm), Lok = Koo O [Vlﬁ([lzikc;)vwolzgm)]-] , ®)

where V is the gradient with respect to z(ek“).

Max-Pooling Operation: The max-pooling operation is often used to downsample the
incoming feature map. We propagate the mean through the max-pooling layer using the
classical operation of selecting the largest value from a patch in the feature map. The
pooling for the covariance is achieved by only retaining the rows and columns (of the
incoming covariance matrix) corresponding to the retained elements (pooled elements)

of the mean vector. We write the mean and covariance as follows:
My = pOOl(ﬂggm), Zpgk[-) = CO-pOOl(Zg(EkM). ©))

An encoder may consist of multiple layers of convolution operations, nonlinear activa-

tion functions, and max-pooling to get a low-dimensional representation of the input.

3.4. Decoder Operations

The operations in the decoder path start with the low-dimensional representation
produced by the encoder. The decoder may also include multiple convolutional layers,

which are performed following the mathematical relationships provided in Egs. (5)-(7).
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Up-sampling: The up-sampling is an essential part of the decoder path that increases
the resolution of the input. Using gilk") to represent the input to the up-sampling opera-

tion and uilk") as the output, we have:

ug“‘) = up-sample (gg‘") ) (10)

The mean of uilk‘)

is computed by inserting zeros between two consecutive elements of
the input and padding with zeros. The covariance matrix is obtained by adding rows
and columns of zeros at locations corresponding to the newly added zeros in the mean.
Up-convolution: The up-sampling operation may produce sparse feature maps with
many zeros. Generally, a 2 X 2 convolution operation is performed to get a dense high-
resolution output. The mean and covariance are computed using results presented in
Eqgs. (5)-(7).

Padding: The padding operation applied to the mean is the same as the classical zero-
padding operation. For the covariance matrix, we add a new row and a new column for
each element padded to the mean. The new elements added in the covariance matrix
are all set to zero, and the variance (diagonal) elements are set to a user-defined small
value with op, > 0.

Concatenation: The features from the encoder side are generally concatenated with
the corresponding features from the decoder to improve the localization of various ob-
jects in the input. The feature maps from the encoder path may need to be resized or
cropped before they can be concatenated with the decoder features due to the differ-
ences in size.

Let G¢ be the ¢ encoder feature map, and ggk") the k™ slice from such map with
mean and covariance Mo and oo, respectively. The cropped feature map is denoted
with G where k™ slice is gz(k") Forke =1,.... K¢, pyuer = crop(pyoe) while Lyt is
obtained by removing the rows and columns from Lo corresponding to the cropped
elements of Hgio.

The output of the concatenation operation is a feature map G = {G3, G.}, where
G is the ¢ decoder feature map. The concatenation operation is done along the
dimension that represents channels in the feature maps (generally the third dimension).

Softmax Function: Pixel-level segmentation can be considered as a dense classifica-

11



tion problem where we assign a label to each pixel. Hence, for a multi-class problem,
a softmax function ¢ is applied to the output of the last layer. Let F represent the out-
put of the last layer with mean ur and covariance Xy, and Y denote the output of the
network after the softmax operation. We can approximate the mean gy and covariance

Yy using first-order Taylor series, that is:

py ~ (pp),  Ey ~ JsErl g, (11

where J 4 is the Jacobian matrix of ¢ computed with respect to F evaluated at uy.
The mathematical results presented above for various operations can be used to

build any type of deep NN in addition to the proposed encoder-decoder-based networks.

4. Experimental Methods

4.1. Datasets

We use three different medical benchmark segmentation datasets, including lung
CT [34], hippocampus MRIs [35] and brain tumor MRIs [36], and one clinical dataset
[37]. Our experiments use only the publicly available annotated data from the respec-
tive datasets, i.e., unlabeled data is not used for training or validation. The datasets are
divided into training, validation and testing bins with approximately 80% selected for

training, 10% for validation and 10% for testing.

4.1.1. Lungs Dataset

The dataset includes 20 CT scans from the chest region, available at zenodo.org
[34]. This heterogeneous dataset consists of both COVID-19 and non-COVID-19 pa-
tients. The data annotations include left lung, right lung and infections (if found). We
consider a binary segmentation task for this dataset, i.e., delineating the boundaries of
the lungs in the given CT images. We assign a label of O to the background and 1 to
lung tissue. The pre-processing steps include: 1) windowing the Hounsfield units range
between —1250 and 250; 2) normalizing all pixel values between 0 and 1; 3) deleting
empty slices, i.e., slices that include only the label 0 corresponding to the background
to minimize class imbalance; and 4) cropping all images to a single size, i.e., 512x 512

pixels.
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4.1.2. Hippocampus Dataset

The Hippocampus data is available as part of the Medical Segmentation Decathlon
[35]. The dataset consists of 394 single-modality MRI scans. The segmentation task
requires the precise delineation of two adjacent structures, i.e., anterior (label 1) and
posterior (label 2). The pre-processing steps include: 1) normalizing the data to reduce
the image bias (which is a characteristic of MRI data); 2) deleting empty slices, i.e.,
those that include only the background; and 3) padding images to have the same input

size of 64 X 64 pixels.

4.1.3. Brain Tumor Segmentation (BraTS) Dataset

The Brain Tumor Segmentation (BraTS) dataset is available as part of the MIC-
CAI BraTS Challenge. The dataset includes about 300 multi-modal (T1, Tlc, T2, and
FLAIR) MRI scans from 274 brain tumor patients (some patients have multiple MRI
scans) [36]. The dataset is divided into two main types of tumors: low-grade gliomas
(LGG) and high-grade gliomas (HGG). We focus on the more challenging HGG dataset
in our experiments. The pre-processing steps include: 1) normalizing data to reduce the
image bias; 2) deleting images that do not include any tumor structure; and 3) cropping
each image to the size of 240 x 240 pixels. The input data size for each sample in the
dataset is 240 x 240 x 4 pixels, where the last number represents the four modalities,
ie., T1, Tlc, T2, and FLAIR. All four networks (U-Net, Bayes U-Net, and SUPER
U-Net) are trained to segment 5 different labels in the HGG MRIs, i.e., normal tissue
(label 0), necrosis (label 1), edema (label 2), non-enhancing tumor (label 3), and en-
hancing tumor (label 4). In most clinical applications, generally, three tumor regions
are considered for evaluating the results of segmentation: whole tumor (labels 1, 2, 3

and 4), tumor core (labels 1, 3 and 4), and enhancing tumor region (label 4) [36].

4.1.4. Clinical Dataset

We acquired a real-world, anonymized, IRB-approved brain tumor dataset from the
O’Neal Comprehensive Cancer Center at the University of Alabama at Birmingham
(UAB) School of Medicine. This dataset will be made available upon request. The

imaging dataset includes 627 fluid-attenuated inversion recovery (FLAIR) sequences,
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Table 1: Architecture Details for Different Datasets

Dataset Encoder Blocks | Decoder Blocks Encoder Filter Decoder Kernels
Lungs 3 2 16, 32, 64 32,16
Hippocampus 3 2 32,64, 128 64, 32
BraTS 5 4 64, 128, 256, 512, 1024 | 512,256, 128, 64
Clinical 5 4 16, 32, 64, 128, 256 128, 64, 32, 16

including 24 images each on average, from patients diagnosed with World Health Or-
ganization grade 2 gliomas, seen at the neuro-oncology clinics at the University of
Alabama at Birmingham [37]. The tumor masks were manually annotated by an expert
physician. The pre-processing steps include: 1) normalizing data to reduce the image
bias; 2) deleting images that do not include any tumor structure; and 3) cropping each

image to the size of 240 x 240 pixels.

4.2. Segmentation Network Architectures

We apply the proposed SUPER-Net framework to the U-Net architecture; for sim-
plicity, we refer to it as SUPER U-Net. We compare SUPER U-Net with three state-
of-the-art segmentation networks, a deterministic U-Net [9], a Bayes U-Net obtained

using MC dropout [20], and an Ensemble U-Net [38].

4.2.1. U-Net - The Baseline Segmentation Architecture

Among all architectures proposed for medical image segmentation, U-Net is the
most widely used [9]. U-Net is built using the encoder-decoder structure with a con-
tracting path that is almost identical to the expanding path. The contracting path may
consist of multiple encoder blocks, which, in turn, may include various convolution lay-
ers, max-pooling, and nonlinear activations. The expanding path consists of multiple
decoder blocks, which are made of multiple layers of convolution, activation functions,
up-convolution, up-sampling and padding. Additionally, there are connections between
the encoder and decoder blocks that concatenate feature maps from the encoder with
the corresponding feature maps of the decoder. Finally, a 1 X 1 convolution and Soft-
Max are applied to the decoded feature maps before calculating the cross-entropy loss

function.
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In the original U-Net architecture [9], the border pixels are lost due to un-padded
convolution operations and the missing regions are extrapolated by mirroring. Such
processing may yield erroneous results for some medical image segmentation datasets.
Hence, in our setting, we apply the padding operation to increase the size of the feature
maps and reconstruct the full image at the output of the network. We include the
padding operation twice in each decoder block on the expanding path. The first padding
operation is performed before the concatenation, and the second is performed before
the second convolution in each decoder block. In our experiments, we refer to this
U-Net architecture as the deterministic segmentation network.

In Table 1, we report the specifics of the architectures for all datasets. The kernel
size is set to 3 for all datasets. For clinical data, we use convolutions with padding set

to same, and apply batch normalization on both the encoder and decoder.

4.2.2. Bayes U-Net

Bayes U-Net is built using the MC dropout technique following the implementation
of [20]. The dropout is used only in the central blocks with the probability of dropping
aneuron set to p = 0.5. Bayes U-Net uses cross-entropy loss function. At the inference

time, we use N = 20 MC samples and the uncertainty is measured in terms of predictive

entropy (PE) [18].

4.2.3. Ensemble U-Net

Ensemble U-Net is built using an ensemble of U-Net models. We trained 5 net-
works with different initializations and used the entire training set for each model. The
number of networks is chosen following the results in [24]. Ensemble U-Net uses the
cross-entropy loss function. At inference time, each input is fed to the five models and

the outputs are used to estimate uncertainty using PE.

4.2.4. SUPER U-Net

SUPER U-Net uses the mathematical operations presented in Sections 3.3 and 3.4
to propagate the first two moments of the variational distribution through the U-Net
architecture. The output of SUPER U-Net consists of a segmentation map and an un-

certainty map. The former is given by the mean of the predictive distribution, while the
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Table 2: Training Hyperparameters for Different Datasets

Dataset Optimizer | Learning Rate | Batch Size | Epochs | o0, (SUPER U-Net)
Lungs Adam 0.001 10 50 0.1
Hippocampus Adam 0.001 20 100 0.02
BraTS Adam 0.001 20 100 0.1
Clinical Adam 0.001 10 100 0.01

latter is generated by the covariance of the predictive distribution. We use a Gaussian
variational distribution and employ the ELBO loss function defined in Eq. (3). We op-
timize the ELBO loss function with respect to the variational parameters, i.e., the mean
and covariance of the variational distribution. To reduce the computational complexity,

we propagate diagonal covariance matrices.

4.3. Other Experimental Settings

We report the specific hyperparameters used for each dataset in Table 2, including
the optimizer, learning rate, batch size, number of training epochs, and o, for the
padding in the SUPER U-Net model. The selection was determined through empirical
evaluation. We explored different values for each hyperparameter and selected those
that provided stable training, faster convergence, and improved segmentation perfor-
mance across all datasets. The values of o, in SUPER U-Net were tuned to balance
the trade-off between predictive uncertainty and segmentation accuracy. The batch size
was determined based on the size of the data and the available hardware constraints. All
simulations were performed using Python with the TensorFlow library on an NVIDIA
RTX A6000 GPU.

We report the Dice Similarity Coefficient (DSC) as the metric to compare the per-
formance of all four networks. We conduct a detailed robustness analysis of the perfor-
mance of all four networks using two types of noise, i.e., Gaussian and adversarial. We
compare the performance of all four networks under various levels of Gaussian noise
added to the test data of all three datasets. We measure the noise level using the signal-
to-noise ratio (SNR) in the units of decibels (dB). For the adversarial noise, we use the

Fast Gradient Sign Method (FSGM) to generate untargeted attacks [39], and we use
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Table 3: DSC for Lungs Dataset - performance comparison under additive Gaussian noise.

‘ U-Net ‘ Bayes U-Net ‘ Ensemble U-Net ‘ SUPER U-Net

NoiseFree | 83 | 83 | 83 \ 83

Gaussian noise added to the entire image
SNR = 35 dB .82 .82 .82 .83
SNR ~ 3 dB .16 .19 11 21

Gaussian noise added to lung pixels only
SNR ~ 31 dB .82 .83 83 83
SNR ~ 14 dB .63 .63 .65 .79

the Projected Gradient Descent (PGD) method to generate targeted adversarial attacks
[40]. The attacks are generated with a maximum number of iterations set to 20 and a
step size of 1. We select a source class and a farget class to generate targeted attacks.
The adversarial attack algorithm will try to fool the trained network into predicting

pixels belonging to the source class as the pixels of the target class.

5. Results and Discussion

We report our results in four parts. First, we present the performance analysis
(measured using DSC) of the four networks (U-Net, Bayes U-Net, Ensemble U-Net,
and SUPER U-Net) under various levels of Gaussian noise added to the benchmark
test datasets. Next, we analyze the same four networks under various levels of targeted
and untargeted adversarial attacks. We report the results of the clinical data. Finally,
we present an analysis of the uncertainty maps and the predictive variance generated
by the proposed SUPER U-Net at inference time. For reference, we report DSC values
for U-Net, Bayes U-Net, Ensemble U-Net and SUPER U-Net for noise-free test data
in tables 3, 4, and 5.

5.1. Evaluation Under Gaussian Noise

Table 3, and Figs. 2 and 3 show DSC values for U-Net, Bayes U-Net, Ensemble
U-Net and SUPER U-Net under different levels of Gaussian noise. For each dataset,
we report results for two cases, i.e., noise added to the entire input image or only to the

structures that the networks are trying to segment, e.g., tumors in the BraTS dataset.

17



Table 4: DSC for Hippocampus Dataset - Noise Free.

‘ Anterior ‘ Posterior
Bayes | Ensemble | SUPER Bayes | Ensemble | SUPER
U-Net U-Net
U-Net U-Net U-Net U-Net U-Net U-Net
Noise Free‘ .79 ‘ .79 ‘ .79 ‘ .79 ‘ 76 ‘ .76 ‘ 77 74

Table 5: DSC for BraTS Dataset - Noise Free

Whole Core Enhancing
Bayes | Ensemble | SUPER Bayes | Ensemble | SUPER Bayes | Ensemble | SUPER
U-Net U-Net U-Net
U-Net U-Net U-net U-Net U-Net U-net U-Net U-Net U-net
Noise
17 77 .76 83 .58 .58 .60 .64 57 57 .63 69
Free

In Table 3, we compare the performance of the four models for the noise-free test
data and for two levels of Gaussian noise added to the entire image and the lung pixels
only. Fig. 2, reports the performance of the four models when Gaussian noise is applied
to the Hippocampus test data. We consider 3 scenarios: noise added to the entire image,
the Anterior pixels only, and the Posterior pixels only. We show the results for the
BraTs test data in Fig. 3. We plot DSCs vs. SNR for the three tumor regions. Each
subplot compares the performance of the four networks for multiple levels of Gaussian
noise added to the tumor pixels only (Fig. 3a) and the entire image (Fig. 3b). The
proposed SUPER U-Net generally demonstrates more robust behavior as compared to

other models especially at low SNR values, i.e., high levels of noise.

= U-Net  m=Bayes U-Net = Enscmble U-Net  mmSUPER U-Net = UNet  mm=Bayes U-Net = Enscmble U-Net s SUPER U-Net o UNet  m=Bayes U-Net = Enscmble U-Net  mmSUPER U-Net

Dsc

swap = b * swmam * * swan =

(a) Noise added to entire image (b) Noise added to Anterior pixels (c) Noise added to Posterior pixels

Figure 2: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray),
and SUPER U-Net (black), under various levels of Gaussian noise added to the (a) entire image, (b) Anterior
pixels only, and (c) Posterior pixels only of the Hippocampus test data. We plot Dice Similarity Coefficient

(DSC) versus Signal to Noise Ratios (SNRs) for the Anterior and Posterior hippocampus.
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Figure 3: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray)
and SUPER U-Net (black), under various levels of Gaussian noise added to (a) the tumor pixels only and (b)
all pixels of the BraTS test data. The three sub-plots show the Dice Similarity Coefficient (DSC) values for a

range of Signal to Noise Ratios (SNRs) for three different tumor regions: whole tumor, core, and enhancing.

| ====TU-Net ====Bayes U-Net Ensemble U-Net mmmmSUPER U-Net
Q05
2
a
04
10 15 20 2 30 35 40 a5 50
SNR @B)

Figure 4: Performance of four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray) and
SUPER U-Net (black), under various levels of untargeted attacks to the Lungs test data. We display Dice
Similarity Coefficient (DSC) values for a range of Signal to Noise Ratio (SNR).

5.2. Evaluation Under Adversarial Attacks

We assess the robustness of all four networks against targeted and untargeted ad-
versarial attacks. We show the results in Figures 4, 5, and 6. We plot the DSC vs. SNR
for the four approaches.

In Fig. 4, we show DSC values for a range of untargeted adversarial attacks gen-
erated using FGSM against the lung test dataset. In Fig. 5, we consider various levels
of targeted attacks applied to (a) the Anterior pixels only and (b) the Posterior pixels
only of the Hippocampus test data. For both attack types, we report the performance
for the two structures of interest, i.e., anterior and posterior hippocampus. On the other
hand, Fig. 6 presents both targeted and untargeted adversarial attacks applied to the
BraTs test data. The three subplots compare the performance of the four networks on
the three structures of interest: whole tumor, core and enhancing tumor. We observe

that SUPER U-Net shows better performance (i.e., high DSC values) as compared to
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Figure 5: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray),
and SUPER U-Net (black), under various levels of adversarial attacks applied to the Hippocampus test data.
We show targeted adversarial attacks with (a) source: label 1, target: label 2, (b) viceversa. The two subplots
show the Dice Similarity Coefficient (DSC) values for the Anterior and Posterior hippocampus measured

using Signal to Noise Ratios (SNRs).
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Figure 6: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray)
and SUPER U-Net (black) under various levels of adversarial attacks applied to the BraTS test data. The
three sub-plots show the Dice Similarity Coefficient (DSC) values for a range of Signal-to-Noise Ratios
(SNRs) for three different tumor regions: whole, core, and enhancing tumor. We show (a) noise-free case,
(b) untargeted attacks generated using FGSM, (c) Targeted adversarial attacks with source: label 3, target:
label 1, (d) Targeted adversarial attacks with source: label 1, target: label 3, (e) Targeted adversarial attacks

with source: label 3, target: label 2, and (f) Targeted adversarial attacks with source: label 2, target: label 3.

the other three networks, especially for stronger attacks (i.e., low values of SNR).

5.3. Evaluation of the Clinical Data

We show that SUPER U-Net can scale to real-world datasets. SUPER U-Net is
able to achieve 86% DSC on held-on test data. Figure 9 shows sample scans from
the UAB clinical data (first column) along with ground-truth segmentation (second
column) and SUPER U-Net’s segmentation and associated uncertainty maps (third and
fourth columns, respectively). The representative images show that SUPER U-Net is
uncertain when a tumor region is missed (scans 1 and 2), as well as for unusually

low signal pixels within the tumor (scan 1). A typical tumor is associated with a high
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Figure 7: Segmentation of the Lungs test data. We show (left to right) the CT input image, the ground-

truth segmentation, noise-free models’ segmentation predictions (U-Net, Bayes U-Net, Ensemble U-Net, and
SUPER U-Net). The uncertainty map of each Bayesian model is shown next to the corresponding prediction.
The white arrows point to regions incorrectly classified by the network. We note that the corresponding pixels

in the uncertainty maps reflect the low confidence by responding with higher variance values.

FLAIR signal; in the first scan, the central part of the tumor is associated with a low
signal, which is atypical (see right arrow in Fig. 6, row 1, column 4). In a sense, the
model attracts the physician’s attention to these regions in the image so that they can
confirm whether these are part of the tumor or not. In the second scan, the tumor is
totally missed, but the model exhibits high uncertainty in the missed region. The last
scan has no tumor, and SUPER-Net correctly predicts true negative cases and associates
a very low uncertainty (predictive variance ~ 0) or equivalently a high confidence in

these predictions.

5.4. Uncertainty Maps and Predictive Variance — Quantitative Analysis

5.4.1. Uncertainty Maps

The output of SUPER U-Net consists of the pair: segmentation map (prediction)
and uncertainty map (obtained from the predictive covariance). For the other ap-
proaches, uncertainty is evaluated through multiple forward passes. In Fig.7, we present
a representative case for the Lungs dataset. In Fig. 8 we present representative cases
selected from the hippocampus (8a) and BraTS (8b) test data. We show the input
modality (only FLAIR for the BraTS data), the ground-truth label, and predictions with
associated uncertainty maps. The first row presents the noise-free case, the second row
reports the predictions and uncertainty maps for the Gaussian noise case, and the third
and fourth rows show two examples of adversarial attacks. We normalized the predic-
tive variance of SUPER U-Net for better visual comparison to the uncertainty maps of

Bayes U-Net and Ensemble U-Net. We point to regions (pixels) incorrectly classified

21



Cround Truth Bayes UNek TFnsamble UNe SUPER UNet

Uncertainty icti Uncertainty Prediction Uncertain

Gaussian Noise added
to entire input (SNR % 15)

0.5 Targeted Attack
(SNR % 15): source 1 & target 2

Normalized Uncertainty

0 Targeted Attack
(SNR ¥ 15): source 2 & target 1

[ Class 1: Anterior [ Class 2: Posterior

(a) Hippocampus test data
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Figure 8: Segmentation of the (a) hippocampus and (b) BraTS test data. The first row shows (left to right) the
input image, the ground-truth segmentation, and noise-free models’ segmentation predictions (U-Net, Bayes
U-Net, Ensemble U-Net, and SUPER U-Net). The uncertainty map of each Bayesian model is shown next
to the corresponding prediction. Rows 2, 3, 4 display the segmented predictions along with their uncertainty
maps (when applicable) for additive Gaussian noise and two adversarial attacks, respectively. The black
arrows point to regions incorrectly classified by the network. Observe that the corresponding pixels in the
uncertainty maps reflect low confidence or higher variance values. The blue arrows refer to inconsistent un-
certainty estimates: low confidence is associated with incorrect predictions or high uncertainty for correctly

classified regions.
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Figure 9: Sample scans from the clinical data. Images show (left to right) the Flair input image, the ground-
truth segmentation, SUPER U-Net prediction and uncertainty map overlaid on the input scan. The black

arrows point to regions incorrectly classified by the network or unusually low (atypical) signals in the FLAIR.

by our network with the black arrows, and we point to the corresponding locations in
the uncertainty maps. It is evident from the figure that SUPER U-Net associates high

uncertainty with incorrect predictions and pixels belonging to targeted regions.

5.4.2. Predictive Variance — Quantitative Analysis

We investigate the response of the derived second moment (variance/uncertainty)
and relate it to the model’s performance (DSC). We calculate the average predictive
variance from uncertainty maps and plot these values against various levels of Gaus-
sian noise in Fig. 10, and adversarial attacks in Fig. 11, for hippocampus and BraTS
datasets. It is more instructive and insightful if sub-plots in both figures are interpreted
from right to left, i.e., decreasing SNR or equivalently increasing noise in the test data.
‘We note that the predictive variance increases monotonically with increasing noise (i.e.,
decreasing SNR) for all three sub-figures in Fig. 10 and all four sub-figures in Fig. 11.
This behavior, i.e., increasing uncertainty with increasing noise, demonstrates that the
network is aware of higher noise in the input. A useful and meaningful uncertainty
estimate should convey a lower confidence/ higher uncertainty for low-accuracy seg-

mented images [41]. Table 7 reports SUPER U-Net average predictive variance for
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Table 6: DSC for test sample from BraTS Data - performance comparison before and after removal of

uncertain pixels.

Whole Core Enhancing
Bayes | Ensemble | SUPER | Bayes | Ensemble | SUPER | Bayes | Ensemble | SUPER
U-Net U-Net U-net U-Net U-Net U-net U-Net U-Net U-net
Noise Free
Original 96 .96 97 .85 .87 .89 97 .96 98
Uncertain Pixels Removed 997 997 11 917 887 907 17 9817 117
Gaussian Noise added to entire input (SNR = 20)
Original .56 .14 97 40 .16 .86 .58 3 .86
Uncertain Pixels Removed A1) 0} 987 40 104 997 617 210 117
Untargeted adversarial attacks (SNR =~ 12)
Original 90 91 .94 74 81 78 .89 91 95
Uncertain Pixels Removed 88 791 957 57 8917 817 17 90 ] 17
Targeted adversarial attacks (SNR = 18): source 3, target 2
Original 93 .98 99 .89 .90 .89 .95 .96 97
Uncertain Pixels Removed 90 ] 98 99 9617 967 957 17 9817 17

Table 7: SUPER U-Net Predictive Variance for BraTS Dataset.

‘ Whole ‘ Core ‘ Enhancing

Correct .007 .008 .008
Incorrect 289 .307 .336

correctly classified and misclassified pixels on noise-free BraTS test set. Observe that
the incorrect pixels are associated to high variance or less confident predictions.
Following the quantitative uncertainty evaluation task in the BRATS challenge [41],
we compute the percentage change in DSCs when uncertain pixels are removed, and
DSC is computed only using the remaining pixels. To define uncertain pixels, for each
model, we set as a threshold the average predictive uncertainty for correctly classified
pixels for the noise-free case. All pixels with an uncertainty value above this threshold
are marked as uncertain and removed from the computation of the DSC. We report the
change in DSCs in table 6. The sample scan corresponds to that provided qualitatively
in Fig. 8b. Our approach consistently produces higher (T) DSCs after removing uncer-
tain pixels, i.e., unlike other approaches, our predictive variance (uncertainty) is above
the threshold only for incorrectly classified pixels. Such information is valuable for

detecting when the network may fail and its predictions may become untrustworthy.
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Figure 10: Accuracy, measured by Dice Similarity Coefficient (DSC) and plotted in black, and average
predictive variance of SUPER U-Net, plotted in red, under various levels of Gaussian noise added in the test
data for hippocampus dataset. SNR denotes the signal-to-noise ratio. (a) Noise is added to the entire input.

(b) Noise is added to the anterior pixels only. (c) Noise is added to the posterior pixels only.
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Figure 11: Accuracy, measured by Dice Similarity Coeflicient (DSCs) and plotted in black, and average
predictive variance of SUPER U-Net, plotted in red, under various levels of adversarial attacks applied to
the test data for BraTS dataset. SNR denotes the signal-to-noise ratio. Test data is corrupted with targeted
attacks: (a) source class 3 and target class 1, (b) source class 1 and target class 3, (c) source class 3 and target

class 2, (d) source class 2 and target class 3.

5.5. Discussion

Our extensive analysis shows that SUPER U-Net has superior robustness to noise
and adversarial attacks compared to state-of-the-art uncertainty quantification approaches.
In the noise-free case, SUPER U-Net performance is equivalent to the state-of-the-art
models. However, as the noise level increases (Gaussian or adversarial), the task or
the dataset becomes more complicated, e.g., BraTS data (multiple segmentation la-
bels and multiple modalities), SUPER U-Net outperforms both the deterministic U-Net
and other Bayesian approaches, i.e., Bayes U-Net and Ensemble U-Net. The superior
performance and robustness to noise, especially at high levels of noise and complex
tasks/data, can be attributed to the intrinsic learning of the uncertainty during training
through propagation of the covariance information (in addition to the mean). This is in

contrast to post-hoc estimation of uncertainty using MC runs through the network or
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models averaging at the inference time.

5.5.1. The Significance of Uncertainty Information

The reliability of the segmentation predictions can be assessed using the uncer-
tainty maps. This is evident from the comparison with the point-estimate approach,
i.e., U-Net (figures 8a, 8b). SUPER U-Net associates higher uncertainty with incorrect
predictions and pixels or regions targeted by adversarial attacks (marked with black
arrows). When the predicted segmentation is (almost) identical to the ground truth, the
model is confident in its segmentation predictions and exhibits uncertainty only at the
boundary between the structure of interest and the background. When the network’s
segmentation predictions are incorrect, or the input is perturbed by noise or adversari-
ally attacked, SUPER U-Net associates higher uncertainty values with the predictions
(rows 2 to 4). On the other hand, inspecting the maps generated using other proba-
bilistic approaches, we see that their uncertainty maps do not convey the same level
of insight into the trustworthiness of the predictions. Ideally, the model’s uncertainty
should increase (darker red shades) only for regions of incorrect classification and/or
for regions with noise or artifacts. However, as shown with the blue arrows in Figs. 8a
and 8b, both Bayes U-Net and Ensemble U-Net generate inconsistent uncertainty esti-
mates: they associate low uncertainty (high confidence) to incorrect predictions and/or

high uncertainty (low confidence) to correctly classified regions.

5.5.2. Clinical Impact

Coordinates of the tumor volume are used to determine the clinical target volume
of the radiation therapy treatment. Inaccuracy and variation in defining critical vol-
umes will affect everything downstream: treatment planning, dose-volume histogram
analysis, and contour-based visual guidance used in image-guided radiation therapy.
Studies have shown that under-coverage of radiation dose to the tumor target could
compromise treatment outcomes [42]. Ultimately, both researchers and practitioners
agree that radiotherapy is only as good as the accuracy with which the target is.

DL algorithms for segmentation have the potential to address the number one im-

pediment to reliable use of imaging for guiding treatment planning of cancer, i.e., ac-
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curate and objective delineation of tumors from healthy tissue and organs. However,
reliability and lack of consistency of DL predictions hinder the safe deployment of such
models in the clinic [43]. For example, a medical diagnostic system for detecting brain
tumors from magnetic resonance scans may encounter a new tumor shape/structure
(due to a different scan procedure) or an adversarial attack designed to fake a tumor for
benefiting from medical bills [4]. Uncertainty information can limit the harmful conse-
quences in such scenarios. Model confidence or uncertainty is critical when integrating
the models in systems that make decisions that affect human life, either directly or in-
directly. Ideally, the model should recognize the perturbed data and return an output
(segmented image plus uncertainty map) that also conveys a high level of uncertainty.

SUPER U-Net simultaneously delivers the segmented image (prediction) along
with the corresponding uncertainty map, which reflects the network’s own confidence
in the prediction of every pixel. The uncertainty information generated by the frame-
work can provide critical guidance, particularly in cases where segmentation predic-
tions are ambiguous. This capability will ensure that ML models are not merely passive
tools but active collaborators in clinical workflows. For example, in figure 9, the SU-
PER U-Net prompts the physicians to false negative, i.e., missed tumor region and an
unusual low SNR region inside the tumor structure. The uncertainty map can prompt
the physician to pay particular attention to regions of low confidence rather than re-
viewing the model’s prediction as a whole.

The uncertainty proposed with this work will help users develop trust in ML models
as well as drive informed human-AlI interaction. For example, ML systems that do not
involve a physician-in-the-loop can flag the scan and request human intervention when
uncertainty is above a set threshold. This research has the potential to improve the
accuracy of tumor monitoring, optimize radiation therapy planning, and inspire the

adoption of trustworthy ML.

5.5.3. Computational Complexity, Trade-offs, and Limitations
We report the average inference time of all four networks in Table 8. SUPER U-
Net requires almost twice the time to process a single image at inference compared to a

deterministic U-Net. This increase is due to the propagation of the covariance informa-
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Table 8: Inference time per image

‘ U-Net ‘ Bayes U-Net ‘ Ensemble U-Net ‘ SUPER U-Nets

Time (min) ‘ 0.81 ‘ 0.82 Ny ‘ 0.81 N3 ‘ 1.92

*Np and N, denote the number of runs at inference time and ensemble networks, respectively.

tion, which involves additional operations. Other approaches that deliver uncertainty,
i.e., Bayes U-Net and Ensemble U-Net, take the same time as that of a deterministic
U-Net for one pass (or one model). However, these approaches necessitate multiple
passes to calculate the variance of the prediction. For example, we used N = 20 for
Bayes U-Net, leading to 16.4 ms for each image, almost 8 times more than SUPER U-
Net. Additionally, it is worth mentioning that ensemble approaches require an extended
training time and additional storage as several models are trained and saved.

The computational complexity of the proposed SUPER U-Net framework is influ-
enced by the propagation of the first two moments of the variational pdf. Given the
tensor normal distribution, SUPER U-Net requires an additional trainable parameter
per convolutional kernel [6]. Hence, the total number of trainable parameters remains
nearly the same as that of a deterministic model. For instance, consider the Lungs
dataset with the number of kernels as reported in Table 1, and size 3 x 3. For a de-
terministic model, we have n; = 1440 total parameters, corresponding to a storage
requirement of approximately 5.625 KB. In the case of the proposed method, we have
one additional parameter per kernel, resulting in a total of n, = 1600 parameters, cor-
responding to approximately 6.25 KB of storage. This slight increase in storage high-
lights that the main computational burden arises from performing separate operations
on the mean and variance vectors rather than from storing the additional parameters.

While these drawbacks present challenges for real-time or resource-constrained
scenarios, they are counterbalanced by several significant advantages. First, SUPER
U-Net demonstrates superior robustness to noise and adversarial attacks. Additionally,
the model’s uncertainty provides a valuable tool to assess the reliability of the predic-
tions. Finally, prior work showed the ability of Bayesian models to discover redundant

kernels that can be pruned without affecting accuracy, hence reducing the storage re-
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quirements [44].

Certain limitations must be considered when evaluating the applicability of SU-
PER U-Net. One key challenge concerns its performance on small and imbalanced
datasets. While Bayesian methods, including early works such as [33] and [20], have
demonstrated improved generalization in low-data regimes, dataset imbalance can still
influence uncertainty estimates. In cases where specific structures appear infrequently
in training, the reliability of uncertainty predictions remains unexplored in this study.

Another limitation relates to the sensitivity of SUPER U-Net to prior assumptions
and hyperparameter choices. The model adopts a Gaussian prior over network weights,
a common assumption in Bayesian models. However, this prior may not always be
optimal for complex medical imaging tasks, where the underlying data distribution
exhibits non-Gaussian properties. While the first-order Taylor expansion provides an
efficient approximation, propagating additional moments could enhance robustness.
Moreover, hyperparameters such as the prior variance and the KL regularization term
significantly influence model behavior, and suboptimal tuning could lead to failure in
learning, overconfident predictions, or excessive uncertainty. Future work could ex-
plore these directions to assess SUPER U-Net’s behavior in rare disease segmentation

and other data-scarce applications while exploring alternative priors.

6. Conclusion

This study introduced SUPER-Net, a novel Bayesian DL framework that effectively
quantifies uncertainty in medical image segmentation tasks using encoder-decoder ar-
chitectures. One of the strengths of SUPER-Net is its ability to produce pixel-wise
uncertainty maps alongside segmentation outputs in real-time without relying on ex-
pensive post-hoc sampling techniques like Monte Carlo. This inherent capability of
uncertainty quantification enhances the trustworthiness and reliability of the model’s
predictions and makes it more robust in the face of noisy and adversarial inputs, as
demonstrated across multiple medical imaging datasets. SUPER-Net’s ability to prop-
agate uncertainty through nonlinear layers via a Taylor series approximation is a signif-

icant step forward in making DL models more interpretable and suitable for real-world
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clinical applications. Researchers and practitioners in medical imaging can benefit
from SUPER-Net by utilizing its uncertainty maps to improve the reliability of au-
tomated segmentation, especially in high-risk clinical settings. This framework can
be adapted for different architectures and imaging modalities, thus serving as a valu-
able tool for applications requiring high levels of confidence in predictions. For future
work, we plan to address the current limitations by exploring more complex posterior
distributions beyond the Gaussian assumption to better capture uncertainties in het-
erogeneous data. Additionally, integrating SUPER-Net with active learning strategies
could help refine segmentation models by focusing on areas of high uncertainty, thus
improving training efficiency. Furthermore, the potential of SUPER-Net in other do-
mains, such as object detection and image registration, will be investigated to expand

its applicability beyond segmentation tasks.
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