
Constant-Depth Arithmetic Circuits for Linear Algebra Problems

Robert Andrews∗ Avi Wigderson†

April 16, 2024

Abstract

We design polynomial size, constant depth (namely, AC0) arithmetic formulae for the greatest
common divisor (GCD) of two polynomials, as well as the related problems of the discriminant,
resultant, Bézout coefficients, squarefree decomposition, and the inversion of structured matrices
like Sylvester and Bézout matrices. Our GCD algorithm extends to any number of polynomials.
Previously, the best known arithmetic formulae for these problems required super-polynomial
size, regardless of depth.

These results are based on new algorithmic techniques to compute various symmetric functions
in the roots of polynomials, as well as manipulate the multiplicities of these roots, without
having access to them. These techniques allow AC0 computation of a large class of linear and
polynomial algebra problems, which include the above as special cases.

We extend these techniques to problems whose inputs are multivariate polynomials, which
are represented by AC0 arithmetic circuits. Here too we solve problems such as computing the
GCD and squarefree decomposition in AC0.

Contents

1 Introduction 2
1.1 Background . 2
1.2 Our Results . 4
1.3 Our Techniques and Their Origins . 7
1.4 Organization . 8

2 Preliminaries 8
2.1 Notation . 9
2.2 Arithmetic Circuits . 9

2.2.1 Circuits and Complexity Classes . 9
2.2.2 Piecewise Arithmetic Circuits . 10

2.3 Known AC0 Algorithms . 12
2.4 The Euclidean Algorithm and the Resultant . 14
2.5 Squarefree Decomposition . 16

3 Symmetric Polynomials and Newton’s Identities 17
3.1 From Coefficients to Power Sums . 18
3.2 From Power Sums to Coefficients . 20

∗School of Mathematics, Institute for Advanced Study. Supported by NSF grant CCF-1900460 and by the Erik
Ellentuck Endowed Fellowship Fund. Email: randrews@ias.edu.

†School of Mathematics, Institute for Advanced Study. Supported by NSF grant CCF-1900460. Email: avi@ias.edu.

1

ar
X

iv
:2

40
4.

10
83

9v
1

 [c
s.C

C
]

16
 A

pr
 2

02
4

4 Exact Division and Roots of Perfect Powers 21

5 Computing Symmetric Functions of the Roots of a Polynomial 22
5.1 Polynomial Functions . 22
5.2 Rational Functions . 24

6 The Sylvester and Bézout Matrices 24
6.1 The Resultant and Discriminant . 25
6.2 Division with Remainder . 27
6.3 Inverting the Sylvester Matrix . 30
6.4 Inverting the Bézout Matrix . 32

7 Operations on Roots 33
7.1 Filtering . 33
7.2 Thresholding . 36
7.3 Squarefree Decomposition . 38

8 Greatest Common Divisor and Least Common Multiple 39
8.1 Two Polynomials . 40
8.2 Multiple Polynomials . 41

9 Arbitrary Functions of Root Multiplicities 43
9.1 Two Polynomials . 43
9.2 Multiple Polynomials . 45

10 Extensions to Multivariate Polynomials 49
10.1 Preliminaries on Polynomial Factorization and Identity Testing 50

10.1.1 Gauss’s Lemma . 50
10.1.2 Polynomial Identity Testing . 51

10.2 Multivariate Algorithms from Univariate Algorithms 52

11 Conclusions and Open Problems 55

1 Introduction

1.1 Background

Arithmetic complexity theory studies the computation of polynomials (and rational functions) using
the basic arithmetic operations over a field. Like Boolean complexity theory, it is a vast, developed,
and very active field, with its own computational models, complexity classes, algorithms, lower
bounds, reductions, and complete problems. Extensive texts on different parts of the field include
von zur Gathen and Gerhard [vzGG13], Bürgisser [Bür00], and Shpilka and Yehudayoff [SY10]. Our
main model of computation is arithmetic circuits, focusing on their size (up to polynomial factors),
and in more detail on their depth (up to constant factors).

Arithmetic algorithms were devised by mathematicians for centuries, long before computers
ushered in applications in symbolic computation and computer algebra, which have invigorated
the theoretical study of arithmetic complexity. The Euclidean algorithm for computing the GCD
(originally described for integers, but works equally well for polynomials) is perhaps the oldest
nontrivial algorithm to appear in print. Another is Gaussian elimination (whose origins also appear

2

in ancient texts) for computing the determinant of a matrix, which is essential for linear algebra. In
a sense, the story below concerns the relative difficulty of these two basic problems, determinant and
GCD, from the viewpoint of parallel computation.

The development of parallel computing architectures invited the design of fast parallel algorithms,
in both the Boolean and arithmetic settings. The GCD and determinant algorithms above, while
polynomial time, are described in a way which looks “inherently sequential,” and parallelizing them
presented a nontrivial challenge. The breakthrough of Csanky in 1976 [Csa76], providing an NC2

(polynomial size, O(log2 n) depth) algorithm for the determinant, was followed by a decade of intense
activity in which many more parallel algorithms were developed. One natural consequence was that
practically all linear algebra problems, such as inverting matrices, solving systems of linear equations,
and computing the rank of a matrix, were also in NC2. Many other problems in polynomial algebra
were known or were found to have linear algebraic formulations, and so could be reduced to the
determinant. Examples include polynomial division with remainder, decoding of (some) linear codes,
and the GCD problem for (any number of) univariate polynomials [vzGat84].1

A more general understanding of the parallel complexity of arithmetic computation followed
another breakthrough, this time of Hyafil in 1979 [Hya79], later sharpened by Valiant, Skyum,
Berkowitz, and Rackoff [VSBR83], who gave a generic depth reduction of arithmetic circuits. Using
as input size both the number of input variables as well as the degree of the computed polynomials,
they showed that any polynomial-size circuit can be parallelized, namely simulated in similar size
and O(log2 n) depth! In other words, in the arithmetic setting, every sequential algorithm can be
efficiently parallelized: P = NC2. In particular, fast parallel algorithms for determinant and GCD
could be derived directly from their sequential analogues via this simulation. (Note that such a
collapse is believed not to hold in the Boolean setting, and in particular Integer GCD is one canonical
example of a problem believed not to have a shallow Boolean circuit.)

While very satisfying, the above general results above get stuck at O(log2 n) depth, and though
the circuits are of polynomial size, the resulting formulae have quasi-polynomial size nO(logn). Which
of these problems have polynomial-size formulae, namely are in the class NC1 of logarithmic depth
(with bounded fan-in gates)? How about constant parallel time? There are clearly natural linear and
polynomial algebra problems that can be performed even in AC0, i.e., have polynomial size formulae
of constant depth, allowing gates of unbounded fan-in. Easy examples include polynomial addition,
multiplication, univariate polynomial evaluation, and interpolation (obtaining the coefficients of a
polynomial from point evaluations).

The same golden decade (from the mid 1970’s to mid 1980’s, summarized beautifully in von zur
Gathen’s 1986 survey [vzGat86]) provided further nontrivial algorithms putting certain polynomial
and linear algebra problems in AC0. (In some cases they were stated as NC1 algorithms, but it is easy
to see that they can also be implemented in AC0.) Bini [Bin84] devised an ingenious AC0 algorithm
to invert triangular Toeplitz matrices.2 This was used by Bini and Pan [BP85] to give an AC0

algorithm for polynomial division with remainder. (We will give very different AC0 algorithms for
these problems.) Another important example was Ben-Or’s AC0 circuit to compute the elementary
symmetric polynomials.3 As these polynomials are natural arithmetic analogues of Boolean threshold
functions, this reveals the surprising power of arithmetic circuits over Boolean circuits in the bounded-
depth regime (in all other regimes, arithmetic circuits are considered “weaker”), as the majority
function is well-known not to have Boolean AC0 circuits.

1A minor but important point which should be mentioned is that arithmetic circuits formally cannot compute
discontinuous functions like GCD, and one has to add to them (as is standard in the field) the ability of branching on
testing of a given field element is zero or not.

2Toeplitz matrices have constant diagonals.
3The reader unfamiliar with this gem is encouraged to find any efficient algorithm for them.

3

Indeed, while AC0 lower bounds in the Boolean setting has been known since the 1980’s, it took
over 30 years to obtain any analogous lower bound in the arithmetic one. This was finally done by
Limaye, Srinivasan, and Tavenas in 2021 [LST21]. They proved that any constant-depth circuit
for the product of n 2× 2 matrices (a problem in NC1) must have super-polynomial size! As the
determinant can efficiently simulate any formula (by Valiant’s completeness result for the class VF
[Val79]), the same lower bound follows for the determinant.4 Moreover, following [CKL+23], we
know that, in contrast to families like the elementary symmetric and power sum polynomials, which
are in AC0, some natural families of symmetric polynomials such as the Schur polynomials are as
hard as the determinant, and thus can’t be in AC0.

What about the GCD? Is it in AC0? As hard as the determinant? Or somewhere in the middle?

1.2 Our Results

We give AC0 algorithms (more precisely, constant depth and polynomial size formulae) for a host of
problems from linear and polynomial algebra. We note that in all cases these problems were not
known to have polynomial size formulae, regardless of depth.

While arithmetic circuits are a non-uniform model of computation, and in particular allow access
to arbitrary constants in the underlying field, all our algorithms are uniform, and may alternatively
be viewed arithmetic PRAM algorithms with a polynomial number of processors running in constant
parallel time. This view may be advantageous, as PRAMs allow more basic operations, like branching
on a zero-test; such a test must be added to the model of arithmetic circuits for discontinuous
functions like GCD.

All our results hold over every field of characteristic 0, and every field of large enough5 positive
characteristic. Input and output polynomials, which will typically be univariate,6 are always described
by their coefficients, and so their degrees will be implicitly counted in the input (and output) size.

We state our results informally here, and defer formal results to the technical sections, after
formally defining our computational model, which is essentially arithmetic circuits over a field.
As is standard in the field (and many of the results in the previous section), when computing a
discontinuous function like the GCD, a circuit can also branch by testing if a field element equals
zero.

Our first main theorem resolves the complexity of the GCD.

Theorem 1.1 (see Theorem 8.1 and Corollary 8.2). Given two polynomials f, g ∈ F[x], their GCD
and LCM can be computed in AC0.

We discuss some concrete and abstract extensions of this algorithm. The concrete ones involve
some polynomials and matrices related to the GCD, which we now define.

Assume that the polynomials f and g are monic and of degrees n and m, respectively, and
factor completely over the algebraic closure F of F as f =

∏
i(x − αi) and g =

∏
i(x − βi), with

possible repetitions in case of multiplicities. The resultant res(f, g) =
∏

i,j(αi − βj) ∈ F is nonzero
if and only if gcd(f, g) = 1. A well known special case of the resultant is the discriminant of a
polynomial, defined as disc(f) := res(f, f ′) where f ′ is the first derivative of f , which is zero precisely
when f has a double root. For quadratic polynomials, the discriminant takes the familiar form
disc(ax2 + bx+ c) = b2 − 4ac.

When gcd(f, g) = 1, it is well-known that there are (unique) polynomials a of degree < m and b
of degree < n such that af + bg = 1. (A similar formula holds when the GCD has positive degree.)

4Of course, this can be seen by a simple direct reduction as well.
5Only polynomial in the input size.
6In some cases they will have a constant number of variables.

4

The polynomials a and b are known as the Bézout coefficients of f and g. The equation af + bg = 1
is actually a linear system whose variables are the coefficients of the unknown polynomials a and b,
given by an (n+m)× (n+m) matrix called the Sylvester matrix Syl(f, g) (which can be seen in
Definition 2.14) whose entries are the given coefficients of f and g. In fact, the resultant res(f, g) is
precisely the determinant of the Sylvester matrix Syl(f, g). A related matrix, important for rational
interpolation and Padé approximation of polynomials is the Bézout matrix of f and g, denoted
Bez(f, g).

The natural problems associated with these objects have fast parallel algorithms as well.

Theorem 1.2 (see Theorems 6.1, 6.7 and 6.10 and Corollary 8.3). Given two polynomials f, g ∈ F[x],
their resultant and Bézout coefficients, as well as the inverses of their Sylvester and Bézout matrices,
can be computed in AC0.

We note that the previously-mentioned problems of inverting triangular Toeplitz matrices and
polynomial division with remainder are in fact corollaries of the theorem above through simple
reductions. Although these problems were already known to have AC0 algorithms by Bini [Bin84]
and Bini and Pan [BP85], our algorithms are of a very different flavor!

For the more abstract extensions of our GCD algorithm, let us rewrite the factorization of
the polynomials f and g slightly differently. Let γ1, . . . , γk be the union of their roots over the
algebraic closure F (namely, the union of the αi and βi above). We can write f =

∏k
i=1(x−γi)

ai and
g =

∏k
i=1(x− γi)

bi , where the ai and bi are the multiplicities of the root γi in f and g, respectively.
Clearly, their GCD is given by

gcd(f, g) =
k∏

i=1

(x− γi)
min(ai,bi).

Similarly, their LCM is given by

lcm(f, g) =
k∏

i=1

(x− γi)
max(ai,bi).

Consider now the product of f and g, which also has a trivial AC0 algorithm. In this notation we
have

f · g =
k∏

i=1

(x− γi)
ai+bi .

One is naturally led to consider what other functions of the exponents are computable in AC0.
How about product of the exponents, namely

f ⋄ g :=

k∏
i=1

(x− γi)
aibi?

It is not even clear at first sight that this is an algebraic operation computable by arithmetic circuits
at all. However, with the same techniques we use to compute the GCD, we can actually prove that
it is. Indeed, any function is.

Theorem 1.3 (see Theorem 9.2). Let P : N×N → N be any integer function. Given two polynomials
f, g ∈ F[x] as above, the polynomial

f ⋄P g :=

k∏
i=1

(x− γi)
P (ai,bi)

5

can be computed in AC0.

Note that the size of the circuit computing f ⋄P g is polynomial in the degrees of the input and
output of the problem, the latter being max{P (i, j) : i, j ∈ [k]}, which is of course necessary.

The same theorem extends verbatim for any constant number c of polynomials, and for any c-ary
integer function P . As an example, for c = 5, we can take P to return the median of its inputs and
compute the corresponding polynomial in AC0. The intuitive meaning of some operations we can
perform so efficiently is far from obvious, and it would be interesting to find a real application for
some such function P .

Another natural extension is to consider an arbitrary number of input polynomials. This is not
obvious, even for the GCD function. Indeed, for three polynomials f , g, and h, there is no analogue
of the resultant, i.e., a single polynomial function of the coefficients of f , g, and h which is nonzero
if and only if gcd(f, g, h) = 1. Nevertheless, we can compute the GCD of an arbitrary number of
polynomials, again in AC0.

Theorem 1.4 (see Theorem 8.4 and Corollary 8.6). Given any number of polynomials f1, f2, . . . , fm ∈
F[x], gcd(f1, f2, . . . , fm) and lcm(f1, f2, . . . , fm) can be computed in AC0.

Again, one can note that the GCD and LCM functions perform min and max operations,
respectively, on the exponents of each linear factor of the fj . Moreover, the product of m polynomials
performs addition on the exponents, and is also in AC0. So, we are lead to ask: what other functions
of the exponents give rise to such fast parallel algorithms? Here we also have a fairly general result.
Keeping with the notation above, let γ1, . . . , γk ∈ F be the union of the roots of m polynomials
f1, . . . , fm ∈ F[x] and write

fi(x) =

k∏
j=1

(x− γj)
ai,j .

As in the case of two polynomials, we can apply any function to the exponents of each factor. This
holds when the function P : Nm → N is given in the dense representation (so P is specified by a list
of roughly dm numbers, where d bounds the degree of the fi), and also when P is described more
succinctly as a sort of circuit over the integers (see Definition 9.5 for the precise definition).

Theorem 1.5 (see Theorems 9.4 and 9.6). Let P : Nm → N be any integer function. Given m
polynomials f1, . . . , fm ∈ F[x] as above, the polynomial

⋄P (f1, . . . , fm) :=

k∏
i=1

(x− γi)
P (a1,i,...,am,i)

can be computed in AC0.

Our results also extend to the multivariate setting. Here, the input polynomials can be themselves
be given as arithmetic circuits. Using standard tools to reduce questions about multivariate
factorization (like the GCD) to their univariate counterparts, our earlier algorithm for the univariate
GCD can be used to compute the GCD of multivariate polynomials.

Theorem 1.6 (see Theorem 10.8). Given multivariate polynomials f1, . . . , fm ∈ F[x], if f1, . . . , fm
can be computed in AC0, then gcd(f1, . . . , fm) and lcm(f1, . . . , fm) can be computed in AC0.

6

1.3 Our Techniques and Their Origins

To summarize this section in a sentence, everything is about efficiently computing interesting and
useful symmetric functions over the roots of given polynomials using only their coefficients as input.
We’ll now give a taste of the main ones.

Fix an integer n. Assume again that a degree n polynomial f =
∑n

j=0 ajx
j ∈ F[x] factors

completely over F as

f =

n∏
i=1

(x− αi),

where some of the αi may repeat due to multiplicity. We denote by α the vector of the αi in some
arbitrary order (it will not matter which). We stress that our algorithms have no access to these
roots (indeed, the roots may not even be in F), only to the coefficients aj ∈ F of f . However, it is
well known that these coefficients are (up to sign) the elementary symmetric polynomials of the
roots. More precisely,

aj = (−1)n−jen−j(α),

where ed(z) :=
∑

S⊂[n], |S|=d

∏
j∈S zj .

The famous Girard–Newton identities relate the elementary symmetric polynomials to another
important family of symmetric polynomials, the power sum polynomials, defined by pk(z) :=

∑n
j=1 z

k
j .

More precisely, for any integer m, the first m power sums are polynomial expressions in the first m
elementary symmetric polynomials, and vice versa.7 Thus, the coefficients of a polynomial give us
access to new symmetric functions of its roots: the power sums.

There are several different ways to express these relations, each with their own uses. For example,
noticing that the relations above are triangular was a key fact used in Csanky’s original NC2

algorithm for the determinant [Csa76]. For us, an exponential form encompassing the relations
between the generating functions

∑
m emtm and

∑
m pmtm (see Section 3) will be key. Simple use of

interpolation gives rise to our first tool (observed by many), namely that this conversion between
the two families can be performed in AC0.

Theorem 1.7 (Folklore). For every m, there are AC0 circuits that given the first m elementary
symmetric polynomials ej(z) as inputs, output the first m power sums pj(z), and vice versa.

For example, this fact (in one direction) has been used in [SW01] to obtain smaller depth-4
and depth-6 formulas for the elementary symmetric polynomials than Ben-Or’s depth-3 formulas
mentioned above.

But for us, a central inspiration came from the paper of Bostan, Flajolet, Salvy, and Schost
[BFSS06]. While they only discuss sequential algorithms, they use this conversion (in both directions)
to manipulate roots of given polynomials in very interesting ways that look similar to polynomials we
want to compute, such as the resultant. In particular, given polynomials f and g having roots α’s and
β’s as above, they compute the polynomials f ⊕ g :=

∏
i,j(x− (αi+βj)) and f ⊗ g :=

∏
i,j(x−αiβj).

Indeed, they can replace sum and product with any fixed bivariate polynomial!
Observing that actually (f(x)⊕ g(−x))|x=0 = res(f, g), and inspecting their sequential algorithm

to verify that it can be parallelized using the folklore theorem above, we already get an AC0 circuit
for the resultant! This indeed was our starting point.

To get our results, we will need to obtain more symmetric functions of the roots of a given
polynomial f . It goes without saying that the fundamental theorem of symmetric polynomials states
that any n-variate symmetric polynomial can be written as a fixed polynomial in the n elementary

7Note that while em(z) = 0 for m > n, this is not the case for pm(z). Still, the statement above holds for every m.

7

symmetric ones (and hence, by the Girard–Newton identities, also in terms of the first n power
sums). The whole question for us is which of these conversions can be performed in AC0.

A first step is the simple observation that for any given polynomial g, we can compute in AC0 the
sum

∑n
i=1 g(αi) over the roots of f , by using the power sums pk(α). It would actually be useful to

do the same for the product
∏n

i=1 g(αi), as this is yet another expression for the resultant res(f, g).
We prove a more general result, computing in AC0 every elementary symmetric polynomial over the
values r(αi) where r is any given rational function.

Theorem 1.8 (see Lemma 5.2). Given f, g ∈ F[x] and any integer d, we can compute ed(g(α1), . . . , g(αn))
in AC0. Moreover given another polynomial h which has no roots in common with f , we can compute

ed

(
g(α1)

h(α1)
, . . . ,

g(αn)

h(αn)

)
in AC0.

Towards getting a handle over the multiplicities of roots of f , we first note that all derivatives
f (r)(x) of f can be easily computed in AC0. A root α has multiplicity at least r if and only if f
and its first r − 1 derivatives vanish at this root. This is used to construct a polynomial g (with a
constant number of variables besides x), to which the theorem above can be applied (see details in
Section 7). This allows us to filter out the roots of f with multiplicities above (or below) a given
threshold r, and hence obtain those of multiplicity precisely r. An important consequence is the
ability to compute the squarefree decomposition of f . We conclude the techniques section with this
consequence.

Theorem 1.9 (see Lemma 7.6). Given f ∈ F[x], we can compute in AC0 the (unique) sequence of
polynomials f1, f2, . . . , fn ∈ F[x] such that no fr has a double root, gcd(fi, fj) = 1, and f =

∏n
r=1 f

r
r .

This ability to filter out the roots by multiplicity is key to most of our results, and the reader is
invited to see how compute gcd(f, g) using it.

1.4 Organization

The rest of this paper is organized as follows. We start with preliminary material in Section 2. In
Section 3, we review folklore AC0 implementations of Newton’s identities, which will be an essential
tool for all of our results. Section 4 is a warm-up, where we show how Newton’s identities can be
used to solve some interesting toy problems in AC0. Our work starts in earnest in Section 5, where
we develop tools to evaluate symmetric functions of the roots of a given polynomial. We then apply
these tools in Section 6, where we compute the determinants and inverses of the Sylvester and Bézout
matrices in AC0.

Section 7 is the main technical section in this work, where we introduce filtering and thresholding,
two techniques that let us design AC0 algorithms that manipulate the factorization pattern of a
polynomial without having explicit access to its roots. Section 8 applies the results of Section 7 to
compute the GCD and LCM of many polynomials in AC0. We generalize this result in Section 9 to
arbitrary functions of root multiplicities. In Section 10, we extend our univariate algorithms to the
multivariate setting. Finally, Section 11 concludes with some open problems.

2 Preliminaries

To keep this work self-contained, this section includes a number of well-known results from arithmetic
complexity and computer algebra.

8

2.1 Notation

We work over a field F of characteristic zero or of polynomially-large characteristic. For example,
to compute the GCD of two polynomials of degree d over a field of positive characteristic, we
require char(F) ⩾ 2d+ 1. The precise requirements on the characteristic of F will be specified in the
statements of our results.

When we analyze our algorithms, it will often be convenient to work with the factorization of a
polynomial f(x) into linear factors f(x) =

∏
i(x− αi). In general, such a factorization only exists

over the algebraic closure F of the base field. This factorization is only used in the analysis of our
algorithms; in particular, we do not assume that the field F is algebraically closed.

We abbreviate a vector (x1, . . . , xn) as x. We denote by F[x] the polynomial ring in the variables
x1, . . . , xn. For a vector a ∈ Nn, we abbreviate the monomial

∏n
i=1 x

ai
i as xa. We let ∥a∥1 :=

∑n
i=1 ai

denote the ℓ1 norm of a. We use F(x) and FJxK to denote the field of rational functions and ring of
formal power series, respectively, in the variables x1, . . . , xn. Given a polynomial f ∈ F[x] and a
natural number r ∈ N, we write f (r)(x) for the rth derivative of f . For two polynomials f, g ∈ F[x],
we write f | g to denote that f divides g.

Throughout, if the input to an algorithmic problem consists of univariate polynomials f1, . . . , fm ∈
F[x], we assume that the polynomials f1, . . . , fm are monic, i.e., that the leading coefficient of each fi
is 1. This is done for the sake of notational convenience; all of our algorithms easily extend to handle
non-monic inputs. As our inputs are assumed to be monic, we likewise adopt the convention that
the GCD and LCM are defined to be monic polynomials. From here on, all univariate polynomials
are assumed to be monic unless specified otherwise.

For a natural number d ∈ N, we write

pd(x) :=
n∑

i=1

xdi

ed(x) :=
∑
S⊆[n]
|S|=d

∏
i∈S

xi

for the degree-d power sum and elementary symmetric polynomials, respectively. These two families
of polynomials play an essential role throughout our work. We adopt the conventions that p0(x) = n,
e0(x) = 1, and ed(x) = 0 for d > n.

For a matrix A ∈ Fn×n, we denote by adj(A) ∈ Fn×n the adjugate of A, defined as

adj(A)i,j := (−1)i+j det(A−j,−i),

where A−j,−i is the submatrix of A obtained by deleting the jth row and ith column. The adjugate
satisfies the identity adj(A)A = det(A)In, where In is the n× n identity matrix. In particular, when
A is invertible, the inverse of A is given by 1

det(A) adj(A).

2.2 Arithmetic Circuits

2.2.1 Circuits and Complexity Classes

We use arithmetic circuits as our basic model of computation.

Definition 2.1. Let F be a field and let F(x) be the field of rational functions in the variables
x1, . . . , xn. An arithmetic circuit over F is a directed acyclic graph. Vertices of in-degree zero are
called input gates and are each labeled by a variable xi or a field element α ∈ F. Vertices of positive

9

in-degree are called internal gates and are labeled by an element of {+,×,÷}. Vertices of out-degree
zero are called output gates. Each gate of the circuit computes a rational function in F(x) in the
natural way. If {f1, . . . , fm} are the functions computed by the output gates of the circuit, we say
that the circuit computes {f1, . . . , fm}. The size of the circuit is the number of wires in the circuit.
The depth of the circuit is the length of the longest path from an input gate to an output gate. ♢

Naturally, one can define complexity classes of (families of) rational functions in terms of their
arithmetic circuit complexity. The following classes capture efficient low-depth computation. Needless
to say, these are separate classes for every field F, which we suppress.

Definition 2.2. Let f = (f1, f2, . . .) be a family of rational functions. We say that f ∈ NCi if fn
can be computed by an arithmetic circuit of fan-in two, size nO(1), and depth O(logi n). We say
that f ∈ ACi if fn can be computed by an arithmetic circuit of unbounded fan-in, size nO(1), and
depth O(logi n). ♢

In arithmetic circuit complexity, it is standard to restrict attention to families of polynomials
(f1, f2, . . .) with the additional restriction that deg(fn) ⩽ nO(1). Under this restriction, a well-known
result of Valiant, Skyum, Berkowitz, and Rackoff [VSBR83] shows that any circuit of size nO(1)

can be converted to one of size nO(1) and depth O(log2 n). A careful reading of their proof shows
that depth O(log n) suffices if unbounded fan-in is allowed. Thus, when we restrict attention to
polynomials of degree nO(1), we have the collapse

AC0 ⊊ NC1 ⊆ AC1 = NC2 = AC2 = NC3 = · · · .

Further inspection of the proof of [VSBR83] shows that depth O(log n) can be attained using addition
gates of unbounded fan-in and multiplication gates of fan-in two, corresponding to the class SAC1

(for semi-unbounded AC1). The strict inclusion AC0 ⊊ NC1 is a straightforward corollary of the
depth hierarchy theorem of Limaye, Srinivasan, and Tavenas [LST21].

We also mention the Boolean complexity class DET [Coo85], which consists of all problems that
are logspace-reducible to the determinant of an integer matrix. This includes many familiar linear-
algebraic problems, including matrix powering, matrix inverse, and computing the characteristic
polynomial of a matrix. In the Boolean setting, it is known that NL ⊆ DET ⊆ NC2. It is conjectured
that DET ̸⊆ NC1. If DET ⊆ NC1 were true, then we would have the chain of inclusions

NL ⊆ DET ⊆ NC1 ⊆ L,

implying the unlikely collapse L = NC1 = NL.
The algebraic analogue of DET, often denoted VBP, is the class of polynomial families (f1, f2, . . .)

computable by arithmetic branching programs of size nO(1). We will not give a precise definition of
arithmetic branching programs here, as we will not make use of them. As in the Boolean setting, it
is conjectured that the determinant and matrix inverse are not computable by arithmetic circuits
of fan-in two, size nO(1), and depth O(log n). The recent work of Limaye, Srinivasan, and Tavenas
[LST21] shows unconditionally that the determinant and related problems are not computable by
arithmetic circuits of size nO(1) and depth O(1), i.e., that the determinant is not computable in AC0.

2.2.2 Piecewise Arithmetic Circuits

By definition, arithmetic circuits can only represent rational functions. However, natural functions
of interest, like the GCD, are not rational. For example, it is easy to see that

gcd(x− α, x− β) =

{
x− α if α = β,
1 otherwise.

10

This is not a continuous function of α and β, so we cannot hope to compute the GCD using an
arithmetic circuit.

To compute the GCD, we have to add a branching instruction to our model of computation. In
arithmetic complexity, this is typically done by allowing an algorithm to test if a computed quantity
equals zero and branch accordingly. This sort of operation is standard: even the Euclidean algorithm
uses zero-testing to detect the degree of a remainder. We formalize this via arithmetic circuits
that define a function piecewise. This is a natural and simple extension of arithmetic circuits that
allows them to compute functions like the GCD. Although we provide a precise definition here for
completeness, we encourage the reader to keep in mind standard arithmetic circuits as the model of
computation.

We now define piecewise arithmetic circuits. Formally, these are two collections A and B of
(standard) arithmetic circuits. The first collection A is used to compute a function f : Fn → Fm

piecewise, and the second collection B is used to decide which circuit from A should be applied to a
given input α ∈ Fn.

Definition 2.3. Let f : Fn → Fm be a piecewise rational function. We say that f is computed
piecewise by an arithmetic circuit if there is a sequence of tuples of circuits (C1, T1), . . . , (Cm, Tm)
such that

f(α) =


C1(α) if T1(α) ̸= 0

C2(α) if T1(α) = 0 and T2(α) ̸= 0
...

Cm(α) if
∧m−1

i=1 Ti(α) = 0 and Tm(α) ̸= 0.

We refer to the circuits C1, . . . , Cm as the computation circuits and to T1, . . . , Tm as the test circuits.
The size of the circuit computing f is given by

∑m
i=1 |Ci|+ |Ti|, where |Ci| and |Ti| are the sizes of Ci

and Ti, respectively. The depth of the circuit computing f is given by maxi∈[m](depth(Ci), depth(Ti)),
where depth(Ci) and depth(Ti) are the depths of Ci and Ti, respectively. ♢

Of course, one can generalize Definition 2.3 to allow for more complex logic in how the values of
the test circuits determine which computation circuit to use. That level of generality will not be
necessary for our results.

Continuing the example of the GCD of two linear polynomials, we can rewrite gcd(x− α, x− β)
as

gcd(x− α, x− β) =

{
1 if α− β ̸= 0

x− α if α− β = 0,

which matches the form of Definition 2.3. Functions computed piecewise by low-depth arithmetic
circuits can be evaluated quickly in parallel, first by evaluating the test circuits T1, . . . , Tm in parallel
and then evaluating the appropriate computation circuit Ci.

We now define complexity classes that correspond to functions computed piecewise by small,
low-depth arithmetic circuits.

Definition 2.4. Let f = (f1, f2, . . .) be a family of piecewise rational functions. We say that
f ∈ NCi if fn can be computed piecewise by arithmetic circuits of fan-in two, size nO(1), and depth
O(logi n). We say that f ∈ ACi if fn can be computed piecewise by arithmetic circuits of unbounded
fan-in, size nO(1), and depth O(logi n). ♢

The following elementary lemma that says two piecewise arithmetic circuits can be composed in
an efficient manner.

11

Lemma 2.5. Let f : Fm → Fk and g : Fn → Fm be piecewise rational functions. Suppose that f can
be computed piecewise by an arithmetic circuit of size s1 and depth ∆1, and that g can be computed
piecewise by an arithmetic circuit of size s2 and depth ∆2. Then the composition f ◦ g : Fn → Fk

can be computed piecewise by an arithmetic circuit of size O(s21s2 + s1s
2
2) and depth ∆1 +∆2 + 1.

Proof. In words, to compute the composition f ◦ g on input α ∈ Fn, we first test α to determine
which piece of g to apply to α. We then test g(α) to determine which piece of f should be applied.

To formalize this algorithm using arithmetic circuits, let (Cf,1, Tf,1), . . . , (Cf,r, Tf,r) be the family
of circuits that compute f and let (Cg,1, Tg,1), . . . , (Cg,t, Tg,t) be the family of circuits that compute
g. For (i, j) ∈ [r]× [t], define

Cf◦g,(i,j)(x) := (Cf,i ◦ Cg,j)(x)

Tf◦g,(i,j)(x) := (Tf,i ◦ Cg,j)(x)× Tg,j(x).

With [r]× [t] ordered as (1, 1) ≺ (2, 1) ≺ · · · ≺ (r, 1) ≺ (1, 2) ≺ · · · , it is clear that the sequence of
circuit tuples (Cf◦g,(i,j), Tf◦g,(i,j))i,j computes the composition f ◦ g.

Note that the size and depth of Cf◦g,(i,j) are bounded by s1 + s2 and ∆1 + ∆2, respectively.
Likewise, the size and depth of Tf◦g,(i,j) are bounded by s1 + 2s2 and ∆1 +∆2 + 1, respectively.
Using the naïve bounds r ⩽ s1 and t ⩽ s2, we can bound the total size of the circuits computing
f ◦ g by (2s1 + 3s2)rt ⩽ O(s21s2 + s1s

2
2). It is clear that the maximum depth of a circuit computing

f ◦ g is bounded by ∆1 +∆2 + 1.

2.3 Known AC0 Algorithms

In this subsection, we collect previously-known algorithmic results that can be implemented in AC0.
We start with basic operations on univariate polynomials: addition, multiplication, and derivatives.
Note that the inputs to these problems are the coefficients of two univariate polynomials f, g ∈ F[x]
and the outputs are polynomial functions of the coefficients of f and g.

Lemma 2.6. Let f, g ∈ F[x] be univariate polynomials given by their coefficients. Then the coefficients
of f(x) + g(x), f(x) · g(x), and f (r)(x) can all be computed in AC0.

Our next tool is polynomial interpolation, which we use extensively. Let f ∈ F[x, y] be a
polynomial of degree d. We can write f as a polynomial in y whose coefficients are polynomials in x,
i.e., there are polynomials f0, . . . , fd ∈ F[x] such that

f(x, y) =

d∑
i=0

fi(x)y
i.

Given evaluations f(x, α1), . . . , f(x, αd+1) at d + 1 distinct values for y, each of the fi can be
expressed as a linear combination of these evaluations. In particular, if f can be computed by a
circuit of size s and depth ∆, then the coefficients f0, . . . , fd can each be computed by a circuit of
size O(sd) and depth ∆+ 1. We record this observation in the following lemma.

Lemma 2.7. Let F be a field. Let f ∈ F[x, y] be a polynomial of degree d. Let f0, . . . , fd ∈ F[x] be
polynomials such that

f(x, y) =
d∑

i=0

fi(x)y
i.

Suppose that f can be computed by an arithmetic circuit of size s and depth ∆. Then for each
i ∈ {0, 1, . . . , d}, there is a circuit of size O(sd) and depth ∆+ 1 that computes fi. If |F| ⩽ d, then
the circuit computing fi is defined over an extension K ⊇ F such that |K| ⩾ d+ 1.

12

A surprising application of interpolation, discovered by Ben-Or, shows that the elementary
symmetric polynomials ed(x1, . . . , xn) can be computed by arithmetic circuits of size O(n2) and
depth 3. This is done by applying interpolation to the polynomial

n∏
i=1

(1 + yxi) =
n∑

i=0

ed(x)y
i,

which clearly can be computed by a circuit of size O(n) depth 2.

Theorem 2.8 ([Ben-Or]). The elementary symmetric polynomials ed(x1, . . . , xn) can be computed
in AC0.

The next algorithms we quote perform linear algebra with structured matrices. They take as
input Toeplitz matrices (or equivalently, Hankel matrices), which we now define.

Definition 2.9. Let A ∈ Fn×n be an n× n matrix. We say that A is a Toeplitz matrix if there are
field elements α−n+1, . . . , αn−1 ∈ F such that Ai,j = αi−j . We say that A is a Hankel matrix if there
are field elements α1, . . . , α2n−1 ∈ F such that Ai,j = αi+j−1. ♢

As an example, the matrices

T =

x3 x4 x5
x2 x3 x4
x1 x2 x3

 H =

x1 x2 x3
x2 x3 x4
x3 x4 x5


are 3× 3 Toeplitz and Hankel matrices, respectively. It is easy to see that by reversing the order of
the rows, a Toeplitz matrix becomes Hankel and vice-versa. A beautiful algorithm of Bini [Bin84]
shows that triangular Toeplitz matrices can be inverted in AC0. (The result in [Bin84] is stated as
an NC1 algorithm, but it is clear that AC0 suffices.)

Theorem 2.10 ([Bin84]). Let X ∈ Fn×n be a triangular Toeplitz matrix. Then the inverse X−1 can
be computed in AC0.

As an application of this algorithm, Bini and Pan [BP85] showed that polynomial division with
remainder can be performed in AC0. (Once again, the result in Bini and Pan [BP85] is stated as an
NC1 algorithm, but AC0 suffices.)

Theorem 2.11 ([BP85]). Let f, g ∈ F[x] be univariate polynomials given by their coefficients. Let
q, r ∈ F[x] be the unique polynomials such that f = qg+ r and deg(r) < deg(g). Then the coefficients
of q and r can be computed in AC0.

Later in Section 6, we will also describe AC0 algorithms for inverting triangular Toeplitz matrices
and for polynomial division with remainder. Our algorithms employ a different approach than that
used by Bini [Bin84] and Bini and Pan [BP85].

The last algorithm we quote is Strassen’s theorem on division elimination in arithmetic circuits.

Theorem 2.12 ([Str73]). Let f(x) ∈ F[x] be a multivariate polynomial of degree nO(1). Suppose
f(x) can be computed in AC0. Then there is a division-free AC0 circuit that computes f(x).

13

2.4 The Euclidean Algorithm and the Resultant

This subsection recalls basic definitions and results related to greatest common divisors and the
Euclidean algorithm. A more thorough treatment of this material can be found in the delightful book
of von zur Gathen and Gerhard [vzGG13]. We start with the definition of the Bézout coefficients of
a pair of polynomials.

Definition 2.13. Let f(x) =
∑n

i=0 fix
i and g(x) =

∑m
i=0 gix

i be univariate polynomials of degrees
n and m, respectively. Let d := deg(gcd(f, g)). The Bézout coefficients of f and g are the unique
polynomials a, b ∈ F[x] that satisfy

1. deg(a) < deg(g)− d,

2. deg(b) < deg(f)− d, and

3. a(x)f(x) + b(x)g(x) = gcd(f, g). ♢

Note that Bézout coefficients are unchanged by multiplying or dividing f and g by a common
factor. Next, we recall the definition of the Sylvester matrix of a pair of polynomials.

Definition 2.14. Let f(x) =
∑n

i=0 fix
i and g(x) =

∑m
i=0 gix

i be univariate polynomials of degrees
n and m, respectively. The Sylvester matrix of f and g is the (n+m)× (n+m) matrix given by

Syl(f, g) :=



fn gm
fn−1 fn gm−1 gm
...

...
. . .

...
...

. . .
...

... fn g1
...

. . .
...

... fn−1 g0
...

. . .
...

...
... g0 gm

f0
...

...
. . .

...

f0
...

. . .
...

. . .
...

. . .
...

f0 g0



.

The resultant of f and g is res(f, g) := det Syl(f, g). ♢

Let f, g ∈ F[x] be polynomials of degrees n and m, respectively. For a natural number d ∈ N,
denote by F[x]<d the space of univariate polynomials of degree less than d. The Sylvester matrix
Syl(f, g) corresponds to the linear map

F[x]<m × F[x]<n → F[x]<n+m

(a, b) 7→ af + bg

written in the monomial basis {1, x, x2, . . .}. One can show that this map is an isomorphism of vector
spaces if and only if gcd(f, g) = 1 (see, e.g., [vzGG13, Section 6.3]). In particular, the resultant
res(f, g) = det Syl(f, g) characterizes when two polynomials share a common factor.

Lemma 2.15 (see, e.g., [vzGG13, Corollary 6.17]). Let f, g ∈ F[x]. Then gcd(f, g) = 1 if and only
if res(f, g) ̸= 0. Moreover, gcd(f, g) = 1 if and only if Syl(f, g) is invertible.

14

From the description of the Sylvester matrix as the linear map (a, b) 7→ af + bg, it is easy to see
that the inverse of Syl(f, g) allows us to recover the Bézout coefficients of f and g when gcd(f, g) = 1.
More generally, for any ℓ ∈ [n+m], the entries of the ℓth column of Syl(f, g)−1 correspond to the
coefficients of polynomials aℓ, bℓ ∈ F[x] such that aℓf + bℓg = xn+m−ℓ. We record this observation in
the following lemma.

Lemma 2.16. Let f, g ∈ F[x] be univariate polynomials of degrees n and m, respectively. Assume
that gcd(f, g) = 1, so Syl(f, g)−1 is invertible. For ℓ ∈ [n + m], the ℓth column of Syl(f, g)−1

corresponds to the coefficients of polynomials aℓ, bℓ ∈ F[x] such that

1. deg(aℓ) < deg(g),

2. deg(bℓ) < deg(f), and

3. aℓf + bℓg = xn+m−ℓ.

If the polynomials f and g happen to split into linear factors (as they do over an algebraically
closed field), then we can write the resultant res(f, g) as a simple function of the roots of f and g.
Although we will not directly compute the roots of f or g, the following identity will be crucial in
designing an AC0 circuit to compute the resultant.

Lemma 2.17 (see, e.g., [CLO05, Section 3.1]). Let f(x) =
∏n

i=1(x− αi) and g(x) =
∏m

i=1(x− βi)
be univariate polynomials. Then the resultant res(f, g) is given by

res(f, g) =

n∏
i=1

m∏
j=1

(αi − βj) =

n∏
i=1

g(αi) = (−1)nm
m∏
i=1

f(βi).

The resultant also allows us to detect when a polynomial has a double root. Recall that a double
root of a polynomial f ∈ F[x] is a point α ∈ F such that f(α) = f ′(α) = 0. That is, a double root
corresponds to a shared root of f and its derivative. This leads to the discriminant of a polynomial,
a specialization of the resultant.

Definition 2.18. Let f(x) ∈ F[x] be a monic univariate polynomial. The discriminant of f , denoted
disc(f), is defined as disc(f) := (−1)(

n
2) res(f, f ′). ♢

For quadratic polynomials, the discriminant is given by the familiar formula

disc(ax2 + bx+ c) = b2 − 4ac.

As remarked above, a double root is precisely a common root of f and its derivative f ′. The
discriminant detects when a polynomial has a double root.

Lemma 2.19. Let f ∈ F[x]. Then f has a double root if and only if disc(f) = 0.

Just as we can express the resultant res(f, g) as a simple function of the roots of f and g, we can
likewise express the discriminant disc(f) as a simple function of the roots of f .

Lemma 2.20. Let f(x) =
∏n

i=1(x− αi) be a univariate polynomial. Then

disc(f) = (−1)(
n
2)
∏

i,j∈[n]
i̸=j

(αi − αj) =
∏
i<j

(αi − αj)
2.

15

The resultant was originally found by Bézout [Béz64] as the determinant of what is now called
the Bézout matrix of two polynomials, which we define below.

Definition 2.21. Let f, g ∈ F[x] be univariate polynomials of degree at most n. The Bézout matrix
of order n associated with the polynomials f and g, denoted by Bezn(f, g), is the n× n matrix that
satisfies the identity

f(x)g(y)− f(y)g(x)

x− y
=

n−1∑
i,j=0

Bezn(f, g)i,jx
iyj . ♢

For more on Bézout matrices and their applications to control theory and elimination theory, we
refer to [BP94, Chapter 2, Section 9] and references therein. In this work, we restrict our attention
to computing the determinant and inverse of Bézout matrices.

The determinant of the Bézout matrix provides an alternate way to compute the resultant of
two polynomials.

Lemma 2.22. Let f, g ∈ F[x] be univariate polynomials and let d = max(deg(f), deg(g)). Then
detBezd(f, g) = res(f, g).

The inverse of the Bézout matrix Bezn(f, g) is easily described in terms of the polynomials f and
g. The following proposition shows that the inverse of a Bézout matrix is a Hankel matrix whose
entries can be efficiently computed from the coefficients of f and g. Conversely, the inverse of any
Hankel matrix is a Bézout matrix of some pair of polynomials.

Proposition 2.23 ([BP94, Chapter 2, Proposition 9.3]). Let f ∈ F[x] be a monic polynomial of
degree n and let g ∈ F[x] be a polynomial of degree at most n. If res(f, g) ̸= 0, then Bezn(f, g)
is invertible. Moreover, the inverse Bezn(f, g)

−1 can be described as follows. Let p ∈ F[x] be a
polynomial of degree at most n− 1 that satisfies the congruence

p(x)g(x) ≡ 1 (mod f(x)).

Let h(x) =
∑∞

i=0 hix
i be the power series expansion of xnp(1/x)

xnf(1/x) . Then the inverse of Bezn(f, g) is
given by the Hankel matrix

Bezn(f, g)
−1 =


h1 h2 h3 · · · hn
h2 h3 h4 · · · hn+1

h3 h4 h5 · · · hn+2

...
...

...
. . .

...
hn hn+1 hn+2 · · · h2n−1

.

2.5 Squarefree Decomposition

This subsection recalls the squarefree decomposition of a polynomial, a structured partial factorization.
We first recall the notion of a squarefree polynomial.

Definition 2.24. Let f ∈ F[x] be a univariate polynomial. We say that f is squarefree if there is no
non-constant polynomial g ∈ F[x] such that g2 divides f . ♢

As an example, the polynomial (x − 1)(x − 2) is squarefree, but (x − 1)2(x − 2) is not. By
factoring a polynomial f as a product of irreducible polynomials and erasing the exponents, one
obtains the squarefree part of f .

16

Definition 2.25. Let f ∈ F[x] be a univariate polynomial. Let f =
∏m

i=1 f
di
i be the factorization

of f into irreducible polynomials, where f1, . . . , fm ∈ F[x] are irreducible in F[x] and are pairwise
coprime. The squarefree part of f is given by

∏m
i=1 fi. ♢

Finally, we define the squarefree decomposition of a polynomial f ∈ F[x]. The squarefree
decomposition is a partial factorization of f into a structured product of squarefree polynomials.
The task of computing the squarefree decomposition is referred to as squarefree factorization and is
a basic step in algorithms for factoring polynomials; see [vzGG13, Chapter 14] for more.

Definition 2.26. Let f ∈ F[x] be a univariate polynomial. The squarefree decomposition of f(x)
is the unique sequence of monic squarefree pairwise coprime polynomials (f1, . . . , fm) such that
f =

∏m
i=1 f

i
i and fm ̸= 1. ♢

3 Symmetric Polynomials and Newton’s Identities

In this section, we study two important families of symmetric polynomials, the elementary symmetric
and power sum polynomials. Applying these functions to the roots of a univariate polynomial f give
different representations of f , and these representations are useful for different algorithmic tasks.
As we will see, the representation using the elementary symmetric polynomials works nicely with
additive operations, while the power sum polynomials are better suited for multiplicative operations.
It is extremely convenient that one can pass between these representations in AC0—we exposit these
reductions in this section.

Suppose we are given a polynomial f ∈ F[x] by its list of coefficients. What do the coefficients
tell us about the polynomial? Recall that if f factorizes as f(x) =

∏n
i=1(x − αi), then f can be

written as

f(x) =

n∑
i=0

(−1)n−ien−i(α)x
i,

where the polynomial ed(x1, . . . , xn) is given by

ed(x1, . . . , xn) =
∑
S⊆[n]
|S|=d

∏
i∈S

xi.

That is, the degree-i coefficient of f is, up to a sign, the elementary symmetric polynomial of degree
n− i evaluated at α.

The elementary symmetric polynomials are essential in the study of symmetric polynomials, i.e.,
polynomials that are invariant under permutations of the variables. The fundamental theorem of
symmetric polynomials says that for any symmetric polynomial f(x), there exists a (not necessarily
symmetric) polynomial g(y) such that

f(x) = g(e1(x), . . . , en(x)),

and moreover this polynomial g is unique. That is, any symmetric polynomial can be written as
a polynomial combination of the elementary symmetric polynomials. This means that from the
coefficients of f , we can compute any symmetric function of the roots α1, . . . , αn. The central theme
of this paper is to understand which of these functions can be computed efficiently.

In this section, we study an important family of symmetric polynomials, the power sum polyno-
mials. Recall that the degree-d power sum polynomial pd(x1, . . . , xn) is given by

pd(x1, . . . , xn) =

n∑
i=1

xdi .

17

An analogue of the fundamental theorem of symmetric polynomials holds for the power sum
polynomials when char(F) = 0 or char(F) > n. Given a symmetric polynomial f(x), there is a (not
necessarily symmetric) polynomial h(y) such that

f(x) = h(p1(x), . . . , pn(x)),

and like before, this h is unique.
The two versions of the fundamental theorem of symmetric polynomials mentioned above imply

that if we are given the coefficients e1(α), . . . , en(α) of a polynomial f , we can compute the power
sums p1(α), . . . , pn(α) of its roots, and vice-versa. This computation can be made efficient by
making use of explicit identities that relate the elementary symmetric and power sum polynomials.
Such identities are well-known, and go by the name of Newton’s identities (or the Girard–Newton
identities). For 1 ⩽ d ⩽ n, we have

pd(α) = (−1)d−1d · ed(α) +
d−1∑
i=1

(−1)d−1+ied−i(α)pi(α),

and for d > n, we instead have

0 =
d∑

i=d−n

(−1)i−1ed−i(α)pi(α).

If we are given the values of e1(α), . . . , en(α), we can compute the values of pd(α) iteratively using
dynamic programming. Conversely, when char(F) = 0 or char(F) > n, Newton’s identities show that
the elementary symmetric polynomials can be computed from the power sum polynomials. The
requirement that the field has large characteristic stems from the need to invert d when computing
the value of ed(α). As before, given the values of p1(α), . . . , pn(α), we can iteratively compute the
ed(α) via dynamic programming.

Although these conversions between the elementary symmetric and power sum polynomials
are efficient, their natural implementations are iterative, which would yield circuits of large depth.
To obtain AC0 algorithms, we make use of well-known alternate forms of Newton’s identities as
identities of formal power series. These identities and algorithms are by no means new. For example,
Shpilka and Wigderson [SW01] made use of these identities to compute the elementary symmetric
polynomials using circuits of depth 4 and depth 6 that are smaller than the circuits of size O(n2)
and depth 3 constructed by Ben-Or. Because a low-depth implementation of Newton’s identities
plays such a fundamental role in our work, we include a description of it for the sake of completeness.

We now define the Newton series of a polynomial f(x). This is the formal power series whose
coefficients are the power sum polynomials evaluated at the roots of f .

Definition 3.1 ([BFSS06]). Let f(x) ∈ F[x] be a univariate polynomial of degree n. Let α1, . . . , αn ∈
F be the roots of f , counted with multiplicity. The Newton series of f , denoted Newton(f), is the
formal power series in FJtK given by

Newton(f) :=
∞∑
k=0

pk(α) t
k. ♢

3.1 From Coefficients to Power Sums

We will now see how to efficiently convert between the values of e1(α), . . . , en(α) and p1(α), . . . , pn(α).
That is, we will convert between the representations of a polynomial f(x) =

∏n
i=1(x − αi) by its

coefficients and by its Newton series Newton(f).

18

We first consider the task of computing Newton(f) up to a specified degree, given the coefficients
of f . To do this, we make use of the fact that Newton(f) can be expressed as a rational function
in t, where the numerator and denominator can be easily computed from f . Below, we recall the
notion of the reversal of a polynomial.

Definition 3.2. Let f(x) =
∑n

i=0 aix
i be a univariate polynomial of degree n with an ̸= 0. The

reversal of f , denoted rev(f), is the univariate polynomial

rev(f)(x) :=
n∑

i=0

an−ix
i. ♢

The Newton series Newton(f) of a polynomial f can be written as a rational function in terms
of the reversal of f .

Lemma 3.3 ([BFSS06, Lemma 1]). Let f(x) =
∑n

i=0 aix
i be a univariate polynomial of degree n

with an ̸= 0. Then Newton(f) is a rational function in t given by

Newton(f) =
rev(f ′)(t)

rev(f)(t)
.

Using the above expression for Newton(f) as a rational function, we can compute Newton(f) to
degree d by expanding 1

rev(f)(t) as a power series in t up to degree d, multiplying by rev(f ′)(t), and
using polynomial interpolation to recover the coefficients of Newton(f).

Lemma 3.4. Let f ∈ F[x] be a univariate polynomial of degree n and let d ⩾ n. Then the coefficients
of Newton(f) up to degree d can be computed in AC0.

Proof. Write f(x) =
∑n

i=0 fix
i. Let g(x) := rev(f ′)(x) and let h(x) := rev(f)(x) − fn. Note that

h(0) = 0. Let pk be the degree-k coefficient of Newton(f). Lemma 3.3 implies

∞∑
k=0

pkx
k =

g(x)

fn + h(x)
.

Because h(0) = 0, we can invert fn + h(x) in FJxK, giving us

∞∑
k=0

pkh
k = g(x)

∞∑
k=0

(
−h(x)

fn

)k

.

This implies

g(x)

d∑
k=0

(
−h(x)

fn

)k

=

d∑
k=0

pkx
k + xd+1r(x)

for some polynomial r(x) ∈ F[x]. Let s(x) := g(x)
∑d

k=0

(
−h(x)
fn

)k
. The above equality implies that

we can recover the desired coefficients p0, . . . , pd of Newton(f) by interpolating the coefficients of
s(x).

Observe that the coefficients of g(x) and h(x) can be computed from the coefficients of f(x) in a
straightforward manner by a circuit of depth 1 and size O(n). This, together with the definition of
s(x), yields a circuit of size O(n+ d) and depth 4 that computes s(x). Note that deg(s) ⩽ d(n+ 1).
By Lemma 2.7, we can compute the coefficients of s(x) using a circuit of size O(nd2) and depth 5 as
desired.

19

3.2 From Power Sums to Coefficients

To recover a polynomial from its Newton series, we make use of the following identity. Shpilka
and Wigderson [SW01] used this identity to construct smaller low-depth circuits for the elementary
symmetric polynomials.

Lemma 3.5. Fix n ∈ N. Let exp(t) :=
∑∞

k=0
1
k! t

k ∈ FJtK denote the exponential power series. Then
we have the equality of formal power series

n∑
k=0

ek(x)t
k = exp

(∞∑
k=1

(−1)k+1

k
pk(x)t

k

)
.

Note that in a sense, the power sum polynomials correspond to the logarithm of the elementary
symmetric polynomials. We will witness the power of this in the next section.

We now show how to recover the coefficients of a polynomial from its Newton series. Note that
Newton(f) = Newton(αf) for any polynomial f and nonzero α ∈ F, so we cannot hope to recover
the leading coefficient of f . This will not be an issue for us, as we restrict our attention to monic
polynomials throughout this work.

Lemma 3.6. Let F be a field of characteristic zero or characteristic greater than n. Let f ∈ F[x] be
a univariate polynomial of degree n. Given the coefficients of Newton(f) of degree up to n as input,
the coefficients of f(x) can be computed in AC0.

Proof. Let α1, . . . , αn ∈ F denote the roots of f(x). Recall that ek(α) is the coefficient of xn−k in
f(x) and pk(α) is the coefficient of tk in Newton(f). Lemma 3.5 implies

n∑
k=0

ek(α)x
k = exp

(∞∑
k=1

(−1)k+1

k
pk(α)x

k

)
.

Let

g(x) :=
n∑

k=1

(−1)k+1

k
pk(α)x

k.

Note that because char(F) = 0 or char(F) > n, the polynomial g is well-defined. The preceding
identity implies that

n∑
k=0

g(x)k

k!
=

n∑
k=0

ek(α)x
k + xn+1h(x),

where h(x) ∈ F[x] is some polynomial in x. Let r(x) :=
∑n

k=0
g(x)k

k! . (As with g, the polynomial r is
well-defined because char(F) = 0 or char(F) > n.) By interpolating the coefficients of r(x), we can
recover the values e1(α), . . . , en(α).

Observe that the coefficients of g(x) are easily determined from the coefficients of Newton(f).
This yields an arithmetic circuit of size O(n) and depth 1 that computes g(x). The truncated
exponential r(x) can then be computed by an arithmetic circuit of size O(n) and depth 3. Note that
deg(r) ⩽ n2, so Lemma 2.7 implies that we can compute the coefficients of r using an arithmetic
circuit of size O(n3) and depth 4. In particular, this circuit computes the values e1(α), . . . , en(α).
The polynomial f(x) is given by f(x) =

∑n
i=0(−1)n−ien−i(α)x

i, so multiplying each ei(α) by (−1)i

results in the coefficients of f(x).

20

4 Exact Division and Roots of Perfect Powers

In this section, we warm up with two applications of the algorithms described in Section 3. We
design AC0 algorithms to compute the quotient f/g when g is promised to divide f , and to compute
f1/r when f is promised to be an rth power of a polynomial. These are toy problems, and the simple
algorithms we design are meant to illustrate the utility of representing a polynomial by its Newton
series. The Newton series plays the role of a logarithm, converting multiplication to addition and
division to subtraction, which is easy to see from the fact that Newton(fg) = Newton(f)+Newton(g).

We now describe an AC0 algorithm to compute the quotient f/g when g is promised to divide f .

Lemma 4.1. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be monic univariate polynomials of degree at most d given by their coefficients. Suppose that g divides
f . Then the coefficients of f/g can be computed in AC0.

Proof. Suppose f(x) and g(x) factor as

f(x) =
n∏

i=1

(x− αi)
m∏
i=1

(x− βi)

g(x) =

n∏
i=1

(x− αi),

where α1, . . . , αn, β1, . . . , βm ∈ F and the αi and βi are not necessarily distinct. Applying Lemma 3.4
to f(x) and g(x), we can compute the power sums pk(α) + pk(β) and pk(α), respectively, for all
k ∈ [n+m] in AC0. Taking differences, we obtain the power sums pk(β) for all k ∈ [m]. Applying
Lemma 3.6 to the power sums pk(β) yields the coefficients of

∏m
i=1(x− βi) in AC0 as desired.

Next, we describe an AC0 algorithm to compute the rth root f1/r when f is promised to be an
rth power of a polynomial.

Lemma 4.2. Let F be a field of characteristic zero or characteristic greater than d. Let f ∈ F[x]
be a univariate polynomial of degree at most d given by its coefficients and let r ∈ N. Suppose that
f = gr for some g ∈ F[x]. Then the coefficients of g can be computed in AC0.

Proof. Suppose that g factors as

g(x) =

n∏
i=1

(x− αi),

where α1, . . . , αn ∈ F and the αi are not necessarily distinct. Because f = gr, this implies that f
factors as

f(x) =
n∏

i=1

(x− αi)
r.

Applying Lemma 3.4 to f , we compute in AC0 the power sums

n∑
i=1

r · αk
i = r · pk(α)

for each k ∈ [n]. Dividing by r yields pk(α) for all k ∈ [n]. Applying Lemma 3.6 to the power sums
pk(α) produces the coefficients of g, as desired.

21

5 Computing Symmetric Functions of the Roots of a Polynomial

In this section, we return to the topic of computing symmetric functions of the roots of a polynomial
f ∈ F[x] when f is given by its coefficients. The coefficients of f are the elementary symmetric
functions of its roots. As we saw in Section 3, we can compute the power sums of the roots in AC0.
In this section, we expand our toolbox, finding more symmetric functions that can be evaluated at
the roots of a given polynomial f in AC0.

5.1 Polynomial Functions

Let f, g ∈ F[x] be univariate polynomials and let α1, . . . , αn ∈ F be the roots of f , counted with
multiplicity. In this subsection, we evaluate the elementary symmetric polynomials at the values
g(α1), . . . , g(αn).

We start by computing the sum
∑n

i=1 g(αi).

Lemma 5.1. Let f, g ∈ F[x] be univariate polynomials given by their coefficients. Suppose that
α1, . . . , αn ∈ F are the roots of f , counted with multiplicity. Then the sum

∑n
i=1 g(αi) can be

computed in AC0.

Proof. Letting g(x) =
∑m

i=0 gix
i, we can rewrite the sum

∑n
i=1 g(αi) as

n∑
i=1

g(αi) =
n∑

i=1

m∑
j=0

gjα
j
i =

m∑
j=0

gj

n∑
i=1

αj
i =

m∑
j=0

gjpj(α).

We can compute the power sums pk(α) for 0 ⩽ k ⩽ m in AC0 by applying Lemma 3.4 to f(x). The
sum

∑m
j=0 gjpj(α) can then be computed by a subcircuit of size O(m) and depth 2.

This shows that the sum
∑n

i=1 g(αi) is easy to compute. It would be interesting to find an AC0

algorithm to compute the product
∏n

i=1 g(αi), since this equals res(f, g) by Lemma 2.17. We will
not only compute the product

∏n
i=1 g(αi), but we will in fact compute all the elementary symmetric

polynomials evaluated at g(α1), . . . , g(αn). To do this, it suffices (by Newton’s identities) to compute
the power sums

∑n
i=1 g(αi)

k, which can be done by a straightforward application of Lemma 5.1.

Lemma 5.2. Let F be a field of characteristic zero or characteristic greater than n. Let f, g ∈ F[x]
be univariate polynomials given by their coefficients. Suppose that α1, . . . , αn ∈ F are the roots
of f , counted with multiplicity. Then for any d ∈ [n], the elementary symmetric polynomial
ed(g(α1), . . . , g(αn)) can be computed in AC0.

Proof. For any k ∈ [n], the coefficients of g(x)k can be computed in AC0 using Lemma 2.7. By
Lemma 5.1, we can compute the sum

∑n
i=1 g(αi)

k in AC0 for each k ∈ [n]. Applying Lemma 3.6
to the power sums {pk(g(α1), . . . , g(αn)) : k ∈ [n]} yields the elementary symmetric polynomials
{ek(g(α1), . . . , g(αn)) : k ∈ [n]}, again in AC0.

Later in Section 7, it will be useful for us to compute the product of only the nonzero values of
g(αi). We can do this by computing all elementary symmetric polynomials ek(g(α1), . . . , g(αn)) and
then (piecewise) selecting the largest index k such that ek(g(α1), . . . , g(αn)) ̸= 0.

Lemma 5.3. Let F be a field of characteristic zero or characteristic greater than n. Let f, g ∈ F[x]
be univariate polynomials given by their coefficients. Suppose that α1, . . . , αn ∈ F are the roots of
f , counted with multiplicity. Let S = {i ∈ [n] : g(αi) ̸= 0}. Then the product

∏
i∈S g(αi) can be

computed piecewise in AC0.

22

Proof. By relabeling the roots of f , we may assume without loss of generality that S = {1, . . . , d}.
Let

λ1 := g(α1) ̸= 0

...

λd := g(αd) ̸= 0

λd+1 := g(αd+1) = 0

...

λn := g(αn) = 0,

where d ∈ N is unknown to us. By Lemma 5.2, we can compute ek(λ) for all k ∈ [n] in AC0, and we
will leverage this to compute

∏d
i=1 λi.

When k > d, the degree-k elementary symmetric polynomial evaluated at λ vanishes. To see
this, expand the elementary symmetric polynomial as

ek(λ1, . . . , λn) =
∑
S⊆[d]

T⊆{d+1,...,n}
|S|+|T |=k

∏
i∈S

λi

∏
j∈T

λj .

For k > d, every term in the above sum corresponds to a choice of T ⊆ {d + 1, . . . , n} that is
nonempty. Each such term incurs a factor of λj = 0, so the sum simplifies to zero.

On the other hand, the degree-d elementary symmetric polynomial evaluated at λ equals
∏d

i=1 λi.
This follows from the fact that every term in the expansion of ed(λ) corresponding to a nonempty
choice of T ⊆ {d+ 1, . . . , n} is zero, so the sum simplifies to the single nonzero term corresponding
to T = ∅.

This allows us to compute the product
∏d

i=1 λi if we know the value of d. We can recover d by
finding the largest index d̂ at which the degree-d̂ elementary symmetric polynomial is nonzero. This
d̂ is precisely d, the number of nonzero λi.

To formalize this algorithm as a piecewise AC0 circuit, we use the circuit computing ek(λ) as
both the (n− k + 1)-th computation circuit and test circuit.

Remark 5.4. Note that Lemmas 5.1 to 5.3 extend to the setting where g ∈ F[x, y] is a polynomial
in many variables. In this variant, we want to compute the sum

n∑
i=1

g(αi, y),

and more generally the elementary symmetric polynomial

ed(g(α1, y), . . . , g(αn, y)).

To do this, regard g ∈ F[y][x] as a univariate polynomial in x whose coefficients are polynomials in
y. When g is given by its coefficients as a polynomial in F[x, y], it is straightforward to form the
coefficients of g ∈ F[y][x] in AC0. If g is instead given by an AC0 circuit, then we can obtain AC0

circuits that compute the coefficients of g ∈ F[y][x] using Lemma 2.7. With this modification, the
proofs of Lemmas 5.1 to 5.3 go through without modification. The ability to apply Lemmas 5.1
to 5.3 in this setting will be an essential tool that we use throughout our work. ♢

23

5.2 Rational Functions

Lemmas 5.1 and 5.2 generalize to the setting where we want to evaluate a rational function g/h at
the roots of a polynomial f . We start by summing a rational function g/h over the roots of f . Of
course, this requires that h is nonzero at the roots of f .

Lemma 5.5. Let F be a field of characteristic zero or characteristic greater than n. Let f, g, h ∈ F[x]
be univariate polynomials given by their coefficients. Suppose that α1, . . . , αn ∈ F are the roots of f ,
counted with multiplicity. Assume that h(αi) ̸= 0 for all i ∈ [n]. Then the sum

∑n
i=1

g(αi)
h(αi)

can be
computed in AC0.

Proof. Writing the sum
∑n

i=1
g(αi)
h(αi)

over a common denominator, we have

n∑
i=1

g(αi)

h(αi)
=

∑n
i=1 g(αi)

∏
j ̸=i h(αj)∏n

i=1 h(αi)
.

Applying Lemma 5.2 to f and h allows us to compute
∏n

i=1 h(αi) in AC0, so we are left with the
task of computing

∑n
i=1 g(αi)

∏
j ̸=i h(αj).

Let y be a fresh variable. Observe that when we expand the polynomial

r(y) :=
n∏

i=1

(g(αi)y + h(αi)),

the coefficient of the degree-1 term is precisely
∑n

i=1 g(αi)
∏

j ̸=i h(αj). By applying Lemma 5.2 to
the polynomials f(x) and g(x)y + h(x), we obtain a circuit of constant depth and polynomial size
that computes r(y). As deg(r) = n, Lemma 2.7 implies that we can compute the coefficients of r(y)
in AC0. This yields an AC0 algorithm to compute the sum

∑n
i=1 g(αi)

∏
j ̸=i h(αj), and hence an AC0

algorithm to compute
∑n

i=1
g(αi)
h(αi)

.

We now use Lemma 5.5 to compute any elementary symmetric function of the values g(α1)
h(α1)

, . . . , g(αn)
h(αn)

.

Lemma 5.6. Let F be a field of characteristic zero or characteristic greater than n. Let f, g, h ∈ F[x]
be univariate polynomials given by their coefficients. Suppose that α1, . . . , αn ∈ F are the roots of f ,
counted with multiplicity. Assume that h(αi) ̸= 0 for all i ∈ [n]. Then for any d ∈ [n], the elementary
symmetric function

ed

(
g(α1)

h(α1)
, . . . ,

g(αn)

h(αn)

)
can be computed in AC0.

Proof. For any k ∈ [n], we can compute the coefficients of g(x)k and h(x)k in AC0 using Lemma 2.7.
Applying Lemma 5.5 to f(x), g(x)k, and h(x)k computes the sum

∑n
i=1

g(αi)
k

h(αi)k
in AC0. We then

compute the desired elementary symmetric polynomial by invoking Lemma 3.6 on the power sums∑n
i=1

g(αi)
k

h(αi)k
.

6 The Sylvester and Bézout Matrices

In this section, we apply the results of Section 5 to compute the determinant and inverse of the
Sylvester and Bézout matrices of a pair of polynomials in AC0. We also extend our division algorithm
from Lemma 4.1 to handle polynomial division with remainder.

24

6.1 The Resultant and Discriminant

We start by designing a constant-depth circuit to compute the resultant of two polynomials. As
the resultant is precisely the determinant of the Sylvester (Definition 2.14) and Bézout matrices
(Lemma 2.22), this provides an AC0 algorithm to compute the determinants of matrices of these
forms.

To compute the resultant, let f, g ∈ F[x] be monic polynomials and let α1, . . . , αn ∈ F be the
roots of f , counted with multiplicity. By Lemma 2.17, we know that

res(f, g) =
n∏

i=1

g(αi).

This is precisely the nth elementary symmetric polynomial evaluated at (g(α1), . . . , g(αn)). Thus,
we can compute res(f, g) using a direct application of Lemma 5.2.

Theorem 6.1. Let f, g ∈ F[x] be univariate polynomials given by their coefficients. Then the
resultant res(f, g) can be computed in AC0.

Proof. This is an immediate consequence of Lemma 2.17 and Lemma 5.2.

As an immediate corollary, we obtain an AC0 algorithm to compute the discriminant of a single
polynomial.

Corollary 6.2. Let f ∈ F[x] be a univariate polynomial given by its coefficients. Then the discrimi-
nant disc(f) can be computed in AC0.

Proof. Because disc(f) = (−1)(
n
2) res(f, f ′), this immediately follows from Theorem 6.1.

The resultant and discriminant are extremely useful tools in algebra and number theory. Using
well-known applications of the resultant and discriminant, we present three corollaries of Theorem 6.1
and Corollary 6.2.

Our first corollary deals with computing implicit equations of rational plane curves. A rational
plane curve is the (Zariski closure of the) image of a rational map

γ : F → F2

t 7→
(
f(t)

h(t)
,
g(t)

h(t)

)
where f, g, h ∈ F[t] are univariate polynomials. For example, the unit circle has a rational parame-
terization given by

t 7→
(
1− t2

1 + t2
,

2t

1 + t2

)
.

The careful reader will notice that (−1, 0) on the unit circle, but is not in the image of this map.
This is addressed by taking the closure of the image in the Zariski topology, the standard topology
used in algebraic geometry. We will not define the Zariski topology here, and instead refer the reader
interested in the precise details to [CLO15].

Given a rational parameterization of a plane curve Γ, it is often useful to find an implicit equation
for Γ. An implicit equation is a polynomial r ∈ F[x, y] such that r(a, b) = 0 if and only if (a, b) ∈ Γ.
Clearly, an implicit equation gives rise to an algorithm that decides if a given point (a, b) lies on the
curve Γ: compute r(a, b) and check if this value equals zero. In the case of the unit circle, one implicit

25

equation is given by x2 + y2 − 1. (Other implicit equations for the unit circle are (x2 + y2 − 1)n for
n ∈ N, and these are essentially all possible equations for the unit circle.)

Resultants provide a straightforward method to compute an implicit equation of a rational plane
curve. Given a curve parameterized by

t 7→
(
f(t)

h(t)
,
g(t)

h(t)

)
,

one can show that the polynomial

r(x, y) := rest(x · h(t)− f(t), y · h(t)− g(t)),

where x · h(t)− f(t) and y · h(t)− g(t) are regarded as polynomials in t with coefficients in F[x, y], is
an implicit equation of the plane curve. By computing this resultant with Theorem 6.1 and then
interpolating the coefficients of r(x, y) using Lemma 2.7, we obtain an AC0 algorithm to compute an
implicit equation of a given rational plane curve.

Corollary 6.3. Let f, g, h ∈ F[t] be univariate polynomials given by their coefficients. Let Γ ⊆ F2

be the plane curve corresponding to the map t 7→ (f(t)/h(t), g(t)/h(t)). Then the coefficients of an
implicit equation r ∈ F[x, y] for Γ can be computed in AC0.

The second application of Theorem 6.1 is again to geometry. Given the implicit equations of
two plane curves Γ1,Γ2 ∈ F2, we would like to compute their intersection Γ1 ∩ Γ2. Equivalently,
we want to solve the system of polynomial equations f(x, y) = g(x, y) = 0, where f and g are the
implicit equations of Γ1 and Γ2, respectively. Using resultants, we can reduce this problem to solving
polynomial equations in one variable. View f and g as elements of F[x][y] and let

h(x) := resy(f(x, y), g(x, y))

be their resultant. If h(x) = 0, then f and g share a common factor, so the intersection Γ1 ∩ Γ2 is
infinite and corresponds to this common factor.

Suppose instead that h(x) ̸= 0, so that Γ1 ∩ Γ2 is finite. Standard properties of resultants imply
that if (a, b) ∈ Γ1 ∩ Γ2, then h(a) = 0. Thus, to compute Γ1 ∩ Γ2, it suffices to first compute the
roots of h, and for each such root a ∈ F, find common roots of the univariate polynomials f(a, y)
and g(a, y). For more on resultants in elimination theory, see [CLO15, Chapter 3].

Our third and final application is to combining the roots of polynomials in nontrivial ways.
Suppose we are given the coefficients of f(x) =

∏n
i=1(x− αi) and g(x) =

∏m
i=1(x− βi). Consider

the polynomials

(f ⊕ g)(x) :=
∏
i,j

(x− (αi + βj))

(f ⊗ g)(x) :=
∏
i,j

(x− αiβj),

which are called the composed sum and composed product of f and g, respectively.
The composed sum and composed product are useful in implementing arithmetic for algebraic

numbers. Recall that a number α ∈ C is algebraic if there is a nonzero polynomial f ∈ Q[x] such
that f(α) = 0. For every algebraic number α ∈ C, there is a nonzero polynomial f ∈ Q[x] of
minimal degree that vanishes at α; such a polynomial is the minimal polynomial of α. A natural
way to represent algebraic numbers is by their minimal polynomial. If α, β ∈ C are represented by

26

polynomials f and g, respectively, then the sum α+ β is a root of the composed sum f ⊕ g. This
implies that the minimal polynomial of α+ β is an irreducible factor (over Q[x]) of f ⊕ g, which we
can find by factoring f ⊕ g. Likewise, the minimal polynomial of αβ is an irreducible factor of f ⊗ g.

Fast algorithms to compute the composed sum and composed product were given by Bostan,
Flajolet, Salvy, and Schost [BFSS06], where the key tool was a fast algorithm to convert between
the coefficient representation of a polynomial and its Newton series. Using properties of resultants,
it is a straightforward exercise (see, e.g., [CLO15, Section 3.6, Exercise 19]) to show that

(f ⊕ g)(x) = resy(f(y), g(x− y))

(f ⊗ g)(x) = resy(f(y), y
mg(x/y)),

where f(y), g(x− y), and ymg(x/y) are viewed as polynomials in y with coefficients in F[x]. As a
corollary of Theorem 6.1, we conclude AC0 algorithms to compute the composed sum and composed
product. For more applications of the composed sum and composed product, see [BFSS06, Section
5].

Corollary 6.4. Let f, g ∈ F[x] be univariate polynomials given by their coefficients. Suppose that f
and g factor as f(x) =

∏n
i=1(x−αi) and g(x) =

∏m
i=1(x−βi), where the αi, βi ∈ F are not necessarily

distinct, i.e., f and g are not necessarily squarefree. Then the coefficients of the polynomials

(f ⊕ g)(x) :=
∏
i,j

(x− (αi + βj))

(f ⊗ g)(x) :=
∏
i,j

(x− αiβj)

can be computed in AC0.

6.2 Division with Remainder

In this subsection, we take a brief detour from Sylvester and Bézout matrices to extend our division
algorithm from Lemma 4.1 to handle polynomial division with remainder. Recall that if f, g ∈ F[x]
are univariate polynomials, then there are unique polynomials q, r ∈ F[x] such that f = qg + r and
deg(r) < deg(g). The polynomial r is the remainder of f divided by g. We will describe an AC0

algorithm to compute the remainder r, which leads to an algorithm for division with remainder by
dividing f − r by g using Lemma 4.1. The technique we use to compute the remainder r will be
useful later in Section 6.3, where we design an AC0 algorithm to invert the Sylvester matrix Syl(f, g).

For the moment, suppose that g is squarefree, i.e., that g has m distinct roots β1, . . . , βm ∈ F, all
of multiplicity 1. This is a mild assumption, and we will sketch how to remove it below. Assuming g
is squarefree, we can explicitly write the remainder r using polynomial interpolation. Consider the
polynomial r̂(x) obtained by interpolating the values of f at the points β1, . . . , βm. The Lagrange
interpolation formula lets us to write r̂ as

r̂(x) =

m∑
i=1

f(βi)
∏
j ̸=i

x− βj
βi − βj

.

By construction, we have deg(r̂) ⩽ m − 1 < deg(g). The polynomial f − r̂ is zero at each βi.
Because g is squarefree, it follows that g divides f − r̂. That is, there is some polynomial q̂ such that
f − r̂ = q̂g. Rearranging, we have f = q̂g + r̂, so by uniqueness of the quotient and remainder, we
have q = q̂ and r = r̂. Thus, to compute the remainder r, it suffices to interpolate a polynomial that

27

agrees with f at the roots of g, at least when g is squarefree. We will perform this interpolation
by implementing the Lagrange interpolation formula without explicitly computing the roots of g,
making use of the tools developed in Section 5.

When g is not squarefree, we can still perform the above interpolation, but g may not divide
f − r̂. If βi ∈ F is a multiple root of g, we would need to interpolate r̂ so that f − r̂ vanishes at βi
to the same order as g. However, we do not know the multiset of multiplicities of the roots of g, so
it is not clear that this strategy will generalize nicely.

Instead, we make use of the fact that a polynomial g is squarefree if and only if disc(g) ̸= 0.
With r̂ defined through Lagrange interpolation as above, it is easy to see that disc(g) · r̂ = disc(g) · r.
When disc(g) = 0, this is obvious, and when disc(g) ̸= 0, g is squarefree, so the preceding sketch
implies r̂ = r. Thus, to obtain r, we can divide disc(g) · r̂ by disc(g). Although the resulting circuit
is defined only when disc(g) ̸= 0, Strassen’s theorem on division elimination (Theorem 2.12) implies
that we can transform this circuit into an equivalent one that does not use division. This results in
a circuit that correctly computes the remainder r even when disc(g) = 0.

We now design an AC0 algorithm to compute polynomial remainders.

Lemma 6.5. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x] be
univariate polynomials of degree at most d given by their coefficients. Let r ∈ F[x] be the remainder
of f divided by g. Then the coefficients of r can be computed in AC0.

Proof. Let n := deg(f) and m := deg(g). Recall that r ∈ F[x] is the unique polynomial of degree
less than m such that f − r is a multiple of g. Below, we will show that the coefficients of disc(g)r(x)
can be computed in AC0. Before doing this, we explain why this yields an AC0 algorithm to compute
the coefficients of r(x).

We can compute disc(g) in AC0 via Corollary 6.2. By dividing disc(g)r(x) by disc(g), we obtain
an AC0 algorithm with division that computes r(x). Because this algorithm divides by disc(g),
its output is only defined when disc(g) ̸= 0. We would like to apply Theorem 2.12 to conclude a
division-free AC0 algorithm that computes the remainder r(x), which would allow us to compute
r(x) even when disc(g) = 0. If we could do this, then the coefficients of r(x) can be computed in
AC0 by applying Lemma 2.7 to this division-free algorithm. To apply Theorem 2.12, we need to
verify that the coefficients of r(x) are polynomial functions of the coefficients of f and g.

To show that the coefficients of r(x) are polynomial functions of the coefficients of f and g, let q
be the quotient of f by g, i.e., let q be the polynomial such that f = qg + r. Write q =

∑n−m
i=0 qix

i

and r =
∑m−1

i=0 rix
i. By equating coefficients of powers of x on both sides of f = qr + r, we obtain

the linear system 

1

gm−1
. . .

... 1

... gm−1 1

g0
... 1

. . .
...

. . .

g0 1





qn−m

...
q0

rm−1

...
r0


=


1

fn−1

fn−2

...
f0

.

Let S̃yl(g, 1) denote the matrix on the left-hand side above. (This matrix corresponds to Syl(g, 1)

when 1 is treated as a polynomial of degree n −m+ 1.) The matrix S̃yl(g, 1) is lower triangular

28

and has ones along the diagonal, so it clearly has determinant 1. This implies that the entries of
S̃yl(g, 1)−1 are polynomial functions of the coefficients of g. It follows that

qn−m

...
q0

rm−1

...
r0


= S̃yl(g, 1)−1


1

fn−1

fn−2

...
f0


are polynomial functions of the coefficients of f and g, as desired.

It remains to show that we can compute disc(g)r(x) in AC0. Suppose disc(g) ̸= 0, so that g has
m simple roots β1, . . . , βm ∈ F. In this case, we can explicitly write r(x) using Lagrange interpolation
as

r(x) =

m∑
i=1

f(βi)
∏
j ̸=i

x− βj
βi − βj

.

Combined with Lemma 2.20, we can write disc(g)r(x) as

disc(g)r(x) =

(−1)(
m
2)
∏
i∈[m]

∏
j ̸=i

(βi − βj)

 m∑
i=1

f(βi)
∏
j ̸=i

x− βj
βi − βj

= (−1)(
m
2)

m∑
i=1

f(βi)
∏
j ̸=i

(x− βj)
∏
k ̸=j

(βj − βk)

= (−1)(
m
2)

m∑
i=1

f(βi)
∏
j ̸=i

(x− βj) · g′(βj).

Let y be a new variable. Observe that the above sum corresponds to the coefficient of ym−1 when
the product

m∏
i=1

(f(βi) + y(x− βi)g
′(βi))

is expanded as a polynomial in y with coefficients in F[x]. This is precisely the kind of expression
that Lemma 5.2 allows us to compute.

Let z be a fresh variable. Define h(x, y, z) ∈ F[x, y, z] by

h(x, y, z) := f(z) + y(x− z)g′(z).

It is clear that we can compute h(x, y, z) in AC0. Applying Lemma 5.2, we compute

m∏
i=1

h(x, y, βi) =
m∏
i=1

(f(βi) + y(x− βi)g
′(βi)),

where β1, . . . , βm ∈ F are the roots of g. We can then interpolate the coefficient of ym−1 in the above
polynomial using Lemma 2.7. In all, this yields an AC0 algorithm to compute

r̂(x) := (−1)(
m
2)

m∑
i=1

f(βi)
∏
j ̸=i

(x− βj) · g′(βj).

29

As the analysis above shows, when disc(g) ̸= 0, we have the polynomial identity r̂(x) = disc(g)r(x).
It remains to show that the identity r̂(x) = disc(g)r(x) still holds when disc(g) = 0.

In the case disc(g) = 0, the polynomial g has a double root. Without loss of generality, suppose
that β1 = β2. By definition of a double root, we have g′(β1) = g′(β2) = 0. This implies that the
product

m∏
i=1

(f(βi) + y(x− βi)g
′(βi))

has degree at most m−2 in y, so the coefficient of ym−1 is zero, hence r̂(y) = 0. Because disc(g) = 0,
we again have the desired equality r̂(y) = 0 = disc(g)r(y).

As a corollary, we obtain an AC0 algorithm for polynomial division with remainder.

Corollary 6.6. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Let q, r ∈ F[x] be the unique
polynomials that satisfy f = qg + r and deg(r) < deg(g). Then the coefficients of q and r can be
computed piecewise in AC0.

Proof. Applying Lemma 6.5 to f and g, we compute in piecewise AC0 a polynomial r̂ of degree
deg(r̂) < deg(g) such that r̂ ≡ f (mod g). In particular, f − r̂ is a multiple of g, so there is a
polynomial q̂ ∈ F[x] such that f − r̂ = q̂g. We can compute q̂ in AC0 using Lemma 4.1. Thus, we
have f = q̂g + r̂ and deg(r̂) < deg(g). Uniqueness of polynomial division with remainder implies
that q̂ = q and r̂ = r are the quotient and remainder, respectively, of f divided by g.

6.3 Inverting the Sylvester Matrix

This subsection describes an AC0 circuit that computes the adjugate adj Syl(f, g) of the Sylvester
matrix. Using the fact that A−1 = 1

detA adjA for any matrix A and that res(f, g) = det Syl(f, g)
can be computed in AC0, this yields an AC0 algorithm to compute the inverse Syl(f, g)−1 of the
Sylvester matrix when Syl(f, g) is invertible. As a corollary of this and Lemma 2.16, we obtain an
AC0 algorithm that computes the Bézout coefficients of f and g when gcd(f, g) = 1. The algorithm
and its proof of correctness are very similar to Lemma 6.5. The primary difference is that instead of
interpolating f over the roots of g, we need to interpolate 1/f over the roots of g.

Theorem 6.7. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x] be
univariate polynomials of degree at most d given by their coefficients. Then the entries of adj Syl(f, g)
can be computed in AC0.

Proof. Let n := deg(f) and m := deg(g). Recall Lemma 2.16: for ℓ ∈ [n+m], the entries in the ℓth

column of adj Syl(f, g) correspond to the coefficients of polynomials aℓ, bℓ ∈ F[x] such that

aℓ(x)f(x) + bℓ(x)g(x) = res(f, g)xn+m−ℓ,

where deg(aℓ) < m and deg(bℓ) < n. Below, we will show that the coefficients of disc(g)aℓ(x)
and disc(f)bℓ(x) can be computed in AC0. We can also compute disc(f) and disc(g) in AC0 using
Corollary 6.2. This yields an AC0 algorithm with division that computes the coefficients of aℓ
and bℓ. Because the coefficients of aℓ and bℓ are the entries of the ℓth column of adj Syl(f, g), the
coefficients of aℓ and bℓ are polynomial functions in the coefficients of f and g. This allows us to
apply Theorem 2.12, which yields the claimed AC0 algorithm to compute the entries of adj Syl(f, g).

30

It remains to show that for every ℓ, we can compute the coefficients of the polynomials disc(g)aℓ(x)
and disc(f)bℓ(x). We start by computing disc(g)aℓ(x). By exchanging the roles of f and g in the
algorithm below, we can likewise compute disc(f)bℓ(x).

Suppose disc(g) ̸= 0, so that g has m simple roots β1, . . . , βm. In this case, we can explicitly
write aℓ(x) using Lagrange interpolation as

aℓ(x) = res(f, g)
m∑
i=1

βn+m−ℓ
i

f(βi)

∏
j ̸=i

x− βj
βi − βj

.

Using Lemma 2.17 and Lemma 2.20 to expand res(f, g) and disc(g), we have

disc(g)aℓ(x) =

(−1)(
m
2)
∏
i∈[m]

∏
j ̸=i

(βi − βj)

((−1)nm
m∏
i=1

f(βi)

)
m∑
i=1

βn+m−ℓ
i

f(βi)

∏
j ̸=i

x− βj
βi − βj

= (−1)nm+(m2)
m∑
i=1

βn+m−ℓ
i

∏
j ̸=i

f(βj)(x− βj)
∏
k ̸=j

(βj − βk)

= (−1)nm+(m2)
m∑
i=1

βn+m−ℓ
i

∏
j ̸=i

f(βj)g
′(βj)(x− βj).

Let y be a new variable. Observe that the summation above is the coefficient of ym−1 when the
product

m∏
i=1

(βn+m−ℓ
i + yf(βi)g

′(βi)(x− βi))

is expanded as a polynomial in y with coefficients in x. We will compute this product by an
application of Lemma 5.2.

Let z be a fresh variable. Define h(x, y, z) ∈ F[x, y, z] by

h(x, y, z) := zn+m−ℓ + y(x− z)f(z)g′(z).

It is clear from the definition that h can be computed in AC0. Using Lemma 5.2, we compute
m∏
i=1

h(x, y, βi) =
m∏
i=1

(βn+m−ℓ
i + y(x− βi)f(βi)g

′(βi))

in AC0, where β1, . . . , βm ∈ F are the (not necessarily distinct) roots of g. Interpolating the coefficient
of ym−1 using Lemma 2.7 and multiplying by (−1)nm+(m2), we have an AC0 algorithm to compute

â(x) := (−1)nm+(m2)
m∑
i=1

βn+m−ℓ
i

∏
j ̸=i

f(βj)g
′(βj)(x− βj).

As the analysis above shows, when disc(g) ̸= 0, we have the equality â(x) = disc(g)aℓ(x). It remains
to show that this equality holds when disc(g) = 0.

If disc(g) = 0, then g has a double root. Without loss of generality, suppose that β1 = β2. By
definition of a double root, we have g′(β1) = g′(β2). This implies that the product

m∏
i=1

(βn+m−ℓ
i + y(x− βi)f(βi)g

′(βi))

has degree at most m− 2 in y, so â(x) = 0 = disc(g)aℓ(x) as desired.

31

Recall that for coprime polynomials f, g ∈ F[x], the coefficients of the Bézout coefficients a, b ∈
F[x] appear in the last column of Syl(f, g)−1. Using the fact that Syl(f, g)−1 = 1

res(f,g) adj Syl(f, g)

and that both res(f, g) and adj Syl(f, g) can be computed in AC0, we see that Syl(f, g)−1 can be
computed in AC0, provided that Syl(f, g)−1 exists. This yields an AC0 algorithm to compute the
Bézout coefficients of two coprime polynomials, which we record in the following corollary. We will
remove the requirement that f and g are coprime later in Section 8.

Corollary 6.8. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Suppose that gcd(f, g) = 1.
Then the Bézout coefficients of f and g can be computed in AC0.

As a second corollary of Theorem 6.7, we obtain an AC0 algorithm to invert triangular Toeplitz
matrices. This follows from the simple fact that a triangular Toeplitz matrix can be embedded as a
block of the Sylvester matrix for a particular pair of polynomials. A different AC0 algorithm for this
problem was described by Bini [Bin84].

Corollary 6.9. Let F be a field of characteristic zero or characteristic greater than n. Let A ∈ Fn×n

be a triangular Toeplitz matrix. Then the inverse A−1 can be computed in AC0.

Proof. Write

A =


a0 a1 a2 · · · an−1

0 a0 a1 · · · an−2

0 0 a0 · · · an−3

...
...

...
. . .

...
0 0 0 · · · a0

.

Let f(x) :=
∑n−1

i=0 aix
i and let g(x) := xn−1. Observe that the Sylvester matrix Syl(f, g) is a 2n×2n

matrix that decomposes into n× n blocks as

Syl(f, g) =

(
B In
A 0

)
,

where B is an n×n matrix corresponding to the coefficients of f and In is the n×n identity matrix.
The inverse of Syl(f, g) has the block decomposition

Syl(f, g)−1 =

(
0 A−1

In −BA−1

)
.

In particular, the upper-right n× n block of Syl(f, g)−1 corresponds to A−1. Thus, we can compute
A−1 in AC0 by inverting Syl(f, g) using Theorem 6.7.

6.4 Inverting the Bézout Matrix

In this subsection, we design an algorithm to compute the inverse of the Bézout matrix Bezn(f, g)
of two polynomials. This is an easy corollary of the fact that we can compute the Bézout coefficients
of coprime polynomials in AC0.

Theorem 6.10. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Let δ = max(deg(f), deg(g)).
Suppose that gcd(f, g) = 1, so that the matrix Bezδ(f, g) is invertible. Then the inverse Bezδ(f, g)

−1

can be computed in AC0.

32

Proof. Without loss of generality, suppose that δ = deg(f). By Proposition 2.23, to invert Bezδ(f, g),
it suffices to compute a polynomial p ∈ F[x] of degree at most n − 1 such that p(x)g(x) ≡ 1
(mod f(x)). The desired polynomial p is precisely the Bézout coefficient of g, which we can compute
in AC0 using Corollary 6.8.

7 Operations on Roots

In this section, we develop tools to manipulate the factors of univariate polynomials without having
explicit access to the factorization of a polynomial. These results are the technical highlight of this
work and will be essential for our AC0 algorithm for the GCD.

7.1 Filtering

All of the algorithms we have seen so far proceed by computing symmetric functions of the roots of
two univariate polynomials f and g. To compute the GCD, we also need a means of comparing the
(multisets of) roots of polynomials. The algorithm of Theorem 6.1 for the resultant tells us if f and
g share a common root, but the resultant itself does not tell us any more about how the roots of
f and g compare. We can learn more by inspecting other elementary symmetric functions of the
evaluations of g at the roots of f (and vice-versa). Through a careful application of Lemma 5.3, we
can filter the common roots of f and g out of f (and likewise, out of g), as we now illustrate.

Let

f(x) :=
n∏

i=1

(x− αi)
d∏

i=1

(x− γi)

g(x) :=
m∏
i=1

(x− βi)
d∏

i=1

(x− γi)

be two squarefree polynomials, where α1, . . . , αn, β1, . . . , βm, γ1, . . . , γd are n+m+ d distinct field
elements. Although the values of n, m, and d are known to us for the purpose of analysis, these
values are unknown to the algorithm. Our goal is to compute

∏d
i=1(x − γi), which allows us to

distinguish the shared roots of f and g from the set of all roots of f . Note that this will allow us to
compute the GCD when f and g are squarefree, which represents serious progress towards a general
algorithm for the GCD!

Let y be a fresh variable and consider the polynomial

h(x, y) := (y − x) g(x),

viewed as an element of F(y)[x]. The evaluations of h(x, y) at the roots of f(x) are given by

λ1 := h(α1, y) = (y − α1) g(α1) ̸= 0

...

λn := h(αn, y) = (y − αn) g(αn) ̸= 0

λn+1 := h(γ1, y) = (y − γ1) g(γ1) = 0

...

λn+d := h(γd, y) = (y − γd) g(γd) = 0.

33

By taking h to be a multiple of g, we ensure that h(x, y) vanishes whenever we substitute a root of
g for x. Applying Lemma 5.3, we can compute

n∏
i=1

λi =
n∏

i=1

(y − αi)g(αi)

piecewise in AC0. Normalizing this polynomial to have leading coefficient 1 yields
∏n

i=1(y − αi),
which is precisely the product of factors of f that are not shared with g. From here, we can obtain∏d

i=1(y − γi) as the quotient
d∏

i=1

(y − γi) =
f(y)∏n

i=1(y − αi)
,

which can be computed in AC0 using Lemma 4.1.
When the polynomials f and g are not squarefree, the algorithm sketched above separates the

factors of f into two sets: those that correspond to roots of g, and those that are not roots of g. The
factors of f maintain their multiplicity in the output of this algorithm. We can use this to compute
a polynomial h such that h and gcd(f, g) have the same set of irreducible factors, but possibly with
different multiplicities. Later in Section 8, we will see how to compute the GCD with the correct
multiplicities.

We now formalize the result of the preceding sketch.

Lemma 7.1. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Suppose that f factors as∏n

i=1(x− αi)
ai . Then the coefficients of the polynomials

fg=0(x) :=
∏

i:g(αi)=0

(x− αi)
ai

fg ̸=0(x) :=
∏

i:g(αi)̸=0

(x− αi)
ai

can be computed piecewise in AC0.

Proof. Let y be a fresh variable. Define h(x, y) ∈ F[x, y] as

h(x, y) := (y − x) g(x).

For a root αi of f , the polynomial y − αi is clearly nonzero, so h(αi, y) = 0 if and only if g(αi) = 0.
By Lemma 5.3, we can compute the polynomial

r(y) :=
∏

i:g(αi)̸=0

h(αi, y) =
∏

i:g(αi)̸=0

(y − αi)
aig(αi)

ai

piecewise in AC0. The leading coefficient of r(y) is given by
∏

i:g(αi)̸=0 g(αi)
ai . By interpolating the

coefficients of r(y) and normalizing r(y) to have leading coefficient 1, we obtain∏
i:g(αi)̸=0

(y − αi)
ai = fg ̸=0(y).

We then compute fg=0(x) in AC0 using the identity fg=0(x) =
f(x)

fg ̸=0(x)
and Lemma 4.1.

34

The preceding lemma easily generalizes to the case where we have multiple polynomials
g1, . . . , gm ∈ F[x] and want to extract from f all factors that correspond to common roots of
g1, . . . , gm. As we saw in the proof of Lemma 7.1, multiplying (y−x) by g(x) suppressed the common
roots of f and g. To handle multiple polynomials g1, . . . , gm, we need to find a polynomial in x
whose roots are exactly the common roots of the gi. If we add a fresh variable z, then this is easy to
do with the polynomial

g(x, z) := g1(x) + zg2(x) + · · ·+ zm−1gm(x).

We now extend Lemma 7.1 to filter out the common roots of multiple polynomials from a given
polynomial f . The proof is a straightforward generalization of the proof of Lemma 7.1 using g(x, z)
in place of g(x).

Lemma 7.2. Let F be a field of characteristic zero or characteristic greater than d. Let f, g1, . . . , gm ∈
F[x] be univariate polynomials of degree at most d given by their coefficients. Let

V := {α ∈ F : g1(α) = · · · = gm(α) = 0}

be the set of common roots of g1, . . . , gm. Suppose that f factors as
∏n

i=1(x − αi)
ai. Then the

coefficients of the polynomials

f∈V (x) :=
∏

i:αi∈V
(x− αi)

ai

f/∈V (x) :=
∏

i:αi /∈V

(x− αi)
ai

can be computed piecewise in AC0.

Proof. Let y and z be fresh variables. Define g(x, z) ∈ F[x, z] as

g(x, z) :=

m∑
i=1

zi−1gi(x)

and define h(x, y, z) ∈ F[x, y, z] by

h(x, y, z) := (y − x)g(x, z).

For a root αi of f , the polynomial y−αi is nonzero, so h(αi, y, z) = 0 if and only if g(αi, z) = 0, which
occurs exactly when g1(αi) = · · · = gm(αi) = 0. By Lemma 5.3, we can compute the polynomial

r(y, z) :=
∏

i:αi /∈V

h(αi, y, z) =
∏

i:αi /∈V

(y − αi)
aig(αi, z)

ai

piecewise in AC0.
For each i such that αi /∈ V , let

ji := max{j ∈ [m] : gj(αi) ̸= 0}.

View r(y, z) as a polynomial in z with coefficients in F[y]. The leading coefficient of the term

(y − αi)
aig(αi, z)

ai = (y − αi)
ai(g1(αi) + zg2(αi) + · · ·+ zm−1gm(αi))

ai

35

is
(y − αi)

aigji(αi)
ai .

Leading coefficients are homomorphic with respect to multiplication, so the leading coefficient of
r(y, z) (as a polynomial in F[y][z]) is given by

s(y) :=
∏

i:αi /∈V

(y − αi)
aigji(αi)

ai .

Because deg(r(y, z)) ⩽ dm, the coefficients of r(y, z) can be computed in AC0 via Lemma 2.7. Using
these coefficients as test circuits (ordered from high to low degree), we can branch and continue the
computation piecewise using the leading coefficient s(y) of r(y, z).

As a polynomial in y, the leading coefficient of s(y) itself is
∏

i:αi /∈V gji(αi)
ai . By interpolating

the coefficients of s(y) using Lemma 2.7, we can normalize s(y) to have leading coefficient 1. This
normalization incurs another branching operation using the coefficients of s(y) as the test circuits, as
we do not know the precise degree of s(y). This yields an AC0 circuit that computes the polynomial∏

i:αi /∈V (y − αi)
ai = f/∈V (y). We can then use the identity f∈V (x) = f(x)

f/∈V (x) and Lemma 4.1 to
compute f∈V in AC0.

7.2 Thresholding

In the previous subsection, we saw how to distinguish the common roots of two polynomials from
the roots of a single polynomial. To compute the GCD, we also need to distinguish between roots
of a polynomial of different multiplicities. As we shall see, this can be done as a straightforward
application of Lemma 7.2.

Let f, g ∈ F[x] be univariate polynomials and suppose that f and g factor as

f(x) =

n∏
i=1

(x− αi)
ai

g(x) =

n∏
i=1

(x− αi)
bi .

Here, we have switched notation from previous sections, and now take α1, . . . , αn ∈ F to be the
union of the roots of f and g, as this will be convenient for us here. Because the αi are the union of
the roots of f and g, some of the ai or bi may be zero.

Recall that a point α ∈ F is a root of f of multiplicity r if and only if f and its first r − 1
derivatives vanish at α, i.e.,

f(α) = f ′(α) = · · · = f (r−1)(α) = 0.

This suggests that we can distinguish between factors of f of different multiplicities by invoking
Lemma 7.2 with f, f ′, . . . , f (r−1) as the filter polynomials. More generally, we can filter the roots of
f by their multiplicity in g.

For a parameter r ∈ N, let fg<r be the polynomial defined as

fg<r(x) :=
∏

i:bi<r

(x− αi)
ai .

That is, fg<r selects from f the factors (x− αi) that occur with multiplicity less than r in g, but
preserves the multiplicity ai with which (x − αi) occurs in f . The next lemma describes an AC0

algorithm that piecewise computes the coefficients of fg<r given the coefficients of f and g and the
value of r.

36

Lemma 7.3. Let F be a field of characteristic zero or characteristic greater than d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Suppose that f and g factor
as f(x) =

∏n
i=1(x− αi)

ai and g(x) =
∏n

i=1(x− αi)
bi , where αi ∈ F and ai, bi ∈ N. Let r ∈ N. Then

the coefficients of the polynomials

fg⩾r(x) :=
∏

i:bi⩾r

(x− αi)
ai

fg<r(x) :=
∏

i:bi<r

(x− αi)
ai

can be computed piecewise in AC0.

Proof. Note that if r > deg(g), then fg⩾r = 1 and fg<r = f , so we may assume without loss of
generality that r ⩽ deg(g) < char(F). Define V⩾r ⊆ F to be the roots of g of multiplicity at least r.
Because r < char(F), we can express V⩾r as

V⩾r := {α ∈ F : (x− α)r | g(x)}
= {α ∈ F : g(α) = g(1)(α) = · · · = g(r−1)(α) = 0}.

Note that fg⩾r(x) and fg<r(x) satisfy

fg⩾r(x) =
∏

i:αi∈V⩾r

(x− αi)
ai

fg<r(x) =
∏

i:αi /∈V⩾r

(x− αi)
ai .

We can compute the coefficients of g(1)(x), . . . , g(r−1)(x) in AC0. A direct application of Lemma 7.2
computes the coefficients of fg⩾r(x) and fg<r(x) piecewise in AC0.

Suppose we are instead given multiple polynomials f, g1, . . . , gm ∈ F[x] that factor as

f(x) =
n∏

i=1

(x− αi)
ai

g1(x) =
n∏

i=1

(x− αi)
b1,i

...

gm(x) =

n∏
i=1

(x− αi)
bm,i .

Lemma 7.3 allows us to extract factors from f based on their multiplicity in one of the gi. Just
as Lemma 7.2 generalized Lemma 7.1 to allow for multiple filter polynomials, we can generalize
Lemma 7.3 to filter the roots of f according to their multiplicities in multiple polynomials, as the
following lemma shows.

Lemma 7.4. Let F be a field of characteristic zero or characteristic greater than d. Let f, g1, . . . , gm ∈
F[x] be univariate polynomials of degree at most d given by their coefficients. Suppose that f and gj

37

factor as f(x) =
∏n

i=1(x − αi)
ai and gj(x) =

∏n
i=1(x − αi)

bj,i, where αi ∈ F and ai, bj,i ∈ N. Let
r1, . . . , rm ∈ N. Then the coefficients of the polynomials

fg⩾r(x) :=
∏

i:b1,i⩾r1∧···∧bm,i⩾rm

(x− αi)
ai

fg ̸⩾r(x) :=
∏

i:b1,i<r1∨···∨bm,i<rm

(x− αi)
ai

can be computed piecewise in AC0.

Proof. Note that if ri > deg(gi) for some i ∈ [m], then fg⩾r = 1 and fg ̸⩾r = f , so we may assume
without loss of generality that ri ⩽ deg(gi) < char(F) for all i ∈ [m].

Define V⩾r ⊆ F to be the set of α ∈ F that occur with multiplicity at least ri in gi for all i ∈ [m].
Because ri < char(F) for all i ∈ [m], we can write V⩾r as

V⩾r :=

m⋂
i=1

{α ∈ F : (x− α)ri | gi(x)}

=
m⋂
i=1

{α ∈ F : gi(α) = g
(1)
i (α) = · · · = g

(ri−1)
i (α) = 0}

= {α ∈ F : g
(j)
i (α) = 0 ∀i ∈ [m], j ∈ {0, 1, . . . , ri − 1}}.

Note that fg⩾r(x) and fg ̸⩾r(x) satisfy

fg⩾r(x) =
∏

i:αi∈V⩾r

(x− αi)
ai

fg ̸⩾r(x) =
∏

i:αi /∈V⩾r

(x− αi)
ai .

We can compute the coefficients of g(j)i (x) for all i ∈ [m] and j ∈ {0, 1, . . . , ri − 1} in AC0. A direct
application of Lemma 7.2 computes the coefficients of fg⩾r(x) and fg ̸⩾r(x) piecewise in AC0.

Remark 7.5. Although Lemma 7.4 holds for an arbitrary threshold vector r ∈ Nm, our applications
only make use of the case where all entries of r are equal. ♢

7.3 Squarefree Decomposition

We conclude this section with an application of Lemma 7.3 to computing the squarefree decomposition
of a univariate polynomial f ∈ F[x]. Typically, the squarefree decomposition is computed by reduction
to the GCD. If f factors as f =

∏n
i=1(x− αi)

ai , then it is easy to show that

gcd(f, f ′, . . . , f (r−1)) =

n∏
i=1

(x− αi)
max(ai−r,0).

Denoting the squarefree decomposition of f by (f1, . . . , fm), one can write fr as

fr =
gcd(f, f ′, . . . , f (r−1))

gcd(f, f ′, . . . , f (r))
.

38

This reduction, combined with an NC2 algorithm for the GCD of many polynomials, leads to the
NC2 algorithm of von zur Gathen [vzGat84] for the squarefree decomposition. In his survey, von
zur Gathen [vzGat86] asked if there is an NC1 algorithm to compute the squarefree decomposition.
As an application of Lemma 7.3, we will show that the squarefree decomposition can in fact be
computed piecewise in AC0.

We note that while the squarefree decomposition is usually obtained by reducing to the GCD,
this is not the route we take. Our techniques seem to naturally proceed in the reverse direction,
instead computing the GCD by reducing to the squarefree decomposition.

Lemma 7.6. Let F be a field of characteristic zero or characteristic greater than d. Let f ∈ F[x] be
a univariate polynomial of degree d given by its coefficients. Then the squarefree decomposition of f
can be computed piecewise in AC0.

Proof. Suppose that f factors as

f(x) =
n∏

i=1

(x− αi)
ai .

Let d := deg(f). For all r ∈ [d], we can compute

f⩽r(x) :=
∏

i:ai⩽r

(x− αi)
ai

in AC0 piecewise using Lemma 7.3. We then compute, for all r ∈ [d], the polynomials

f=r(x) :=
∏

i:ai=r

(x− αi)
ai =

f⩽r(x)

f⩽r−1(x)

in AC0 using Lemma 4.1. Observe that if (f1, . . . , fd) is the squarefree decomposition of f , then the
fi satisfy fr(x)

r = f=r(x). We can obtain fr(x) in AC0 by applying Lemma 4.2 to f=r(x).

As a corollary of Lemma 7.6, we can also compute the squarefree part of a univariate polynomial
f ∈ F[x] piecewise in AC0.

Corollary 7.7. Let F be a field of characteristic zero or characteristic greater than d. Let f ∈ F[x]
be a univariate polynomial of degree d given by its coefficients. Then the squarefree part of f can be
computed piecewise in AC0.

Proof. By Lemma 7.6, the squarefree decomposition (f1, . . . , fm) of f can be computed piecewise in
AC0. The squarefree part of f is given by

∏m
i=1 fi. We can compute the coefficients of

∏m
i=1 fi in

AC0 by Lemma 2.7.

8 Greatest Common Divisor and Least Common Multiple

In this section, we describe piecewise AC0 algorithms to compute the greatest common divisor and
least common multiple of m univariate polynomials f1, . . . , fm ∈ F[x]. We also describe a piecewise
AC0 algorithm to compute the Bézout coefficients of a pair of polynomials f1, f2 ∈ F[x]. Our
algorithms for the greatest common divisor and least common multiple turn out to be straightforward
applications of Lemma 7.4 and Corollary 7.7. To compute the Bézout coefficients, we reduce to the
case where f1 and f2 are coprime by dividing out gcd(f1, f2) using Lemma 4.1, at which point we
can apply Corollary 6.8.

39

8.1 Two Polynomials

In this subsection, we compute the greatest common divisor, least common multiple, and Bézout
coefficients of a pair of polynomials, all in (piecewise) AC0. We start with the greatest common
divisor.

Theorem 8.1. Let F be a field of characteristic zero or characteristic greater than 2d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Then their greatest common
divisor gcd(f, g) can be computed piecewise in AC0.

Proof. Suppose that f and g factor as

f(x) =
n∏

i=1

(x− αi)
ai

g(x) =
n∏

i=1

(x− αi)
bi ,

where α1, . . . , αn ∈ F and ai, bi ∈ N. Note that some of the ai and bi may be zero. Let s(x) be the
squarefree part of f(x)g(x), i.e.,

s(x) :=

n∏
i=1

(x− αi).

We may compute s(x) piecewise in AC0 using Corollary 7.7.
For a parameter r ∈ N, let

s⩾r(x) :=
∏

i:ai⩾r∧bi⩾r

(x− αi).

We can compute s⩾r(x) piecewise in AC0 for all 1 ⩽ r ⩽ min(deg(f), deg(g)) by applying Lemma 7.4
to s(x), f(x), and g(x). Observe that

gcd(f(x), g(x)) =
n∏

i=1

(x− αi)
min(ai,bi)

=

min(deg(f),deg(g))∏
r=1

∏
i:min(ai,bi)⩾r

(x− αi)

=

min(deg(f),deg(g))∏
r=1

s⩾r(x),

so we can compute gcd(f, g) piecewise in AC0. We can then interpolate the coefficients of gcd(f, g)
in AC0 using Lemma 2.7.

As an easy corollary of Theorem 8.1, we obtain an AC0 algorithm to compute the least common
multiple of two polynomials.

Corollary 8.2. Let F be a field of characteristic zero or characteristic greater than 2d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Then lcm(f, g) can be
computed in piecewise AC0.

40

Proof. We can compute gcd(f(x), g(x)) piecewise in AC0 using Theorem 8.1. The coefficients of the
product f(x)g(x) can be computed in AC0 using Lemma 2.7. Using the identity

lcm(f(x), g(x)) =
f(x)g(x)

gcd(f(x), g(x))
,

we can compute lcm(f(x), g(x)) piecewise in AC0 using Lemma 4.1.

By combining Theorem 8.1 with Corollary 6.8, we obtain an AC0 algorithm to compute the
Bézout coefficients of any pair of polynomials.

Corollary 8.3. Let F be a field of characteristic zero or characteristic greater than 2d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Then the Bézout coefficients
of f and g can be computed piecewise in AC0.

Proof. Using Theorem 8.1 and Lemma 4.1, we can compute f̂(x) := f(x)
gcd(f(x),g(x)) and ĝ(x) :=

g(x)
gcd(f(x),g(x)) piecewise in AC0. By construction, we have gcd(f̂(x), ĝ(x)) = 1. Observe that the

Bézout coefficients of f̂(x) and ĝ(x) are equal to those of f(x) and g(x). We may compute the
Bézout coefficients of f̂(x) and ĝ(x) in AC0 using Corollary 6.8.

8.2 Multiple Polynomials

We now extend the results of the previous subsection to compute greatest common divisors and least
common multiples of many polynomials. The proof of Theorem 8.1 easily generalizes to compute
the GCD of many polynomials.

Theorem 8.4. Let F be a field of characteristic zero or characteristic greater than md. Let
f1, . . . , fm ∈ F[x] be univariate polynomials of degree at most d given by their coefficients. Then
their greatest common divisor gcd(f1, . . . , fm) can be computed piecewise in AC0.

Proof. Suppose that f1, . . . , fm factor as

f1(x) =

n∏
i=1

(x− αi)
a1,i

...

fm(x) =

n∏
i=1

(x− αi)
am,i ,

where α1, . . . , αn ∈ F and aj,i ∈ N. Note that some of the aj,i may be zero. Let s(x) be the squarefree
part of f1(x) · · · fm(x), i.e.,

s(x) :=
n∏

i=1

(x− αi).

We may compute s(x) piecewise in AC0 using Corollary 7.7.
For a parameter r ∈ N, let

s⩾r(x) :=
∏

i:a1,i⩾r∧···∧am,i⩾r

(x− αi).

41

Let δ := mini∈[m] deg(fi). We can compute the coefficients of s⩾r(x) in AC0 for all 1 ⩽ r ⩽ δ by
applying Lemma 7.4 to s(x) and f1(x), . . . , fm(x).

Observe that

gcd(f1(x), . . . , fm(x)) =
n∏

i=1

(x− αi)
min(a1,i,...,am,i)

=

δ∏
r=1

∏
i:min(a1,i,...,am,i)⩾r

(x− αi)

=

δ∏
r=1

s⩾r(x),

so we can compute gcd(f1(x), . . . , fm(x)) piecewise in AC0. We can then interpolate the coefficients
of gcd(f1(x), . . . , fm(x)) in AC0 using Lemma 2.7.

Using Theorem 8.4, we can also compute the least common multiple of multiple polynomials
f1(x), . . . , fm(x) in AC0. Although the identity f(x)g(x) = gcd(f(x), g(x)) lcm(f(x), g(x)) no longer
holds for m ⩾ 3 polynomials, a suitable analogue of this identity will allow us to reduce the task of
computing lcm(f1, . . . , fm) to computing gcd(f1, . . . , fm). The following elementary lemma relates
the GCD and LCM of m ⩾ 3 polynomials.

Lemma 8.5. Let F be any field. Let f1, . . . , fm ∈ F[x] be univariate polynomials. Let p ∈ F[x] be a
polynomial such that fi | p for all i ∈ [m]. Then

lcm(f1, . . . , fm) =
p

gcd
(

p
f1
, . . . , p

fm

) .
Using Lemma 8.5, we now compute the LCM of many polynomials in AC0.

Corollary 8.6. Let F be a field of characteristic zero or characteristic greater than m2d2. Let
f1, . . . , fm ∈ F[x] be univariate polynomials of degree at most d given by their coefficients. Then
their least common multiple lcm(f1, . . . , fm) can be computed piecewise in AC0.

Proof. Let s(x) be the squarefree part of f1(x) · · · fm(x). We may compute s(x) piecewise in AC0

using Corollary 7.7. Without loss of generality, suppose that d = maxi∈[m](deg(fj)). For each
i ∈ [m], the factors of fi appear in fi with multiplicity at most d, and each factor of fi appears as a
factor of s, so it follows that fi | sd.

By Lemma 8.5, we have

lcm(f1, . . . , fm) =
sd

gcd
(
sd

f1
, . . . , sd

fm

) .
Using Lemma 4.1, we can compute the coefficients of s(x)d/f1(x), . . . , s(x)d/fm(x) in AC0. Note
that deg(s) ⩽ md, so deg(sd/fi) ⩽ deg(sd) ⩽ md2. Because char(F) > m2d2, we can compute
gcd
(
s(x)d

f1(x)
, . . . , s(x)d

fm(x)

)
piecewise in AC0 using Theorem 8.4. We can then compute the LCM by taking

the quotient as above, which can be done in AC0 using Lemma 4.1.

42

9 Arbitrary Functions of Root Multiplicities

The GCD and LCM manipulate the multiplicities of the roots of two polynomials f and g in specific
ways: the GCD assigns a root α its minimum multiplicity in f and g, while the LCM assigns α its
maximum multiplicity. What other functions can we apply to the root multiplicities in AC0? We
discuss this first in the case of two polynomials, where any function of the root multiplicities can
be implemented in AC0, and then handle the case of many polynomials, where again any function
(reasonably encoded) can be implemented in AC0.

9.1 Two Polynomials

We now consider a generalization of the problem of computing greatest common divisors and least
common multiples. Suppose we have two polynomials f, g ∈ F[x], which factor as

f(x) =
n∏

i=1

(x− αi)
ai

g(x) =

n∏
i=1

(x− αi)
bi ,

where α1, . . . , αn ∈ F are the union of the sets of roots of f and g and ai, bi ∈ N, where some of the
ai or bi may be zero. The greatest common divisor and least common multiple are given by

gcd(f(x), g(x)) =
n∏

i=1

(x− αi)
min(ai,bi)

lcm(f(x), g(x)) =
n∏

i=1

(x− αi)
max(ai,bi).

That is, to form the greatest common divisor, if a factor (x− αi) appears with multiplicity ai in
f and multiplicity bi in g, the same factor should appear with multiplicity min(ai, bi) in gcd(f, g).
The least common multiple replaces min(ai, bi) with max(ai, bi). As we saw in Section 8, we can
implement these minimum and maximum operations without directly factorizing f and g.

What other functions of these multiplicities can we implement in (piecewise) AC0? Addition is
easy, as we have

f(x) · g(x) =
n∏

i=1

(x− αi)
ai+bi .

What about products of multiplicities? That is, can we efficiently compute the coefficients of the
polynomial

(f ⋄ g)(x) :=
n∏

i=1

(x− αi)
aibi?

It is not obvious that the coefficients of f ⋄ g can even be expressed algebraically in terms of the
coefficients of f and g, much less that there is an efficient algorithm for this problem. However, a
modification of our GCD algorithm from Theorem 8.1 enables us to compute f ⋄ g, and indeed solve
a more general problem.

Suppose we are given an arbitrary function P : N× N → N and we would like to compute the
polynomial

(f ⋄P g)(x) :=

n∏
i=1

(x− αi)
P (ai,bi).

43

By combining our algorithms for the squarefree decomposition and the GCD, we can design a
piecewise AC0 algorithm for f ⋄P g in a rather straightforward manner.

We start with the case where the function P : N × N → N is a delta function. That is, we
consider functions of the form δi,j : N× N → N given by

δi,j(a, b) :=

{
1 if a = i and b = j

0 otherwise.

Every function P : N × N → N can be expressed as a sum of delta functions, so handling delta
functions will allow us to easily handle arbitrary functions.

Lemma 9.1. Let F be a field of characteristic zero or characteristic greater than 2d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Suppose that f and g factor
as

f(x) =
n∏

i=1

(x− αi)
ai

g(x) =
n∏

i=1

(x− αi)
bi ,

where α1, . . . , αn ∈ F and ai, bi ∈ N, where some of the ai or bi may be zero. Then the coefficients
of the polynomial

(f ⋄δi,j g)(x) :=
∏

k:ak=i,bk=j

(x− αk)

can be computed piecewise in AC0.

Proof. Without loss of generality, let d = max(deg(f), deg(g)). Let (f1, . . . , fd) and (g1, . . . , gd) be
the squarefree decompositions of f and g, respectively. Recall that, by definition of the squarefree
decomposition, we have f =

∏
i f

i
i , each polynomial fi is squarefree, and gcd(fi, fj) = 1 when i ̸= j,

and likewise for g. For notational ease, define f0 := 1 and g0 := 1.
Observe that for i, j ∈ {0, 1, . . . , d}, we have

gcd(fi(x), gj(x)) =
∏

k:ak=i,bk=j

(x− αk) = (f ⋄δi,j g)(x).

Thus, we can compute f ⋄δi,j g piecewise in AC0 by first computing the squarefree decompositions of
f and g using Lemma 7.6 and then computing gcd(fi, gj) via Theorem 8.1.

We now compute f ⋄P g for an arbitrary function P : N×N → N by writing P as a sum of delta
functions.

Theorem 9.2. Let F be a field of characteristic zero or characteristic greater than 2d. Let f, g ∈ F[x]
be univariate polynomials of degree at most d given by their coefficients. Let P : N× N → N be an
arbitrary function. Suppose that f and g factor as

f(x) =

n∏
i=1

(x− αi)
ai

g(x) =

n∏
i=1

(x− αi)
bi ,

44

where α1, . . . , αn ∈ F and ai, bi ∈ N, where some of the ai or bi may be zero. Then the coefficients
of the polynomial

(f ⋄P g)(x) :=
n∏

i=1

(x− αi)
P (ai,bi)

can be computed piecewise in AC0.

Proof. Using Lemma 9.1, we can compute

(f ⋄δi,j g)(x) =
∏

k:ak=i,bk=j

(x− αi)

piecewise in AC0. We can then write f ⋄P g as

(f ⋄P g)(x) =

d∏
i=0

d∏
j=0

∏
k:ak=i,bk=j

(x− αk)
P (i,j)

=

d∏
i=0

d∏
j=0

(f ⋄δi,j g)(x)
P (i,j).

This results in a piecewise AC0 circuit that computes f ⋄P g. Applying Lemma 2.7 yields a piecewise
AC0 circuit that computes the coefficients of f ⋄P g.

9.2 Multiple Polynomials

Just as the greatest common divisor and least common multiple can be defined for a set of more
than two polynomials, we can extend the setting and result of Theorem 9.2 to more polynomials.
Suppose we are given polynomials f1, . . . , fm ∈ F[x] where fi factors as

fi(x) =

n∏
j=1

(x− αj)
ai,j ,

where α1, . . . , αn ∈ F are the union of the set of roots of f1, . . . , fm. For a function P : Nm → N, we
can define

⋄P (f1, . . . , fm) :=
n∏

j=1

(x− αj)
P (a1,j ,...,am,j).

As we will see, an appropriate generalization of Theorem 9.2 allows us to compute ⋄P (f1, . . . , fm) in
AC0.

Here, we have two results, depending on how the function P : Nm → N is encoded. Our first result
works with the dense representation, where the function P is specified as a list of input-output pairs.
If the polynomials f1, . . . , fm have degree bounded by d, then the polynomial ⋄P (f1, . . . , fm) depends
only on the restricted function P : {0, 1, . . . , d}m → N, which can be represented by a list of (d+1)m

values. Denote by |P |d the number of nonzero outputs of the restriction P : {0, 1, . . . , d}m → N.
We will construct a circuit of constant depth and size polynomial in m and |P |d that computes
⋄P (f1, . . . , fm).

Our second result handles a more succinct representation of the function P : Nm → N. Namely,
we consider functions represented by a special kind of circuit over the integers we call a “tropical
threshold circuit.” (See Definition 9.5.) Again, we show that ⋄P (f1, . . . , fm) can be computed

45

efficiently with respect to the size of the given tropical threshold circuit that computes P . When the
circuit representing P is itself of constant depth, we again compute ⋄P (f1, . . . , fm) in AC0.

We start by computing ⋄P (f1, . . . , fm) when P : Nm → N is given in the sparse representation.
As in the case of two polynomials, we start with delta functions.

Lemma 9.3. Let F be a field of characteristic zero or characteristic greater than md. Let f1, . . . , fm ∈
F[x] be univariate polynomials of degree at most d given by their coefficients. Suppose that fi factors
as

fi(x) =

n∏
j=1

(x− αj)
ai,j

where α1, . . . , αn ∈ F and ai,j ∈ N, where some of the ai,j may be zero. Then for any i1, . . . , im ∈
{0, 1, . . . , d}, the coefficients of the polynomial

⋄δi1,...,im (f1, . . . , fm) :=
∏

k:a1,k=i1∧···∧am,k=im

(x− αk)

can be computed piecewise in AC0.

Proof. Without loss of generality, let d = maxi∈[m] deg(fi). For each i ∈ [m], let (fi,1, . . . , fi,d) be
the squarefree decomposition of fi. For notational ease, define fi,0 := 1.

Observe that

gcd(f1,i1(x), . . . , fm,im(x)) =
∏

k:a1,k=i1∧···∧am,k=im

(x− αk) = ⋄δi1,...,im (f1, . . . , fm).

Thus, we can compute ⋄δi1,...,im (f1, . . . , fm) piecewise in AC0 by first computing the squarefree
decompositions of fi for all i ∈ [m] using Lemma 7.6 and then computing gcd(f1,i1 , . . . , fm,im) via
Theorem 8.4.

We now extend Lemma 9.3 to compute ⋄P (f1, . . . , fm) for arbitrary functions P : Nm → N.

Theorem 9.4. Let F be a field of characteristic zero or characteristic greater than md. Let
f1, . . . , fm ∈ F[x] be univariate polynomials of degree at most d given by their coefficients. Let
P : Nm → N be a function given in the dense representation. Suppose that fi factors as

fi(x) =
n∏

j=1

(x− αj)
ai,j

where α1, . . . , αn ∈ F and ai,j ∈ N, where some of the ai,j may be zero. Then the coefficients of the
polynomial

⋄P (f1, . . . , fm) :=

n∏
j=1

(x− αj)
P (a1,j ,...,am,j)

can be computed piecewise in AC0.

Proof. Using Lemma 9.3, we can compute

⋄δi1,...,im (f1, . . . , fm) =
∏

k:a1,k=i1∧···∧am,k=im

(x− αk)

46

piecewise in AC0. We can then write ⋄P (f1, . . . , fm) as

⋄P (f1, . . . , fm)(x) =
d∏

i1=0

· · ·
d∏

im=0

∏
k:a1,k=i1∧···∧am,k=im

(x− αk)
P (i1,...,im)

=
d∏

i1=0

· · ·
d∏

im=0

⋄δi1,...,im (f1, . . . , fm)P (i1,...,im).

This yields a piecewise circuit of constant depth and size mO(1)|P |d that computes ⋄P (f1, . . . , fm),
where |P |d denotes the number of nonzero outputs of the restriction P : {0, 1, . . . , d}m → N. Applying
Lemma 2.7 yields a piecewise AC0 circuit that computes the coefficients of ⋄P (f1, . . . , fm).

For constant m, Theorem 9.4 yields a circuit for ⋄P (f1, . . . , fm) of size that is polynomially-
bounded in the description length of f1, . . . , fm. When m is large, for which functions P : Nm → N
can we compute ⋄P (f1, . . . , fm) more efficiently than Theorem 9.4? We can do this when P is one of
the m-ary addition, maximum, minimum, or threshold functions. By an m-ary threshold function,
we mean a Boolean function of the form

Thrr(a1, . . . , am) =

{
1 if ai ⩾ ri for all i ∈ [m],

0 otherwise,

where r ∈ Nm is a fixed vector of thresholds, or its negation ¬Thrr.
To compute ⋄P (f1, . . . , fm) when P is the addition function, we use the basic fact that

⋄+(f1, . . . , fm) =
m∏
i=1

fi.

For the maximum and minimum functions, this is a straightforward application of the identities

⋄max(f1, . . . , fm) = lcm(f1, . . . , fm)

⋄min(f1, . . . , fm) = gcd(f1, . . . , fm)

combined with Theorem 8.4 and Corollary 8.6. When P is a threshold function Thrr or its negation,
the polynomial ⋄P (f1, . . . , fm) corresponds to one of the outputs of Lemma 7.4.

Naturally, if the function P : Nm → N has a succinct description in terms of these basic functions,
then we can also hope to compute ⋄P (f1, . . . , fm) efficiently. We formalize this notion of complexity
using tropical threshold circuits, defined below. The adjective “tropical” refers to tropical geometry
[MS15], a form of algebraic geometry done over the tropical semiring (R ∪ {+∞},min,+) where
addition and multiplication are replaced by minimum and addition, respectively.

Definition 9.5. A tropical threshold circuit is a directed acyclic graph. Vertices of in-degree zero
are called input gates and each are labeled by some variable xi. Vertices of positive in-degree are
called internal gates and are labeled by an element of {+, c×,min,max,Thrr,¬Thrr}. Vertices of
out-degree zero are called output gates. Each gate computes a function Nm → N in the natural way.
The size of the circuit is the number of gates in the circuit and the sum of all constants appearing in
c× gates. The depth of the circuit is the length of the longest path from an input gate to an output
gate. ♢

We now state a version of Theorem 9.4 that shows we can compute ⋄P (f1, . . . , fm) in size and
depth proportional to the size and depth of a tropical threshold circuit that computes the function
P : Nm → N.

47

Theorem 9.6. Let F be a field of characteristic zero. Let f1, . . . , fm ∈ F[x] be univariate polynomials
of degree at most d given by their coefficients. Let P : Nm → N be a function computed by a tropical
threshold circuit of size s and depth ∆. Suppose that fi factors as

fi(x) =

n∏
j=1

(x− αj)
ai,j

where α1, . . . , αn ∈ F and ai,j ∈ N, where some of the ai,j may be zero. Then the coefficients of the
polynomial

⋄P (f1, . . . , fm) :=

n∏
j=1

(x− αj)
P (a1,j ,...,am,j)

can be computed piecewise by a circuit of depth O(∆) and size (smd)O(1).

Proof. We proceed by induction on ∆, simulating the tropical threshold circuit that computes P .
When ∆ = 1, the function P must be computed by a single gate of a tropical threshold circuit.
The following case analysis shows that for each gate type in a tropical threshold circuit, there is a
piecewise arithmetic circuit of size (md)O(1) and depth O(1) that computes ⋄P (f1, . . . , fm).

• If P is computed by an addition gate, we have

⋄P (f1, . . . , fm) =
m∏
i=1

fi,

which can clearly be computed by a circuit of size (md)O(1) and depth O(1).

• If P is computed by a c× gate, then

⋄P (f) = f c,

which is easily computed by a circuit of size (md)O(1) + s and depth O(1). Here, we use the
fact c ⩽ s by definition, so implementing the powering operation f 7→ f c can be done with at
most s wires.

• If P is computed by a minimum gate, we have

⋄P (f1, . . . , fm) = gcd(f1, . . . , fm),

which can be computed piecewise by a circuit of size (md)O(1) and depth O(1) using Theorem 8.4.
Likewise, if P is computed by a maximum gate, we have

⋄P (f1, . . . , fm) = lcm(f1, . . . , fm),

which can be computed in the claimed size and depth using Corollary 8.6.

• Suppose P is computed by a threshold gate Thrr or its negation ¬Thrr. Let h(x) be the
squarefree part of f1(x) · · · fm(x). We can compute h piecewise with a circuit of size (md)O(1)

and depth O(1) using Corollary 7.7. By applying Lemma 7.4 to h and f1, . . . , fm with threshold
vector r, we obtain ⋄Thrr(f1, . . . , fm) and ⋄¬Thrr(f1, . . . , fm) piecewise using a circuit of size
(md)O(1) and depth O(1).

48

Overall, we obtain a circuit of size (md)O(1) and depth c for ⋄P (f1, . . . , fm), where c ∈ N is some
universal constant.

Suppose now that ∆ ⩾ 2. Let P1, . . . , Ps be the functions computed by the children of the output
gate in the tropical threshold circuit computing P . By induction, we can compute gi := ⋄Pi(f1, . . . , fm)
in size (smd)O(1) and depth c · (∆ − 1). Let Pout be the function labeling the output gate of the
circuit that computes P . By the same analysis as in the base case, we can compute

⋄Pout(g1, . . . , gs) = ⋄P (f1, . . . , fm)

using (md)O(1) additional gates and increasing the depth by c. This yields a circuit that computes
⋄P (f1, . . . , fm) of size (smd)O(1) and depth c ·∆ = O(∆) as claimed.

10 Extensions to Multivariate Polynomials

Suppose we are given an arithmetic circuit of size s that computes a multivariate polynomial f ∈ F[x].
What can we say, if anything, about the complexity of the factors of f? A landmark result of Kaltofen
[Kal89] shows that every irreducible factor of f can be computed by an arithmetic circuit of size
poly(s, deg(f)). This result is also constructive: there is a randomized polynomial-time algorithm
that receives a circuit for f as input and outputs circuits for the irreducible factors of f . This
was later extended to the black-box model by Kaltofen and Trager [KT90], where the factorization
algorithm is given access to an evaluation oracle for f and must implement an evaluation oracle for
each of the irreducible factors of f . Kaltofen’s algorithm raises a natural question: what other classes
of circuits are closed under factorization? By suitably modifying Kaltofen’s algorithm, Sinhababu
and Thierauf [ST21] showed that VBP, the class of polynomials computable by polynomial-size
arithmetic branching programs, is closed under factorization. It is an open question whether NC1 or
AC0 are closed under factorization, but partial results are known for both classes [DSY09; Oli16;
CKS19; DSS22]. The fact that factors of small circuits can themselves be computed by small circuits
is not only interesting in its own right, but it also plays a key role in the algebraic hardness versus
randomness paradigm [KI04]. To establish hardness-to-pseudorandomness results for weaker circuit
classes (where we have more hope of proving unconditional lower bounds), it would be enough to
show that these weaker classes are closed under factorization.

In this section, we provide evidence that AC0 and NC1 are closed under factorization by showing
that AC0 and NC1 are closed under the related operations of squarefree decomposition and GCD.
For this, we need to extend some of our results from the univariate to the multivariate setting. By
applying Lemma 7.6 in a straightforward manner, we show that for every polynomial f ∈ AC0, all
elements (f1, . . . , fm) of the squarefree decomposition of f can themselves be computed in AC0.
Likewise, when f ∈ NC1, all elements of the squarefree decomposition of f can be computed in NC1. A
similar application of Theorem 8.1 shows that AC0 and NC1 are closed under taking greatest common
divisors. Just like Kaltofen’s theorem on factorization, these results are algorithmic, where the
corresponding algorithms run in randomized polynomial time. In the case of AC0, these algorithms can
be derandomized in subexponential time by using the deterministic subexponential-time polynomial
identity testing algorithm of [LST21] for AC0 circuits.

Before moving to the details, a word on why it is reasonable for algorithms for univariate
polynomials to be applicable in the multivariate setting. Thanks to Gauss’s Lemma (Lemma 10.1),
questions related to multivariate factorization in F[x, y] ∼= F[x][y] are often reducible to questions
about factorization in F(x)[y]. That is, we can regard a multivariate polynomial f(x, y) ∈ F[x, y] as
a univariate polynomial in y whose coefficients come from the field K := F(x), and under certain
assumptions on f , enlarging the ring of coefficients from F[x] to F(x) does not affect the factorization

49

of f . In this setting, it is natural to apply our earlier univariate algorithms to solve factorization
problems. Although the field K contains elements of very high complexity, Lemma 2.7 implies
that when the input f is represented as a small arithmetic circuit, the K-coefficients of f are also
representable as small arithmetic circuits. This allows us to apply our machinery from the univariate
setting without a large blow-up in complexity.

Of course, we need to ensure that the answer to our problem over K(y) is the same as the answer
over F[x][y]. This is not always the case. For example, over F[x1, x2][y], we have

gcd(x1x2, x1) = x1,

whereas over F(x1, x2)[y], we have
gcd(x1x2, x1) = 1.

As we will see, Gauss’s Lemma guarantees that if the polynomial f ∈ F[x][y] is monic in y, then the
factorizations of f into irreducibles over F[x][y] and over F(x)[y] are the same. In particular, if we
were to take the GCD in K(y) of two monic polynomials, we would obtain the same result as the
GCD in F[x][y]. Although our input polynomials are not guaranteed to be monic, we will see that
there is a simple, standard way to reduce to the monic case.

10.1 Preliminaries on Polynomial Factorization and Identity Testing

We now recall some preliminary material on polynomial factorization and polynomial identity testing.
This material is standard, and the reader familiar with these problems can safely skip ahead to the
next subsection, returning here as necessary.

10.1.1 Gauss’s Lemma

We first state Gauss’s Lemma, which allows us to pass from F[x][y] to F(x)[y] when studying questions
related to polynomial factorization. The version of Gauss’s Lemma we state here suffices for our
purposes; for a more general statement of the lemma, see von zur Gathen and Gerhard [vzGG13,
Corollary 6.10].

Lemma 10.1 (Gauss’s Lemma [vzGG13, Corollary 6.10]). Let f ∈ F[x, y] be monic in y. Then f is
irreducible in F(x)[y] if and only if f is irreducible in F[x][y] ∼= F[x, y].

If a polynomial f ∈ F[x, y] is monic in y, then every irreducible factor of f must also be monic
in y, and so Gauss’s Lemma implies that the irreducible factors of f over F[x][y] are also irreducible
over F(x)[y]. In particular, for polynomials that are monic in y, their factorization into irreducibles
is the same in F[x][y] and F(x)[y].

Corollary 10.2. Let f ∈ F[x, y] be monic in y. Then the factorization of f into irreducibles is the
same over F(x)[y] and F[x][y].

Corollary 10.2 is useful for reducing multivariate factorization problems to univariate ones. If a
polynomial f ∈ F[x, y] is monic in y, then we lose no information about the factorization of f by
viewing f as a univariate polynomial in y with coefficients in the field F(x). A standard technique
to reduce to the monic case is to apply a random change of variables to a polynomial f ∈ F[x].

Lemma 10.3. Let f ∈ F[x] and let α ∈ Fn. Let d = deg(f) and let fd ∈ F[x] be the top-degree
homogeneous component of f . Let y be a fresh variable and define

f̂(x, y) := f(x+ y · α) = f(x1 + y · α1, . . . , xn + y · αn).

Then the following hold.

50

1. If fd(α) ̸= 0, then 1
fd(α)

f̂(x, y) is monic in y.

2. g(x) is an irreducible factor of f(x) in F[x] if and only if g(x+ y · α) is an irreducible factor
of f̂(x, y) in F[x, y].

Proof. Write f as a sum of monomials

f(x) =
∑
e∈Nn

cex
e.

Expand f̂(x, y) using the binomial theorem as

f̂(x, y) =
∑
e∈Nn

ce · (x+ y · α)e =
∑
e∈Nn

ce
∑

a+b=e

(
e

a

)
xaαby∥b∥1 ,

where
(
e
a

)
:=
∏n

i=1

(
ei
ai

)
. A term in the above summation is divisible by yd if and only if

∥∥b∥∥
1
⩾ d.

Each term in the above sum satisfies
∥∥b∥∥

1
⩽ ∥e∥1 and ∥e∥1 ⩽ deg(f) = d, so the terms divisible

by yd are those for which
∥∥b∥∥

1
= ∥e∥1, which implies b = e and consequently a = 0. Thus, the

coefficient of yd in the expansion of f̂(x, y) is given by∑
e∈Nn

ceα
e = fd(α).

Hence 1
fd(α)

f̂(x, y) is monic in y if fd(α) ̸= 0.
The second claim follows from the fact that the map (x, y) 7→ (x + y · α, y) is invertible with

inverse (x, y) 7→ (x − y · α, y). That is, suppose f(x) = g(x)h(x) where g is irreducible and h is
nonzero. Then it is clear that

f(x+ y · α) = g(x+ y · α) · h(x+ y · α),

so g(x+y ·α) is a factor of f(x+y ·α). To see that g(x+y ·α) is irreducible, suppose that g(x+y ·α)
factors as

g(x+ y · α) = r(x, y) · s(x, y).
Then we have

g(x) = r(x− y · α, y) · s(x− y · α, y).
Because g is irreducible, one of the above factors factors must be an element of F. Without loss of
generality, we have s(x− y · α, y) ∈ F, so it follows that s(x, y) ∈ F, which implies that g(x+ y · α)
is irreducible. Thus, if g(x) is an irreducible factor of f(x), then g(x+ y · α) is an irreducible factor
of f̂(x, y).

A symmetric argument shows that if ĝ(x, y) is an irreducible factor of f̂(x, y), then ĝ(x− y ·α, y)
is an irreducible factor of f(x). Because f does not depend on y, this implies that there is some
polynomial g(x) such that g(x) = ĝ(x−y ·α, y), so ĝ has the form ĝ(x, y) = g(x+y ·α) as claimed.

10.1.2 Polynomial Identity Testing

Polynomial identity testing (abbreviated as PIT) is the algorithmic problem of deciding if a given
arithmetic circuit C computes the identically zero polynomial. In arithmetic complexity, polynomial
identity testing is the central example of a problem that can be solved efficiently with the use of
randomness, but for which an efficient deterministic algorithm is not known. The following lemma,
often referred to as the Schwartz–Zippel lemma, provides the basis for an efficient randomized
algorithm to solve PIT.

51

Lemma 10.4 ([Sch80; Zip79]). Let f ∈ F[x] be a nonzero polynomial of degree d. Then for any
finite S ⊆ F, we have

Pr
α∈Sn

[f(α) = 0] ⩽
d

|S|
.

To test if a circuit C of degree d computes the zero polynomial, choose a set S ⊆ F of size 2d
and evaluate C at a randomly chosen point α ∈ Sn. The algorithm reports that C computes the
zero polynomial if and only if C(α) = 0. It is clear that this algorithm has one-sided error (it is
always correct when C computes the zero polynomial), and the Schwartz–Zippel lemma implies that
this algorithm has error probability at most 1/2, so PIT is in coRP.

The design of deterministic algorithms for polynomial identity testing is a large, active area of
research, with close connections to arithmetic circuit lower bounds [KI04; KS19]. Our focus here
is not on the design of new algorithms for PIT, but rather on applications of existing and future
algorithms. For an introduction to identity testing, we refer the reader to Shpilka and Yehudayoff
[SY10].

There is a search-to-decision reduction for PIT, analogous to the search-to-decision reduction for
Boolean satisfiability. Suppose f(x) is a nonzero polynomial of degree d. Lemma 10.4 implies that
for any set S = {α1, . . . , αd+1} ⊆ F, there is a point β ∈ Sn such that f(β) ̸= 0. In particular, for
some i ∈ [d+ 1], the polynomial f(αi, x2, . . . , xn) is nonzero, and we can find such an i by solving
PIT for the polynomials f(αi, x2, . . . , xn). This produces β1 ∈ F such that f(β1, x2, . . . , xn) ̸= 0.
By recursion, we can find the remaining values β2, . . . , βn ∈ F such that f(β) ̸= 0. We record this
search-to-decision reduction for polynomial identity testing in the following lemma.

Lemma 10.5. Let C be a class of arithmetic circuits closed under substitution. Given a C-circuit
C(x1, . . . , xn) of degree d, we can either determine that C computes the zero polynomial or find point
β ∈ Fn such that C(β) ̸= 0 using O(nd) calls to an oracle that solves PIT for C-circuits.

The breakthrough lower bounds for AC0 circuits by Limaye, Srinivasan, and Tavenas [LST21]
resulted in a deterministic subexponential-time PIT algorithm for AC0 circuits. We will make use of
this algorithm later to derandomize our multivariate algorithms in subexponential time.

Theorem 10.6 ([LST21]). Let F be a field of characteristic zero. For all ε > 0, there is a
deterministic algorithm that receives as input an n-variate arithmetic circuit C of size s and depth
∆ ⩽ o(log log log n) and decides if C computes the zero polynomial in time (s∆+1n)O(nε).

10.2 Multivariate Algorithms from Univariate Algorithms

The algorithms of Sections 7 and 8 for the squarefree decomposition, GCD, and LCM were all stated
and proved for univariate polynomials over a field F. If we have a multivariate polynomial f ∈ F[x],
we can always regard f as a univariate in one variable, say xn, whose coefficients are from the field
K = F(x1, . . . , xn−1). Our earlier univariate algorithms make no assumptions about the underlying
field, other than requiring the characteristic to be sufficiently large. Because char(K) = char(F),
we can apply these univariate algorithms to f ∈ K[xn] without any modification to the algorithm.
This raises two questions that must be addressed. The first is an issue of representation: the
field K = F(x1, . . . , xn−1) is more complicated than F, and we need a succinct way to encode the
K-coefficients of a polynomial f ∈ F[x1, . . . , xn]. The second deals with correctness: why does solving
a problem such as the GCD over F(x1, . . . , xn−1)[xn] yield the solution to the same problem over
F[x1, . . . , xn−1][xn] ∼= F[x1, . . . , xn]?

52

The issue of representation is easily dealt with. The natural way to represent the input f is via
an arithmetic circuit. Writing

f(x) =
d∑

i=0

fi(x1, . . . , xn−1)x
i
n,

we see that the K-coefficients of f are exactly the polynomials f0, . . . , fd. An application of Lemma 2.7
shows that the coefficients fi can be computed by circuits whose size and depth is comparable to
that of the circuit for f .

To deal with correctness, Corollary 10.2 guarantees that our reduction to the univariate case
will produce the correct answer, provided the polynomial f is monic in some variable. We achieve
this using Lemma 10.3, which provides a linear change of variables that ensure f is monic in a fresh
variable y. Because the resulting change of variables is invertible, we will be able to easily recover
the solution that corresponds to the original input f .

We now implement the argument sketched above to compute the squarefree decomposition of a
multivariate polynomial represented by an arithmetic circuit. We focus on the classes AC0 and NC1,
as it was previously known that NC2 and VBP were closed under squarefree decomposition.

Theorem 10.7. Let F be a field of characteristic zero or characteristic greater than d. Let C ∈
{AC0,NC1}. Let O be an oracle that solves polynomial identity testing for C-circuits. There is a
deterministic, polynomial-time algorithm with oracle access to O that does the following.

1. The algorithm receives as input a C-circuit that computes a polynomial f ∈ F[x] of degree d.

2. The algorithm outputs a collection of C-circuits C1, . . . , Cm such that Ci computes fi, where
(f1, . . . , fm) is the squarefree decomposition of f .

Proof. Let ftop ∈ F[x] be the top-degree homogeneous component of f . Applying Lemma 2.7 to f ,
we obtain a C-circuit that computes ftop. By Lemma 10.5, we can find a point α ∈ Fn such that
ftop(α) ̸= 0 using O(nd) calls to the PIT oracle O. Let y be a fresh variable and define

f̂(x, y) :=
1

ftop(α)
f(x+ y · α).

By Lemma 10.3, the polynomial f̂ is monic and the irreducible factors of f̂ are in one-to-one
correspondence with those of f .

The correspondence between the irreducible factors of f and f̂ implies that the elements of
the squarefree decomposition of f and f̂ are in one-to-one correspondence. To see this, write the
factorization of f into irreducibles as

f =

r∏
i=1

fdi
i ,

where each fi ∈ F[x] is irreducible and gcd(fi, fj) = 1 for i ̸= j. Because the factors of f and f̂ are
in one-to-one correspondence, the factorization of f̂ into irreducibles is given by

f̂ =

r∏
i=1

fi(x+ y · α)di .

The squarefree decomposition of f̂ consists of the polynomials

ĝj :=
∏

i:di=j

fi(x+ y · α)

53

for j ∈ [d]. Applying the change of variables (x, y) 7→ (x− y · α, y) to ĝj , we obtain

gj :=
∏

i:di=j

fi(x),

which is precisely the jth element of the squarefree decomposition of f . Thus, if we can compute
the squarefree decomposition of f̂ , then the change of variables (x, y) 7→ (x − y · α, y) yields the
squarefree decomposition of f .

It remains to compute the squarefree decomposition of f̂ . Write f̂(x, y) =
∑d

i=0 f̂i(x)y
i. By

Lemma 2.7, each f̂i can be computed by a C-circuit. Regarding f̂(x, y) ∈ F(x)[y] as a polynomial in y
with coefficients in F(x), the coefficients of f̂ are precisely f̂0, f̂1, . . . , f̂d. Applying the piecewise AC0

algorithm (recall Definition 2.3) of Lemma 7.6 to f̂0, f̂1, . . . , f̂d, we obtain a collection of multi-output
circuits where one circuit in this collection correctly computes the squarefree decomposition of f̂ .
Each circuit in this collection is the composition of a C-circuit and an AC0 circuit. For C ∈ {AC0,NC1},
this composition results in a C-circuit as claimed.

To select the circuit that correctly computes the squarefree decomposition of f̂ requires us to
evaluate the test circuits of the piecewise AC0 algorithm on the coefficients f̂0, . . . , f̂d. The test
circuits are also the composition of a C-circuit and an AC0 circuit, which results in a C-circuit.
Deciding if a given test circuit is zero or nonzero can be done using the PIT oracle O. This allows
us to correctly select and output the circuit that computes the squarefree decomposition of f̂ .

Using an essentially identical argument, we can design an algorithm to compute the GCD and
LCM of multiple polynomials given as arithmetic circuits. As above, we focus on the classes AC0

and NC1, since NC2 and VBP were known to be closed under taking GCD’s and LCM’s.

Theorem 10.8. Let F be a field of characteristic zero or characteristic greater than m2d2. Let
C ∈ {AC0,NC1}. Let O be an oracle that solves polynomial identity testing for C-circuits. There is a
deterministic, polynomial-time algorithm with oracle access to O that does the following.

1. The algorithm receives as input m C-circuits that compute polynomials f1, . . . , fm ∈ F[x] of
degree at most d.

2. The algorithm outputs C-circuits Cgcd and Clcm that compute gcd(f1, . . . , fm) and lcm(f1, . . . , fm),
respectively.

Proof. The proof is essentially the same as Theorem 10.7, replacing the use of Lemma 7.6 with
either Theorem 8.4 or Corollary 8.6 as appropriate. The only difference is the fact that we need to
find a change of variables that makes all of the polynomials f1, . . . , fm simultaneously monic in a
fresh variable y.

To find this change of variables, let di := deg(fi). For i ∈ [m], let fi,top ∈ F[x] be the top-degree
homogeneous component of fi. Applying Lemma 2.7 to fi, we obtain a C-circuit that computes
fi,top. It follows that the product

∏m
i=1 fi,top can be computed by a C-circuit. Lemma 10.5 implies

that we can find a point α ∈ Fn such that
∏m

i=1 fi,top(α) ̸= 0 using O(nmd) calls to the PIT oracle
O. This implies that fi,top(α) ̸= 0 for each i ∈ [m].

Let y be a fresh variable and define

f̂i(x, y) :=
1

fi,top(α)
fi(x+ y · α).

Because fi,top(α) ̸= 0 for each i ∈ [m], Lemma 10.3 implies that f̂i is monic in y for each i ∈ [m]. At
this point, the proof proceeds in the same manner as the proof of Theorem 10.7.

54

Finally, we observe that in the case of AC0 circuits, the preceding algorithms for the multivariate
squarefree decomposition, GCD, and LCM can all be derandomized in subexponential time. This is
done by implementing the PIT oracles in Theorems 10.7 and 10.8 using Theorem 10.6.

Corollary 10.9. In the case C = AC0, the algorithms of Theorems 10.7 and 10.8 can be implemented
in deterministic subexponential time.

11 Conclusions and Open Problems

In this work, we introduced techniques for manipulating evaluations of symmetric polynomials
{ek(α1, . . . , αn) : k ∈ [n]} and {ek(β1, . . . , βm) : k ∈ [m]} without having explicit access to the αi

and βj . We have seen how to change the points at which the ei are evaluated (Section 5) and
how to implement combinatorial operations like set difference, intersection, and union on the sets
{α1, . . . , αn} and {β1, . . . , βm} (Sections 7 and 8). We also saw how to incorporate multiplicities
into these set operations when {α1, . . . , αn} and {β1, . . . , βm} are regarded as multisets. These
techniques naturally led to efficient algorithms for symmetric functions (such as the discriminant)
and bi-symmetric functions (such as the resultant and the GCD). How far can these techniques be
pushed, and what are their limitations?

A natural question along these lines is to understand which symmetric polynomials can be
computed in AC0. Chaugule, Kumar, Limaye, et al. [CKL+23] showed that certain Schur polynomials
are at least as hard as the determinant, hence are not in AC0. Curticapean, Limaye, and Srinivasan
[CLS22] showed that some families of monomial symmetric polynomials are VNP-hard, i.e., a
polynomial-size circuit for them would imply that the permanent has polynomial-size circuits. As
the permanent is known to not be in AC0, the same lower bound holds for the monomial symmetric
polynomials. Can we hope to classify which families of symmetric polynomials are in AC0?

A related question deals with the complexity of the fundamental theorem of symmetric polyno-
mials. If f(x1, . . . , xn) is symmetric, then there is a unique g such that f(x) = g(e1(x), . . . , en(x)).
How do the complexity of f and g relate to one another? Bläser and Jindal [BJ19] showed that f
and g have comparable circuit complexity. A variation on this for arithmetic branching programs is
a key ingredient in the result of Chaugule, Kumar, Limaye, et al. [CKL+23] mentioned above. What
can be said about the complexity of f and g when they are written as formulas, or as low-depth
circuits?

Many problems in polynomial algebra can be solved in NC2 by reduction to linear algebra. As we
have seen, these algorithms can be improved all the way to AC0 for the GCD and related problems.
However, this only scratches the surface of linear algebra’s applications to polynomial algebra. The
fact that these natural NC2 algorithms can be improved suggests that there is more to say about the
parallel complexity of algebraic problems.

One interesting problem left open by this work is to determine the parallel complexity of the
extended Euclidean scheme. The extended Euclidean scheme of two polynomials f, g ∈ F[x] consists
of the sequence of remainders and Bézout coefficients produced during the execution of the Euclidean
algorithm on input f and g. Linear algebra provides an NC2 algorithm to compute the extended
Euclidean scheme [vzGat84]. Can the techniques of this paper be used to design circuits of lower
depth? The extended Euclidean scheme has many applications, including rational interpolation,
Padé approximation, continued fraction expansion, counting real roots of polynomials in R[x] (as
a consequence of Sturm’s theorem), and solving Toeplitz and Hankel systems of linear equations
(see [vzGG13, Chapters 4 and 5] and [BGY80] for details). As a step towards understanding the
complexity of the extended Euclidean scheme, can we find faster parallel algorithms for any of these
related problems?

55

References

[Béz64] Étienne Bézout. “Recherches sur le degré des équations résultantes de l’évanouissement
des inconnues et sur les moyens que l’on doit employer pour trouver ces équations”. In:
Histoire de l’académie royale des sciences (1764), pp. 288–338 (cit. on p. 16).

[BFSS06] Alin Bostan, Philippe Flajolet, Bruno Salvy, and Éric Schost. “Fast computation of
special resultants”. In: Journal of Symbolic Computation 41.1 (2006), pp. 1–29. issn:
0747-7171. doi: 10.1016/j.jsc.2005.07.001 (cit. on pp. 7, 18, 19, 27).

[BGY80] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun. “Fast solution of Toeplitz
systems of equations and computation of Padé approximants”. In: Journal of Algorithms
1.3 (1980), pp. 259–295. issn: 0196-6774. doi: 10.1016/0196-6774(80)90013-9 (cit. on
p. 55).

[Bin84] Dario Bini. “Parallel Solution of Certain Toeplitz Linear Systems”. In: SIAM Journal on
Computing 13.2 (1984), pp. 268–276. doi: 10.1137/0213019 (cit. on pp. 3, 5, 13, 32).

[BJ19] Markus Bläser and Gorav Jindal. “On the Complexity of Symmetric Polynomials”. In:
10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Ed. by Avrim
Blum. Vol. 124. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019, 47:1–47:14. isbn:
978-3-95977-095-8. doi: 10.4230/LIPIcs.ITCS.2019.47 (cit. on p. 55).

[BP85] Dario Bini and Victor Ya. Pan. “Fast parallel polynomial division via reduction to
triangular toeplitz matrix inversion and to polynomial inversion modulo a power”. In:
Information Processing Letters 21.2 (1985), pp. 79–81. issn: 0020-0190. doi: https:
//doi.org/10.1016/0020-0190(85)90037-7 (cit. on pp. 3, 5, 13).

[BP94] Dario Bini and Victor Y. Pan. Polynomial and Matrix Computations. Progress in
Theoretical Computer Science. Birkhäuser Boston, MA, 1994. isbn: 978-0-8176-3786-6.
doi: 10.1007/978-1-4612-0265-3 (cit. on p. 16).

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Springer-
Verlag Berlin Heidelberg, 2000. doi: 10.1007/978-3-662-04179-6 (cit. on p. 2).

[CKL+23] Prasad Chaugule, Mrinal Kumar, Nutan Limaye, Chandra Kanta Mohapatra, Adrian
She, and Srikanth Srinivasan. “Schur Polynomials Do Not Have Small Formulas If the
Determinant does not”. In: Computational Complexity 32 (2023). doi: 10.1007/s00037-
023-00236-x (cit. on pp. 4, 55).

[CKS19] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Closure Results for Polynomial
Factorization”. In: Theory of Computing 15.13 (2019). Preliminary version in the 33rd
Annual Computational Complexity Conference (CCC 2018), pp. 1–34. doi: 10.4086/
toc.2019.v015a013 (cit. on p. 49).

[CLO05] David A. Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. 2nd ed.
Springer New York, NY, 2005. doi: 10.1007/b138611 (cit. on p. 15).

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms - an
introduction to computational algebraic geometry and commutative algebra. 4th ed.
Undergraduate texts in mathematics. Springer, 2015. isbn: 978-3-319-16720-6 (cit. on
pp. 25–27).

56

https://doi.org/10.1016/j.jsc.2005.07.001
https://doi.org/10.1016/0196-6774(80)90013-9
https://doi.org/10.1137/0213019
https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://doi.org/https://doi.org/10.1016/0020-0190(85)90037-7
https://doi.org/https://doi.org/10.1016/0020-0190(85)90037-7
https://doi.org/10.1007/978-1-4612-0265-3
https://doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1007/s00037-023-00236-x
https://doi.org/10.1007/s00037-023-00236-x
https://doi.org/10.4086/toc.2019.v015a013
https://doi.org/10.4086/toc.2019.v015a013
https://doi.org/10.1007/b138611

[CLS22] Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan. “On the VNP-Hardness of
Some Monomial Symmetric Polynomials”. In: 42nd IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Ed.
by Anuj Dawar and Venkatesan Guruswami. Vol. 250. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, 16:1–16:14. isbn: 978-3-95977-261-7. doi: 10.4230/LIPIcs.FSTTCS.
2022.16 (cit. on p. 55).

[Coo85] Stephen A. Cook. “A taxonomy of problems with fast parallel algorithms”. In: Information
and Control 64.1 (1985), pp. 2–22. doi: 10.1016/S0019-9958(85)80041-3 (cit. on
p. 10).

[Csa76] L. Csanky. “Fast Parallel Matrix Inversion Algorithms”. In: SIAM Journal on Computing
5.4 (1976), pp. 618–623. doi: 10.1137/0205040 (cit. on pp. 3, 7).

[DSS22] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. “Discovering the Roots: Uniform
Closure Results for Algebraic Classes Under Factoring”. In: J. ACM 69.3 (June 2022).
issn: 0004-5411. doi: 10.1145/3510359 (cit. on p. 49).

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. “Hardness-Randomness Tradeoffs for
Bounded Depth Arithmetic Circuits”. In: SIAM J. Comput. 39.4 (2009), pp. 1279–1293.
doi: 10.1137/080735850 (cit. on p. 49).

[Hya79] Laurent Hyafil. “On the Parallel Evaluation of Multivariate Polynomials”. In: SIAM
Journal on Computing 8.2 (1979), pp. 120–123. doi: 10.1137/0208010 (cit. on p. 3).

[Kal89] Erich Kaltofen. “Factorization of Polynomials Given by Straight-Line Programs”. In:
Advances in Computing Research 5 (1989), pp. 375–412 (cit. on p. 49).

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polynomial Identity Tests
Means Proving Circuit Lower Bounds”. In: Computational Complexity 13.1-2 (2004),
pp. 1–46. doi: 10.1007/s00037-004-0182-6 (cit. on pp. 49, 52).

[KS19] Mrinal Kumar and Ramprasad Saptharishi. “Hardness-Randomness Tradeoffs for Alge-
braic Computation”. In: Bull. Eur. Assoc. Theor. Comput. Sci. 129 (2019), pp. 56–87
(cit. on p. 52).

[KT90] Erich Kaltofen and Barry M. Trager. “Computing with Polynomials Given By Black
Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators”. In: J. Symb. Comput. 9.3 (1990), pp. 301–320. doi:
10.1016/S0747-7171(08)80015-6 (cit. on p. 49).

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. “Superpolynomial Lower
Bounds Against Low-Depth Algebraic Circuits”. In: Proceedings of the 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2021). 2021, pp. 804–814.
doi: 10.1109/FOCS52979.2021.00083 (cit. on pp. 4, 10, 49, 52).

[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry. Vol. 161.
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI,
2015, pp. xii+363. isbn: 978-0-8218-5198-2. doi: 10.1090/gsm/161 (cit. on p. 47).

[Oli16] Rafael Oliveira. “Factors of low individual degree polynomials”. In: Computational
Complexity 25.2 (2016), pp. 507–561. issn: 1016-3328. doi: 10.1007/s00037-016-0130-
2. Preliminary version in the 30th Annual Computational Complexity Conference (CCC
2015) (cit. on p. 49).

57

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.16
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.16
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1137/0205040
https://doi.org/10.1145/3510359
https://doi.org/10.1137/080735850
https://doi.org/10.1137/0208010
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1016/S0747-7171(08)80015-6
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1090/gsm/161
https://doi.org/10.1007/s00037-016-0130-2
https://doi.org/10.1007/s00037-016-0130-2

[Sch80] Jacob T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities”. In: J. ACM 27.4 (1980), pp. 701–717. doi: 10.1145/322217.322225 (cit. on
p. 52).

[ST21] Amit Sinhababu and Thomas Thierauf. “Factorization of Polynomials Given by Arith-
metic Branching Programs”. In: Computational Complexity 30.15 (2021). doi: 10.1007/
s00037-021-00215-0 (cit. on p. 49).

[Str73] Volker Strassen. “Vermeidung von Divisionen”. In: J. Reine Angew. Math. 264 (1973),
pp. 184–202. issn: 0075-4102 (cit. on p. 13).

[SW01] Amir Shpilka and Avi Wigderson. “Depth-3 arithmetic circuits over fields of characteristic
zero”. In: Computational Complexity 10.1 (2001), pp. 1–27. issn: 1016-3328. doi: 10.
1007/PL00001609 (cit. on pp. 7, 18, 20).

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent results
and open questions”. In: Foundations and Trends in Theoretical Computer Science 5.3-4
(2010), pp. 207–388. doi: 10.1561/0400000039 (cit. on pp. 2, 52).

[Val79] Leslie G. Valiant. “Completeness Classes in Algebra”. In: Proceedings of the 11th Annual
ACM Symposium on Theory of Computing (STOC 1979). Atlanta, Georgia, USA:
Association for Computing Machinery, 1979, pp. 249–261. isbn: 9781450374385. doi:
10.1145/800135.804419 (cit. on p. 4).

[VSBR83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. “Fast parallel computation of
polynomials using few processors”. In: SIAM J. Comput. 12.4 (1983), pp. 641–644. issn:
0097-5397. doi: 10.1137/0212043 (cit. on pp. 3, 10).

[vzGat84] Joachim von zur Gathen. “Parallel Algorithms for Algebraic Problems”. In: SIAM
Journal on Computing 13.4 (1984), pp. 802–824. doi: 10.1137/0213050 (cit. on pp. 3,
39, 55).

[vzGat86] Joachim von zur Gathen. “Parallel arithmetic computations: A survey”. In: Proceedings of
the 11th Internationl Symposium on the Mathematical Foundations of Computer Science
(MFCS 1986). Ed. by Jozef Gruska, Branislav Rovan, and Juraj Wiedermann. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986, pp. 93–112. isbn: 978-3-540-39909-4. doi:
10.1007/BFb0016236 (cit. on pp. 3, 39).

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. 3rd ed.
Cambridge University Press, 2013 (cit. on pp. 2, 14, 17, 50, 55).

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM 1979.
1979, pp. 216–226. doi: 10.1007/3-540-09519-5_73 (cit. on p. 52).

58

https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/s00037-021-00215-0
https://doi.org/10.1007/s00037-021-00215-0
https://doi.org/10.1007/PL00001609
https://doi.org/10.1007/PL00001609
https://doi.org/10.1561/0400000039
https://doi.org/10.1145/800135.804419
https://doi.org/10.1137/0212043
https://doi.org/10.1137/0213050
https://doi.org/10.1007/BFb0016236
https://doi.org/10.1007/3-540-09519-5_73

	Introduction
	Background
	Our Results
	Our Techniques and Their Origins
	Organization

	Preliminaries
	Notation
	Arithmetic Circuits
	Circuits and Complexity Classes
	Piecewise Arithmetic Circuits

	Known AC0 Algorithms
	The Euclidean Algorithm and the Resultant
	Squarefree Decomposition

	Symmetric Polynomials and Newton's Identities
	From Coefficients to Power Sums
	From Power Sums to Coefficients

	Exact Division and Roots of Perfect Powers
	Computing Symmetric Functions of the Roots of a Polynomial
	Polynomial Functions
	Rational Functions

	The Sylvester and Bézout Matrices
	The Resultant and Discriminant
	Division with Remainder
	Inverting the Sylvester Matrix
	Inverting the Bézout Matrix

	Operations on Roots
	Filtering
	Thresholding
	Squarefree Decomposition

	Greatest Common Divisor and Least Common Multiple
	Two Polynomials
	Multiple Polynomials

	Arbitrary Functions of Root Multiplicities
	Two Polynomials
	Multiple Polynomials

	Extensions to Multivariate Polynomials
	Preliminaries on Polynomial Factorization and Identity Testing
	Gauss's Lemma
	Polynomial Identity Testing

	Multivariate Algorithms from Univariate Algorithms

	Conclusions and Open Problems

