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Introduction

Background

Multimodal learning in oncology is an emerging research 
area with great potential to improve cancer research and 
patient care. Multimodality refers to various types of data, 
including but not limited to radiological and diagnostic 
imaging, clinical and demographic data, histopathology 
slides, or molecular information. Multi-omics analysis uses 
data from genomics, transcriptomics, and similar fields for 
medical research. Survival prediction, a critical aspect of 
cancer research, involves estimating how long a patient is 
likely to live after diagnosis or treatment, aiding in personal-
ized treatment planning, resource allocation, and clinical 

trial design. Survival prediction models are best evaluated 
using the concordance index, or C-index, which measures 
the fraction of pairs of predicted risk scores that match the 
ground truth. Several existing fusion methods merge 
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heterogeneous data modalities such as clinical records, -omics 
data, and histopathology images for survival prediction.1,2 
Survival models are typically categorized as Cox and dis-
crete models. Cox-based models estimate a single risk score 
for a Cox proportional hazards model, which will be con-
verted into a survival probability over time.3 Discrete mod-
els directly output hazards across multiple discrete time 
periods, and the predicted survival is calculated as the 
cumulative product of the complement of the hazard.4 The 
data from various modalities can be fused at different stages 
using early, intermediate, or late fusion methods. The sim-
plest method is early fusion, in which data from all modali-
ties are combined into a single feature vector used as the 
model input.1 Intermediate fusion combines features within 
the intermediate or hidden layers of the machine learning 
model and allows for modeling complex interactions 
between data modalities.1 Late fusion involves indepen-
dently training unimodal models for each modality and sub-
sequently creating an ensemble for the final outputs. Given 
the data-driven nature of fusion methods, determining the 
optimal approach can be challenging and application 
dependent. In this paper, we provide a comprehensive com-
parison of various fusion methods to investigate the differ-
ences in their performance.

The key challenge for existing data fusion models is to 
consistently achieve a multimodal advantage, meaning 
performance for a given task that surpasses the best uni-
modal model. Even if the model produces a multimodal 
advantage for some modalities (eg, imaging, genomics, 
etc.), it won’t be helpful in real-world medical decision-
making unless its performance clearly exceeds that of the 
unimodal model based on readily available data like a 
patient’s age, gender, or cancer stage. Therefore, studies 
that show a multimodal advantage for carefully selected 
modalities and exclude clinical data or other outlier high-
performing modalities are limited in their potential for 
future clinical application. Existing intermediate and early 
multimodal fusion models often demonstrate a multimodal 
advantage when using the ideal combination of a maxi-
mum of 2 to 3 modalities,5-8 but experience a sharp degra-
dation in performance when additional weaker modalities 
are added.4 These models also experience inconsistent per-
formance, where some datasets demonstrate a multimodal 
disadvantage when the architecture, selected modalities, 
and number of modalities are not optimal.8 This problem 
fundamentally limits the potential of employing machine 
learning for cancer survival prediction. Just as a physician 
can consider dozens of data types in their prognoses, the 
ideal system should be robust enough to extract signal 
from an unlimited number of modalities without being 
heavily affected by the noise.

A potential cause of the low robustness to weak modali-
ties is the optimization strategy of early and intermediate 
fusion, which minimizes a combined loss function based on 
the training accuracy of the multimodal model. For small 
and noisy cancer cohort datasets, where the training-set 
cases and test-set cases will differ considerably, the overfit-
ting of each modality will compound when they are all 
fused together as a single model.

A promising solution proposed in a recent work9 is late 
fusion, in which each modality will be used for training a 
separate model using a distinct loss function, and the 
weighting of modalities will be determined based on vali-
dation-set C-index instead of the optimization based on 
training-set C-index. This method showed robustness and a 
modest multimodal advantage in up to 6 modalities across 
many datasets, but is limited by its single validation set, ad-
hoc analytical weight calculation, lack of time-dependent 
weighting, and absence of normalization.9

In this paper, we propose the Robust Multimodal 
Survival Model (RMSurv), which uses a synthetically gen-
erated dataset to empirically optimize the weighting for dis-
crete late fusion. We further improve the model by using 
time-dependent weights to represent the performance of 
each modality over time and normalize the output to correct 
the distribution. We present multiple variations of late 
fusion methods and compare them to existing methods on 3 
datasets with a varying number of data modalities. We also 
present a simulation to reveal the underlying correlation-
based relationships of late fusion, and introduce a novel 
pathology report embedding modality, which shows prom-
ising results for a new class of text-based survival predic-
tion modalities.

Related Work

Several machine learning methods for survival prediction 
are based on the Cox proportional hazards model.3 In the 
Cox model, covariates such as age, gender, and cancer 
stage are weighted and linearly combined to calculate an 
exponential risk score, which scales the baseline hazard 
function.3 Ching et  al10 developed Coxnnet, which used a 
neural network to transform high-dimensional -omics data 
into lower-dimensional features that were used as covari-
ates for the Cox model. Since the Cox-nnet model com-
presses the features into a single risk score, variables have 
proportional, time-invariant effects on the baseline hazard 
and survival predictions.4

Vale-Silva and Rohr4 addressed the proportionality 
problem with the MultiSurv model. The MultiSurv model 
showed improved performance by replacing the single risk 
score output with multiple discrete risk outputs, allowing 
the model to directly calculate survival probabilities over 
different time periods. This approach captured time-vary-
ing influences of variables so that factors like cancer stage 
might be more influential in early years, while age and 
other features could be more dominant in later years. The 
paper also highlighted the modality inclusion problem for 
survival models.4 Six modalities, including clinical, multi-
omics, and whole slide images (WSI), were available, but 
the model performed best when only using 2 modalities: 
clinical data and gene expression.4

Intermediate fusion methods have the advantage of 
modeling rich cross-modal interactions.1 Chen et al11 inte-
grated the Kronecker product into their “Pathomic Fusion” 
model to maintain unimodal features while generating fea-
tures for each cross-modal interaction. They later integrated 
discrete outputs with the same intermediate fusion method 
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in the PORPOISE model.8 The number of features scales 
exponentially with the number of modalities, making this 
method infeasible for 6 or more modalities. The concatena-
tion method (early fusion) was shown to outperform the 
“Pathomic Fusion” model on some datasets such as TCGA 
Lung Adenocarcinoma (LUAD).11 For other datasets like 
TCGA Lung Squamous Cell Carcinoma (LUSC), the best 
unimodal model outperformed the intermediate multimodal 
fusion model.8 Li et  al12 developed another intermediate 
fusion model, HFBSurv, that utilized attentional factorized 
bilinear modules to model unimodal and bimodal interac-
tions more efficiently than the Kronecker product.

Several improvements to unimodal architectures have 
been incorporated into intermediate fusion systems to fur-
ther increase performance. Gomaa et  al6 incorporated a 
vision transformer model for MRI images and a fully con-
nected network for clinical data in their multimodal fusion 
model. The fusion method used cross-attention mecha-
nisms and non-proportional discrete survival predictions, 
and demonstrated strong multimodal benefits in glioblas-
toma datasets.6 Their model showed modest improvements 
in the bi-modal comparison to existing methods in both 
unimodal and multimodal setups.6 Another recent study by 
Luo et al5 proposed combining a vision transformer whole-
slide-image model with genomic features in an intermedi-
ate fusion model. They added an additional layer after 
feature concatenation, which uses the Dempster–Shafer 
theory to assess the uncertainty of each modality in the final 
prediction.5 This model outperformed several other multi-
ple instance learning methods in a multimodal comparison 
with 3 cancer types.5 Yang et al7 adopted a similar approach 
in their MMsurv model, which used a novel bilinear pool-
ing and transformer fusion layer and a 2-step multi-instance 
learning approach. In their experiment, the model outper-
formed existing unimodal and multimodal methods on 4 
out of 6 datasets.7

One potential limitation of early and intermediate fusion 
approaches are the highly variable performance based on 
the dataset and number of modalities included.4,8 Late 
fusion, by contrast, has shown promise in providing a robust 
multimodal advantage across many datasets and a number 
of modalities.9 Furthermore, the available data types vary 
significantly across cancer types, so an approach that can 
easily and consistently incorporate any combination of 
modalities and unimodal architectures will be advanta-
geous.13 Late fusion methods do not model feature interac-
tions between modalities, but instead train each unimodal 
model separately, and use an ensemble to fuse independent 
predictors of survival.1,9 The ensemble approach can easily 
exclude missing modalities, prevents outsize influence of 
high-dimensional modalities, and performs well with heter-
ogenous and weakly correlated modalities.1,14 Some models, 
such as MultiSurv, combine features at the final layers, but 
instead of using an ensemble, they train all sub-models as 1 
model with a common loss function.4 By doing this, the 
relative weights of modalities are based on the training set 
accuracy and can cause overfitting.

Nikolaou et  al9 showed a multimodal advantage on  
25 of 33 datasets tested using the simple late fusion method 

“AZ-AI multimodal pipeline.” In this fusion model, 1 vali-
dation set C-index is calculated for each modality, and the 
linear combination weight for each modality is set by sub-
tracting 0.5 from each C-index value and normalizing 
them.9 Since this method only estimates the complex rela-
tionship when combining modalities, and only uses 20% of 
the training data for validation, there is significant room for 
improvement. In particular, this strategy ignores the impact 
of the correlation between predictions and the time-depend-
ent accuracy of predictions. Furthermore, the model simply 
excludes modalities with validation C-index below 0.52, 
which is another ad-hoc assumption that can be improved 
using the proposed method. Despite these limitations, the 
method provides a very consistent multimodal advantage 
for up to 6 modalities included, even on small datasets.9 
The authors of this study concluded that different multi-
modal fusion methods are better for different settings, and 
that late fusion is best suited for applications where the risk 
of overfitting is high, such as small sample sizes.9

Methods

Late Fusion Simulation

Intuition suggests that the performance of a combination of 
2 predictions depends on the accuracy of each prediction 
and the correlation between the 2. Combining nearly identi-
cal, highly correlated predictions will not add signal to the 
combined prediction. Likewise, linear combinations with 
low correlation can benefit from the independent signal of 
each modality. However, even with zero correlation, a sur-
vival prediction with very low C-index will just add noise 
to a highly accurate survival prediction. Therefore, an ad-
hoc relationship that uses only the C-index as an input to 
calculate late fusion weights is not capable of modeling the 
true empirical relationship. Here we describe a fully syn-
thetic dataset, distinct from RMSurv, to simulate late fusion 
and ground this intuition. We use the results of this simula-
tion to explain the need for an empirical strategy like 
RMSurv, and to explain why adding more modalities to a 
model often decreases performance in multimodal fusion 
research. These results are shown in the “Late Fusion 
Simulation Results” Section. We also use this simulated 
dataset to calculate weights in our “synthetic weights” 
alternative weight calculation method, which we explain in 
the “Alternative Weight Calculation Options” Section.

For this simulation, we generate synthetic risk scores 
and survival times with arbitrarily set C-indices and cross-
modality correlations by sampling from a multivariate nor-
mal distribution. This method does not directly use C-index 
as an input but instead requires a positive semi-definite 
covariance matrix. To get around this, we need to model the 
non-linear C-index as a linear correlation. We achieve this 
by converting the C-index of each modality into a Pearson 
correlation between the modality and the survival times 
using analytical estimates. We run a binary search algo-
rithm to repeatedly generate distributions to correct for 
errors in the analytical estimates and match the C-index to 
its corresponding correlation metric. This approximation of 
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the C-index as a Pearson correlation results in negligeable 
error in a 2-dimensional simulation, but results in some 
small unavoidable error between the desired and actual 
C-indices and correlations when using 6 modalities within 
the simulation. After assigning a Pearson correlation to 
each modality, we add a new row and column to the exist-
ing Pearson correlation matrix to combine these into a uni-
fied matrix that represents cross-modality correlations 
between risk scores and correlations between risk scores 
and survival times. We then find the nearest positive sem-
idefinite matrix and generate our normally distributed sam-
ples. We apply an iterative process to reduce the error 
between the desired and actual C-indices and correlations, 
then we can test the performance with varying weights 
given to each modality.

Binary Search Procedure.  In the initialization step, we set the 
lower bound of Spearman’s correlation, ρslow

,  to 0, and the 
upper bound, ρshigh

,  to .9999. We also define a tolerance level, 
tol � � �1 10 4 ,  to determine convergence. During each itera-
tion, we calculate the midpoint Spearman’s correlation,

�
� �

s
s slow high�

�
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,

and convert ρs  to an approximate Pearson correlation,
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We then set ρ p  of the other modalities to zero, generate 
synthetic data using ρ p ,  and compute the observed 
C-index, cobserved ,  between the generated risk score and 
survival times. If c cobserved desired> ,  we update � �s shigh

� .  
If c cobserved desired< , we update � �s slow

� .  This process 
continues until | |c cobserved desired� � tol  or the maximum 
number of iterations is reached.

Generating Synthetic Data Using a Gaussian Copula.  We 
begin by constructing an initial symmetric Pearson correla-
tion matrix, P,  for M  modalities. For instance, when 
M = 3,  P  is a 3 3×  matrix defining the correlations 
between each pair of modalities. We then add an additional 
row and column to incorporate survival time correlations, 
resulting in an M M�� �� �� �1 1  matrix, Σp. This expanded 
matrix takes the form:

P �
�

�

�
�
�

�

�

�
�
�
� �

1

1

1

1

112 13

21 23

31 32

12 13 1

21 23 2

� �
� �
� �

� � �
� � �
�

�� p

T

T

331 32 3

1 2 3

1

1

� �
� � �

T

T T T

�

�

�
�
�
�

�

�

�
�
�
�

,

where ρiT  represents the Pearson correlation between 
modality i  and the survival time T .

Next, we verify that Σp is semipositive definite, because 
this is required for generating valid multivariate normal 
samples. If Σp is not semipositive definite, we adjust it to 
the nearest positive definite matrix using Higham’s15 algo-
rithm. We then use the adjusted Σp to generate N  samples 
from a multivariate normal distribution, where each sample 
corresponds to risk scores for M  modalities and a single 
survival time.

After drawing these samples, we transform each normal 
variable Zi  into a uniform variable Ui  using the standard 
normal cumulative distribution function, Φ :

U Z i M Ti i� � � � �� , , , , .1

We then apply the desired marginal distributions. For each 
modality i,  we map Ui  back to a standard normal distribu-
tion by R Ui i� � ��� 1 .  For the survival times, we map UT

 
to an exponential distribution with rate parameter λ:

T
UT� �

�� �ln 1

�
.

Optimizing Weights with Population-Based Search.  We define 
a combined risk score Rcombined  by summing each modali-
ty’s risk score Ri ,  weighted by wi :

R w Rcombined

i

M

i i�
�
�

1

.

Our objective is to maximize the C-index of Rcombined  with 
respect to the survival time T :

max
w

c C index R Tcombined combined� � � �, .

In a 2-dimensional simulation, we simply compute the 
combined C-index at 100 relative weights ranging from 0 
to 1. However, in higher dimensions where local minima 
may appear, we use the differential evolution algorithm. We 
set a population size of 15, a tolerance of 10 6− ,  and a maxi-
mum of 100 iterations to find the ideal weights for combin-
ing the risk scores.

Data Pre-processing

In our experiments, we use the non-small-cell lung cancer 
types LUAD and LUSC from the Cancer Genome Atlas 
(TCGA) database, a large public database of cancer data 
collected from 2006 to 2015.16 We also use the TCGA pan-
cancer dataset, which includes all 33 cancer types.17 We 
separate this data into 3 sets of varying sizes to assess the 
impact of dataset size on multimodal performance. LUAD, 
our first dataset, contains 522 cases, with 188 cases uncen-
sored (deceased), and a median follow-up time of 
21.6 months.17 LUSC contains 504 cases and 219 uncen-
sored cases, and a median follow-up time of 21.9 months.17 
Our second dataset is the combined LUAD + LUSC data-
set, with a total of 1026 cases and 407 uncensored cases.17 
The pan-cancer (PAN) dataset contains 11 060 cases, and 
3622 uncensored cases.17

We use 7 total input modalities to evaluate the perfor-
mance of the fusion methods: clinical data, pathology 
reports, gene expression, miRNA, DNA methylation, pro-
tein expression, and somatic mutation. Gene expression 
(measuring mRNA) and miRNA are transcriptomic factors, 
which regulate the expression of genes in cancer cells.16 
DNA methylation is an epigenomic factor that can change 
gene activity through the addition of methyl groups to 
DNA.18 Protein expression measures the presence of spe-
cific proteins in cancer cells,19 and somatic mutation meas-
ures alterations to the DNA sequence in cancer cells.16 To 
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create 6 modalities with similar C-indices for LUAD and 
LUSC, we concatenate the features from the 2 lowest per-
forming modalities, protein expression, and somatic muta-
tion, into a single modality, which is shortened to “protein 
expression” in the Results Section for simplicity. For PAN, 
protein expression performed well as a standalone modality 
and somatic mutation is excluded. Another important step 
in the pre-processing of the TCGA data was the removal of 
the many duplicate cases in Xena20 and MINDS,21 where a 
single patient’s -omic and clinical data are saved at differ-
ent points in time. This can skew results of studies when 
many patients appear in both the test set and the training 
set, so we removed these extra cases. The reporting of this 
study conforms to the TRIPOD-AI statement22 (see 
Supplemental File 1).

For the clinical data modality, we use the Multimodal 
Integration of Oncology Data System (MINDS) database21 
to download the categorical dataset, then discretize it, as 
shown in Table 1, to produce a vector with 4 values: age, 
gender, race, and stage.
The pathology report PDF, also downloaded using MINDS, 
requires more preprocessing, and we use the HoneyBee 
framework23 to convert the information into a usable for-
mat. This program extracts the text of the PDF and inputs 
this into the GatorTron-Large transformer model,24 which 
produces an embedding with 3584 values. We also tested 
the HoneyBee method on the clinical data text generated 
with additional categories, but this underperformed the 

discretized 4-category method by a wide margin 
(C-index = 0.582 vs 0.646 on LUAD).

The remaining modalities are tabular-omics data down-
loaded from the UCSC Xena website.20 We do not apply 
any manual feature selection. Instead, we reduce the num-
ber of features by removing duplicate features, features 
with many constant values, and features with very low vari-
ability. The thresholds for feature removal were adjusted 
for each modality based on the number of features removed 
and the performance of the unimodal models in cross-vali-
dation. The feature selection was performed on the 
LUAD + LUSC dataset and pan-cancer dataset, and the 
features for the LUAD dataset are inherited from 
LUAD + LUSC. Table 2 shows the resulting number of 
features for each modality. We apply median imputation for 
missing values, and the system performs comparably when 
zero-filling missing values as well. Normalization was not 
applied to the features before input into the model. We do 
not use any right-censored cases to calculate training loss. 
For LUAD and LUAD + LUSC, our results are from five-
fold cross-validation repeated for 10 seeds. For the pan-
cancer dataset, we perform fivefold cross-validation on just 
2 seeds due to training time constraints and much lower 
unimodal variance compared to the other datasets.

Although MRI images, whole slide images, and copy 
number information were available, we did not include 
these modalities in the final testing. TCGA LUAD has MRI 
images for fewer than 10% of patients, so this modality per-
formed poorly. We used embeddings of slide images gener-
ated with the UNI pretrained vision transformer model,25 
but the performance on this modality did not exceed 
0.53 C-index. Even when fine-tuning on images from 
LUAD and including multiple-instance learning, the 
modality frequently performed below 0.5 C-index and was 
excluded. The unimodal model trained on tabular copy 
number data performed inconsistently, so this data modal-
ity was also excluded.

Unimodal Architecture

For a late fusion model, the ensemble can combine predic-
tions from models with various different architectures. To 
simplify this study, we use the same architecture in all uni-
modal models used in late fusion. The unimodal model out-
puts used in late fusion are exactly the same for each late 
fusion strategy, but the linear combination weights vary 
depending on the method. This setup isolates the effect of 
the late fusion weight calculation method. Our unimodal 
discrete model uses twenty 6-month time periods and out-
puts a hazard score for each. This allows the model to 
account for non-proportional effects of individual features. 
The survival time of each case is converted into its respec-
tive time bin, and survival times exceeding 10 years are set 
to the final time bin. The negative log-likelihood loss func-
tion optimizes the model by increasing the hazard probabil-
ity at the true time bin of the survival time and decreasing 
the hazard probability for the preceding time bins. In our 
preliminary experiments, we modified several existing 
models into discrete versions, including a self-normalizing 

Table 1.  Discretization of Clinical Data Categories.

Attribute Category
Numeric 
value

Age Integer Integer
Gender Male 1

Female 2
Race White 1

Asian 2
Black or African American 3
Not reported 4
American Indian or Alaska Native 5

Stage Stage 0 1
Stage I 10
Stage IA 11
Stage IB 12
Stage IC 13
Stage II 20
Stage IIA 21
Stage IIB 22
Stage IIC 23
Stage III 30
Stage IIIA 31
Stage IIIB 32
Stage IIIC 33
Stage IV 40
Stage IVA 41
Stage IVB 42
Stage IVC 43
Not Reported 50
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network, a gradient boosting tree, a simplified fully con-
nected network, and a modified version of the HFBSurv 
architecture.12 We achieved the best results with the model 
based on HFBSurv, which was modified into a discrete uni-
modal model by removing the cross-modal portion of the 
architecture and modifying the output layer into 20 discrete 
hazard outputs instead of the original single risk score out-
put. This results in a simplified model with a series of fully 
connected input layers with Tanh activation, a modality-
specific attentional factorized bilinear module, and a series 
of fully connected output layers. We use the negative log-
likelihood loss function instead of the original Cox partial 
likelihood loss function, and we also add dropout in the 
first 2 fully connected layers.

An advantage of the late fusion approach is the ability to 
tune hyperparameters for unimodal models. We noticed 
that some unimodal models would experience more overfit-
ting than others when using the same hyperparameters, so 
the unimodal models were manually tuned with cross-vali-
dation by modifying the learning rate (5 10 5� �  to 
1 2 10 4. ),� �  number of epochs (40-100), and number of 
neurons within the input layers (48-256). This is an over-
looked limitation of early and intermediate fusion, which 
apply the same hyperparameters to all sub-models. These 
unimodal model hyperparameters were consistent across 
all late fusion experiments.

Robust Multimodal Survival Model 
(RMSurv)

We develop a novel, robust multimodal data fusion 
approach to model the complex relationship between 
modalities and optimize the weight calculation strategy for 
discrete late fusion. The process uses nested cross-valida-
tion to estimate generalized C-indices, creates a synthetic 
dataset based on these estimates and the model outputs, and 
performs a grid search to find the optimal multimodal 
ensemble weights.

Nested Cross-Validation.  One limitation of the existing 
method is the use of only a single validation set for calculat-
ing the C-index of each unimodal model.9 We propose the 
use of nested cross validation to use 100% of the training 
data for validation and achieve C-index predictions with 
lower variance and lower average difference from the test-set 

C-indices. The RMSurv method starts by performing a 
nested fivefold cross-validation on the training set to calcu-
late the average validation C-index for each modality. This 
involves splitting the training data for each modality into 
fivefolds and creating 5 new training subsets with onefold 
held out for validation. For each fold, we train the unimodal 
models, test them on the designated validation set, and record 
the C-index for each modality. We then average the C-index 
across all fivefolds. This only uses ground truth information 
from the combined training set, but in contrast to the training 
set C-indices, this represents the generalized accuracy by 
evaluating the C-indices on the hidden validation sets.

Re-Training with Full Training Set.  After the nested cross-
validation, the training set is combined without any held-
out validation data, and the unimodal models are all trained 
again. The test set model inputs are passed through the 
model, and the outputs are recorded. This step is performed 
in the existing method,9 and aims to improve performance 
compared to the nested cross-validation models since 100% 
of the training data is included.

Sampling Survival Times.  Next, we randomly sample ground 
truth survival times from the full training set, sampling as 
many survival times as there are test cases. Both censored 
and uncensored survival times were sampled in our experi-
ments. We align each sampled survival time to a test set 
case, along with its unimodal model outputs, in a random 
permutation. This sampling approach perfectly models the 
actual cross-modality correlations and provides a strong 
estimate for the distribution of the test set survival times 
without leaking the actual test-set survival times.

Optimize Survival Time Assignment.  Before this step, the dis-
tributions and correlations of the synthetic dataset are prop-
erly modeled, but the C-indices are randomly initialized 
and do not match our average validation C-indices calcu-
lated with the nested cross-validation. This step will aug-
ment the order of the sampled survival times such that the 
synthetic dataset will inherit the desired validation C-indi-
ces. We optimize how survival times are assigned by defin-
ing a total loss function based on the squared difference 
between achieved and desired C-indices:

Loss c c
i

M

achieved i desired i� �� �
�
�

1

2

, , ,

where M  is the number of modalities, and cdesired i,  is the 
average validation C-index of a given modality.

We iteratively improve the survival time assignment by 
swapping the rank of 2 randomly selected survival times, 
evaluating the loss after each swap, and accepting the new 
assignment whenever it reduces the loss. We stop early if the 
loss drops below a predefined threshold (10−6), and we impose 
a maximum of 10 000 iterations to limit computation. This 
limit was not reached for the 3 datasets tested. This iterative 
search results in a simulated dataset that maintains the origi-
nal cross-correlation between data modalities but replaces the 
test set ground truth survival times with simulated survival 
times matching the average validation C-indices.

Table 2.  Number of Features in Each Modality After Pre-
Processing.

Modality LUAD LUAD + LUSC PAN

Clinical data 4 4 4
Pathology report 3584 3584 3584
Gene expression 16 829 16 829 192 958
miRNA 1012 1012 634
DNA methylation 4931 4931 38 943
Protein expression 210
Protein 
expression + somatic 
mutation

1204 1204  
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Optimize Weights via Population-Based Grid Search.  Now that 
the synthetic dataset is complete, we can empirically calcu-
late the ideal weights with a grid search. This avoids the 
limitations of ad-hoc methods by implicitly considering 
correlations and number of modalities in addition to C-indi-
ces. The predictions for each modality are combined into 1 
with a linear combination of model outputs. We optimize 
the linear combination weights via a population-based grid 
search. We define an objective function to maximize the 
C-index ccombined for the combined risk score Rcombined and 
the survival time T:

max
w

c C index R Tcombined combined� � � �, .

Using the differential evolution algorithm,26 we ensure that 
all weights are nonnegative and normalized to sum to 1. We 
set the population size to 15, allowing the mutation factor 
to vary between 0.5 and 1. We also set the recombination 
probability to 0.7 and limit the algorithm to a maximum of 
100 iterations.

Final Testing.  Finally, we test the model with the test set 
ground truth survival times, which are held out until this 
step. Figure 1 shows a visual representation of the RMSurv 
strategy. The detailed steps of the proposed RMSurv 
method are explained in Algorithm 1.

Time Dependent-RMSurv (TD-RMSurv)

RMSurv and the other late fusion methods described in the 
“Alternative Weight Calculation Options” section all output 

a hazard for 20 discrete time bins, each representing a 
6-month period over a 10-year time frame. In the baseline 
RMSurv scheme, the same M  late fusion weights are 
applied to each of the time bins. Because the weights do not 
change over time, the C-index and correlations of each 
modality are therefore implicitly modeled as if they were 
constant over time. This is not necessarily true, and the late 
fusion weights can in fact be optimized for each individual 
time bin. Thus, we propose the time-dependent RMSurv 
model (TD-RMSurv) which takes advantage of the discrete 
architecture and creates a search space of M ×20  weights, 1 
per modality per time bin. The rationale for time-dependent 
weighting is that just like certain features can be more influ-
ential at certain time bins in a discrete unimodal model, cer-
tain modalities can also be more influential at certain times. 
This method cannot be used with an ad-hoc strategy, because 
C-index is calculated using survival times across all time 
bins, and C-index within single 6-month periods would be 
excessively noisy and not calculatable for small datasets.

We define the baseline RMSurv method as the follow-
ing, where the same weight wi  applies across all time bins:

y ycomb j
i

M

i i j normw, , , .� �
�
�

1

For TD-RMSurv, each modality can have a distinct weight 
wi j,  at each time bin j.  We define the TD-RMSurv method 
as the following:

y ycomb j
i

M

i j i j normw, , , , .� �
�
�
1

Here, M  is the number of modalities included in the 
ensemble.

RMSurv Algorithm

Algorithm 1.  Pseudocode for RMSurv Algorithm.

Require: number of seeds S,  maximum iteration K,  threshold 
for seed = 1: S  do
     for outer_fold = 1:5 do
            Partition the dataset into training set   (80%) and test set  (20%).
            Partition   into 5 inner folds.
            for nested_fold = 1:5 do
                  Train unimodal models on 4 folds and validate on the remaining fold.
                  Compute the validation C-index for each modality.
            end for
            Average the C-index results for each modality to compute cdesired,m
            Retrain all unimodal models on the entire   and record their outputs for  .
            Randomly sample survival times from   (size =  ) and assign them to
            the test outputs in a random permutation.
            for iteration = 1: K  do
                  Define total loss: Loss c c

m
achieved,m desired,m� ��( ) .2

                  Randomly swap the rank of two assigned survival times.
                  Accept the swap if it reduces Loss  stop early if Loss <  .
            end for
            Combine modality outputs linearly with weights w,  subject to Σ

i
wi =1, 

            and use a population-based grid search to maximize the combined C-index.
            Reveal  ’s true survival times and compute final performance.
      end for
      Compute the average performance across all outer folds for this seed.
end for
Compute overall average performance across all seeds.
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Normalization Strategy

In our late fusion experiments we normalize both the uni-
modal outputs and the unified ensemble outputs, which 
gives 2 key benefits. First, unimodal models with higher 
training set C-indices will have greater variance in outputs, 
so they will have an outsize influence on the linearly com-
bined result. The normalization before the linear combina-
tion ensures all unimodal model variances are equal such 
that there are no nonlinear effects, and the weights are inter-
pretable as their true relative weight on the final output. 
Second, a linear combination of predictions will reduce the 
variance as compared to the unimodal outputs. By normal-
izing after the linear combination, we increase the variance, 
which avoids all survival predictions being very similar to 
the mean.

One limitation of the C-index metric is that it only 
measures the accuracy of the rank, so outputs with biased 
means and standard deviations will not show any decrease 
in C-index. This normalization strategy does not signifi-
cantly change the rank (C-index) of the output risk scores, 
but it does improve the error as measured by the Integrated 
Brier Score (IBS). IBS measures squared differences 
between observed outcomes and predicted survival prob-
abilities over time.27 The normalization method matches 
the mean and standard deviation of the test distribution to 
the ideal training set distribution. Figure 2 shows how we 
apply this normalization strategy, which is used for each 

Figure 1.  Overview of RMSurv weight calculation scheme. The process starts with a nested cross-validation on the training set 
(shown in blue) to calculate the average validation accuracy. This provides a representative accuracy for each modality, without 
introducing overfitting effects. Next, the unimodal models are re-trained on the full training set, and the model outputs are 
recorded. The survival times are randomly sampled from the training data. The synthetic dataset (shown in green) is generated 
using a binary search to match the average validation C-indices. Finally, ideal weights for the synthetic dataset are calculated with a 
grid search, and these weights are applied to the test set with the actual survival times (shown in pink).

of the late fusion strategies described in “Alternative 
Weight Calculation Options” for the most fair 
comparison.

We begin by computing the mean and standard deviation 
of the training set model outputs for each of the 20-time 
bins:

�

� �

train j
i

N

train i j

train j
i

N

train i j tra

N

N

, , ,

, , ,

,�

� �

�

�

�

�

1

1

1

1

Y

Y iin j, .� �2

These statistics are computed for each time bin indepen-
dently. Next, we define a range of multipliers, for instance, 
wstd � �{ . , . , , . }.0 1 0 2 10 0  For each wstd ,  we normalize the 
training predictions, perform the weighted linear combina-
tion, calculate survival, and then compute the Integrated 
Brier Score. We select the multiplier that yields the lowest 
IBS on the training set.

For test data, we normalize the predictions of each 
modality using the training set statistics and the optimized 
standard deviation multiplier wstd:

y
y

norm i j
i j test j

test j
train j std train jw, ,

, ,

,
, ,�

��

�
��

�

�
�� �

�

�
� � ..

We then combine the normalized risk scores from all 
modalities using their respective weights wi :
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y ycomb j
i

M

i norm i jw, , , ,�
�
�

1

where M is the number of modalities in the ensemble. We 
normalize the combined score once more, again using the 
training set statistics and wstd:

y
y

norm i j
i j test j

test j
train j std train jw, ,

, ,

,
, ,�

��

�
��

�

�
�� �

�
�

� � ..

Once the combined score is normalized, we compute haz-
ards and survival probabilities via the sigmoid function:

H Sigmoid S Hj comb j j
k

j

k� � � � �� �
�
�y , , .

1

1

We use a single risk score per case for the C-index by 
defining:

R Srisk
j

T

j� �
�

�

�
1

20

,

where S j
 is the survival probability at time bin j.  Finally, 

we compute the C-index by pairing Rrisk
 with the survival 

times and censorship indicators.

Alternative Weight Calculation Options

In this section, we describe several alternative late fusion 
weight calculation methods which are used as a comparison 
to our proposed method in the “Late Fusion Experiment” 
Section. There are 5 main weight calculation strategies, and 
we test each with 1 validation set and with 5 nested cross-
validation sets.

The first strategy we test is the existing method pro-
posed by Nikolaou et  al,9 in which the weight for each 
modality is set by the validation C-index minus 0.5. We 
describe this as the baseline ad-hoc weighting method. The 
original model uses only 1 validation set, but we improve 
on this by using 5 nested validation sets and averaging the 
C-indices before calculating the weights. This strategy is 
referred to as the “improved ad-hoc” or “5-val ad-hoc” 
method. By using 5 validation sets, we aim to decrease the 
variance in the difference between the actual test set 
C-indices and the validation set C-indices used in calculat-
ing the weights. Figure 3 shows the existing method, and 
Figure 4 shows the improved method.

Figure 2.  Schematic layout of the proposed late fusion method is presented. Up to 6 unimodal models are separately trained 
and output unique survival predictions. Before the combination, the outputs are normalized to avoid non-linear influences from 
modalities with higher variance outputs. The modalities are combined with linear weighting, with the option for time-dependent 
weighting. The combined output is normalized again due to the inherent decrease in variance at the combination step. The statistics 
for the normalization are calculated by maximizing the Integrated Brier Score on the training set.
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The second strategy empirically searches for the best 
weights for the validation set using a population-based grid 
search and then applies these weights to the test set outputs 
to generate the final ensemble output. This is described as 
the averaged weights method. We also test this method with 
5 nested validation sets, and we average the calculated 
weights to give a more generalized estimate of the ideal test 
set weights.

Figure 5 shows this strategy used with nested 
cross-validation.

The third strategy is the synthetic weights method. We 
calculate the average C-indices just as is done in the ad-hoc 
method, and then once the models are trained on the full 

training set, we calculate the Pearson correlation matrix 
based on the model outputs for the test set. These are used 
as inputs for the late fusion simulation described above, 
which generates a fully synthetic dataset and calculates the 
ideal weights to combine the synthetic risk scores. Figure 6 
shows this strategy with nested cross-validation.

The fourth strategy is the RMSurv method. This data 
flow is similar to the synthetic weights method, but instead 
of simulating risk scores, the actual unimodal outputs are 
used with sampled and adjusted training set survival times. 
The weight search method is similar to the synthetic 
weights method, but for RMSurv, we use the full discrete 
survival calculation instead of a single simulated risk score. 

Figure 4.  Improved ad-hoc method. This method is identical to the previous method except for the 5 nested validation sets. The 
averaging of the 5 validation C-indices decreases variance, which reduces the average difference between test set C-indices and 
validation set C-indices.

Figure 3.  Existing ad-hoc method with 1 validation set. This method was introduced in a previous work and uses simplified 
C-index estimation and weight calculation methods. By calculating the weight as the difference between the C-index and 0.5, the 
cross-correlation is not accounted for in either the model outputs or validation set outputs.
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Figure 5.  Averaged weights method with 5 nested validation sets. This method leverages a grid search for each validation set and 
then averages the calculated weights to apply on the test set. While this method does take advantage of the complex combination 
relationship, it suffers from the high variance in validation sets and does not account for the cross-correlation of the model outputs.

Figure 6.  Synthetic weights method with 5 nested validation sets. This method is similar to RMSurv but uses a fully simulated 
dataset, just like the 1 used in the 2-D linear combination simulation shown above. This simulation uses only the test set 
correlations and average validation C-indices as inputs. This contrasts with RMSurv, which uses sampled training set survival times, 
test set model outputs, and average validation C-indices. The grid search is performed on the synthetic dataset to calculate the 
weights.
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The fifth strategy, TD-RMSurv, uses the same data flow as 
RMSurv, but the search space is extended to calculate 
Mx20  weights, where M  is the number of modalities. 
Figure 7 shows the flow of data for both of these strategies 
when using nested cross-validation.

Early and Intermediate Fusion Models

To create an early fusion model most analogous to our pro-
posed late fusion model, we use an identical architecture to 
what is used in the unimodal models for TD-RMSurv. This 
architecture is the same as described in the “Unimodal 
Architecture” section, but all modalities are concatenated 
into 1 input vector which is used as the model input. We 
also create a Cox-based early fusion model for our high-
level comparison. This model is also based on the same 
unimodal architecture, but the output layer consists of a sin-
gle risk score, and we utilize the Cox partial likelihood loss 
function for optimization. In the 3-modal high-level com-
parison, we use the 3 best-performing modalities for each 
dataset. For LUAD, we use clinical data, gene expression, 

and miRNA. For LUAD + LUSC, we use clinical data, 
miRNA, and pathology reports. For pan-cancer, we use 
DNA methylation, miRNA, and protein expression.

We train intermediate fusion models based on the 
HFBSurv architecture12 for the high-level fusion method 
comparison. This architecture employs 3 modalities, 
incorporating self-attention and bimodal cross-attention 
mechanisms, along with several fully connected layers. 
We utilize the 3 best-performing modalities, as described 
above, for the 3-modal comparison. We modify the 
HFBSurv architecture to accept 6 modalities for our 
6-modal comparison. For each additional modality, we 
add cross-modality attentional factorized bilinear mod-
ules between each pairwise modality to model all bimodal 
feature interactions. The original HFBSurv has 1 Cox out-
put layer, so we also create modified 3-modal and 6-modal 
architectures with 20 discrete outputs for a better com-
parison to the discrete late fusion model.

In both early and intermediate fusion setups, hyperpa-
rameters were manually tuned to prevent overfitting. The 
lack of an automated hyperparameter search is a limitation 

Figure 7.  RMSurv method with 5 nested validation sets. This method involves the same nested crossvalidation used in the 
other methods. Next, the models are trained with the full training set, and both test set outputs and training set survival times 
are recorded. The synthetic dataset is then generated using a binary search to give the randomly initialized dataset the average 
validation C-indices of the training set while maintaining the true cross-correlations without leaking the test set labels. A grid search 
is performed in the last step, and using the original model outputs allows for calculating independent weights for each time bin.
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of this comparison, since early and intermediate multimodal 
fusion models can be highly sensitive to hyperparameters.2

Results

Late Fusion Simulation Results

To show the relationship between cross-modality cor-
relation, unimodal C-index, and combined C-index, we 
create simulated datasets with 2 sets of risk scores with 
defined C-indices and Pearson correlations. To repre-
sent LUAD + LUSC, we set the first modality C-index 
to 0.59 and show curves with a varying second modality 
C-index. In our experiments, the cross-modality corre-
lations usually varied between 0 and .5, with an average 
of about .2. Figure 8 highlights how the relationship 
changes as a function of correlation. While adding the 
modality with 0.55 C-index with 0 correlation results in 
a +0.015 advantage and ideal weight near .4, the same 
modality cannot improve performance at any weight 
when the correlation is set to .5. Setting correlation to .2 
models the average scenario for the LUAD + LUSC 
fusion model, and the simulation suggests that modali-
ties below 0.53 C-index will not improve the combined 
prediction at any weight. Even in this ideally simulated 
scenario, some modalities are not capable of improving 
the C-index of another, so it follows that in real datasets 
with noise and unknown test-set C-indices, the inclu-
sion of certain modalities will decrease performance 
even with an empirical weight search. This theoretical 
relationship is validated in our results for our proposed 
method on LUAD + LUSC, shown in the “Comparison 
of TD-RMSurv and Ad-hoc Methods” section in which 
the performance was increased by each modality other 
than gene expression (0.52 C-index). This simulation 

shows how the empirical ideal weighting relationship 
cannot be defined by a simple formula like C-index-0.5, 
since the result will also depend on correlation and 
number of modalities included. These results validate 
the need for a weight calculation method like RMSurv 
which leverages the true empirical relationships in late 
fusion.

Unimodal Performance

Figure 9 shows the average unimodal performance on each 
dataset. For both LUAD and LUAD + LUSC, the unimodal 
model trained on clinical data outperformed models trained 
on other data modalities by a wide margin. For the pan-
cancer dataset, the best-performing models use the miRNA 
and DNA methylation modalities. The outputs of these uni-
modal models are used in the late fusion models of our late 
fusion experiment.

Late Fusion Experiment

Figure 10 shows a comparison between the 5 late fusion 
weight calculation methods described above when using 
all 6 available modalities on the LUAD dataset. The most 
significant trend in the late fusion experiments was the 
consistent improvement by using the fivefold nested vali-
dation sets instead of a single validation set. Since LUAD 
is such a small dataset, the decreased variance in the vali-
dation C-indices was dramatic and improved performance 
with every method. Table 3 shows a statistical comparison 
between the single validation set and 5 validation set 
nested cross-validation options for each of the 5 strate-
gies. There was a large and significant increase in perfor-
mance for every strategy.

Figure 8.  2-D linear combination simulation with varying Pearson correlation is presented. In these simulations, the first modality 
is held at 0.59 C-index, and 4 datasets are generated with the second C-index ranging from 0.53 to 0.59. The relative weights are 
calculated at 100 points to show the ideal weights at the peak of each curve. The figure on the left, with zero correlation, shows 
the greatest multimodal advantage. The central figure, with a correlation coefficient of .2, represents the average scenario for 
the LUAD + LUSC dataset. The figure on the right, with a 0.5 correlation, shows a much smaller multimodal advantage, and no 
advantage with second modalities below 0.55 C-index.
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Another surprising result was the relatively strong per-
formance of the Ad-hoc method on LUAD. For this dataset 
and 6-modal configuration, it outperformed the “averaged 
weights,” “synthetic weights,” and baseline RMSurv strate-
gies, and performed nearly as well as TD-RMSurv. This is 
unintuitive since these methods use empirical grid searches 
for weight calculation that will take correlation and number 
of modalities into account. One explanation for this is that 
the Ad-hoc weighting method can be more beneficial on a 
very small dataset like LUAD because of a lower sensitiv-
ity to small differences in C-index and correlation. LUAD 
can have as few as 30 uncensored test cases, so the C-indices 
can be highly variable and result in large differences 
between the validation and test C-indices. Additionally, the 
inclusion of more informative cases in either the training 
set or the testing set can result in an inverse relationship 
between the testing C-index and the average validation 

C-index. When these conditions are met, the reduced sensi-
tivity of the ad-hoc approach could be more beneficial than 
the optimized weighting relationship. The baseline time-
independent RMSurv method outperformed the ad-hoc 
method on the 2 larger datasets, which supports this conclu-
sion. This small dataset phenomenon could also explain the 
poor performance of the “averaged weights” method. Since 
this approach uses a highly sensitive grid search that uses 
the model outputs and cross-correlations within each vali-
dation fold, instead of only using an average of the valida-
tion C-indices, more of the noise from the small dataset is 
likely preserved, decreasing performance compared to the 
other strategies.

The RMSurv method outperformed the synthetic 
weights method by a wide margin despite the similar 
approach. There are a few likely explanations for this dif-
ference. First, the synthetic weights method models a single 
risk score per case using a normal distribution, instead of 
the 20 discrete outputs of the actual distribution, which 
maintain their exact time-dependent correlations in 
RMSurv. Second, the simulation assumes an exponential 
distribution for survival times, instead of sampling from the 
training distribution. Finally, the 6-dimensional simulation 
has small errors between the desired and actual C-indices 
and correlations. These were not possible to remove com-
pletely, likely because C-indices are non-linear parameters, 
which needed to be modeled as linear correlations and 
formed into a positive semi-definite covariance matrix.

TD-RMSurv (5-val) and the Ad-hoc method (5-val) per-
formed best for LUAD 6-modal, so these 2 strategies are 
compared in more detail in the “Comparison of TD-RMSurv 
and Ad-hoc Methods” Section below.

Comparison of TD-RMSurv and Ad-Hoc Methods.  Figure 11 
shows a comparison of TD-RMSurv and the improved ad-
hoc late fusion method on 3 datasets of varying sizes. 
Tables 4 to 6 show a statistical analysis of the performance 

Figure 9.  Unimodal performance with 95% confidence interval (CI) is shown for all 3 datasets tested. We train unimodal models 
using protein expression, miRNA, DNA methylation, gene expression, pathology report PDF embeddings, and clinical data (age, 
race, gender, stage). The dashed red line marks the minimum predictive performance at C-index = 0.50. The dashed blue line 
represents the best unimodal model performance. For LUAD and LUAD + LUSC, the strongest unimodal model is clinical data. For 
the pancancer dataset, which includes 33 cancer types, the strongest unimodal model is DNA methylation.

Figure 10.  Comparison of the late fusion methods described 
above on the TCGA LUAD dataset using all 6 modalities. 
We test several models with both a single validation set and 
a full nested cross-validation for weight calculation. The use 
of 5 validation sets in the nested cross-validation consistently 
improved C-index by over 0.01. TD-RMSurv and Ad-Hoc (5-val) 
performed the best and are used in subsequent comparisons.
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on the 3 datasets. TD-RMSurv demonstrated a statistically 
significant advantage for all configurations on 
LUAD + LUSC, but did not show a consistent advantage 

for the 2-modal and 6-modal configurations on LUAD. 
This suggests that an ad-hoc method will vary in perfor-
mance between datasets, depending on the size of 

Figure 11.  Comparison of the TD-RMSurv and 5 val. ad-hoc weight calculation methods on three datasets.
This chart compares performance when using a varying number of modalities. TD-RMSurv outperformed the ad-hoc method overall.

Table 3.  Statistical Comparison of Nested and Single Validation for 6-Modal LUAD.

Late fusion strategy Nested cross-validation 1 Validation set Mean difference (bootstrap 95% CI) Paired t-test p-value

TD-RMSurv 0.6735 0.6647 +0.0088 (+0.0031, +0.0148) .0054
RMSurv 0.6691 0.6597 +0.0093 (+0.0016, +0.0177) .0289
Ad-Hoc 0.6721 0.6601 +0.0120 (+0.0069, +0.0171) .0000
Synthetic weights 0.6658 0.6544 +0.0114 (+0.0032, +0.0200) .0119
Averaged weights 0.6602 0.6446 +0.0156 (+0.0075, +0.0237) .0005

Table 4.  Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on LUAD.

# of Modalities TD-RMSurv C-index Ad-Hoc mean C-index Mean Difference (bootstrap 95% CI) Paired t-test p-value

2 0.6714 0.6712 +0.0002 (−0.0033, +0.0036) .9174
3 0.6728 0.6696 +0.0033 (+0.0007, +0.0059) .0204
4 0.6833 0.6773 +0.0059 (+0.0016, +0.0101) .0091
5 0.6820 0.6747 +0.0073 (+0.0031, +0.0118) .0019
6 0.6735 0.6718 +0.0017 (−0.0029, +0.0063) .4733

Table 5.  Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on LUAD + LUSC.

# of Modalities TD-RMSurv C-index Ad-Hoc mean C-index Mean Difference (bootstrap 95% CI) Paired t-test p-value

2 0.6115 0.6066 +0.0048 (+0.0, +0.0) .0002
3 0.6169 0.6118 +0.0051 (+0.0026, +0.0072) .0002
4 0.6172 0.6098 +0.0074 (+0.0026, +0.0077) .0001
5 0.6189 0.6082 +0.0107 (+0.0041, +0.0108) .0000
6 0.6124 0.6056 +0.0068 (+0.0070, +0.0107) .0010

Table 6.  Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on PAN.

# of Modalities TD-RMSurv C-index Ad-Hoc mean C-index Mean difference (bootstrap 95% CI) Paired t-test p-value

2 0.7367 0.7374 −0.0007 (−0.0014, +0.0001) .1263
3 0.7400 0.7347 +0.0053 (+0.0034, +0.0072) .0005
4 0.7398 0.7353 +0.0045 (+0.0018, +0.0073) .0141
5 0.7526 0.7467 +0.0059 (+0.0036, +0.0080) .0007
6 0.7533 0.7458 +0.0074 (+0.0047, +0.00102) .0007
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the dataset, and whether the C-indices, correlations, and 
number of modalities are such that the empirical ideal 
weights are similar to the calculated ad-hoc weights. The 
lack of a significant advantage with 2 modalities could be a 
case where 2 modalities with low correlation create a sim-
ple empirical relationship that closely matches the analyti-
cal relationship, and the increased sensitivity of the 
TD-RMSurv method to the noisy dataset becomes disad-
vantageous. The inconclusive results of the 6-modal con-
figuration could also be explained by increased sensitivity 
to the weakest modality that is highly variable in perfor-
mance for this dataset. In the pan-cancer dataset, TD-
RMSurv showed a statistically significant advantage in 
every configuration except for the configuration using the 
best 2 modalities. For this dataset, the 2 strongest modali-
ties have unimodal outputs with nearly identical C-indices 
(0.7091, 0.7117), so in the 2-modal configuration the aver-
age ideal weight for each is a trivial 0.5 which is what the 
ad-hoc formula predicts. This explains the close results, 
and the slight disadvantage of TD-RMSurv may be due to 
sensitivity to the small amounts of noise on this dataset.

It is important to note that this is a comparison to an 
improved version of the existing method which uses five-
fold nested cross validation, so the increased performance 
results solely from the novel weight calculation method. 
The strong results of TD-RMSurv in this experiment vali-
date the theoretical arguments for correlation-sensitive 
weight calculation and time-dependent weighting. Both 

late fusion models in this comparison had a consistent mul-
timodal advantage, meaning none of the multimodal mod-
els underperformed the best-performing unimodal models.

Comparison of Baseline RMSurv and TD-RMSurv Methods.  To 
isolate the effect of time-dependent weighting, we compare 
the performance of the RMSurv method with and without 
time-dependent weighting enabled. Tables 7 to 9 show a 
statistical comparison of these results for the 3 datasets. For 
LUAD and LUAD + LUSC, the time-dependent model sig-
nificantly outperforms the baseline in all but 2 configura-
tions. We found no conclusive advantage for the 
time-dependent method on the pan-cancer dataset. This 
finding will be explained in the following section through 
the differences in the weights calculated by baseline 
RMSurv and TD-RMSurv on the different datasets.

Interpretation of Calculated Weights.  A comparison of the 
calculated weights of these models can help explain some 
of the differences in performance. The increased sensitivity 
of RMSurv is visible in the calculated weights shown in 
Figure 12. The nearly equal weights from the Ad-hoc 
method, shown on the left sub-figure, highlight the limita-
tion of the method, which assigns a weight to each modality 
above 0.5 C-index, regardless of cross-correlations. The 
RMSurv method, shown in the middle sub-figure, clearly 
excludes the protein expression based on the cross-correla-
tions in this fold.

Table 7.  Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on LUAD.

# of Modalities TD-RMSurv C-index RMSurv mean C-index Mean difference (bootstrap 95% CI) Paired t-test p-value

2 0.6714 0.6672 +0.0042 (−0.0033, +0.0092) .0952
3 0.6728 0.6689 +0.0039 (+0.0002, +0.0077) .0486
4 0.6833 0.6732 +0.0100 (+0.0037, +0.0166) .0042
5 0.6820 0.6712 +0.0109 (+0.0055, +0.0163) .0003
6 0.6735 0.6691 +0.0044 (−0.0019, +0.0110) .1894

Table 8.  Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on LUAD + LUSC.

# of Modalities TD-RMSurv C-index RMSurv mean C-index Mean difference (bootstrap 95% CI) Paired t-test p-value

2 0.6115 0.6059 +0.0056 (+0.0021, +0.0095) .0048
3 0.6169 0.6116 +0.0053 (+0.0018, +0.0089) .0058
4 0.6172 0.6124 +0.0049 (+0.0003, +0.0098) .0530
5 0.6189 0.6109 +0.0080 (+0.0042, +0.0118) .0002
6 0.6124 0.6057 +0.0067 (+0.0018, +0.0116) .0108

Table 9.  Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on PAN.

# of Modalities TD-RMSurv C-index RMSurv mean C-index Mean difference (bootstrap 95% CI) Paired t-test p-value

2 0.7367 0.7372 −0.0005 (−0.0013, +0.0003) .3231
3 0.7400 0.7391 +0.0009 (+0.0026, +0.0014) .0092
4 0.7398 0.7456 −0.0058 (−0.0112, −0.0011) .0645
5 0.7526 0.7525 +0.0001 (−0.0014, +0.0012) .9415
6 0.7533 0.7528 +0.0005 (−0.0003, +0.0013) .2762
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Figure 12.  Comparison of calculated weights is shown for LUAD + LUSC seed 10 fold 5.

The weights of the TD-RMSurv model allow the user to 
interpret the influence of each modality over time. The 
model assigned a 90% weight to the clinical data for the 
first time bin and disregarded most of the other modalities. 
The clinical weighting then decreased to near zero until 
years 7 to 10. Since the survival prediction is calculated as 
the cumulative sum of 1-hazard, each subsequent survival 
prediction will depend on the prediction of the first time 
bin, which represents the likelihood of survival in the first 
6 months. A likely explanation for this is the cancer stage 
feature, which will be highly predictive for short-term sur-
vival. Once the patient survives the first 6 months, other 
modalities and features become more predictive of the con-
ditional survival. Another interesting change is that the pro-
tein modality is now included at certain time bins, where it 
can improve performance without introducing noise in 
years 0 to 3.

The time-variant relationships were much more subtle 
on the larger pan-cancer dataset. The calculated weights for 
this dataset are shown below in Figure 13. These weights 
are less variable over time compared to the smaller dataset, 
which aligns with the smaller performance improvement 
over the baseline for this dataset. The unimodal models 
trained on DNA methylation and miRNA outperform the 
other unimodal models by a wide margin; however, the 
high cross-correlation between their outputs (∼0.7) results 
in lower weights than what an Ad-hoc method based on the 
C-index would produce. This allows for significant influ-
ence of the other modalities when using the TD-RMSurv 
method. The clinical modality still holds an outsize weight 
in the first year, despite having the fourth-highest C-index. 
These details in the calculated weights of TD-RMSurv 
highlight information that would be disregarded by a late 
fusion strategy that does not incorporate correlation-
dependent weighting and time-dependent weighting.

Early Fusion Comparison

In this section, we compare our TD-RMSurv model to an 
early fusion model with a range of modalities. For our early 
fusion model, the inputs for each modality are concatenated 
into 1 vector, and the model uses the same discrete architec-
ture as the unimodal models used in our late fusion models. 

TD-RMSurv late fusion shows a dramatic improvement in 
performance and robustness compared to the discrete early 
fusion model.

Figure 14 shows a comparison between the early fusion 
model and TD-RMSurv on the LUAD dataset. Here, the 
early fusion model performed inconsistently, sometimes 
under-performing the clinical-only modality, and never 
achieving a significant multimodal advantage. There was 
an unusual drop-off in performance when using 2 modali-
ties for early fusion, which highlights a reliability problem 
in early fusion. TD-RMSurv, by contrast, shows a strong 
and consistent multimodal advantage, peaking with the 
inclusion of 4 modalities.

Figure 15 shows a comparison of early fusion and 
TD-RMSurv for LUAD + LUSC. The early fusion model 
performs better on this larger dataset, but shows a modest 
multimodal advantage, which peaked at 3 modalities. 
TD-RMSurv shows a stronger multimodal advantage, 
peaking with the inclusion of 5 modalities.

Figure 16 shows a comparison between the early fusion 
model and TD-RMSurv for the largest pan-cancer dataset. 
The performance of the early fusion model decreases sig-
nificantly with the addition of modality 4, with minimal 
recovery that does not surpass the best unimodal perfor-
mance as more modalities are added. For this dataset, 
modality 4 has many more input features than modalities 1, 
2, and 3 combined. This difference in feature length likely 
caused the dramatic drop in performance, highlighting a 
limitation of early fusion with concatenation. For late 
fusion, only the model outputs are combined, ensuring 
robust model performance in circumstances where the fea-
ture length varies or other data characteristics cause overfit-
ting to a single modality. As a result, TD-RMSurv performs 
strongly on the pan-cancer dataset, achieving its best per-
formance when utilizing all 6 modalities.

High-Level Fusion Method Comparison

In this section, we provide a broader comparison to dem-
onstrate the differences in performance between Cox and 
discrete models, and early, intermediate, and late fusion 
models. TD-RMSurv outperforms these alternative 
methods by a wide margin. The discrete early and 
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Figure 13.  Calculated Weights (TD-RMSurv) for the TCGA pan-cancer dataset for seed 1 fold 5.

Figure 14.  Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the LUAD dataset.

intermediate fusion models were competitive with late 
fusion when using the best 3 modalities; however, they 
sometimes underperformed the unimodal clinical model 
when using all 6 modalities. The Cox-based models 
underperformed the discrete models significantly across 
all 3 datasets.

Figure 17 shows the results for the LUAD dataset. The 
Cox-based models underperformed the discrete models by a 
wide margin for this dataset. The discrete early fusion model 
achieved a small multimodal advantage with both configu-
rations. The discrete intermediate fusion model performed 
relatively well with the top 3 modalities but experienced a 



Flack et al	 19

significant performance decline when including all 6 modal-
ities. The TDRMSurv method demonstrates a robust multi-
modal advantage, even when utilizing all 6 modalities.

For LUAD + LUSC, as shown in Figure 18, the 
results are similar to LUAD. The Cox-based models also 
underperformed for this dataset, and TD-RMSurv out-
performed early and intermediate fusion by a wide mar-
gin in both the 3-modal and 6-modal settings. The 
discrete early fusion model performed better with 3 
modalities included, and the discrete intermediate fusion 
model again showed a decreased performance with 6 
modalities.

Finally, Figure 19 shows the results for the pan-cancer 
dataset. The Cox models continued to underperform for this 
dataset, and early fusion remained inconsistent when using 
6 modalities. The discrete intermediate fusion model 

performed slightly below TD-RMSurv for 3 modalities but 
matched its performance for 6 modalities. This was a sur-
prising result for the intermediate fusion model and may 
indicate greater potential for intermediate fusion on larger 
datasets.

Kaplan-Meier Analysis

We validate the robustness of this system through the 
Kaplan Meier analysis shown in Figure 20. Here we strat-
ify the test set into 3 groups based on the calculated risk 
score of the TD-RMSurv model for a representative split 
on the pan-cancer dataset, using all 6 modalities. The risk 
scores are calculated from the cumulative sum of the dis-
crete survival predictions, just as in the C-index calcula-
tions. The effective stratification highlights the qualitative 

Figure 16.  Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the pan-cancer dataset.

Figure 15.  Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the LUAD + LUSC dataset.
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reliability of the model when including all available 
modalities.

Discussion

We found that the TD-RMSurv late fusion method consist-
ently outperformed all unimodal models and multimodal 
fusion alternatives. We also noticed a consistent improve-
ment by using 5 nested validation sets instead of just 1 
validation set for late fusion. Furthermore, other late fusion 
methods like synthetic weights, ad-hoc, and baseline 
RMSurv also outperformed the early and intermediate 

fusion models. Early and intermediate fusion methods nec-
essarily weight modalities based on the combined training-
set accuracy, and therefore often overfit to weaker 
modalities. Late fusion can correct for this, because the 
errors from individual models tend to be uncorrelated in an 
ensemble.1 This advantage was best demonstrated when 
using all 6 modalities, where the late fusion models main-
tained or even improved their performance while the other 
models’ performance decreased. These results suggest that 
for multimodal cancer survival prediction, the benefit of 
modeling cross-modality feature interactions in early and 
intermediate fusion is less significant compared to 

Figure 18.  Comparison of multimodal fusion strategies on LUAD + LUSC. Left: Best 3 modalities. Right: all 6 modalities. The 
dashed red line marks the minimum predictive performance at C-index = 0.50, while the dashed blue line represents the best 
unimodal model performance. The C-index is calculated with 10 crossvalidation runs and shown with a 95% confidence interval. 

Figure 17.  Comparison of multimodal fusion strategies on LUAD. Left: Best 3 modalities. Right: all 6 modalities. The dashed red 
line indicates the minimum predictive performance at a C-index of 0.50, while the dashed blue line represents the optimal unimodal 
model performance. The C-index is calculated with 10 cross-validation runs and shown with a 95% confidence interval.
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the benefit of treating modalities as dependent random 
variables with late fusion. Several studies also argue that 
late fusion is best suited for settings with heterogenous and 
low correlation modalities, and with small sample sizes.14,19 
The TCGA dataset meets this criteria, so our results sup-
port this conclusion.16

The increased performance of time-dependent modeling 
is demonstrated in both the discrete multimodal advantage 
and the time-dependent weighting advantage. The discrete 
survival models outperformed the Cox Proportional 
Hazards models across the datasets, and TD-RMSurv also 
outperformed baseline RMSurv across all datasets. The 
weights for TD-RMSurv shown in Figure 12 perfectly 
demonstrate the limitation of the proportional hazards 
assumption by showing how the ideal weighting of modali-
ties changes over time.

Our late fusion simulation proves that the modality com-
bination relationship is much more complicated than simply 
comparing modalities based on their C-index. The true rela-
tionship is dependent on the C-index, correlation, and num-
ber of modalities. The RMSurv and TD-RMSurv strategies 
take advantage of this complex relationship, which is likely 
why they perform better than the ad-hoc method overall.

The pathology report modality was one of the weaker 
modalities, but its inclusion modestly increased perfor-
mance on the LUAD + LUSC and pan-cancer datasets 
when using TD-RMSurv. It is a promising area of research, 
especially as language models continue to improve.

RMSurv provides a robust multimodal advantage over 
unimodal models, which is an important step toward the 
clinical relevance of multimodal survival models. The late 
fusion approach also allows for easy integration of 6+ 
modalities, which may require different architectures. For 
the pan-cancer dataset, TD-RMSurv performed best when 
using all 6 modalities, which is a step toward including even 
more modalities on larger datasets. For the LUAD and 
LUAD + LUSC datasets, performance peaked when includ-
ing 4 and 5 modalities, respectively. This lack of perfect 
robustness can be explained by our simulation results, which 
show that very low performing modalities fundamentally 
cannot add any signal to a combined prediction for datasets 
with non-zero correlations. In a very small dataset with high 
variance, these modalities will occasionally receive some 
weight when they should be assigned no weight, and the 
combined performance will decrease. Despite this, 
TD-RMSurv showed a robust multimodal advantage in all 
configurations, contrasting the unpredictable performance 
of the early and intermediate fusion methods.

There is significant potential to improve on this work in 
the future. This study provides a strong proof of concept 
with 3 datasets of various sizes, but a broader comparison 
with many more cancer types is needed to better understand 
the limitations, especially on very small datasets. Future 

Figure 20.  Kaplan Meier Curves showing risk terciles for the 
6-modal configuration of TD-RMSurv on the pan-cancer dataset 
for the test set of seed 1, fold 1 (C-index = 0.7459).

Figure 19.  Comparison of multimodal fusion strategies on the pan-cancer dataset. Left: Best 3 modalities. Right: all 6 modalities. 
The dashed red line indicates the minimum predictive performance at a C-index of 0.50, and the dashed blue line represents the 
optimal unimodal model performance. The C-index is calculated with a single cross-validation and shown with a 95% confidence 
interval.
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implementations could also add histopathology slides, MRI 
scans, and treatment regimes to combine with existing 
modalities in late fusion. The pathology report modality 
introduced in this study also presents an opportunity to add 
several new text-based modalities such as clinical notes, lab-
oratory tests, and more clinical data features. The architec-
ture of TD-RMSurv could also be improved by varying or 
increasing the resolution of time bins. By adding 1-month 
time bins for the first 6 months, for example, we could 
replace the large jumps in modality weighting between time 
bins with a more gradual and accurate representation. The 
multimodal performance of this method, and the clinical util-
ity, is still limited by unimodal performance, so much larger 
datasets and optimal unimodal architectures for each modal-
ity will be needed to outperform traditional prognoses. 
Future applications should also consider cases where interac-
tions between features across modalities are important. Late 
fusion cannot model these interactions, so combining certain 
modalities into early or intermediate fusion sub-models 
could be beneficial.

Beyond model performance, several other challenges 
remain for prospective clinical application. Improved data-
sets or corrective adjustments to survival time sampling will 
be necessary to account for censoring, which can bias the 
model toward lower or higher survival probability depend-
ing on if the censored cases are included in the training set. 
Model interpretability for a clinical setting is significantly 
improved with the proposed method, which can show the 
normalized survival predictions and relative weights 
assigned to each modality, but each unimodal model is still 
a black box in this setup. A future architecture with inter-
pretability at both the unimodal feature level and late fusion 
output level could be a valuable clinical tool. Finally, cohorts 
of cases, which would be used as the training set in prospec-
tive studies, will change significantly over time as the labo-
ratory tests, recording procedures, environment, treatment 
methods, and mean overall survival shift. The RMSurv 
approach will allow for the modeling of the true cross-
modality correlations and feature distributions of the pro-
spective test-set, but the underlying C-indices of each 
modality in the training set would be based on potentially 
outdated cohorts with stronger or weaker modalities. A sys-
tem to interpret the changes and uncertainty of modalities 
could improve the robustness significantly.

Conclusions

In summary, this study highlights the complex relationships 
within multimodal cancer survival prediction, and intro-
duces the RMSurv model, which uses synthetic data genera-
tion, time-dependent weighting, and a novel normalization 
process. This robust and interpretable system advances the 
progress toward clinical use of machine learning based sur-
vival prediction, even with small datasets.
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