
SUPER-Net: Trustworthy Image Segmentation via
Uncertainty Propagation in Encoder-Decoder Networks

Giuseppina Carannante1, Nidhal C. Bouaynaya1, Hassan M. Fathallah-Shaykh2,
Ghulam Rasool3, Dimah Dera4

1Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ, USA
2Department of Neurology, University of Alabama at Birmingham School of

Medicine, Birmingham, AL, USA
3Machine Learning Department, Moffit Cancer Center, Tampa, FL, USA

4Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA

Abstract

Deep Learning (DL) holds great promise in reshaping the industry owing to its preci-

sion, efficiency, and objectivity. However, the brittleness of DL models to noisy and

out-of-distribution inputs is ailing their deployment in sensitive fields. Current mod-

els often lack uncertainty quantification, providing only point estimates. We propose

SUPER-Net, a Bayesian framework for trustworthy image segmentation via uncer-

tainty propagation. Using Taylor series approximations, SUPER-Net propagates the

mean and covariance of the model’s posterior distribution across nonlinear layers. It

generates two outputs simultaneously: the segmented image and a pixel-wise uncer-

tainty map, eliminating the need for expensive Monte Carlo sampling. SUPER-Net’s

performance is extensively evaluated on MRI and CT scans under various noisy and ad-

versarial conditions. Results show that SUPER-Net outperforms state-of-the-art mod-

els in robustness and accuracy. The uncertainty map identifies low-confidence areas

affected by noise or attacks, allowing the model to self-assess segmentation reliability,

particularly when errors arise from noise or adversarial examples.

Keywords: Bayesian deep learning, Encoder-decoder networks, Reliability,

Segmentation, Trustworthiness, Uncertainty estimation
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1. Introduction

Driven by the superior performance achieved in many areas, various deep learning

(DL) models have been advanced to analyze medical data, e.g., radiological images

and pathology slides. Several methods have achieved, if not surpassed, prognosis par-

ity with specialized medical personnel [1]. However, their successful deployment in

clinical settings remains limited. While several autonomous algorithms are doubtlessly

employed for many everyday tasks — e.g., spam filters for emails or biometrics that

unlock our cellphones —, there is a less assertive willingness to utilize the same algo-

rithms for risky, sensitive data, such as medical images.

The main challenge that hinders the widespread and effective use of DL in clini-

cal settings is the lack of reliable and trustworthy predictions [2]. For example, when

encountering test examples that differ significantly from its training data, a DL sys-

tem will still produce a prediction. However, without uncertainty information, there

is no way to determine how reliable that prediction is. This concern is further exacer-

bated by the vulnerability of DL models to adversarial inputs — perturbations that are

imperceptible to human observers yet cause a trained DL model to produce erroneous

predictions [3]. In the literature, there are studies highlighting the vulnerability of med-

ical models to adversarial perturbations [4]. As a result, DL in medicine is particularly

susceptible due to both technical weaknesses and financial incentives [4].

Addressing these challenges requires DL models not only to produce accurate pre-

dictions but also to quantify the uncertainty associated with those predictions. Uncer-

tainty Quantification (UQ) serves as a key mechanism for assessing the reliability of

predictions, allowing users to be aware of the level of confidence in the models’ predic-

tions. UQ could be very useful when the DL model is essentially guessing at random

due to excessive noise in the input or possible adversarial attacks. Unfortunately, as

most DL models are inherently deterministic, a measure of confidence or uncertainty

is not readily available at their output.

Estimating the confidence of a model requires a probabilistic interpretation of the

model’s parameters, i.e., treating model parameters as random variables endowed with

a probability distribution. Through Bayesian inference, the posterior distribution of the
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model parameters can be found. At test time, the second moment, i.e., the covariance,

of the predictive distribution can serve as a measure of confidence or uncertainty in the

predicted output. Several Bayesian models have been developed for the classification

and regression problems [5]. Trade-offs between prediction accuracy, confidence es-

timation, and scalability are at the heart of these different approaches [5]. Recently,

Dera et al. proposed a variational moments’ propagation (VMP) framework that pro-

vides a meaningful and scalable framework for uncertainty propagation and estimation

in Convolutional neural network (CNN) classifiers [6].

A relatively small amount of work focuses on quantifying uncertainty in pixel-level

segmentation tasks using Bayesian DL models. The challenge in learning uncertainty

for each pixel arises from propagating high-dimensional posterior distributions of the

model’s parameters through multiple stages of non-linearities in the encoder-decoder

architecture. Furthermore, the model must provide an instantaneous uncertainty map at

test time, i.e., simultaneously output the prediction (the segmentation) and correspond-

ing pixel-level uncertainty map without resorting to expensive Monte Carlo sampling

techniques or model averaging (ensemble).

Previous work focused solely on uncertainty quantification in classification neu-

ral network models, notably Convolution Neural Networks (CNNs) [6]. The mathe-

matical derivations presented in [6] are not sufficient for uncertainty propagation in

encode-decoder-based segmentation neural networks. The challenges in adopting the

VMP framework in segmentation lie in the nature of the learning task: semantic seg-

mentation requires the extraction of both global and local contextual information by

encoding and then decoding the input data. Consequently, segmentation networks are

fundamentally different than classification networks, e.g., CNNs. The mathematical

derivations for the decoder part were never presented previously, and the flow of un-

certainty from the encoder to the decoder was never considered within an analytical

and systematic framework. The decoder presents specific non-linearities and opera-

tions, e.g., up-sampling, padding, and concatenation, that require new mathematical

derivations to track the propagation of the uncertainty. In addition, our previous work

estimated a scalar (or a vector) value of variance that is associated with the predicted

class [6]. This work introduces the notion of a dense, pixel-level uncertainty map that
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is provided simultaneously along with the predicted segmentation.

In this paper, we develop a VMP framework for segmentation tasks, SUPER-Net,

and extensively evaluate it for various medical imaging datasets under various noisy

and adversarial conditions. By leveraging key concepts from probability density track-

ing in nonlinear and non-Gaussian systems [7], we propagate the first and the second

moments of the posterior distribution of network parameters through the nonlinear lay-

ers of an encoder-decoder type segmentation architecture. The developed approach is

tested using various medical segmentation datasets consisting of Magnetic Resonance

Images (MRIs) and Computed Tomography (CT) scans. The proposed VMP formula-

tion and the derived mathematical relationships presented in the paper are applicable

to various DNN architectures.

The contributions of this paper are summarized as follows:

(1) Formalize a scalable Bayesian framework that simultaneously learns pixel-wise

prediction and confidence in encoder-decoder segmentation networks by analytically

approximating and maximizing the evidence lower bound (ELBO). Using first-order

Taylor series approximation, we derived closed-form expressions to propagate the first

two moments (mean and covariance) of the posterior distribution of the model param-

eters given the training data and update them during backpropagation; thus, effectively

learning the intrinsic uncertainty of the model. We derive mathematical relations for

all operations involved, rendering a method that is adaptable to other models, e.g.,

Variational Autoencoders, and to other tasks as well.

(2) Develop a Bayesian DL architecture that instantaneously outputs two maps:

(1) the segmented image and (2) the uncertainty map of the predicted segmentation.

These two maps are delivered simultaneously and without requiring any Monte Carlo

sampling at inference time. That is, the generated uncertainty was intrinsically learned

by the model rather than estimated post-training.

(3) Extensively evaluate the performance of the proposed SUPER-Net for various

medical segmentation tasks and under various signal-to-noise ratios (SNRs) and con-

ditions. A thorough robustness analysis is conducted by assessing the performance of

the model and uncertainty map under these perturbations of the input data.
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2. Related Work

Image segmentation is a fundamental problem in computer vision with applications

ranging from medical image analysis to scene understanding for autonomous vehicles.

DL techniques, particularly Fully Convolutional Networks (FCNs), have been widely

used for pixel-level segmentation [8]. FCNs modify traditional CNN architectures by

replacing fully connected layers with upsampling operations to generate segmentation

masks. Encoder-decoder architectures have since become the dominant paradigm for

semantic segmentation [9]. The encoder extracts low-dimensional (salient) features of

the data, while the decoder reconstructs the spacial information to perform pixel-wise

classification. Various improvements have been introduced, e.g., skip connections with

attention mechanisms [10], dilated convolutions [11], wide contest blocks or compres-

sion extraction modules [12].

More recently, Transformer-based architectures have been explored for segmenta-

tion, leveraging attention mechanisms to capture long-range dependencies [13]. Read-

ers interested in further details are directed to recent surveys on the application of

Transformers to various segmentation tasks [14], particularly within the medical do-

main [15]. Inspired by the success of foundational models in natural language pro-

cessing, the Segment Anything Model (SAM) [16] introduced a zero-shot approach to

segmentation, which has also been evaluated for medical imaging tasks [17].

These architectural advances, however, focused on improving accuracy which, no

doubt, is an important metric but it does not convey the full picture. Reliability, robust-

ness, and trustworthiness are important metrics for these models. An unreliable model

can jeopardize the clinical system by exposing it to technical vulnerabilities, financial

risks, and even patient harm [4]. In the context of semantic segmentation, there are two

main approaches for UQ: Monte Carlo (MC) dropout [18] and model ensemble [19].

MC dropout is widely used due to its simplicity and compatibility with existing NN

architectures [18]. The uncertainty information is obtained, at inference time, from the

sample variance of multiple MC forward passes through the network. Several stud-

ies have applied this technique for various segmentation tasks [20]. For instance, a

full-resolution residual network is used for brain segmentation in [21], the QuickNAt
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architecture is used in [22], and a 3D U-Net is proposed in [23].

In ensemble methods [19], after training multiple networks, usually with random

initialization, several segmentation estimates are produced, and their variation is used

as a measure of confidence. For example, [24] uses a ResUNet architecture with soft

dice loss and two regularization terms to diversify the ensemble members. Authors

in [25] generate diversity in the ensemble by considering predictions generated by

different architectures and models. Other researchers proposed weighting ensemble

members based on sensitivity and precision to improve calibration [26]. Some works

combined the two approaches; for example, in [27] ensemble members are generated

by changing the dropout rate. Other techniques, e.g., hierarchical probabilistic models

[28], Evidential Deep Learning [29] and Normalized Softmax Entropy [30], have also

been explored to quantify uncertainty. However, most existing UQ approaches share

common limitations.

Post-hoc methods estimate uncertainty only at inference time—using multiple for-

ward passes or MC sampling—rather than integrating it into training. This prevents

the model from refining uncertainty estimates based on training data. Moreover, these

methods approximate uncertainty through empirical sample variance, which may not

reflect true confidence, leading to overconfident incorrect predictions. They are also

computationally expensive, requiring multiple forward passes at test time or training

multiple models in ensemble methods. Lastly, many approaches lack robustness eval-

uation, as they are often assessed on clean datasets without considering adversarial

attacks or noisy inputs

In contrast, the proposed SUPER-Net framework learns uncertainty during train-

ing and outputs simultaneously the predicted segmentation and its uncertainty map.

A framework to learn the variance is proposed in [6], but derivations are limited to

CNNs, rendering the approach unsuitable for the more complex end-to-end segmenta-

tion tasks. Building upon this work, we develop a Bayesian framework that propagates

the first and the second moment of the variational posterior distribution across all layers

of a segmentation DL model. At test time, the uncertainty in the predicted segmenta-

tion is produced by the network as the covariance matrix of the predictive distribution

simultaneously alongside the segmentation without resorting to multiple runs.
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Figure 1: An illustration of the SUPER-Net model, where all mathematical operations are performed on

random variables. The mean and covariance matrices are propagated through each operation. The output of

SUPER-Net consists of the predicted segmented image and a covariance matrix, which is used to generate

the associated uncertainty map.

3. SUPER-Net: Segmentation with Uncertainty Propagation in Encoder-decodeR

Networks

We derive a Bayesian framework where the first two moments of the posterior dis-

tribution are learned simultaneously by (forward and backward) propagation through

the network layers. For scalability and efficiency of the proposed approach, we adopt

the Variational Inference (VI) technique, but rather than estimating the expected log-

likelihood using expensive Monte Carlo sampling, we approximate its first two mo-

ments with a first-order Taylor-series expansion. In the sequel, we present our mathe-

matical results. An illustration of the SUPER-Net model is presented in Figure 1.

3.1. Mathematical Notations

Scalars are represented by lower-case letters, e.g., x, xi. Vectors are represented

by bold lower-case letters, e.g., y. All vectors are column vectors. yi denotes the ith

element of vector y. Matrices are represented by bold upper-case letters, e.g., A. Tr(·)

denotes the trace of a matrix, i.e., the sum of its diagonal elements. T denotes the trans-

pose operator, and vec(·) denotes the vectorization operator. The Hadamard product,

i.e., the element-wise product, is denoted with ⊙, while × represents the matrix-matrix
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or matrix-vector product. Tensors with three or more dimensions are represented by

curly bold upper-case letters, e.g., X. If x is a random variable, E[x] denotes the ex-

pected value of x. We use W(kc)
e to represent the kth

c convolutional kernel of the cth

layer. Kc denotes the total number of kernels in layer c. The subscripts e and d repre-

sent the encoder and decoder path operations, respectively.

3.2. Bayesian Deep Learning and Variational Inference

In Bayesian statistics, the unknown parameters are fully characterized by their pos-

terior distribution given the observations. In Bayesian DL, the network parameters Ω

are endowed with a prior probability distribution p(Ω) and all information about the

parameters is embedded in the posterior distribution p(Ω|D) given the (training) data

D = {X
i, yi}N

i=1. Once the posterior is estimated, the predictive distribution, i.e., the

distribution of the test data, can be derived as:

p(y∗|X
∗,D) =

∫
p(y∗|X∗,Ω) p(Ω|D) dΩ, (1)

where X∗ is the input, y∗ is its corresponding predicted output and p(y∗|X∗,Ω) is the

likelihood.

Unfortunately, direct inference of the posterior is intractable due to the large pa-

rameter space and nonlinear nature of DL architectures. A popular approximation tech-

nique, known as VI, formulates the problem of posterior inference as an optimization

problem [31]. The VI approach considers a simple family of distributions over the net-

work parameters and attempts to find a distribution, called the variational distribution

qθ(Ω), within this family that is “close” to the true unknown posterior. The notion of

distributional closeness is captured by the Kullback-Leibler (KL) divergence, and the

optimization is performed with respect to the variational distribution parameters θ:

KL
(
qθ(Ω)

∣∣∣∣∣∣p(Ω
∣∣∣D)

)
=

∫
qθ(Ω) log

qθ(Ω)
p(Ω)p(D|Ω)

dΩ. (2)

By rearranging terms in (2), the well-known ELBO objective function is obtained [32]:

L(θ) = − Eqθ(Ω)
[
log(p(D|Ω)

]
+KL

(
qθ(Ω)

∣∣∣∣∣∣p(Ω)
)
. (3)

Most Bayesian DL frameworks that use the VI approach sample one set of param-

eters θ and perform a deterministic forward pass and backpropagation. The second
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moment or the variance of the predictive distribution is obtained post-training using

MC samples at inference time [33]. This practice is based on the assumption that the

single set of sampled parameters θ represents the variational distribution qθ(Ω) with

sufficient accuracy, which has no theoretical grounds [6].

3.3. Encoder Operations

We define a multivariate Gaussian distribution as a prior distribution for all con-

volution kernels. We assume that kernels are independent within each layer as well

as across layers in both the encoder and decoder paths. The independence assumption

results in a single additional parameter (variance) for each kernel, limiting the increase

in the number of parameters due to the Bayesian formulation. Moreover, independent

kernels help extract uncorrelated features and better explore the input space [6].

Convolution Between Input and Network Parameters: The convolution operation in

the first layer is performed between the input data (initially assumed deterministic for

simplicity) and the network parameters (random variables). We assume that network

parameters W(k1)
e follow a Gaussian distribution, i.e., vec(W(k1)

e ) ∼ N
(
m(k1)

e ,Σ(k1)
e

)
.

We write the convolution as a matrix-vector multiplication, where X denotes the matrix

having rows equal to the vectorized sub-tensors of the input X. Then, the convolution

operation is expressed as z(k1)
e = X × vec(W(k1)

e ), for k1 = 1, · · · ,K1. Thus, the output

of the first convolutional layer follows a Gaussian distribution where the mean and

covariance are given by:

z(k1)
e ∼ N

(
Xm(k1)

e , XΣ(k1)
e XT

)
. (4)

Convolution Between Two Random Variables: We consider a generic case of convo-

lution between two random variables. Let B be the incoming input to any convolution

layer, except the first layer, i.e., c , 1. The convolution operation is expressed as a

matrix-vector multiplication; however, in this case both the input and the kernels are

random tensors. We form B by vectorizing the sub-tensors of the incoming input B,

i.e., B = [bT
1 ,b

T
2 , · · · ,b

T
J ]T , where bT

j represents jth row of B. Let µb j and Σb j represent

the mean and covariance of b j. Then, the output of the convolution is formulated as

z(kc)
e = B × vec(W(kc)

e ) with vec(W(kc)
e ) ∼ N

(
m(kc)

e ,Σ(kc)
e

)
for kc = 1, · · · ,Kc . Given
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that the input B (feature map) is independent from the subsequent layer kernels, we

compute elements of the mean of z(kc)
e as the product of the two mean vectors, µb j and

m(kc)
e , i.e.,

[µz(kc )
e

] j = µ
T
b j

m(kc)
e , j = 1, · · · , J. (5)

The elements of the covariance matrix Σz(kc )
e

are derived as:

Non-diagonal elements (i , j) : µT
bi
Σ(kc)

e µb j , (6)

Diagonal elements (i = j) : Tr
(
ΣbiΣ

(kc)
e

)
+ µT

bi
Σ(kc)

e µb j +m(kc)T
e Σb j m

(kc)
e . (7)

Nonlinear Activation Function: Convolutional layers are commonly followed by an

element-wise nonlinear activation function, e.g., Rectified Linear Unit (ReLU). Let ψ

denote the activation function and g(kc)
e denote the output of the activation function, i.e.,

g(kc)
e = ψ[z(kc)

e ] for kc = 1, · · · ,Kc . We use the first-order Taylor series approximation

to derive the mean and covariance of the random variable g(kc)
e , i.e.,

µg(kc )
e

≈ ψ
(
µz(kc )

e

)
, Σg(kc)

e
≈ Σz(kc )

e
⊙
[
∇ψ

(
µz(kc )

e

)
∇ψ

(
µz(kc )

e

)T ]
, (8)

where ∇ is the gradient with respect to z(kc)
e .

Max-Pooling Operation: The max-pooling operation is often used to downsample the

incoming feature map. We propagate the mean through the max-pooling layer using the

classical operation of selecting the largest value from a patch in the feature map. The

pooling for the covariance is achieved by only retaining the rows and columns (of the

incoming covariance matrix) corresponding to the retained elements (pooled elements)

of the mean vector. We write the mean and covariance as follows:

µp(kc )
e
= pool(µg(kc )

e
), Σp(kc )

e
= co-pool(Σg(kc )

e
). (9)

An encoder may consist of multiple layers of convolution operations, nonlinear activa-

tion functions, and max-pooling to get a low-dimensional representation of the input.

3.4. Decoder Operations

The operations in the decoder path start with the low-dimensional representation

produced by the encoder. The decoder may also include multiple convolutional layers,

which are performed following the mathematical relationships provided in Eqs. (5)-(7).
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Up-sampling: The up-sampling is an essential part of the decoder path that increases

the resolution of the input. Using g(kc)
d to represent the input to the up-sampling opera-

tion and u(kc)
d as the output, we have:

u(kc)
d = up-sample

(
g(kc)

d

)
. (10)

The mean of u(kc)
d is computed by inserting zeros between two consecutive elements of

the input and padding with zeros. The covariance matrix is obtained by adding rows

and columns of zeros at locations corresponding to the newly added zeros in the mean.

Up-convolution: The up-sampling operation may produce sparse feature maps with

many zeros. Generally, a 2× 2 convolution operation is performed to get a dense high-

resolution output. The mean and covariance are computed using results presented in

Eqs. (5)-(7).

Padding: The padding operation applied to the mean is the same as the classical zero-

padding operation. For the covariance matrix, we add a new row and a new column for

each element padded to the mean. The new elements added in the covariance matrix

are all set to zero, and the variance (diagonal) elements are set to a user-defined small

value with σpa > 0.

Concatenation: The features from the encoder side are generally concatenated with

the corresponding features from the decoder to improve the localization of various ob-

jects in the input. The feature maps from the encoder path may need to be resized or

cropped before they can be concatenated with the decoder features due to the differ-

ences in size.

Let Gc
e be the cth encoder feature map, and g(kc)

e the kth
c slice from such map with

mean and covariance µg(kc )
e

and Σg(kc )
e

, respectively. The cropped feature map is denoted

with G∗c
e where kth

c slice is g∗(kc)
e . For kc = 1, . . . ,Kc, µg∗(kc )

e
= crop(µg(kc)

e
) while Σg∗(kc)

e
is

obtained by removing the rows and columns from Σg(kc )
e

corresponding to the cropped

elements of µg(kc )
e

.

The output of the concatenation operation is a feature map G∗c
d = {G

c
d,G

∗c
e }, where

G
c
d is the cth decoder feature map. The concatenation operation is done along the

dimension that represents channels in the feature maps (generally the third dimension).

Softmax Function: Pixel-level segmentation can be considered as a dense classifica-
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tion problem where we assign a label to each pixel. Hence, for a multi-class problem,

a softmax function ϕ is applied to the output of the last layer. Let F represent the out-

put of the last layer with mean µF and covariance ΣF, and Y denote the output of the

network after the softmax operation. We can approximate the mean µY and covariance

ΣY using first-order Taylor series, that is:

µY ≈ ϕ(µF), ΣY ≈ JϕΣF JT
ϕ , (11)

where Jϕ is the Jacobian matrix of ϕ computed with respect to F evaluated at µF.

The mathematical results presented above for various operations can be used to

build any type of deep NN in addition to the proposed encoder-decoder-based networks.

4. Experimental Methods

4.1. Datasets

We use three different medical benchmark segmentation datasets, including lung

CT [34], hippocampus MRIs [35] and brain tumor MRIs [36], and one clinical dataset

[37]. Our experiments use only the publicly available annotated data from the respec-

tive datasets, i.e., unlabeled data is not used for training or validation. The datasets are

divided into training, validation and testing bins with approximately 80% selected for

training, 10% for validation and 10% for testing.

4.1.1. Lungs Dataset

The dataset includes 20 CT scans from the chest region, available at zenodo.org

[34]. This heterogeneous dataset consists of both COVID-19 and non-COVID-19 pa-

tients. The data annotations include left lung, right lung and infections (if found). We

consider a binary segmentation task for this dataset, i.e., delineating the boundaries of

the lungs in the given CT images. We assign a label of 0 to the background and 1 to

lung tissue. The pre-processing steps include: 1) windowing the Hounsfield units range

between −1250 and 250; 2) normalizing all pixel values between 0 and 1; 3) deleting

empty slices, i.e., slices that include only the label 0 corresponding to the background

to minimize class imbalance; and 4) cropping all images to a single size, i.e., 512×512

pixels.
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4.1.2. Hippocampus Dataset

The Hippocampus data is available as part of the Medical Segmentation Decathlon

[35]. The dataset consists of 394 single-modality MRI scans. The segmentation task

requires the precise delineation of two adjacent structures, i.e., anterior (label 1) and

posterior (label 2). The pre-processing steps include: 1) normalizing the data to reduce

the image bias (which is a characteristic of MRI data); 2) deleting empty slices, i.e.,

those that include only the background; and 3) padding images to have the same input

size of 64 × 64 pixels.

4.1.3. Brain Tumor Segmentation (BraTS) Dataset

The Brain Tumor Segmentation (BraTS) dataset is available as part of the MIC-

CAI BraTS Challenge. The dataset includes about 300 multi-modal (T1, T1c, T2, and

FLAIR) MRI scans from 274 brain tumor patients (some patients have multiple MRI

scans) [36]. The dataset is divided into two main types of tumors: low-grade gliomas

(LGG) and high-grade gliomas (HGG). We focus on the more challenging HGG dataset

in our experiments. The pre-processing steps include: 1) normalizing data to reduce the

image bias; 2) deleting images that do not include any tumor structure; and 3) cropping

each image to the size of 240 × 240 pixels. The input data size for each sample in the

dataset is 240 × 240 × 4 pixels, where the last number represents the four modalities,

i.e., T1, T1c, T2, and FLAIR. All four networks (U-Net, Bayes U-Net, and SUPER

U-Net) are trained to segment 5 different labels in the HGG MRIs, i.e., normal tissue

(label 0), necrosis (label 1), edema (label 2), non-enhancing tumor (label 3), and en-

hancing tumor (label 4). In most clinical applications, generally, three tumor regions

are considered for evaluating the results of segmentation: whole tumor (labels 1, 2, 3

and 4), tumor core (labels 1, 3 and 4), and enhancing tumor region (label 4) [36].

4.1.4. Clinical Dataset

We acquired a real-world, anonymized, IRB-approved brain tumor dataset from the

O’Neal Comprehensive Cancer Center at the University of Alabama at Birmingham

(UAB) School of Medicine. This dataset will be made available upon request. The

imaging dataset includes 627 fluid-attenuated inversion recovery (FLAIR) sequences,
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Table 1: Architecture Details for Different Datasets

Dataset Encoder Blocks Decoder Blocks Encoder Filter Decoder Kernels

Lungs 3 2 16, 32, 64 32, 16

Hippocampus 3 2 32, 64, 128 64, 32

BraTS 5 4 64, 128, 256, 512, 1024 512, 256, 128, 64

Clinical 5 4 16, 32, 64, 128, 256 128, 64, 32, 16

including 24 images each on average, from patients diagnosed with World Health Or-

ganization grade 2 gliomas, seen at the neuro-oncology clinics at the University of

Alabama at Birmingham [37]. The tumor masks were manually annotated by an expert

physician. The pre-processing steps include: 1) normalizing data to reduce the image

bias; 2) deleting images that do not include any tumor structure; and 3) cropping each

image to the size of 240 × 240 pixels.

4.2. Segmentation Network Architectures

We apply the proposed SUPER-Net framework to the U-Net architecture; for sim-

plicity, we refer to it as SUPER U-Net. We compare SUPER U-Net with three state-

of-the-art segmentation networks, a deterministic U-Net [9], a Bayes U-Net obtained

using MC dropout [20], and an Ensemble U-Net [38].

4.2.1. U-Net - The Baseline Segmentation Architecture

Among all architectures proposed for medical image segmentation, U-Net is the

most widely used [9]. U-Net is built using the encoder-decoder structure with a con-

tracting path that is almost identical to the expanding path. The contracting path may

consist of multiple encoder blocks, which, in turn, may include various convolution lay-

ers, max-pooling, and nonlinear activations. The expanding path consists of multiple

decoder blocks, which are made of multiple layers of convolution, activation functions,

up-convolution, up-sampling and padding. Additionally, there are connections between

the encoder and decoder blocks that concatenate feature maps from the encoder with

the corresponding feature maps of the decoder. Finally, a 1 × 1 convolution and Soft-

Max are applied to the decoded feature maps before calculating the cross-entropy loss

function.
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In the original U-Net architecture [9], the border pixels are lost due to un-padded

convolution operations and the missing regions are extrapolated by mirroring. Such

processing may yield erroneous results for some medical image segmentation datasets.

Hence, in our setting, we apply the padding operation to increase the size of the feature

maps and reconstruct the full image at the output of the network. We include the

padding operation twice in each decoder block on the expanding path. The first padding

operation is performed before the concatenation, and the second is performed before

the second convolution in each decoder block. In our experiments, we refer to this

U-Net architecture as the deterministic segmentation network.

In Table 1, we report the specifics of the architectures for all datasets. The kernel

size is set to 3 for all datasets. For clinical data, we use convolutions with padding set

to same, and apply batch normalization on both the encoder and decoder.

4.2.2. Bayes U-Net

Bayes U-Net is built using the MC dropout technique following the implementation

of [20]. The dropout is used only in the central blocks with the probability of dropping

a neuron set to p = 0.5. Bayes U-Net uses cross-entropy loss function. At the inference

time, we use N = 20 MC samples and the uncertainty is measured in terms of predictive

entropy (PE) [18].

4.2.3. Ensemble U-Net

Ensemble U-Net is built using an ensemble of U-Net models. We trained 5 net-

works with different initializations and used the entire training set for each model. The

number of networks is chosen following the results in [24]. Ensemble U-Net uses the

cross-entropy loss function. At inference time, each input is fed to the five models and

the outputs are used to estimate uncertainty using PE.

4.2.4. SUPER U-Net

SUPER U-Net uses the mathematical operations presented in Sections 3.3 and 3.4

to propagate the first two moments of the variational distribution through the U-Net

architecture. The output of SUPER U-Net consists of a segmentation map and an un-

certainty map. The former is given by the mean of the predictive distribution, while the

15



Table 2: Training Hyperparameters for Different Datasets

Dataset Optimizer Learning Rate Batch Size Epochs σpa (SUPER U-Net)

Lungs Adam 0.001 10 50 0.1

Hippocampus Adam 0.001 20 100 0.02

BraTS Adam 0.001 20 100 0.1

Clinical Adam 0.001 10 100 0.01

latter is generated by the covariance of the predictive distribution. We use a Gaussian

variational distribution and employ the ELBO loss function defined in Eq. (3). We op-

timize the ELBO loss function with respect to the variational parameters, i.e., the mean

and covariance of the variational distribution. To reduce the computational complexity,

we propagate diagonal covariance matrices.

4.3. Other Experimental Settings

We report the specific hyperparameters used for each dataset in Table 2, including

the optimizer, learning rate, batch size, number of training epochs, and σpa for the

padding in the SUPER U-Net model. The selection was determined through empirical

evaluation. We explored different values for each hyperparameter and selected those

that provided stable training, faster convergence, and improved segmentation perfor-

mance across all datasets. The values of σpa in SUPER U-Net were tuned to balance

the trade-off between predictive uncertainty and segmentation accuracy. The batch size

was determined based on the size of the data and the available hardware constraints. All

simulations were performed using Python with the TensorFlow library on an NVIDIA

RTX A6000 GPU.

We report the Dice Similarity Coefficient (DSC) as the metric to compare the per-

formance of all four networks. We conduct a detailed robustness analysis of the perfor-

mance of all four networks using two types of noise, i.e., Gaussian and adversarial. We

compare the performance of all four networks under various levels of Gaussian noise

added to the test data of all three datasets. We measure the noise level using the signal-

to-noise ratio (SNR) in the units of decibels (dB). For the adversarial noise, we use the

Fast Gradient Sign Method (FSGM) to generate untargeted attacks [39], and we use
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Table 3: DSC for Lungs Dataset - performance comparison under additive Gaussian noise.

U-Net Bayes U-Net Ensemble U-Net SUPER U-Net

Noise Free .83 .83 .83 .83

Gaussian noise added to the entire image

SNR ≈ 35 dB .82 .82 .82 .83

SNR ≈ 3 dB .16 .19 .11 .21

Gaussian noise added to lung pixels only

SNR ≈ 31 dB .82 .83 .83 .83

SNR ≈ 14 dB .63 .63 .65 .79

the Projected Gradient Descent (PGD) method to generate targeted adversarial attacks

[40]. The attacks are generated with a maximum number of iterations set to 20 and a

step size of 1. We select a source class and a target class to generate targeted attacks.

The adversarial attack algorithm will try to fool the trained network into predicting

pixels belonging to the source class as the pixels of the target class.

5. Results and Discussion

We report our results in four parts. First, we present the performance analysis

(measured using DSC) of the four networks (U-Net, Bayes U-Net, Ensemble U-Net,

and SUPER U-Net) under various levels of Gaussian noise added to the benchmark

test datasets. Next, we analyze the same four networks under various levels of targeted

and untargeted adversarial attacks. We report the results of the clinical data. Finally,

we present an analysis of the uncertainty maps and the predictive variance generated

by the proposed SUPER U-Net at inference time. For reference, we report DSC values

for U-Net, Bayes U-Net, Ensemble U-Net and SUPER U-Net for noise-free test data

in tables 3, 4, and 5.

5.1. Evaluation Under Gaussian Noise

Table 3, and Figs. 2 and 3 show DSC values for U-Net, Bayes U-Net, Ensemble

U-Net and SUPER U-Net under different levels of Gaussian noise. For each dataset,

we report results for two cases, i.e., noise added to the entire input image or only to the

structures that the networks are trying to segment, e.g., tumors in the BraTS dataset.
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Table 4: DSC for Hippocampus Dataset - Noise Free.

Anterior Posterior

U-Net
Bayes

U-Net

Ensemble

U-Net

SUPER

U-Net
U-Net

Bayes

U-Net

Ensemble

U-Net

SUPER

U-Net

Noise Free .79 .79 .79 .79 .76 .76 .77 .74

Table 5: DSC for BraTS Dataset - Noise Free

Whole Core Enhancing

U-Net
Bayes

U-Net

Ensemble

U-Net

SUPER

U-net
U-Net

Bayes

U-Net

Ensemble

U-Net

SUPER

U-net
U-Net

Bayes

U-Net

Ensemble

U-Net

SUPER

U-net

Noise

Free
.77 .77 .76 .83 .58 .58 .60 .64 .57 .57 .63 .69

In Table 3, we compare the performance of the four models for the noise-free test

data and for two levels of Gaussian noise added to the entire image and the lung pixels

only. Fig. 2, reports the performance of the four models when Gaussian noise is applied

to the Hippocampus test data. We consider 3 scenarios: noise added to the entire image,

the Anterior pixels only, and the Posterior pixels only. We show the results for the

BraTS test data in Fig. 3. We plot DSCs vs. SNR for the three tumor regions. Each

subplot compares the performance of the four networks for multiple levels of Gaussian

noise added to the tumor pixels only (Fig. 3a) and the entire image (Fig. 3b). The

proposed SUPER U-Net generally demonstrates more robust behavior as compared to

other models especially at low SNR values, i.e., high levels of noise.

(a) Noise added to entire image (b) Noise added to Anterior pixels (c) Noise added to Posterior pixels

Figure 2: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray),

and SUPER U-Net (black), under various levels of Gaussian noise added to the (a) entire image, (b) Anterior

pixels only, and (c) Posterior pixels only of the Hippocampus test data. We plot Dice Similarity Coefficient

(DSC) versus Signal to Noise Ratios (SNRs) for the Anterior and Posterior hippocampus.
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(a) Gaussian noise added to the tumor pixels only

(b) Gaussian noise added to all pixels

Figure 3: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray)

and SUPER U-Net (black), under various levels of Gaussian noise added to (a) the tumor pixels only and (b)

all pixels of the BraTS test data. The three sub-plots show the Dice Similarity Coefficient (DSC) values for a

range of Signal to Noise Ratios (SNRs) for three different tumor regions: whole tumor, core, and enhancing.

Figure 4: Performance of four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray) and

SUPER U-Net (black), under various levels of untargeted attacks to the Lungs test data. We display Dice

Similarity Coefficient (DSC) values for a range of Signal to Noise Ratio (SNR).

5.2. Evaluation Under Adversarial Attacks

We assess the robustness of all four networks against targeted and untargeted ad-

versarial attacks. We show the results in Figures 4, 5, and 6. We plot the DSC vs. SNR

for the four approaches.

In Fig. 4, we show DSC values for a range of untargeted adversarial attacks gen-

erated using FGSM against the lung test dataset. In Fig. 5, we consider various levels

of targeted attacks applied to (a) the Anterior pixels only and (b) the Posterior pixels

only of the Hippocampus test data. For both attack types, we report the performance

for the two structures of interest, i.e., anterior and posterior hippocampus. On the other

hand, Fig. 6 presents both targeted and untargeted adversarial attacks applied to the

BraTS test data. The three subplots compare the performance of the four networks on

the three structures of interest: whole tumor, core and enhancing tumor. We observe

that SUPER U-Net shows better performance (i.e., high DSC values) as compared to
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(a) Targeted attacks - source: label 1, target: label 2 (b) Targeted attacks - source: label 2, target: label 1

Figure 5: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray),

and SUPER U-Net (black), under various levels of adversarial attacks applied to the Hippocampus test data.

We show targeted adversarial attacks with (a) source: label 1, target: label 2, (b) viceversa. The two subplots

show the Dice Similarity Coefficient (DSC) values for the Anterior and Posterior hippocampus measured

using Signal to Noise Ratios (SNRs).

Figure 6: Performance of the four networks, i.e., U-Net (blue), Bayes U-Net (red), Ensemble U-Net (gray)

and SUPER U-Net (black) under various levels of adversarial attacks applied to the BraTS test data. The

three sub-plots show the Dice Similarity Coefficient (DSC) values for a range of Signal-to-Noise Ratios

(SNRs) for three different tumor regions: whole, core, and enhancing tumor. We show (a) noise-free case,

(b) untargeted attacks generated using FGSM, (c) Targeted adversarial attacks with source: label 3, target:

label 1, (d) Targeted adversarial attacks with source: label 1, target: label 3, (e) Targeted adversarial attacks

with source: label 3, target: label 2, and (f) Targeted adversarial attacks with source: label 2, target: label 3.

the other three networks, especially for stronger attacks (i.e., low values of SNR).

5.3. Evaluation of the Clinical Data

We show that SUPER U-Net can scale to real-world datasets. SUPER U-Net is

able to achieve 86% DSC on held-on test data. Figure 9 shows sample scans from

the UAB clinical data (first column) along with ground-truth segmentation (second

column) and SUPER U-Net’s segmentation and associated uncertainty maps (third and

fourth columns, respectively). The representative images show that SUPER U-Net is

uncertain when a tumor region is missed (scans 1 and 2), as well as for unusually

low signal pixels within the tumor (scan 1). A typical tumor is associated with a high
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Figure 7: Segmentation of the Lungs test data. We show (left to right) the CT input image, the ground-

truth segmentation, noise-free models’ segmentation predictions (U-Net, Bayes U-Net, Ensemble U-Net, and

SUPER U-Net). The uncertainty map of each Bayesian model is shown next to the corresponding prediction.

The white arrows point to regions incorrectly classified by the network. We note that the corresponding pixels

in the uncertainty maps reflect the low confidence by responding with higher variance values.

FLAIR signal; in the first scan, the central part of the tumor is associated with a low

signal, which is atypical (see right arrow in Fig. 6, row 1, column 4). In a sense, the

model attracts the physician’s attention to these regions in the image so that they can

confirm whether these are part of the tumor or not. In the second scan, the tumor is

totally missed, but the model exhibits high uncertainty in the missed region. The last

scan has no tumor, and SUPER-Net correctly predicts true negative cases and associates

a very low uncertainty (predictive variance ≈ 0) or equivalently a high confidence in

these predictions.

5.4. Uncertainty Maps and Predictive Variance – Quantitative Analysis

5.4.1. Uncertainty Maps

The output of SUPER U-Net consists of the pair: segmentation map (prediction)

and uncertainty map (obtained from the predictive covariance). For the other ap-

proaches, uncertainty is evaluated through multiple forward passes. In Fig.7, we present

a representative case for the Lungs dataset. In Fig. 8 we present representative cases

selected from the hippocampus (8a) and BraTS (8b) test data. We show the input

modality (only FLAIR for the BraTS data), the ground-truth label, and predictions with

associated uncertainty maps. The first row presents the noise-free case, the second row

reports the predictions and uncertainty maps for the Gaussian noise case, and the third

and fourth rows show two examples of adversarial attacks. We normalized the predic-

tive variance of SUPER U-Net for better visual comparison to the uncertainty maps of

Bayes U-Net and Ensemble U-Net. We point to regions (pixels) incorrectly classified
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(a) Hippocampus test data

(b) BraTS test data

Figure 8: Segmentation of the (a) hippocampus and (b) BraTS test data. The first row shows (left to right) the

input image, the ground-truth segmentation, and noise-free models’ segmentation predictions (U-Net, Bayes

U-Net, Ensemble U-Net, and SUPER U-Net). The uncertainty map of each Bayesian model is shown next

to the corresponding prediction. Rows 2, 3, 4 display the segmented predictions along with their uncertainty

maps (when applicable) for additive Gaussian noise and two adversarial attacks, respectively. The black

arrows point to regions incorrectly classified by the network. Observe that the corresponding pixels in the

uncertainty maps reflect low confidence or higher variance values. The blue arrows refer to inconsistent un-

certainty estimates: low confidence is associated with incorrect predictions or high uncertainty for correctly

classified regions.
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Figure 9: Sample scans from the clinical data. Images show (left to right) the Flair input image, the ground-

truth segmentation, SUPER U-Net prediction and uncertainty map overlaid on the input scan. The black

arrows point to regions incorrectly classified by the network or unusually low (atypical) signals in the FLAIR.

by our network with the black arrows, and we point to the corresponding locations in

the uncertainty maps. It is evident from the figure that SUPER U-Net associates high

uncertainty with incorrect predictions and pixels belonging to targeted regions.

5.4.2. Predictive Variance – Quantitative Analysis

We investigate the response of the derived second moment (variance/uncertainty)

and relate it to the model’s performance (DSC). We calculate the average predictive

variance from uncertainty maps and plot these values against various levels of Gaus-

sian noise in Fig. 10, and adversarial attacks in Fig. 11, for hippocampus and BraTS

datasets. It is more instructive and insightful if sub-plots in both figures are interpreted

from right to left, i.e., decreasing SNR or equivalently increasing noise in the test data.

We note that the predictive variance increases monotonically with increasing noise (i.e.,

decreasing SNR) for all three sub-figures in Fig. 10 and all four sub-figures in Fig. 11.

This behavior, i.e., increasing uncertainty with increasing noise, demonstrates that the

network is aware of higher noise in the input. A useful and meaningful uncertainty

estimate should convey a lower confidence/ higher uncertainty for low-accuracy seg-

mented images [41]. Table 7 reports SUPER U-Net average predictive variance for
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Table 6: DSC for test sample from BraTS Data - performance comparison before and after removal of

uncertain pixels.

Whole Core Enhancing

Bayes

U-Net

Ensemble

U-Net

SUPER

U-net

Bayes

U-Net

Ensemble

U-Net

SUPER

U-net

Bayes

U-Net

Ensemble

U-Net

SUPER

U-net

Noise Free

Original .96 .96 .97 .85 .87 .89 .97 .96 .98

Uncertain Pixels Removed .99 ↑ .99 ↑ 1 ↑ .91 ↑ .88 ↑ .90 ↑ 1 ↑ .98 ↑ 1 ↑

Gaussian Noise added to entire input (SNR ≈ 20)

Original .56 .14 .97 .40 .16 .86 .58 .3 .86

Uncertain Pixels Removed .11↓ 0 ↓ .98 ↑ .40 .10↓ .99 ↑ .61 ↑ .21 ↓ 1 ↑

Untargeted adversarial attacks (SNR ≈ 12)

Original .90 .91 .94 .74 .81 .78 .89 .91 .95

Uncertain Pixels Removed .88 ↓ .79 ↓ .95 ↑ .75 ↑ .89 ↑ .81 ↑ 1 ↑ .90 ↓ 1 ↑

Targeted adversarial attacks (SNR ≈ 18): source 3, target 2

Original .93 .98 .99 .89 .90 .89 .95 .96 .97

Uncertain Pixels Removed .90 ↓ .98 .99 .96 ↑ .96 ↑ .95 ↑ 1 ↑ .98 ↑ 1 ↑

Table 7: SUPER U-Net Predictive Variance for BraTS Dataset.

Whole Core Enhancing

Correct .007 .008 .008

Incorrect .289 .307 .336

correctly classified and misclassified pixels on noise-free BraTS test set. Observe that

the incorrect pixels are associated to high variance or less confident predictions.

Following the quantitative uncertainty evaluation task in the BRATS challenge [41],

we compute the percentage change in DSCs when uncertain pixels are removed, and

DSC is computed only using the remaining pixels. To define uncertain pixels, for each

model, we set as a threshold the average predictive uncertainty for correctly classified

pixels for the noise-free case. All pixels with an uncertainty value above this threshold

are marked as uncertain and removed from the computation of the DSC. We report the

change in DSCs in table 6. The sample scan corresponds to that provided qualitatively

in Fig. 8b. Our approach consistently produces higher (↑) DSCs after removing uncer-

tain pixels, i.e., unlike other approaches, our predictive variance (uncertainty) is above

the threshold only for incorrectly classified pixels. Such information is valuable for

detecting when the network may fail and its predictions may become untrustworthy.
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Figure 10: Accuracy, measured by Dice Similarity Coefficient (DSC) and plotted in black, and average

predictive variance of SUPER U-Net, plotted in red, under various levels of Gaussian noise added in the test

data for hippocampus dataset. SNR denotes the signal-to-noise ratio. (a) Noise is added to the entire input.

(b) Noise is added to the anterior pixels only. (c) Noise is added to the posterior pixels only.

Figure 11: Accuracy, measured by Dice Similarity Coefficient (DSCs) and plotted in black, and average

predictive variance of SUPER U-Net, plotted in red, under various levels of adversarial attacks applied to

the test data for BraTS dataset. SNR denotes the signal-to-noise ratio. Test data is corrupted with targeted

attacks: (a) source class 3 and target class 1, (b) source class 1 and target class 3, (c) source class 3 and target

class 2, (d) source class 2 and target class 3.

5.5. Discussion

Our extensive analysis shows that SUPER U-Net has superior robustness to noise

and adversarial attacks compared to state-of-the-art uncertainty quantification approaches.

In the noise-free case, SUPER U-Net performance is equivalent to the state-of-the-art

models. However, as the noise level increases (Gaussian or adversarial), the task or

the dataset becomes more complicated, e.g., BraTS data (multiple segmentation la-

bels and multiple modalities), SUPER U-Net outperforms both the deterministic U-Net

and other Bayesian approaches, i.e., Bayes U-Net and Ensemble U-Net. The superior

performance and robustness to noise, especially at high levels of noise and complex

tasks/data, can be attributed to the intrinsic learning of the uncertainty during training

through propagation of the covariance information (in addition to the mean). This is in

contrast to post-hoc estimation of uncertainty using MC runs through the network or
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models averaging at the inference time.

5.5.1. The Significance of Uncertainty Information

The reliability of the segmentation predictions can be assessed using the uncer-

tainty maps. This is evident from the comparison with the point-estimate approach,

i.e., U-Net (figures 8a, 8b). SUPER U-Net associates higher uncertainty with incorrect

predictions and pixels or regions targeted by adversarial attacks (marked with black

arrows). When the predicted segmentation is (almost) identical to the ground truth, the

model is confident in its segmentation predictions and exhibits uncertainty only at the

boundary between the structure of interest and the background. When the network’s

segmentation predictions are incorrect, or the input is perturbed by noise or adversari-

ally attacked, SUPER U-Net associates higher uncertainty values with the predictions

(rows 2 to 4). On the other hand, inspecting the maps generated using other proba-

bilistic approaches, we see that their uncertainty maps do not convey the same level

of insight into the trustworthiness of the predictions. Ideally, the model’s uncertainty

should increase (darker red shades) only for regions of incorrect classification and/or

for regions with noise or artifacts. However, as shown with the blue arrows in Figs. 8a

and 8b, both Bayes U-Net and Ensemble U-Net generate inconsistent uncertainty esti-

mates: they associate low uncertainty (high confidence) to incorrect predictions and/or

high uncertainty (low confidence) to correctly classified regions.

5.5.2. Clinical Impact

Coordinates of the tumor volume are used to determine the clinical target volume

of the radiation therapy treatment. Inaccuracy and variation in defining critical vol-

umes will affect everything downstream: treatment planning, dose-volume histogram

analysis, and contour-based visual guidance used in image-guided radiation therapy.

Studies have shown that under-coverage of radiation dose to the tumor target could

compromise treatment outcomes [42]. Ultimately, both researchers and practitioners

agree that radiotherapy is only as good as the accuracy with which the target is.

DL algorithms for segmentation have the potential to address the number one im-

pediment to reliable use of imaging for guiding treatment planning of cancer, i.e., ac-
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curate and objective delineation of tumors from healthy tissue and organs. However,

reliability and lack of consistency of DL predictions hinder the safe deployment of such

models in the clinic [43]. For example, a medical diagnostic system for detecting brain

tumors from magnetic resonance scans may encounter a new tumor shape/structure

(due to a different scan procedure) or an adversarial attack designed to fake a tumor for

benefiting from medical bills [4]. Uncertainty information can limit the harmful conse-

quences in such scenarios. Model confidence or uncertainty is critical when integrating

the models in systems that make decisions that affect human life, either directly or in-

directly. Ideally, the model should recognize the perturbed data and return an output

(segmented image plus uncertainty map) that also conveys a high level of uncertainty.

SUPER U-Net simultaneously delivers the segmented image (prediction) along

with the corresponding uncertainty map, which reflects the network’s own confidence

in the prediction of every pixel. The uncertainty information generated by the frame-

work can provide critical guidance, particularly in cases where segmentation predic-

tions are ambiguous. This capability will ensure that ML models are not merely passive

tools but active collaborators in clinical workflows. For example, in figure 9, the SU-

PER U-Net prompts the physicians to false negative, i.e., missed tumor region and an

unusual low SNR region inside the tumor structure. The uncertainty map can prompt

the physician to pay particular attention to regions of low confidence rather than re-

viewing the model’s prediction as a whole.

The uncertainty proposed with this work will help users develop trust in ML models

as well as drive informed human-AI interaction. For example, ML systems that do not

involve a physician-in-the-loop can flag the scan and request human intervention when

uncertainty is above a set threshold. This research has the potential to improve the

accuracy of tumor monitoring, optimize radiation therapy planning, and inspire the

adoption of trustworthy ML.

5.5.3. Computational Complexity, Trade-offs, and Limitations

We report the average inference time of all four networks in Table 8. SUPER U-

Net requires almost twice the time to process a single image at inference compared to a

deterministic U-Net. This increase is due to the propagation of the covariance informa-
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Table 8: Inference time per image

U-Net Bayes U-Net Ensemble U-Net SUPER U-Nets

Time (min) 0.81 0.82 N∗
1 0.81 N∗

2 1.92

∗N1 and N2 denote the number of runs at inference time and ensemble networks, respectively.

tion, which involves additional operations. Other approaches that deliver uncertainty,

i.e., Bayes U-Net and Ensemble U-Net, take the same time as that of a deterministic

U-Net for one pass (or one model). However, these approaches necessitate multiple

passes to calculate the variance of the prediction. For example, we used N = 20 for

Bayes U-Net, leading to 16.4 ms for each image, almost 8 times more than SUPER U-

Net. Additionally, it is worth mentioning that ensemble approaches require an extended

training time and additional storage as several models are trained and saved.

The computational complexity of the proposed SUPER U-Net framework is influ-

enced by the propagation of the first two moments of the variational pdf. Given the

tensor normal distribution, SUPER U-Net requires an additional trainable parameter

per convolutional kernel [6]. Hence, the total number of trainable parameters remains

nearly the same as that of a deterministic model. For instance, consider the Lungs

dataset with the number of kernels as reported in Table 1, and size 3 × 3. For a de-

terministic model, we have n1 = 1440 total parameters, corresponding to a storage

requirement of approximately 5.625 KB. In the case of the proposed method, we have

one additional parameter per kernel, resulting in a total of n2 = 1600 parameters, cor-

responding to approximately 6.25 KB of storage. This slight increase in storage high-

lights that the main computational burden arises from performing separate operations

on the mean and variance vectors rather than from storing the additional parameters.

While these drawbacks present challenges for real-time or resource-constrained

scenarios, they are counterbalanced by several significant advantages. First, SUPER

U-Net demonstrates superior robustness to noise and adversarial attacks. Additionally,

the model’s uncertainty provides a valuable tool to assess the reliability of the predic-

tions. Finally, prior work showed the ability of Bayesian models to discover redundant

kernels that can be pruned without affecting accuracy, hence reducing the storage re-
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quirements [44].

Certain limitations must be considered when evaluating the applicability of SU-

PER U-Net. One key challenge concerns its performance on small and imbalanced

datasets. While Bayesian methods, including early works such as [33] and [20], have

demonstrated improved generalization in low-data regimes, dataset imbalance can still

influence uncertainty estimates. In cases where specific structures appear infrequently

in training, the reliability of uncertainty predictions remains unexplored in this study.

Another limitation relates to the sensitivity of SUPER U-Net to prior assumptions

and hyperparameter choices. The model adopts a Gaussian prior over network weights,

a common assumption in Bayesian models. However, this prior may not always be

optimal for complex medical imaging tasks, where the underlying data distribution

exhibits non-Gaussian properties. While the first-order Taylor expansion provides an

efficient approximation, propagating additional moments could enhance robustness.

Moreover, hyperparameters such as the prior variance and the KL regularization term

significantly influence model behavior, and suboptimal tuning could lead to failure in

learning, overconfident predictions, or excessive uncertainty. Future work could ex-

plore these directions to assess SUPER U-Net’s behavior in rare disease segmentation

and other data-scarce applications while exploring alternative priors.

6. Conclusion

This study introduced SUPER-Net, a novel Bayesian DL framework that effectively

quantifies uncertainty in medical image segmentation tasks using encoder-decoder ar-

chitectures. One of the strengths of SUPER-Net is its ability to produce pixel-wise

uncertainty maps alongside segmentation outputs in real-time without relying on ex-

pensive post-hoc sampling techniques like Monte Carlo. This inherent capability of

uncertainty quantification enhances the trustworthiness and reliability of the model’s

predictions and makes it more robust in the face of noisy and adversarial inputs, as

demonstrated across multiple medical imaging datasets. SUPER-Net’s ability to prop-

agate uncertainty through nonlinear layers via a Taylor series approximation is a signif-

icant step forward in making DL models more interpretable and suitable for real-world
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clinical applications. Researchers and practitioners in medical imaging can benefit

from SUPER-Net by utilizing its uncertainty maps to improve the reliability of au-

tomated segmentation, especially in high-risk clinical settings. This framework can

be adapted for different architectures and imaging modalities, thus serving as a valu-

able tool for applications requiring high levels of confidence in predictions. For future

work, we plan to address the current limitations by exploring more complex posterior

distributions beyond the Gaussian assumption to better capture uncertainties in het-

erogeneous data. Additionally, integrating SUPER-Net with active learning strategies

could help refine segmentation models by focusing on areas of high uncertainty, thus

improving training efficiency. Furthermore, the potential of SUPER-Net in other do-

mains, such as object detection and image registration, will be investigated to expand

its applicability beyond segmentation tasks.
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