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Abstract

Objectives: Multimodal deep learning models have the potential to significantly improve survival predictions and
treatment planning for cancer patients. These models integrate diverse data modalities using early, intermediate,
or late fusion techniques. However, many existing multimodal models either underperform or show only marginal
improvements over unimodal models. To establish the true efficacy of multimodal survival prediction models, it is critical
to demonstrate consistent and substantial advantages over unimodal counterparts.

Methods: In this paper, we introduce the Robust Multimodal Survival Model (RMSurv), a novel discrete late fusion
model that leverages synthetic data generation to compute time-dependent weights for various modalities. RMSurv
utilizes up to 6 distinct data modalities from The Cancer Genome Atlas Program (TCGA) non-small cell lung cancer and
the TCGA pan-cancer datasets to predict overall survival over a period of 10years. The key innovations of RMSurv are
the calculation of time-dependent late fusion weights using a synthetically generated dataset and a new statistical feature
normalization technique to enhance the interpretability and accuracy of discrete survival predictions. We evaluate the
performance of the proposed method and several alternatives with cross validation using the concordance index, and
vary the number of modalities included. We also create a late fusion simulation to highlight the complex relationships
of multimodal fusion.

Results: In our experiments, RMSurv outperforms the best unimodal model’s Concordance index (C-Index) by 0.0273
on the 6-modal TCGA Lung Adenocarcinoma (LUAD) dataset. Existing late and early fusion methods improved the
C-index by only 0.0143 and 0.0072, respectively. RMSurv also performs best on the combined TCGA non-small-cell lung
cancer dataset and the TCGA pan-cancer dataset.

Conclusions: These advancements underscore RMSurv’s potential as a powerful approach for survival prediction,
establishing robust multimodal benefits, and setting a new benchmark for survival prediction models in pan-cancer
settings.
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Introduction trial design. Survival prediction models are best evaluated
using the concordance index, or C-index, which measures
the fraction of pairs of predicted risk scores that match the
Multimodal learning in oncology is an emerging research ~ ground truth. Several existing fusion methods merge
area with great potential to improve cancer research and

patient care. Multimodality refers to various types of data,
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heterogeneous data modalities such as clinical records, -omics
data, and histopathology images for survival prediction.!?
Survival models are typically categorized as Cox and dis-
crete models. Cox-based models estimate a single risk score
for a Cox proportional hazards model, which will be con-
verted into a survival probability over time.® Discrete mod-
els directly output hazards across multiple discrete time
periods, and the predicted survival is calculated as the
cumulative product of the complement of the hazard.* The
data from various modalities can be fused at different stages
using early, intermediate, or late fusion methods. The sim-
plest method is early fusion, in which data from all modali-
ties are combined into a single feature vector used as the
model input.' Intermediate fusion combines features within
the intermediate or hidden layers of the machine learning
model and allows for modeling complex interactions
between data modalities.! Late fusion involves indepen-
dently training unimodal models for each modality and sub-
sequently creating an ensemble for the final outputs. Given
the data-driven nature of fusion methods, determining the
optimal approach can be challenging and application
dependent. In this paper, we provide a comprehensive com-
parison of various fusion methods to investigate the differ-
ences in their performance.

The key challenge for existing data fusion models is to
consistently achieve a multimodal advantage, meaning
performance for a given task that surpasses the best uni-
modal model. Even if the model produces a multimodal
advantage for some modalities (eg, imaging, genomics,
etc.), it won’t be helpful in real-world medical decision-
making unless its performance clearly exceeds that of the
unimodal model based on readily available data like a
patient’s age, gender, or cancer stage. Therefore, studies
that show a multimodal advantage for carefully selected
modalities and exclude clinical data or other outlier high-
performing modalities are limited in their potential for
future clinical application. Existing intermediate and early
multimodal fusion models often demonstrate a multimodal
advantage when using the ideal combination of a maxi-
mum of 2 to 3 modalities,”® but experience a sharp degra-
dation in performance when additional weaker modalities
are added.* These models also experience inconsistent per-
formance, where some datasets demonstrate a multimodal
disadvantage when the architecture, selected modalities,
and number of modalities are not optimal.® This problem
fundamentally limits the potential of employing machine
learning for cancer survival prediction. Just as a physician
can consider dozens of data types in their prognoses, the
ideal system should be robust enough to extract signal
from an unlimited number of modalities without being
heavily affected by the noise.

A potential cause of the low robustness to weak modali-
ties is the optimization strategy of early and intermediate
fusion, which minimizes a combined loss function based on
the training accuracy of the multimodal model. For small
and noisy cancer cohort datasets, where the training-set
cases and test-set cases will differ considerably, the overfit-
ting of each modality will compound when they are all
fused together as a single model.

A promising solution proposed in a recent work”’ is late
fusion, in which each modality will be used for training a
separate model using a distinct loss function, and the
weighting of modalities will be determined based on vali-
dation-set C-index instead of the optimization based on
training-set C-index. This method showed robustness and a
modest multimodal advantage in up to 6 modalities across
many datasets, but is limited by its single validation set, ad-
hoc analytical weight calculation, lack of time-dependent
weighting, and absence of normalization.’

In this paper, we propose the Robust Multimodal
Survival Model (RMSurv), which uses a synthetically gen-
erated dataset to empirically optimize the weighting for dis-
crete late fusion. We further improve the model by using
time-dependent weights to represent the performance of
each modality over time and normalize the output to correct
the distribution. We present multiple variations of late
fusion methods and compare them to existing methods on 3
datasets with a varying number of data modalities. We also
present a simulation to reveal the underlying correlation-
based relationships of late fusion, and introduce a novel
pathology report embedding modality, which shows prom-
ising results for a new class of text-based survival predic-
tion modalities.

Related Work

Several machine learning methods for survival prediction
are based on the Cox proportional hazards model.* In the
Cox model, covariates such as age, gender, and cancer
stage are weighted and linearly combined to calculate an
exponential risk score, which scales the baseline hazard
function.* Ching et al'® developed Coxnnet, which used a
neural network to transform high-dimensional -omics data
into lower-dimensional features that were used as covari-
ates for the Cox model. Since the Cox-nnet model com-
presses the features into a single risk score, variables have
proportional, time-invariant effects on the baseline hazard
and survival predictions.*

Vale-Silva and Rohr* addressed the proportionality
problem with the MultiSurv model. The MultiSurv model
showed improved performance by replacing the single risk
score output with multiple discrete risk outputs, allowing
the model to directly calculate survival probabilities over
different time periods. This approach captured time-vary-
ing influences of variables so that factors like cancer stage
might be more influential in early years, while age and
other features could be more dominant in later years. The
paper also highlighted the modality inclusion problem for
survival models.* Six modalities, including clinical, multi-
omics, and whole slide images (WSI), were available, but
the model performed best when only using 2 modalities:
clinical data and gene expression.*

Intermediate fusion methods have the advantage of
modeling rich cross-modal interactions.' Chen et al'! inte-
grated the Kronecker product into their “Pathomic Fusion”
model to maintain unimodal features while generating fea-
tures for each cross-modal interaction. They later integrated
discrete outputs with the same intermediate fusion method
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in the PORPOISE model.® The number of features scales
exponentially with the number of modalities, making this
method infeasible for 6 or more modalities. The concatena-
tion method (early fusion) was shown to outperform the
“Pathomic Fusion” model on some datasets such as TCGA
Lung Adenocarcinoma (LUAD).!" For other datasets like
TCGA Lung Squamous Cell Carcinoma (LUSC), the best
unimodal model outperformed the intermediate multimodal
fusion model.® Li et al'> developed another intermediate
fusion model, HFBSurv, that utilized attentional factorized
bilinear modules to model unimodal and bimodal interac-
tions more efficiently than the Kronecker product.

Several improvements to unimodal architectures have
been incorporated into intermediate fusion systems to fur-
ther increase performance. Gomaa et al® incorporated a
vision transformer model for MRI images and a fully con-
nected network for clinical data in their multimodal fusion
model. The fusion method used cross-attention mecha-
nisms and non-proportional discrete survival predictions,
and demonstrated strong multimodal benefits in glioblas-
toma datasets.® Their model showed modest improvements
in the bi-modal comparison to existing methods in both
unimodal and multimodal setups.® Another recent study by
Luo et al® proposed combining a vision transformer whole-
slide-image model with genomic features in an intermedi-
ate fusion model. They added an additional layer after
feature concatenation, which uses the Dempster—Shafer
theory to assess the uncertainty of each modality in the final
prediction.> This model outperformed several other multi-
ple instance learning methods in a multimodal comparison
with 3 cancer types.® Yang et al” adopted a similar approach
in their MMsurv model, which used a novel bilinear pool-
ing and transformer fusion layer and a 2-step multi-instance
learning approach. In their experiment, the model outper-
formed existing unimodal and multimodal methods on 4
out of 6 datasets.”

One potential limitation of early and intermediate fusion
approaches are the highly variable performance based on
the dataset and number of modalities included.*® Late
fusion, by contrast, has shown promise in providing a robust
multimodal advantage across many datasets and a number
of modalities.” Furthermore, the available data types vary
significantly across cancer types, so an approach that can
easily and consistently incorporate any combination of
modalities and unimodal architectures will be advanta-
geous."? Late fusion methods do not model feature interac-
tions between modalities, but instead train each unimodal
model separately, and use an ensemble to fuse independent
predictors of survival.'’ The ensemble approach can easily
exclude missing modalities, prevents outsize influence of
high-dimensional modalities, and performs well with heter-
ogenous and weakly correlated modalities."'* Some models,
such as MultiSurv, combine features at the final layers, but
instead of using an ensemble, they train all sub-models as 1
model with a common loss function.* By doing this, the
relative weights of modalities are based on the training set
accuracy and can cause overfitting.

Nikolaou et al®° showed a multimodal advantage on
25 of 33 datasets tested using the simple late fusion method

“AZ-Al multimodal pipeline.” In this fusion model, 1 vali-
dation set C-index is calculated for each modality, and the
linear combination weight for each modality is set by sub-
tracting 0.5 from each C-index value and normalizing
them.’ Since this method only estimates the complex rela-
tionship when combining modalities, and only uses 20% of
the training data for validation, there is significant room for
improvement. In particular, this strategy ignores the impact
of the correlation between predictions and the time-depend-
ent accuracy of predictions. Furthermore, the model simply
excludes modalities with validation C-index below 0.52,
which is another ad-hoc assumption that can be improved
using the proposed method. Despite these limitations, the
method provides a very consistent multimodal advantage
for up to 6 modalities included, even on small datasets.’
The authors of this study concluded that different multi-
modal fusion methods are better for different settings, and
that late fusion is best suited for applications where the risk
of overfitting is high, such as small sample sizes.’

Methods
Late Fusion Simulation

Intuition suggests that the performance of a combination of
2 predictions depends on the accuracy of each prediction
and the correlation between the 2. Combining nearly identi-
cal, highly correlated predictions will not add signal to the
combined prediction. Likewise, linear combinations with
low correlation can benefit from the independent signal of
each modality. However, even with zero correlation, a sur-
vival prediction with very low C-index will just add noise
to a highly accurate survival prediction. Therefore, an ad-
hoc relationship that uses only the C-index as an input to
calculate late fusion weights is not capable of modeling the
true empirical relationship. Here we describe a fully syn-
thetic dataset, distinct from RMSurv, to simulate late fusion
and ground this intuition. We use the results of this simula-
tion to explain the need for an empirical strategy like
RMSurv, and to explain why adding more modalities to a
model often decreases performance in multimodal fusion
research. These results are shown in the “Late Fusion
Simulation Results” Section. We also use this simulated
dataset to calculate weights in our “synthetic weights”
alternative weight calculation method, which we explain in
the “Alternative Weight Calculation Options” Section.

For this simulation, we generate synthetic risk scores
and survival times with arbitrarily set C-indices and cross-
modality correlations by sampling from a multivariate nor-
mal distribution. This method does not directly use C-index
as an input but instead requires a positive semi-definite
covariance matrix. To get around this, we need to model the
non-linear C-index as a linear correlation. We achieve this
by converting the C-index of each modality into a Pearson
correlation between the modality and the survival times
using analytical estimates. We run a binary search algo-
rithm to repeatedly generate distributions to correct for
errors in the analytical estimates and match the C-index to
its corresponding correlation metric. This approximation of
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the C-index as a Pearson correlation results in negligeable
error in a 2-dimensional simulation, but results in some
small unavoidable error between the desired and actual
C-indices and correlations when using 6 modalities within
the simulation. After assigning a Pearson correlation to
each modality, we add a new row and column to the exist-
ing Pearson correlation matrix to combine these into a uni-
fied matrix that represents cross-modality correlations
between risk scores and correlations between risk scores
and survival times. We then find the nearest positive sem-
idefinite matrix and generate our normally distributed sam-
ples. We apply an iterative process to reduce the error
between the desired and actual C-indices and correlations,
then we can test the performance with varying weights
given to each modality.

Binary Search Procedure. In the initialization step, we set the
lower bound of Spearman’s correlation, p ., to 0, and the
upper bound, P , 10.9999. We also define a tolerance level,
tol =1x107* to determlne convergence. During each itera-
tion, we calculate the midpoint Spearman’s correlation,

_ pslow + pshigh
e
and convert p; to an approximate Pearson correlation,

. T
Py = 2s1n(€ Py)-

We then set P, of the other modalities to zero, generate
synthetic data using p,, and compute the observed
C-index, Cppemeq» DEtween the generated risk score and
survival times. If ¢, 00 > Caesireas WeUpdate Py, = Ps-
If Copserved < Caesired » WE update Py, = Ps- This process
continues until |¢ —Cesireq |< t0l Or the maximum

. ) obs.erved
number of iterations is reached.

Generating Synthetic Data Using a Gaussian Copula. We
begin by constructing an initial symmetric Pearson correla-
tion matrix, P, for A/ modalities. For instance, when
M =3, P is a 3x3 matrix defining the correlations
between each pair of modalities. We then add an additional
row and column to incorporate survival time correlations,
resulting in an (M +1)x (M +1) matrix, Z,. This expanded
matrix takes the form:

1 1 P P13z Pir
P2 Pi3 1 P P
P=p, 1 py _>Zp: 2o
P P 1 psyr
Py Pn 1
Pr1 Pr2  Pr3 1

where p;; represents the Pearson correlation between
modality i and the survival time T .

Next, we verify that z, is semipositive definite, because
this is required for generating valid multivariate normal
samples. If z, is not semipositive definite, we adjust it to
the nearest posmve definite matrix using Higham’s'> algo-
rithm. We then use the adjusted ¥, to generate N' samples
from a multivariate normal distribution, where each sample
corresponds to risk scores for M modalities and a single
survival time.

After drawing these samples, we transform each normal
variable Z; into a uniform variable U; using the standard
normal cumulative distribution function, @:

U =0(%),i=1,..,M,T.

We then apply the desired marginal distributions. For each
modality i, we map U, back to a standard normal distribu-
tionby R, =0~ (U,) For the survival times, we map U,
to an exponential distribution with rate parameter A:

In(1-Uy)
7 .
Optimizing Weights with Population-Based Search. We define

a combined risk score R by summing each modali-

combined

ty’s risk score R;, weighted by w; :

M
Rcombined = z M/IRI
i=1

Our objective is to maximize the C-index of R, 4.q With
respect to the survival time 7 :

T=-

= C—index(R

combined >

T).

mv?'X Ceombined
In a 2-dimensional simulation, we simply compute the
combined C-index at 100 relative weights ranging from 0
to 1. However, in higher dimensions where local minima
may appear, we use the differential evolution algorithm. We
set a population size of 15, a tolerance of 107°, and a maxi-
mum of 100 iterations to find the ideal weights for combin-
ing the risk scores.

Data Pre-processing

In our experiments, we use the non-small-cell lung cancer
types LUAD and LUSC from the Cancer Genome Atlas
(TCGA) database, a large public database of cancer data
collected from 2006 to 2015.'® We also use the TCGA pan-
cancer dataset, which includes all 33 cancer types.!” We
separate this data into 3 sets of varying sizes to assess the
impact of dataset size on multimodal performance. LUAD,
our first dataset, contains 522 cases, with 188 cases uncen-
sored (deceased), and a median follow-up time of
21.6months.!” LUSC contains 504 cases and 219 uncen-
sored cases, and a median follow-up time of 21.9 months.!”
Our second dataset is the combined LUAD + LUSC data-
set, with a total of 1026 cases and 407 uncensored cases.!’
The pan-cancer (PAN) dataset contains 11060 cases, and
3622 uncensored cases.!’

We use 7 total input modalities to evaluate the perfor-
mance of the fusion methods: clinical data, pathology
reports, gene expression, miRNA, DNA methylation, pro-
tein expression, and somatic mutation. Gene expression
(measuring mRNA) and miRNA are transcriptomic factors,
which regulate the expression of genes in cancer cells.!®
DNA methylation is an epigenomic factor that can change
gene activity through the addition of methyl groups to
DNA.'® Protein expression measures the presence of spe-
cific proteins in cancer cells,!” and somatic mutation meas-
ures alterations to the DNA sequence in cancer cells.'® To
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Table I. Discretization of Clinical Data Categories.

Numeric
Attribute Category value
Age Integer Integer
Gender Male I
Female 2
Race White |
Asian 2
Black or African American 3
Not reported 4
American Indian or Alaska Native 5
Stage Stage 0 |
Stage | 10
Stage IA I
Stage I1B 12
Stage IC 13
Stage Il 20
Stage IIA 21
Stage IIB 22
Stage IIC 23
Stage llI 30
Stage [lIA 31
Stage IIB 32
Stage [lIC 33
Stage IV 40
Stage IVA 41
Stage IVB 42
Stage IVC 43
Not Reported 50

create 6 modalities with similar C-indices for LUAD and
LUSC, we concatenate the features from the 2 lowest per-
forming modalities, protein expression, and somatic muta-
tion, into a single modality, which is shortened to “protein
expression” in the Results Section for simplicity. For PAN,
protein expression performed well as a standalone modality
and somatic mutation is excluded. Another important step
in the pre-processing of the TCGA data was the removal of
the many duplicate cases in Xena?® and MINDS,?! where a
single patient’s -omic and clinical data are saved at differ-
ent points in time. This can skew results of studies when
many patients appear in both the test set and the training
set, so we removed these extra cases. The reporting of this
study conforms to the TRIPOD-AI statement’? (see
Supplemental File 1).

For the clinical data modality, we use the Multimodal
Integration of Oncology Data System (MINDS) database?!
to download the categorical dataset, then discretize it, as
shown in Table 1, to produce a vector with 4 values: age,
gender, race, and stage.

The pathology report PDF, also downloaded using MINDS,
requires more preprocessing, and we use the HoneyBee
framework? to convert the information into a usable for-
mat. This program extracts the text of the PDF and inputs
this into the GatorTron-Large transformer model,>* which
produces an embedding with 3584 values. We also tested
the HoneyBee method on the clinical data text generated
with additional categories, but this underperformed the

discretized 4-category method by a wide margin
(C-index=0.582 vs 0.646 on LUAD).

The remaining modalities are tabular-omics data down-
loaded from the UCSC Xena website.?’ We do not apply
any manual feature selection. Instead, we reduce the num-
ber of features by removing duplicate features, features
with many constant values, and features with very low vari-
ability. The thresholds for feature removal were adjusted
for each modality based on the number of features removed
and the performance of the unimodal models in cross-vali-
dation. The feature selection was performed on the
LUAD + LUSC dataset and pan-cancer dataset, and the
features for the LUAD dataset are inherited from
LUAD + LUSC. Table 2 shows the resulting number of
features for each modality. We apply median imputation for
missing values, and the system performs comparably when
zero-filling missing values as well. Normalization was not
applied to the features before input into the model. We do
not use any right-censored cases to calculate training loss.
For LUAD and LUAD + LUSC, our results are from five-
fold cross-validation repeated for 10 seeds. For the pan-
cancer dataset, we perform fivefold cross-validation on just
2 seeds due to training time constraints and much lower
unimodal variance compared to the other datasets.

Although MRI images, whole slide images, and copy
number information were available, we did not include
these modalities in the final testing. TCGA LUAD has MRI
images for fewer than 10% of patients, so this modality per-
formed poorly. We used embeddings of slide images gener-
ated with the UNI pretrained vision transformer model,?
but the performance on this modality did not exceed
0.53C-index. Even when fine-tuning on images from
LUAD and including multiple-instance learning, the
modality frequently performed below 0.5 C-index and was
excluded. The unimodal model trained on tabular copy
number data performed inconsistently, so this data modal-
ity was also excluded.

Unimodal Architecture

For a late fusion model, the ensemble can combine predic-
tions from models with various different architectures. To
simplify this study, we use the same architecture in all uni-
modal models used in late fusion. The unimodal model out-
puts used in late fusion are exactly the same for each late
fusion strategy, but the linear combination weights vary
depending on the method. This setup isolates the effect of
the late fusion weight calculation method. Our unimodal
discrete model uses twenty 6-month time periods and out-
puts a hazard score for each. This allows the model to
account for non-proportional effects of individual features.
The survival time of each case is converted into its respec-
tive time bin, and survival times exceeding 10 years are set
to the final time bin. The negative log-likelihood loss func-
tion optimizes the model by increasing the hazard probabil-
ity at the true time bin of the survival time and decreasing
the hazard probability for the preceding time bins. In our
preliminary experiments, we modified several existing
models into discrete versions, including a self-normalizing
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Table 2. Number of Features in Each Modality After Pre-
Processing.

Modality LUAD LUAD + LUSC PAN
Clinical data 4 4 4
Pathology report 3584 3584 3584
Gene expression 16829 16829 192958
miRNA 1012 1012 634
DNA methylation 4931 4931 38943
Protein expression 210
Protein 1204 1204

expression + somatic

mutation

network, a gradient boosting tree, a simplified fully con-
nected network, and a modified version of the HFBSurv
architecture.'> We achieved the best results with the model
based on HFBSurv, which was modified into a discrete uni-
modal model by removing the cross-modal portion of the
architecture and modifying the output layer into 20 discrete
hazard outputs instead of the original single risk score out-
put. This results in a simplified model with a series of fully
connected input layers with Tanh activation, a modality-
specific attentional factorized bilinear module, and a series
of fully connected output layers. We use the negative log-
likelihood loss function instead of the original Cox partial
likelihood loss function, and we also add dropout in the
first 2 fully connected layers.

An advantage of the late fusion approach is the ability to
tune hyperparameters for unimodal models. We noticed
that some unimodal models would experience more overfit-
ting than others when using the same hyperparameters, so
the unimodal models were manually tuned with cross-vali-
dation by modifying the learning rate (5x107 to
1.2x10™*), number of epochs (40-100), and number of
neurons within the input layers (48-256). This is an over-
looked limitation of early and intermediate fusion, which
apply the same hyperparameters to all sub-models. These
unimodal model hyperparameters were consistent across
all late fusion experiments.

Robust Multimodal Survival Model
(RMSurv)

We develop a novel, robust multimodal data fusion
approach to model the complex relationship between
modalities and optimize the weight calculation strategy for
discrete late fusion. The process uses nested cross-valida-
tion to estimate generalized C-indices, creates a synthetic
dataset based on these estimates and the model outputs, and
performs a grid search to find the optimal multimodal
ensemble weights.

Nested Cross-Validation. One limitation of the existing
method is the use of only a single validation set for calculat-
ing the C-index of each unimodal model.” We propose the
use of nested cross validation to use 100% of the training
data for validation and achieve C-index predictions with
lower variance and lower average difference from the test-set

C-indices. The RMSurv method starts by performing a
nested fivefold cross-validation on the training set to calcu-
late the average validation C-index for each modality. This
involves splitting the training data for each modality into
fivefolds and creating 5 new training subsets with onefold
held out for validation. For each fold, we train the unimodal
models, test them on the designated validation set, and record
the C-index for each modality. We then average the C-index
across all fivefolds. This only uses ground truth information
from the combined training set, but in contrast to the training
set C-indices, this represents the generalized accuracy by
evaluating the C-indices on the hidden validation sets.

Re-Training with Full Training Set. After the nested cross-
validation, the training set is combined without any held-
out validation data, and the unimodal models are all trained
again. The test set model inputs are passed through the
model, and the outputs are recorded. This step is performed
in the existing method,’ and aims to improve performance
compared to the nested cross-validation models since 100%
of the training data is included.

Sampling Survival Times. Next, we randomly sample ground
truth survival times from the full training set, sampling as
many survival times as there are test cases. Both censored
and uncensored survival times were sampled in our experi-
ments. We align each sampled survival time to a test set
case, along with its unimodal model outputs, in a random
permutation. This sampling approach perfectly models the
actual cross-modality correlations and provides a strong
estimate for the distribution of the test set survival times
without leaking the actual test-set survival times.

Optimize Survival Time Assignment. Before this step, the dis-
tributions and correlations of the synthetic dataset are prop-
erly modeled, but the C-indices are randomly initialized
and do not match our average validation C-indices calcu-
lated with the nested cross-validation. This step will aug-
ment the order of the sampled survival times such that the
synthetic dataset will inherit the desired validation C-indi-
ces. We optimize how survival times are assigned by defin-
ing a total loss function based on the squared difference
between achieved and desired C-indices:

A 2

LOSS = Z(cach[eved,[ - cdesired,i) H

i=1
where M is the number of modalities, and Cgegirea; 1S the
average validation C-index of a given modality.

We iteratively improve the survival time assignment by
swapping the rank of 2 randomly selected survival times,
evaluating the loss after each swap, and accepting the new
assignment whenever it reduces the loss. We stop early if the
loss drops below a predefined threshold (107%), and we impose
a maximum of 10000 iterations to limit computation. This
limit was not reached for the 3 datasets tested. This iterative
search results in a simulated dataset that maintains the origi-
nal cross-correlation between data modalities but replaces the
test set ground truth survival times with simulated survival
times matching the average validation C-indices.
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Optimize Weights via Population-Based Grid Search. Now that
the synthetic dataset is complete, we can empirically calcu-
late the ideal weights with a grid search. This avoids the
limitations of ad-hoc methods by implicitly considering
correlations and number of modalities in addition to C-indi-
ces. The predictions for each modality are combined into 1
with a linear combination of model outputs. We optimize
the linear combination weights via a population-based grid
search. We define an objective function to maximize the
C-index ¢, ieq fOr the combined risk score R .. . and
the survival time 7

Cc- index(R

mv?x Ccambined = combined ’T)

Using the differential evolution algorithm,?® we ensure that
all weights are nonnegative and normalized to sum to 1. We
set the population size to 15, allowing the mutation factor
to vary between 0.5 and 1. We also set the recombination
probability to 0.7 and limit the algorithm to a maximum of
100 iterations.

Final Testing. Finally, we test the model with the test set
ground truth survival times, which are held out until this
step. Figure 1 shows a visual representation of the RMSurv
strategy. The detailed steps of the proposed RMSurv
method are explained in Algorithm 1.

Time Dependent-RMSurv (TD-RMSurv)

RMSurv and the other late fusion methods described in the
“Alternative Weight Calculation Options” section all output

RMSurv Algorithm

Algorithm |. Pseudocode for RMSurv Algorithm.

a hazard for 20 discrete time bins, each representing a
6-month period over a 10-year time frame. In the baseline
RMSurv scheme, the same M late fusion weights are
applied to each of the time bins. Because the weights do not
change over time, the C-index and correlations of each
modality are therefore implicitly modeled as if they were
constant over time. This is not necessarily true, and the late
fusion weights can in fact be optimized for each individual
time bin. Thus, we propose the time-dependent RMSurv
model (TD-RMSurv) which takes advantage of the discrete
architecture and creates a search space of M x 20 weights, 1
per modality per time bin. The rationale for time-dependent
weighting is that just like certain features can be more influ-
ential at certain time bins in a discrete unimodal model, cer-
tain modalities can also be more influential at certain times.
This method cannot be used with an ad-hoc strategy, because
C-index is calculated using survival times across all time
bins, and C-index within single 6-month periods would be
excessively noisy and not calculatable for small datasets.
We define the baseline RMSurv method as the follow-
ing, where the same weight w; applies across all time bins:
M

ycamb,j = zwi : yi,j,m)rm'

i=1
For TD-RMSurv, each modality can have a distinct weight

W, ; at each time bin /- We define the TD-RMSurv method
as the following:

M
ycomb,j = Zwi,j : yi,j,norm .
i=l1

Here, M is the number of modalities included in the
ensemble.

Require: number of seeds S, maximum iteration K, threshold €
for seed=1:S do
for outer_fold=1:5 do

Partition the dataset into training set D (80%) and test set 7 (20%).

Partition D into 5 inner folds.
for nested_fold=1:5 do

Train unimodal models on 4folds and validate on the remaining fold.

Compute the validation C-index for each modality.
end for

Average the C-index results for each modality to compute Cyegireqm
Retrain all unimodal models on the entire D and record their outputs for 7.
Randomly sample survival times from D (size = |T| ) and assign them to

the test outputs in a random permutation.
for iteration=1:K do

. . 2
Define total loss: Loss = Z(cachieved,m - Cdesired,m) .

m
Randomly swap the rank of two assigned survival times.
Accept the swap if it reduces Loss stop early if Loss < €.
end for

Combine modality outputs linearly with weights w, subject to Zw, =1,
1

and use a population-based grid search to maximize the combined C-index.

Reveal 7 ’s true survival times and compute final performance.

end for

Compute the average performance across all outer folds for this seed.

end for
Compute overall average performance across all seeds.
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Figure 1.

Overview of RMSurv weight calculation scheme. The process starts with a nested cross-validation on the training set

(shown in blue) to calculate the average validation accuracy. This provides a representative accuracy for each modality, without
introducing overfitting effects. Next, the unimodal models are re-trained on the full training set, and the model outputs are
recorded. The survival times are randomly sampled from the training data. The synthetic dataset (shown in green) is generated
using a binary search to match the average validation C-indices. Finally, ideal weights for the synthetic dataset are calculated with a
grid search, and these weights are applied to the test set with the actual survival times (shown in pink).

Normalization Strategy

In our late fusion experiments we normalize both the uni-
modal outputs and the unified ensemble outputs, which
gives 2 key benefits. First, unimodal models with higher
training set C-indices will have greater variance in outputs,
so they will have an outsize influence on the linearly com-
bined result. The normalization before the linear combina-
tion ensures all unimodal model variances are equal such
that there are no nonlinear effects, and the weights are inter-
pretable as their true relative weight on the final output.
Second, a linear combination of predictions will reduce the
variance as compared to the unimodal outputs. By normal-
izing after the linear combination, we increase the variance,
which avoids all survival predictions being very similar to
the mean.

One limitation of the C-index metric is that it only
measures the accuracy of the rank, so outputs with biased
means and standard deviations will not show any decrease
in C-index. This normalization strategy does not signifi-
cantly change the rank (C-index) of the output risk scores,
but it does improve the error as measured by the Integrated
Brier Score (IBS). IBS measures squared differences
between observed outcomes and predicted survival prob-
abilities over time.?” The normalization method matches
the mean and standard deviation of the test distribution to
the ideal training set distribution. Figure 2 shows how we
apply this normalization strategy, which is used for each

of the late fusion strategies described in “Alternative
Weight Calculation Options” for the most fair
comparison.

We begin by computing the mean and standard deviation
of the training set model outputs for each of the 20-time
bins:

z train,i, j >

N

1 2
Otrain,j = \/N Z(Ytrain,i,j = Huain, ) .

i=l1

/‘ltrain, Jj -

These statistics are computed for each time bin indepen-
dently. Next, we define a range of multipliers, for instance,
w,, €{0.1,0.2,...,10.0}. For each w,,, we normalize the
training predictions, perform the weighted linear combina-
tion, calculate survival, and then compute the Integrated
Brier Score. We select the multiplier that yields the lowest
IBS on the training set.

For test data, we normalize the predictions of each
modality using the training set statistics and the optimized
standard deviation multiplier w_,

yi .J
ynorm ij = o

:utest, J
O-lrain, J Wita + /’ltrain, Jj*
test,j
We then combine the normalized risk scores from all

modalities using their respective weights w, :
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Figure 2. Schematic layout of the proposed late fusion method is presented. Up to 6 unimodal models are separately trained

and output unique survival predictions. Before the combination, the outputs are normalized to avoid non-linear influences from
modalities with higher variance outputs. The modalities are combined with linear weighting, with the option for time-dependent
weighting. The combined output is normalized again due to the inherent decrease in variance at the combination step. The statistics
for the normalization are calculated by maximizing the Integrated Brier Score on the training set.

M
ycomb,j = Zwi ynorm,i,j’
i=1
where M is the number of modalities in the ensemble. We
normalize the combined score once more, again using the

training set statistics and w,

yi,j ~ Hiegt
O

Once the combined score is normalized, we compute haz-
ards and survival probabilities via the sigmoid function:

ynorm,i,j = train, j Wstd + nutrain,j'

test,j

J
H ;= Sigmoid (Y o, ; ) S, = [ (1-Hy)-
k=1
We use a single risk score per case for the C-index by

defining: T=20
Rrisk == ZSJ ’
Jj=1

where S, is the survival probability at time bin j. Finally,
we compute the C-index by pairing R .~ with the survival
times and censorship indicators.

Alternative Weight Calculation Options

In this section, we describe several alternative late fusion
weight calculation methods which are used as a comparison
to our proposed method in the “Late Fusion Experiment”
Section. There are 5 main weight calculation strategies, and
we test each with 1 validation set and with 5 nested cross-
validation sets.

The first strategy we test is the existing method pro-
posed by Nikolaou et al,” in which the weight for each
modality is set by the validation C-index minus 0.5. We
describe this as the baseline ad-hoc weighting method. The
original model uses only 1 validation set, but we improve
on this by using 5 nested validation sets and averaging the
C-indices before calculating the weights. This strategy is
referred to as the “improved ad-hoc” or “5-val ad-hoc”
method. By using 5 validation sets, we aim to decrease the
variance in the difference between the actual test set
C-indices and the validation set C-indices used in calculat-
ing the weights. Figure 3 shows the existing method, and
Figure 4 shows the improved method.
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Figure 3. Existing ad-hoc method with | validation set. This method was introduced in a previous work and uses simplified
C-index estimation and weight calculation methods. By calculating the weight as the difference between the C-index and 0.5, the

cross-correlation is not accounted for in either the model outputs or validation set outputs.

1. Train all unimodal models in each configuration

Training Set

Training Set

2. Calculate c-indices for each validation set

3. Average all 5 sets of c-indices

4. Calculate weights with ad-hoc method

5. Train models with full training set

6. Test ensemble with calculated weights on test set
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Figure 4. Improved ad-hoc method. This method is identical to the previous method except for the 5 nested validation sets. The
averaging of the 5 validation C-indices decreases variance, which reduces the average difference between test set C-indices and

validation set C-indices.

The second strategy empirically searches for the best
weights for the validation set using a population-based grid
search and then applies these weights to the test set outputs
to generate the final ensemble output. This is described as
the averaged weights method. We also test this method with
5 nested validation sets, and we average the calculated
weights to give a more generalized estimate of the ideal test
set weights.

Figure 5 shows this strategy used with nested
cross-validation.

The third strategy is the synthetic weights method. We
calculate the average C-indices just as is done in the ad-hoc
method, and then once the models are trained on the full

training set, we calculate the Pearson correlation matrix
based on the model outputs for the test set. These are used
as inputs for the late fusion simulation described above,
which generates a fully synthetic dataset and calculates the
ideal weights to combine the synthetic risk scores. Figure 6
shows this strategy with nested cross-validation.

The fourth strategy is the RMSurv method. This data
flow is similar to the synthetic weights method, but instead
of simulating risk scores, the actual unimodal outputs are
used with sampled and adjusted training set survival times.
The weight search method is similar to the synthetic
weights method, but for RMSurv, we use the full discrete
survival calculation instead of a single simulated risk score.
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Figure 5. Averaged weights method with 5 nested validation sets. This method leverages a grid search for each validation set and
then averages the calculated weights to apply on the test set. While this method does take advantage of the complex combination

relationship, it suffers from the high variance in validation sets and does not account for the cross-correlation of the model outputs.

1. Train all unimodal models in each configuration
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Figure 6. Synthetic weights method with 5 nested validation sets. This method is similar to RMSurv but uses a fully simulated
dataset, just like the | used in the 2-D linear combination simulation shown above. This simulation uses only the test set

correlations and average validation C-indices as inputs. This contrasts with RMSurv, which uses sampled training set survival times,

test set model outputs, and average validation C-indices. The grid search is performed on the synthetic dataset to calculate the
weights.
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Figure 7. RMSurv method with 5 nested validation sets. This method involves the same nested crossvalidation used in the

other methods. Next, the models are trained with the full training set, and both test set outputs and training set survival times
are recorded. The synthetic dataset is then generated using a binary search to give the randomly initialized dataset the average

validation C-indices of the training set while maintaining the true cross-correlations without leaking the test set labels. A grid search

is performed in the last step, and using the original model outputs allows for calculating independent weights for each time bin.

The fifth strategy, TD-RMSurv, uses the same data flow as
RMSurv, but the search space is extended to calculate
Mx20 weights, where Af is the number of modalities.
Figure 7 shows the flow of data for both of these strategies
when using nested cross-validation.

Early and Intermediate Fusion Models

To create an early fusion model most analogous to our pro-
posed late fusion model, we use an identical architecture to
what is used in the unimodal models for TD-RMSurv. This
architecture is the same as described in the “Unimodal
Architecture” section, but all modalities are concatenated
into 1 input vector which is used as the model input. We
also create a Cox-based early fusion model for our high-
level comparison. This model is also based on the same
unimodal architecture, but the output layer consists of a sin-
gle risk score, and we utilize the Cox partial likelihood loss
function for optimization. In the 3-modal high-level com-
parison, we use the 3 best-performing modalities for each
dataset. For LUAD, we use clinical data, gene expression,

and miRNA. For LUAD + LUSC, we use clinical data,
miRNA, and pathology reports. For pan-cancer, we use
DNA methylation, miRNA, and protein expression.

We train intermediate fusion models based on the
HFBSurv architecture'? for the high-level fusion method
comparison. This architecture employs 3 modalities,
incorporating self-attention and bimodal cross-attention
mechanisms, along with several fully connected layers.
We utilize the 3 best-performing modalities, as described
above, for the 3-modal comparison. We modify the
HFBSurv architecture to accept 6 modalities for our
6-modal comparison. For each additional modality, we
add cross-modality attentional factorized bilinear mod-
ules between each pairwise modality to model all bimodal
feature interactions. The original HFBSurv has 1 Cox out-
put layer, so we also create modified 3-modal and 6-modal
architectures with 20 discrete outputs for a better com-
parison to the discrete late fusion model.

In both early and intermediate fusion setups, hyperpa-
rameters were manually tuned to prevent overfitting. The
lack of an automated hyperparameter search is a limitation
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Figure 8. 2-D linear combination simulation with varying Pearson correlation is presented. In these simulations, the first modality
is held at 0.59 C-index, and 4 datasets are generated with the second C-index ranging from 0.53 to 0.59. The relative weights are
calculated at 100 points to show the ideal weights at the peak of each curve. The figure on the left, with zero correlation, shows
the greatest multimodal advantage. The central figure, with a correlation coefficient of .2, represents the average scenario for

the LUAD + LUSC dataset. The figure on the right, with a 0.5 correlation, shows a much smaller multimodal advantage, and no

advantage with second modalities below 0.55 C-index.

of this comparison, since early and intermediate multimodal
fusion models can be highly sensitive to hyperparameters.’

Results
Late Fusion Simulation Results

To show the relationship between cross-modality cor-
relation, unimodal C-index, and combined C-index, we
create simulated datasets with 2 sets of risk scores with
defined C-indices and Pearson correlations. To repre-
sent LUAD + LUSC, we set the first modality C-index
to 0.59 and show curves with a varying second modality
C-index. In our experiments, the cross-modality corre-
lations usually varied between 0 and .5, with an average
of about .2. Figure 8 highlights how the relationship
changes as a function of correlation. While adding the
modality with 0.55 C-index with 0 correlation results in
a +0.015 advantage and ideal weight near .4, the same
modality cannot improve performance at any weight
when the correlation is set to .5. Setting correlation to .2
models the average scenario for the LUAD + LUSC
fusion model, and the simulation suggests that modali-
ties below 0.53 C-index will not improve the combined
prediction at any weight. Even in this ideally simulated
scenario, some modalities are not capable of improving
the C-index of another, so it follows that in real datasets
with noise and unknown test-set C-indices, the inclu-
sion of certain modalities will decrease performance
even with an empirical weight search. This theoretical
relationship is validated in our results for our proposed
method on LUAD + LUSC, shown in the “Comparison
of TD-RMSurv and Ad-hoc Methods” section in which
the performance was increased by each modality other
than gene expression (0.52 C-index). This simulation

shows how the empirical ideal weighting relationship
cannot be defined by a simple formula like C-index-0.5,
since the result will also depend on correlation and
number of modalities included. These results validate
the need for a weight calculation method like RMSurv
which leverages the true empirical relationships in late
fusion.

Unimodal Performance

Figure 9 shows the average unimodal performance on each
dataset. For both LUAD and LUAD + LUSC, the unimodal
model trained on clinical data outperformed models trained
on other data modalities by a wide margin. For the pan-
cancer dataset, the best-performing models use the miRNA
and DNA methylation modalities. The outputs of these uni-
modal models are used in the late fusion models of our late
fusion experiment.

Late Fusion Experiment

Figure 10 shows a comparison between the 5 late fusion
weight calculation methods described above when using
all 6 available modalities on the LUAD dataset. The most
significant trend in the late fusion experiments was the
consistent improvement by using the fivefold nested vali-
dation sets instead of a single validation set. Since LUAD
is such a small dataset, the decreased variance in the vali-
dation C-indices was dramatic and improved performance
with every method. Table 3 shows a statistical comparison
between the single validation set and 5 validation set
nested cross-validation options for each of the 5 strate-
gies. There was a large and significant increase in perfor-
mance for every strategy.
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Figure 9. Unimodal performance with 95% confidence interval (Cl) is shown for all 3 datasets tested. We train unimodal models
using protein expression, miRNA, DNA methylation, gene expression, pathology report PDF embeddings, and clinical data (age,
race, gender, stage). The dashed red line marks the minimum predictive performance at C-index=0.50. The dashed blue line
represents the best unimodal model performance. For LUAD and LUAD + LUSC, the strongest unimodal model is clinical data. For
the pancancer dataset, which includes 33 cancer types, the strongest unimodal model is DNA methylation.
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Figure 10. Comparison of the late fusion methods described
above on the TCGA LUAD dataset using all 6 modalities.

We test several models with both a single validation set and

a full nested cross-validation for weight calculation. The use

of 5 validation sets in the nested cross-validation consistently
improved C-index by over 0.01. TD-RMSurv and Ad-Hoc (5-val)
performed the best and are used in subsequent comparisons.

Another surprising result was the relatively strong per-
formance of the Ad-hoc method on LUAD. For this dataset
and 6-modal configuration, it outperformed the “averaged
weights,” “synthetic weights,” and baseline RMSurv strate-
gies, and performed nearly as well as TD-RMSurv. This is
unintuitive since these methods use empirical grid searches
for weight calculation that will take correlation and number
of modalities into account. One explanation for this is that
the Ad-hoc weighting method can be more beneficial on a
very small dataset like LUAD because of a lower sensitiv-
ity to small differences in C-index and correlation. LUAD
can have as few as 30 uncensored test cases, so the C-indices
can be highly variable and result in large differences
between the validation and test C-indices. Additionally, the
inclusion of more informative cases in either the training
set or the testing set can result in an inverse relationship
between the testing C-index and the average validation

C-index. When these conditions are met, the reduced sensi-
tivity of the ad-hoc approach could be more beneficial than
the optimized weighting relationship. The baseline time-
independent RMSurv method outperformed the ad-hoc
method on the 2 larger datasets, which supports this conclu-
sion. This small dataset phenomenon could also explain the
poor performance of the “averaged weights” method. Since
this approach uses a highly sensitive grid search that uses
the model outputs and cross-correlations within each vali-
dation fold, instead of only using an average of the valida-
tion C-indices, more of the noise from the small dataset is
likely preserved, decreasing performance compared to the
other strategies.

The RMSurv method outperformed the synthetic
weights method by a wide margin despite the similar
approach. There are a few likely explanations for this dif-
ference. First, the synthetic weights method models a single
risk score per case using a normal distribution, instead of
the 20 discrete outputs of the actual distribution, which
maintain their exact time-dependent correlations in
RMSurv. Second, the simulation assumes an exponential
distribution for survival times, instead of sampling from the
training distribution. Finally, the 6-dimensional simulation
has small errors between the desired and actual C-indices
and correlations. These were not possible to remove com-
pletely, likely because C-indices are non-linear parameters,
which needed to be modeled as linear correlations and
formed into a positive semi-definite covariance matrix.

TD-RMSurv (5-val) and the Ad-hoc method (5-val) per-
formed best for LUAD 6-modal, so these 2 strategies are
compared in more detail in the “Comparison of TD-RMSurv
and Ad-hoc Methods” Section below.

Comparison of TD-RMSurv and Ad-Hoc Methods. Figure 11
shows a comparison of TD-RMSurv and the improved ad-
hoc late fusion method on 3 datasets of varying sizes.
Tables 4 to 6 show a statistical analysis of the performance
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Table 3. Statistical Comparison of Nested and Single Validation for 6-Modal LUAD.

Late fusion strategy Nested cross-validation | Validation set Mean difference (bootstrap 95% Cl) Paired t-test p-value
TD-RMSurv 0.6735 0.6647 +0.0088 (+0.0031, +0.0148) .0054
RMSurv 0.6691 0.6597 +0.0093 (+0.0016, +0.0177) .0289
Ad-Hoc 0.6721 0.6601 +0.0120 (+0.0069, +0.0171) .0000
Synthetic weights 0.6658 0.6544 +0.0114 (+0.0032, +0.0200) 0119
Averaged weights 0.6602 0.6446 +0.0156 (+0.0075, +0.0237) .0005
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Figure Il. Comparison of the TD-RMSurv and 5 val. ad-hoc weight calculation methods on three datasets.
This chart compares performance when using a varying number of modalities. TD-RMSurv outperformed the ad-hoc method overall.

Table 4. Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on LUAD.

# of Modalities ~ TD-RMSurv C-index =~ Ad-Hoc mean C-index  Mean Difference (bootstrap 95% ClI) Paired t-test p-value

2 06714 0.6712 +0.0002 (-0.0033, +0.0036) 9174
3 0.6728 0.6696 +0.0033 (+0.0007, +0.0059) 0204
4 0.6833 0.6773 +0.0059 (+0.0016, +0.0101) 0091
5 0.6820 0.6747 +0.0073 (+0.0031, +0.0118) 0019
6 0.6735 0.6718 +0.0017 (-0.0029, +0.0063) 4733

Table 5. Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on LUAD + LUSC.

# of Modalities TD-RMSurv C-index Ad-Hoc mean C-index Mean Difference (bootstrap 95% Cl) Paired t-test p-value
2 0.6115 0.6066 +0.0048 (+0.0, +0.0) .0002
3 0.6169 0.6118 +0.0051 (+0.0026, +0.0072) .0002
4 0.6172 0.6098 +0.0074 (+0.0026, +0.0077) .0001
5 0.6189 0.6082 +0.0107 (+0.0041, +0.0108) .0000
6 0.6124 0.6056 +0.0068 (+0.0070, +0.0107) 0010

Table 6. Statistical Comparison of TD-RMSurv and Ad-Hoc Methods on PAN.

# of Modalities ~ TD-RMSurv C-index Ad-Hoc mean C-index Mean difference (bootstrap 95% ClI) Paired t-test p-value

2 0.7367 0.7374 ~0.0007 (~0.0014, +0.0001) 1263
3 0.7400 0.7347 +0.0053 (+0.0034, +0.0072) 0005
4 0.7398 0.7353 +0.0045 (+0.0018, +0.0073) 0141
5 0.7526 0.7467 +0.0059 (+0.0036, +0.0080) 0007
6 07533 07458 +0.0074 (+0.0047, +0.00102) 0007

on the 3 datasets. TD-RMSurv demonstrated a statistically ~ for the 2-modal and 6-modal configurations on LUAD.
significant advantage for all configurations on This suggests that an ad-hoc method will vary in perfor-
LUAD + LUSC, but did not show a consistent advantage mance between datasets, depending on the size of
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Table 7. Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on LUAD.

# of Modalities TD-RMSurv C-index

RMSurv mean C-index

Mean difference (bootstrap 95% Cl) Paired t-test p-value

2 0.6714 0.6672
3 0.6728 0.6689
4 0.6833 0.6732
5 0.6820 0.6712
6 0.6735 0.6691

+0.0042 (-0.0033, +0.0092) .0952
+0.0039 (+0.0002, +0.0077) .0486
+0.0100 (+0.0037, +0.0166) .0042
+0.0109 (+0.0055, +0.0163) .0003

.1894

+0.0044 (-0.0019, +0.0110)

Table 8. Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on LUAD + LUSC.

# of Modalities TD-RMSurv C-index

RMSurv mean C-index

Mean difference (bootstrap 95% ClI) Paired t-test p-value

2 06115 0.6059
3 0.6169 0.6l16
4 0.6172 0.6124
5 0.6189 0.6109
6 0.6124 0.6057

+0.0056 (+0.0021, +0.0095) .0048
+0.0053 (+0.0018, +0.0089) .0058
+0.0049 (+0.0003, +0.0098) .0530
+0.0080 (+0.0042, +0.0118) .0002

.0108

+0.0067 (+0.0018, +0.0116)

Table 9. Statistical Comparison of TD-RMSurv and Baseline RMSurv Methods on PAN.

# of Modalities TD-RMSurv C-index

RMSurv mean C-index

Mean difference (bootstrap 95% CI) Paired t-test p-value

2 0.7367 0.7372
3 0.7400 0.7391
4 0.7398 0.7456
5 0.7526 0.7525
6 0.7533 0.7528

—0.0005 (-0.0013, +0.0003) 3231
+0.0009 (+0.0026, +0.0014) .0092
-0.0058 (-0.0112, -0.0011) .0645
+0.0001 (-0.0014, +0.0012) 9415

2762

+0.0005 (-0.0003, +0.0013)

the dataset, and whether the C-indices, correlations, and
number of modalities are such that the empirical ideal
weights are similar to the calculated ad-hoc weights. The
lack of a significant advantage with 2 modalities could be a
case where 2 modalities with low correlation create a sim-
ple empirical relationship that closely matches the analyti-
cal relationship, and the increased sensitivity of the
TD-RMSurv method to the noisy dataset becomes disad-
vantageous. The inconclusive results of the 6-modal con-
figuration could also be explained by increased sensitivity
to the weakest modality that is highly variable in perfor-
mance for this dataset. In the pan-cancer dataset, TD-
RMSurv showed a statistically significant advantage in
every configuration except for the configuration using the
best 2 modalities. For this dataset, the 2 strongest modali-
ties have unimodal outputs with nearly identical C-indices
(0.7091, 0.7117), so in the 2-modal configuration the aver-
age ideal weight for each is a trivial 0.5 which is what the
ad-hoc formula predicts. This explains the close results,
and the slight disadvantage of TD-RMSurv may be due to
sensitivity to the small amounts of noise on this dataset.

It is important to note that this is a comparison to an
improved version of the existing method which uses five-
fold nested cross validation, so the increased performance
results solely from the novel weight calculation method.
The strong results of TD-RMSurv in this experiment vali-
date the theoretical arguments for correlation-sensitive
weight calculation and time-dependent weighting. Both

late fusion models in this comparison had a consistent mul-
timodal advantage, meaning none of the multimodal mod-
els underperformed the best-performing unimodal models.

Comparison of Baseline RMSurv and TD-RMSurv Methods. To
isolate the effect of time-dependent weighting, we compare
the performance of the RMSurv method with and without
time-dependent weighting enabled. Tables 7 to 9 show a
statistical comparison of these results for the 3 datasets. For
LUAD and LUAD + LUSC, the time-dependent model sig-
nificantly outperforms the baseline in all but 2 configura-
tions. We found no conclusive advantage for the
time-dependent method on the pan-cancer dataset. This
finding will be explained in the following section through
the differences in the weights calculated by baseline
RMSurv and TD-RMSurv on the different datasets.

Interpretation of Calculated Weights. A comparison of the
calculated weights of these models can help explain some
of the differences in performance. The increased sensitivity
of RMSurv is visible in the calculated weights shown in
Figure 12. The nearly equal weights from the Ad-hoc
method, shown on the left sub-figure, highlight the limita-
tion of the method, which assigns a weight to each modality
above 0.5C-index, regardless of cross-correlations. The
RMSurv method, shown in the middle sub-figure, clearly
excludes the protein expression based on the cross-correla-
tions in this fold.
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Figure 12. Comparison of calculated weights is shown for LUAD + LUSC seed 10fold 5.

The weights of the TD-RMSurv model allow the user to
interpret the influence of each modality over time. The
model assigned a 90% weight to the clinical data for the
first time bin and disregarded most of the other modalities.
The clinical weighting then decreased to near zero until
years 7 to 10. Since the survival prediction is calculated as
the cumulative sum of 1-hazard, each subsequent survival
prediction will depend on the prediction of the first time
bin, which represents the likelihood of survival in the first
6months. A likely explanation for this is the cancer stage
feature, which will be highly predictive for short-term sur-
vival. Once the patient survives the first 6 months, other
modalities and features become more predictive of the con-
ditional survival. Another interesting change is that the pro-
tein modality is now included at certain time bins, where it
can improve performance without introducing noise in
years 0 to 3.

The time-variant relationships were much more subtle
on the larger pan-cancer dataset. The calculated weights for
this dataset are shown below in Figure 13. These weights
are less variable over time compared to the smaller dataset,
which aligns with the smaller performance improvement
over the baseline for this dataset. The unimodal models
trained on DNA methylation and miRNA outperform the
other unimodal models by a wide margin; however, the
high cross-correlation between their outputs (~0.7) results
in lower weights than what an Ad-hoc method based on the
C-index would produce. This allows for significant influ-
ence of the other modalities when using the TD-RMSurv
method. The clinical modality still holds an outsize weight
in the first year, despite having the fourth-highest C-index.
These details in the calculated weights of TD-RMSurv
highlight information that would be disregarded by a late
fusion strategy that does not incorporate correlation-
dependent weighting and time-dependent weighting.

Early Fusion Comparison

In this section, we compare our TD-RMSurv model to an
early fusion model with a range of modalities. For our early
fusion model, the inputs for each modality are concatenated
into 1 vector, and the model uses the same discrete architec-
ture as the unimodal models used in our late fusion models.

TD-RMSurv late fusion shows a dramatic improvement in
performance and robustness compared to the discrete early
fusion model.

Figure 14 shows a comparison between the early fusion
model and TD-RMSurv on the LUAD dataset. Here, the
early fusion model performed inconsistently, sometimes
under-performing the clinical-only modality, and never
achieving a significant multimodal advantage. There was
an unusual drop-off in performance when using 2 modali-
ties for early fusion, which highlights a reliability problem
in early fusion. TD-RMSurv, by contrast, shows a strong
and consistent multimodal advantage, peaking with the
inclusion of 4 modalities.

Figure 15 shows a comparison of early fusion and
TD-RMSurv for LUAD + LUSC. The early fusion model
performs better on this larger dataset, but shows a modest
multimodal advantage, which peaked at 3 modalities.
TD-RMSurv shows a stronger multimodal advantage,
peaking with the inclusion of 5 modalities.

Figure 16 shows a comparison between the early fusion
model and TD-RMSurv for the largest pan-cancer dataset.
The performance of the early fusion model decreases sig-
nificantly with the addition of modality 4, with minimal
recovery that does not surpass the best unimodal perfor-
mance as more modalities are added. For this dataset,
modality 4 has many more input features than modalities 1,
2, and 3 combined. This difference in feature length likely
caused the dramatic drop in performance, highlighting a
limitation of early fusion with concatenation. For late
fusion, only the model outputs are combined, ensuring
robust model performance in circumstances where the fea-
ture length varies or other data characteristics cause overfit-
ting to a single modality. As a result, TD-RMSurv performs
strongly on the pan-cancer dataset, achieving its best per-
formance when utilizing all 6 modalities.

High-Level Fusion Method Comparison

In this section, we provide a broader comparison to dem-
onstrate the differences in performance between Cox and
discrete models, and early, intermediate, and late fusion
models. TD-RMSurv outperforms these alternative
methods by a wide margin. The discrete early and
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Figure 14. Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the LUAD dataset.

intermediate fusion models were competitive with late
fusion when using the best 3 modalities; however, they
sometimes underperformed the unimodal clinical model
when using all 6 modalities. The Cox-based models
underperformed the discrete models significantly across
all 3 datasets.

Figure 17 shows the results for the LUAD dataset. The
Cox-based models underperformed the discrete models by a
wide margin for this dataset. The discrete early fusion model
achieved a small multimodal advantage with both configu-
rations. The discrete intermediate fusion model performed
relatively well with the top 3 modalities but experienced a
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Figure 15. Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the LUAD + LUSC dataset.
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Figure 16. Comparison between early fusion (left) and TD-RMSurv late fusion (right) results for the pan-cancer dataset.

significant performance decline when including all 6 modal-
ities. The TDRMSurv method demonstrates a robust multi-
modal advantage, even when utilizing all 6 modalities.

For LUAD + LUSC, as shown in Figure 18, the
results are similar to LUAD. The Cox-based models also
underperformed for this dataset, and TD-RMSurv out-
performed early and intermediate fusion by a wide mar-
gin in both the 3-modal and 6-modal settings. The
discrete early fusion model performed better with 3
modalities included, and the discrete intermediate fusion
model again showed a decreased performance with 6
modalities.

Finally, Figure 19 shows the results for the pan-cancer
dataset. The Cox models continued to underperform for this
dataset, and early fusion remained inconsistent when using
6 modalities. The discrete intermediate fusion model

performed slightly below TD-RMSurv for 3 modalities but
matched its performance for 6 modalities. This was a sur-
prising result for the intermediate fusion model and may
indicate greater potential for intermediate fusion on larger
datasets.

Kaplan-Meier Analysis

We validate the robustness of this system through the
Kaplan Meier analysis shown in Figure 20. Here we strat-
ify the test set into 3 groups based on the calculated risk
score of the TD-RMSurv model for a representative split
on the pan-cancer dataset, using all 6 modalities. The risk
scores are calculated from the cumulative sum of the dis-
crete survival predictions, just as in the C-index calcula-
tions. The effective stratification highlights the qualitative
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Figure 17. Comparison of multimodal fusion strategies on LUAD. Left: Best 3 modalities. Right: all 6 modalities. The dashed red
line indicates the minimum predictive performance at a C-index of 0.50, while the dashed blue line represents the optimal unimodal
model performance. The C-index is calculated with 10 cross-validation runs and shown with a 95% confidence interval.
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Figure 18. Comparison of multimodal fusion strategies on LUAD + LUSC. Left: Best 3 modalities. Right: all 6 modalities. The
dashed red line marks the minimum predictive performance at C-index=0.50, while the dashed blue line represents the best
unimodal model performance. The C-index is calculated with 10 crossvalidation runs and shown with a 95% confidence interval.

reliability of the model when including all available
modalities.

Discussion

We found that the TD-RMSurv late fusion method consist-
ently outperformed all unimodal models and multimodal
fusion alternatives. We also noticed a consistent improve-
ment by using 5 nested validation sets instead of just 1
validation set for late fusion. Furthermore, other late fusion
methods like synthetic weights, ad-hoc, and baseline
RMSurv also outperformed the early and intermediate

fusion models. Early and intermediate fusion methods nec-
essarily weight modalities based on the combined training-
set accuracy, and therefore often overfit to weaker
modalities. Late fusion can correct for this, because the
errors from individual models tend to be uncorrelated in an
ensemble.! This advantage was best demonstrated when
using all 6 modalities, where the late fusion models main-
tained or even improved their performance while the other
models’ performance decreased. These results suggest that
for multimodal cancer survival prediction, the benefit of
modeling cross-modality feature interactions in early and
intermediate fusion is less significant compared to
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Figure 20. Kaplan Meier Curves showing risk terciles for the
6-modal configuration of TD-RMSurv on the pan-cancer dataset
for the test set of seed |, fold | (C-index=0.7459).

the benefit of treating modalities as dependent random
variables with late fusion. Several studies also argue that
late fusion is best suited for settings with heterogenous and
low correlation modalities, and with small sample sizes.'*!"
The TCGA dataset meets this criteria, so our results sup-
port this conclusion.'®

The increased performance of time-dependent modeling
is demonstrated in both the discrete multimodal advantage
and the time-dependent weighting advantage. The discrete
survival models outperformed the Cox Proportional
Hazards models across the datasets, and TD-RMSurv also
outperformed baseline RMSurv across all datasets. The
weights for TD-RMSurv shown in Figure 12 perfectly
demonstrate the limitation of the proportional hazards
assumption by showing how the ideal weighting of modali-
ties changes over time.

Our late fusion simulation proves that the modality com-
bination relationship is much more complicated than simply
comparing modalities based on their C-index. The true rela-
tionship is dependent on the C-index, correlation, and num-
ber of modalities. The RMSurv and TD-RMSurv strategies
take advantage of this complex relationship, which is likely
why they perform better than the ad-hoc method overall.

The pathology report modality was one of the weaker
modalities, but its inclusion modestly increased perfor-
mance on the LUAD + LUSC and pan-cancer datasets
when using TD-RMSurv. It is a promising area of research,
especially as language models continue to improve.

RMSurv provides a robust multimodal advantage over
unimodal models, which is an important step toward the
clinical relevance of multimodal survival models. The late
fusion approach also allows for easy integration of 6+
modalities, which may require different architectures. For
the pan-cancer dataset, TD-RMSurv performed best when
using all 6 modalities, which is a step toward including even
more modalities on larger datasets. For the LUAD and
LUAD + LUSC datasets, performance peaked when includ-
ing 4 and 5 modalities, respectively. This lack of perfect
robustness can be explained by our simulation results, which
show that very low performing modalities fundamentally
cannot add any signal to a combined prediction for datasets
with non-zero correlations. In a very small dataset with high
variance, these modalities will occasionally receive some
weight when they should be assigned no weight, and the
combined performance will decrease. Despite this,
TD-RMSurv showed a robust multimodal advantage in all
configurations, contrasting the unpredictable performance
of the early and intermediate fusion methods.

There is significant potential to improve on this work in
the future. This study provides a strong proof of concept
with 3 datasets of various sizes, but a broader comparison
with many more cancer types is needed to better understand
the limitations, especially on very small datasets. Future
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implementations could also add histopathology slides, MRI
scans, and treatment regimes to combine with existing
modalities in late fusion. The pathology report modality
introduced in this study also presents an opportunity to add
several new text-based modalities such as clinical notes, lab-
oratory tests, and more clinical data features. The architec-
ture of TD-RMSurv could also be improved by varying or
increasing the resolution of time bins. By adding 1-month
time bins for the first 6 months, for example, we could
replace the large jumps in modality weighting between time
bins with a more gradual and accurate representation. The
multimodal performance of this method, and the clinical util-
ity, is still limited by unimodal performance, so much larger
datasets and optimal unimodal architectures for each modal-
ity will be needed to outperform traditional prognoses.
Future applications should also consider cases where interac-
tions between features across modalities are important. Late
fusion cannot model these interactions, so combining certain
modalities into early or intermediate fusion sub-models
could be beneficial.

Beyond model performance, several other challenges
remain for prospective clinical application. Improved data-
sets or corrective adjustments to survival time sampling will
be necessary to account for censoring, which can bias the
model toward lower or higher survival probability depend-
ing on if the censored cases are included in the training set.
Model interpretability for a clinical setting is significantly
improved with the proposed method, which can show the
normalized survival predictions and relative weights
assigned to each modality, but each unimodal model is still
a black box in this setup. A future architecture with inter-
pretability at both the unimodal feature level and late fusion
output level could be a valuable clinical tool. Finally, cohorts
of cases, which would be used as the training set in prospec-
tive studies, will change significantly over time as the labo-
ratory tests, recording procedures, environment, treatment
methods, and mean overall survival shift. The RMSurv
approach will allow for the modeling of the true cross-
modality correlations and feature distributions of the pro-
spective test-set, but the underlying C-indices of each
modality in the training set would be based on potentially
outdated cohorts with stronger or weaker modalities. A sys-
tem to interpret the changes and uncertainty of modalities
could improve the robustness significantly.

Conclusions

In summary, this study highlights the complex relationships
within multimodal cancer survival prediction, and intro-
duces the RMSurv model, which uses synthetic data genera-
tion, time-dependent weighting, and a novel normalization
process. This robust and interpretable system advances the
progress toward clinical use of machine learning based sur-
vival prediction, even with small datasets.

ORCID iDs
Dominic Flack https://orcid.org/0009-0006-4083-5709
Dimah Dera https://orcid.org/0000-0002-7168-5858

Ethical Considerations

This study used publicly available, de-identified data from The
Cancer Genome Atlas (TCGA) database. The original data was
collected by the TCGA research network in compliance with all
relevant ethical regulations. All patients provided informed con-
sent for their data to be used for research purposes. No patients
were involved in the design or reporting of this study.

Consent to Participate

Informed consent to participate was obtained from all individual
participants by the TCGA research network at the time of tissue
collection.

Consent for Publication

Not applicable.

Author Contributions

All authors contributed to the study conception and design. Material
preparation, data collection, and analysis were performed by
Dominic Flack. The first draft of the manuscript was written by
Dominic Flack, and all authors commented on previous versions of
the manuscript. All authors read and approved the final manuscript.

Funding

The authors disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: The
author, Dimah Dera, received support from the National Science
Foundation, Award number CRII-2401828.

Declaration of Conflicting Interests

The authors declared the following potential conflicts of interest
with respect to the research, authorship, and/or publication of this
article: The views expressed are those of the authors and do not
reflect the official guidance or position of the United States
Government, the Department of Defense, the United States Air
Force, or the United States Space Force.

Data Availability Statement

This study used publicly available data from the TCGA project
which was accessed through Xena: https://xenabrowser.net/data-
pages/ and MINDS: https://github.com/lab-rasool/MINDS. All
code used in this project, including pre-processing code, is freely
available on github.

Supplemental Material

Supplemental material for this article is available online.

References

1. Lipkova J, Chen RJ, Chen B, et al. Artificial intelligence
for multimodal data integration in oncology. Cancer Cell.
2022;40:1095-1110.

2. Wagqas A, Tripathi A, Ahmed S. SeNMo: a self-normalizing
deep learning model for enhanced multi-omics data analysis
in oncology. arXiv: 2405.08226, 2024.

3. Cox D. Regression models and life-tables. J R Stat Soc Ser B.
1972;34:187-220.

4. Vale-Silva LA, Rohr K. Long-term cancer survival prediction
using multimodal deep learning. Sci Rep. 2021;11:13505.


https://orcid.org/0009-0006-4083-5709
https://orcid.org/0000-0002-7168-5858
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://github.com/lab-rasool/MINDS

Flack et al

23

10.

11.

12.

14.

15.

Luo H, Huang J, Ju H, Zhou T, Ding W. Multimodal multi-
instance evidence fusion neural networks for cancer survival
prediction. Sci Rep. 2025;15:10470.

Gomaa A, Huang Y, Hagag A, et al. Comprehensive multi-
modal deep learning survival prediction enabled by a trans-
former architecture: a multicenter study in glioblastoma.
Neurooncol Adv. 2024;6:vdae122.

Yang H, Wang J, Wang W, et al. MMsurv: a multimodal
multi-instance multi-cancer survival prediction model
integrating pathological images, clinical information, and
sequencing data. Brief Bioinform. 2025;26:bbaf209.

Chen RJ, Lu MY, Williamson DF, et al. Pan-cancer integra-
tive histology-genomic analysis via interpretable multimodal
deep learning. Cancer Cell. 2022;40:865-878.¢6.

Nikolaou N, Salazar D, RaviPrakash H, et al. A machine
learning approach for multimodal data fusion for survival
prediction in cancer patients. NPJ Precis Oncol. 2025;9:
128.

Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural
network method for prognosis prediction of high-throughput
omics data. PLoS Comput Biol. 2018;14:¢1006076.

Chen RJ, Lu MY, Wang J, et al. Pathomic fusion: an inte-
grated framework for fusing histopathology and genomic
features for cancer diagnosis and prognosis. [EEE Trans Med
Imaging. 2022;41:757-770.

Li R, Wu X, Li A, Wang M. HFBSurv: hierarchical mul-
timodal fusion with factorized bilinear models for cancer
survival prediction. Bioinformatics. 2022;38:2587-2594.
Steyaert S, Pizurica M, Nagaraj D, et al. Multimodal data
fusion for cancer biomarker discovery with deep learning.
Nat Mach Intell. 2023;5(4):351-362.

Stahlschmidt SR, Ulfenborg B, Synnergren J. Multimodal
deep learning for biomedical data fusion: a review. Brief
Bioinform. 2022;23(2):3-5, 11-12.

Higham NJ. Computing the nearest correlation matrix—
a problem from finance. IMA J Numer Anal. 2002;22:
329-343.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

Weinstein JN, Collisson EA, Mills GB, et al. The Cancer
Genome Atlas Pan-Cancer analysis project. Nat Genet.
2013;45:1113-1120.

Liu J, Lichtenberg T, Hoadley KA, et al. An integrated
TCGA pan-cancer clinical data resource to drive high-
quality survival outcome analytics. Cells. 2018;173:400-
416.el1.

Moore L, Le T, Fan G. DNA methylation and its basic func-
tion. Neuropsychopharmacology. 2013;38:23-38.

Akbani R, Ng PK, Werner HM, et al. A pan-cancer proteomic
perspective on the Cancer Genome Atlas. Nat Commun.
2014;5:3887.

Goldman MJ, Craft B, Hastie M, et al. Visualizing and inter-
preting cancer genomics data via the Xena platform. Nat
Biotechnol. 2020;38:675-678.

Tripathi A, Wagas A, Venkatesan K, Yilmaz Y, Rasool G.
Building flexible, scalable, and Machine Learning-ready
multimodal oncology datasets. Sensors. 2024;24:1634.
Moons K, Collins G, Reitsma J. TRIPOD+AI statement:
updated guidance for reporting clinical prediction mod-
els that use regression or machine learning methods. BMJ.
2024;385:¢078378.

Tripathi A, Waqas A, Yilmaz Y, Rasool G. HoneyBee: a
scalable modular framework for creating multimodal oncol-
ogy datasets with foundational embedding models. arXiv:
2405.07460, 2024.

Yang X, Chen A, PourNejatian N. GatorTron: a large clinical
language model to unlock patient information from unstruc-
tured electronic health records. arXiv: 2203.03540, 2022.
Chen R, Ding T, Lu M. A general-purpose self-supervised
model for computational pathology. arXiv: 2308.15474.2023.
Storn R, Price K. Differential evolution — a simple and
efficient heuristic for global optimization over continuous
spaces. J Glob Optim. 1997;11:341-359.

Park S, Park J, Park S, Kim H. Review of statistical methods
for evaluating the performance of survival prediction mod-
els. Korean J Radiol. 2021;22:213-224.



