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Abstract—Electrocorticographic (ECoG) activity recorded
from the speech cortex has been extensively characterized and
used in the development of speech neuroprosthetics. A recent
shift in clinical brain monitoring from ECoG to stereotactic
electroencephalography (sEEG) provides the opportunity to ex-
amine the role of deeper brain structures in speech processing.
This study investigates spectro-temporal brain patterns generated
during a speech task using sEEG data from five epilepsy patients.
The analysis shows significant correlations in left and right
temporal and motor regions, consistent with prior research in
ECoG. Furthermore, correlation effects in rostral frontal areas
are observed. A time lag analysis demonstrates distinct and
functionally plausible activation patterns. The results further
support the viability of sEEG for studying speech processes and
provide insights into the involvement of spatially distributed,
deeper brain areas.

Index Terms—stereotactic EEG, speech production, neural
signals

I. INTRODUCTION

Understanding the spatio-temporal processing of speech in
the brain is critical for building robust speech neuroprostheses
[1]–[3], systems that have the potential to restore natural
communication for patients that have lost the ability to speak
due to disease or injury. Current work on speech neuropros-
theses utilizes electrocorticography (ECoG) [4] and micro-
arrays [5] to achieve remarkable results in decoding and
synthesizing textual and acoustic representations of speech via
Deep Learning.

A recent shift in clinical brain monitoring from ECoG
to stereotactic electroencephalography (sEEG) provides the
opportunity to examine the role of deeper brain structures
in speech processing [6]. Although sEEG has been used
for Speech-Activity detection [7], acoustic reconstructions of
speech [8], [9] and word decoding [10], a foundational spatio-
temporal characterization of sEEG activity during speech has
not been conducted as has been done with ECoG [11].

The present analysis investigates spectro-temporal brain
patterns generated during a speech task using sEEG data from
five epilepsy patients. The results reveal comparable spectro-
temporal patterns in temporal and motor regions as shown in
ECoG [11], and additionally show that rostral frontal electrode
channels are activated. This analysis further establishes the

Fig. 1. Fronto-lateral views (left and right hemisphere, respectively) of super-
imposed electrode positions for all participants, mapped onto an average brain
model.

viability of sEEG for studying speech processes and highlights
the involvement of spatially distributed, deeper brain areas that
are not accessible by ECoG or cortical microelectrode arrays.

II. METHODOLOGY

A. Participants and Electrode Positions

Data were collected from 5 patients hospitalized at UCSD
Health for treatment of intractable epilepsy. All patients
participated voluntarily and gave informed consent prior to
the experiment. The study was approved by the Institutional
Review Boards (IRBs) of Virginia Commonwealth University
and UCSD Health. The sEEG electrode locations are solely
based on clinical need and are unrelated to the research
experiments. However, a subset of electrodes are determined to
be in regions associated with language and speech processing.
FreeSurfer [12] and MNE [13] were used to co-register CT and
MRI and transform the electrode positions for each participant
into an averaged brain (Figure 1). For this study, participants
who did not complete all trials or for which no imaging data
was available were excluded from the analysis. Participant
information and electrode counts are summarized in Table I.

B. Experimental Design and Data Acquisition

All participants performed an experiment designed to in-
vestigate brain activity during different modes of speech
production (see [14] and [15] for more details). A sentence
from the Harvard sentence Corpus [16] was displayed on a20
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#Total #Excluded #Speech
Participant Sex Age Electrodes Electrodes Sensitive

P1 M 60 70 3 16
P2 M 32 121 5 24
P3 F 42 175 14 11
P4 M 21 234 11 18
P5 M 22 116 2 21

TABLE I
DEMOGRAPHIC INFORMATION AND NUMBER OF SEEG ELECTRODES FOR

EACH PARTICIPANT

computer screen for 4 seconds while it was simultaneously
narrated through loudspeakers. Patients were instructed by
a visual cue to speak the sentence aloud from memory,
followed by a cue to silently mouth the sentence, and finally,
a cue to imagine speaking the sentence. The duration of each
response period was 4 seconds. This sequence was repeated
for 50 unique sentences. Throughout the experiment, time-
synchronized sEEG and audio data were recorded.

sEEG signals were digitized at a sample rate of 1,024 Hz,
with the audio signal captured using an external microphone
and digitized at 44,100 Hz. In the present study, only data
from the vocalized trials were analyzed since these offered a
clear ground truth for the labeling process.

C. Preprocessing and Feature Extraction

The signals for each sEEG shaft were visually inspected
and excluded in case of excessive noise or anomalous behavior,
listed as ‘#Exluded Electrodes’ in Table I. The signals from the
remaining sEEG electrode were re-referenced shaft-wise using
the Laplacian method [17]. Broadband-Gamma (BG) power
features, a frequency feature known to reflect neural spiking
[18] and to contain highly localized information about speech
processes [19], [20], were extracted from each electrode chan-
nel. To extract the BG features, for each channel a band-pass
filter from 70 to 170 Hz is applied followed by a notch-filter
at 120 Hz, removing the second harmonic of the 60 Hz power
line noise, and finally down-sampled to 400 Hz. The resulting
BG-signal was windowed in 50 ms frames using 50 ms time
shifts. Features were computed as the log-squared sum in each
window and z-normalized per channel and trial.

D. Speech Labeling

The simultaneously recorded audio data was manually
labeled for epochs of silence and speech. Following the
Verbmobil II guideline for spontaneous speech labeling [21]
pauses shorter than 2-syllable words (∼ 350 ms), as well as
filled pauses (i.e Hmm or Uhm), were included in the speech
category when labeling the audio data.

To extract speech features aligned to the BG-features, 50-
ms windows with 50-ms shifts of the annotated audio were
processed, labeling a window as speech if the majority of
the duration was annotated as a speech epoch and otherwise
labeled as silence.

E. Speech Sensitivity

To assess the sensitivity of targeted areas to a given be-
havior, former work utilized p-value based activation mea-

sures [11], [22]–[24]. Here we highlight the effect size by
calculating the Spearman correlation between BG-Features
and Speech Labels for each channel. A positive correlation
corresponds to a BG increase during speech, while a negative
correlation indicates a decrease. For averaging across partic-
ipants and comparison to activation measures in prior work,
the squared Spearman-ρ is reported.

To assess the significance of the monotonic relation between
BG features and speech labels, a randomization test was
performed. The speech labels were randomly scrambled and
correlated with the BG features 10,000 times for each channel.
The resulting values of unsigned chance correlations were fit
to a beta distribution for each channel, with the goodness of
fit confirmed using a Kolomogorov-Smirnov test (p<0.05).
Using the stochastic BG behavior of task-unrelated regions as
an exclusion criterion [25], a channel was deemed to have a
significant sensitivity if its correlation value from the respec-
tive beta-distribution yielded a p-value < 0.05, Bonferroni-
corrected for the number of total channels across participants
(N=761).

F. Time Lag Analysis

To examine the evolution of spatio-temporal activity during
speaking, the BG-feature windows were analyzed in 50 ms
steps from -200 ms to +200 ms with respect to the fixed speech
data. This procedure resulted in 9 time-lagged correlations for
each channel. The maximum correlation over all time steps is
then taken as the activation time of the particular brain region
[11]. Channels not significantly correlated over any time lag
were excluded from further analysis (see Table I).

G. Regions of Interest

Volumetric labels for the electrode positions were obtained
with FreeSurfer [12] using the Desikan-Killiany atlas [26]
and including contacts positioned in white matter [7]. The
labels were used to group the electrode channels into four
anatomical regions of interest (ROI) based on relevance to
speech and coverage: Frontal (F), Premotor and Motor (M),
Right Temporal (RT) and Left Temporal (LT). Electrodes
labeled as outside of the specified ROIs were excluded from
the analysis.

III. RESULTS AND DISCUSSION

A. Spatial distribution of Speech Correlations

Figure 2 illustrates the spatial activation representing the
largest significant R2 value across all time lags for each
respective channel. A total of 90 channels were observed to
have significant correlations with speech (18±4.4 per subject,
see ‘#Speech Sensitive’ in Table I). Strong correlations are
observed in left and right temporal regions, areas associated
with hearing and speech processing [27]. It should be noted
that for participants with bilateral coverage of the temporal
lobes, slightly larger correlation values were observed over the
left temporal region compared to the right temporal region.
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Fig. 2. Maximum R2-values over all time lags for each channel, super-imposed for all participants. The lower views are the same as shown in Figure 1.
The upper views show the rostral (left) and dorsal (right) views, respectively. Contacts with non-significant correlations to speech are omitted. Channels most
sensitive to speech activity mainly lie in left and right temporal as well as motor areas. Frontal regions also show significant activation.

Despite limited coverage of speech-associated premotor and
motor regions, channels near these areas show activations cor-
responding to the speech task. While the strongest activations
are observed within the temporal lobe, weaker but significant
effects are observed in the frontal, parietal, and other brain
regions. These spatial activation patterns align with findings
from related ECoG research [11] as well as prior sEEG studies
[14].

B. Time Lag Correlations in ROIs

Figure 3 shows time averaged R2-values for all channels,
grouped by ROIs. Among the 90 channels assessed as speech
sensitive, 75 were located within the selected ROIs: 12 elec-
trodes in Frontal, 18 in Motor, 23 in Right Temporal, and 22
in Left Temporal areas.

The strongest correlation effects are found in the left tem-
poral lobe, an area linked to complex auditory and speech
processing [27]. Effects are maximal around a time shift of
0 to +100 ms, as is expected for auditory feedback while
speaking [11]. While a similar temporal activation is observed
in the right temporal lobe, the resulting correlations are slightly

lower. As previously mentioned, effects in the temporal areas
show participant-specific unilateral focus, which may be due
to the asymmetric sampling of the temporal lobes.

As expected for speech motor planning and execution, the
correlations in motor regions peak at a time shift of -100 to
0 ms. Despite the sparse coverage of these areas, typical of
sEEG implants [6], the spatio-temporal activiations align with
prior EGoG findings [11].

Channels in frontal areas (mostly right-rostral) compara-
tively show the lowest correlation values, spread from -150 to
+100 ms. Since the speech task minimally involves working
memory, the rostral-frontal cortex is expected to be involved
to a limited degree [28].

IV. CONCLUSION

This study analyzed the temporal sensitivity of different
brain areas during speech production and perception using
sEEG. While previous studies used other modalities such
as ECoG, with more focused coverage of cortical areas in-
volved in speech processes, the present study offers unique
insights into a variety of spatially distributed areas, including
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Fig. 3. Timestep averaged R2-values for channels from chosen ROIs.
(F=Frontal, M=Motor, RT=Right Temporal, LT=Left Temporal)

deeper structures. The temporally lagged correlation analysis
revealed areas expected to be active in speech processing,
such as the temporal lobes and motor areas, exhibit increased
activity with expected time courses. These results reinforce
the viability of sEEG for studying speech processes, which
can be complementary to existing modalities such as ECoG
and microelectrodes. Additional studies are needed to further
characterize the unique contributions of sEEG beyond what
can already be observed from the cortex, such as the potential
for sEEG to decode speech prosody and affect, for instance.
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