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Abstract: Background/Objectives: The co-formulation of active pharmaceutical ingredients
(APIs) is a growing strategy in biopharmaceutical development, particularly when it
comes to improving solubility and bioavailability. This study explores a co-precipitation
method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM),
utilizing nanostructured, functionalized polylactic glycolic acid (nf PLGA) as a solubility
enhancer. Methods: An antisolvent precipitation technique was employed to incorporate
nf PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-
nf PLGA. The dissolution performance of this formulation was compared to that of the pure
drugs and the co-precipitated DXM-GF without nf PLGA. Results: Several characterization
techniques, including electron microscopy (SEM), RAMAN, FTIR, TGA, and XRD, were
used to analyze the nf PLGA incorporation and the co-precipitated co-formulations. The
inclusion of nf PLGA significantly enhanced the dissolution and initial dissolution rate of
both GF and DXM in the DXM-GF-nf PLGA formulation, achieving a maximum dissolution
of 100%, which was not attained by the pure drugs or the DXM-GF formulation. The
incorporation of nf PLGA also reduced the amount of time taken to reach 50% (T50) and
80% (T80) dissolution. T50 values decreased from 52 and 82 min (for pure DXM and GF)
to 23 min for DXM-GF-nf PLGA, and the T80 improved to 50 min for DXM-GF-nf PLGA,
significantly outpacing the pure compounds. Furthermore, incorporating nf PLGA into
the crystal structures greatly accelerated the dissolution rates, with initial rates reaching
650.92 µg/min for DXM-GF-nf PLGA compared to 540.60 µg/min for DXM-GF, while pure
GF and DXM showed lower rates. Conclusions: This work demonstrates that nf PLGA
incorporation enhances dissolution performance by forming water channels within the
API crystal via hydrogen-bonding interactions. This innovative nf PLGA incorporation
method holds promise for developing hydrophobic co-formulations with faster solubility
and dissolution rates.

Keywords: co-formulation; functional nf PLGA; incorporation; antisolvent technology;
co-precipitation; dissolution; aqueous solubility

1. Introduction
Solubility plays a critical parameter in drug delivery [1,2], especially for drugs classi-

fied under Biopharmaceutical Classification System (BCS) Class II and IV [3,4] due to their
poor solubility and low bioavailability [5,6]. These compounds constitute a substantial
proportion—approximately 40 to 70 percent [7]—of new drug entities (NCE)/candidates in
development stages [8–10]. Consequently, significant hurdles may be encountered while

Pharmaceutics 2025, 17, 77 https://doi.org/10.3390/pharmaceutics17010077

https://doi.org/10.3390/pharmaceutics17010077
https://doi.org/10.3390/pharmaceutics17010077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-5561-4278
https://orcid.org/0000-0002-9650-9180
https://doi.org/10.3390/pharmaceutics17010077
https://www.mdpi.com/article/10.3390/pharmaceutics17010077?type=check_update&version=1


Pharmaceutics 2025, 17, 77 2 of 15

designing and delivering such drug products, particularly when it comes to formulat-
ing strategies to overcome solubility or permeability challenges [10,11]. Low solubility
often results in unstable therapeutic concentrations, necessitating the implementation of
developmental strategies [12] to enhance drug solubility and permeability [1,13,14]. Conse-
quently, optimizing drug solubility can significantly contribute to improved therapeutic
outcomes [15].

Significant efforts have been dedicated to overcoming the solubility challenges of
hydrophobic drugs [16]. Conventional techniques for solubility enhancement include
particle size reduction [17] through methods like micronization [18] and nanoparticle for-
mation [10,19,20], solid dispersion techniques [21], co-solvents [22], complexation [23],
salt formation [24], pH adjustment [25], surfactant use [26], hydrotropic [27], lipid-based
formulations [28], nano-emulsions [29], spray drying [30], and solvent selection [17,31].
Formulations with solubilizing agents such as polymers and surfactants have also been
used for dissolution enhancement [32]. Additionally, various materials like nanostructured
dendrimers, micelles, carbon nanotubes, graphene, graphene oxide, quantum dots [33,34],
proteins [35], viruses [36], ceramics [37,38], metals, semiconductors [39], lipids [28], poly-
meric thin films [40], hydrogels [41], and amorphous or crystalline surfaces are utilized in
different types of drug formulations to enhance their solubility [42,43].

Co-formulation presents an attractive strategy that combines multiple drugs into a
single oral solid or injectable product [44,45]. For poorly soluble drug components, co-
formulation has been shown to enhance bioavailability [44,46]. Additionally, it is useful
for developing combination therapies [47,48]. Recent advancements in this field include
approved fixed-dose combinations like Pertuzumab, Trastuzumab, and Hyaluronidase for
HER-2-positive breast cancer [49], stable formulations combining durvalumab (Imfinzi®,
anti-PD-L1) and tremelimumab (anti-CTLA-4) [50], as well as co-formulated stable solid
dispersions of Artemether (ARTM) and Lumefantrine (LUMF) using optimized drug–
polymer–surfactant blends via hot-melt extrusion [51], and spherical cocrystallization via
direct compression to improve solubility and bioavailability [52]. Co-formulated drugs
can streamline treatment protocols, optimize drug delivery, and reduce manufacturing
costs [44]. Moreover, co-formulated drug formulations hold clinical potential for treating
complex diseases. Previous research has shown that multiple drugs can work synergis-
tically within the GI-to-blood circulation system, minimizing adverse effects [53]. This
supports the idea that co-formulation strategies are crucial for modern pharmaceutical
development [54].

Co-formulation via co-precipitation can promote intermolecular interactions at the
molecule’s surfaces, leading to faster solubility and improved bioavailability profiles [55].
Thus, co-precipitation can enhance the physicochemical properties of combined hydropho-
bic drugs [56,57]. Co-formulation that involves the antisolvent precipitation technique is
promising for drug-delivery research [58]. Our previous study has explored incorporating
graphene oxide (nGO) [59], carbon nanotubes [60], functionalized nanostructured polylactic
acid (PLA) [61], and polylactic glycolic acid (PLGA) [62] into hydrophobic APIs to enhance
dissolution. Although nGOs have hydrophilic functional groups on their surfaces, facili-
tating interaction with water to enhance dissolution [63,64], they are not FDA-approved
and may pose toxicity risks. Alternatively, we have investigated the use of function-
alized nanoparticles of PLGA [65], referred to as nf PLGA. They are not water-soluble
by themselves, but contain hydrophilic functionalized groups on their surfaces [66,67],
such as carboxyl and/or hydroxyl, which promote the aqueous solubility of the insolu-
ble drug crystals through hydrophilic interactions. This incorporation helps to facilitate
faster dissolution.
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The objective of this research is to incorporate nf PLGA to co-precipitate the hydropho-
bic API co-formulations to fabricate drug–drug-nf PLGA composites with enhanced dis-
solution properties. Antifungal Griseofulvin, which is a BCS II highly hydrophobic drug
with a solubility of 0.00864 mg/L [68], and dexamethasone (DXM), which is a BCS-IV
classified corticosteroidal and anti-inflammatory, 9-fluoro-glucocorticoid drug that is prac-
tically insoluble in water with a solubility profile of 0.080 mg/mL [69,70], are used to form
co-formulated composites with enhanced solubility. The combination of an antifungal drug
and a steroid is commonly used to treat infections accompanied by inflammation, making
this combination highly significant from a therapeutic standpoint.

2. Materials and Methods
2.1. Materials

Griseofulvin and dexamethasone were purchased from Sigma Aldrich (St. Louis,
MO, USA). Poly lactic-co-glycolic acid polymer was purchased from Polysciences Inc.
(Warrington, PA, USA). Acetone was bought from Sigma Aldrich, and sulfuric acid and ni-
tric acid were bought from Fisher Scientific supplier (Thermo Fisher Scientific Inc., Waltham,
MA, USA). The source of 1-Octanol was also Sigma Aldrich (St. Louis, MO, USA), and the
purified Milli-Q water was collected from NJIT York centers Milli-Q plus system.

2.2. Fabrication of nfPLGA

Synthesis of nf PLGA particles was carried out following a previously published
method [61,62]. A multimode microwave-accelerated reaction system, specifically the
CEM Microwave Reactor (MARS-5, Matthews, NC, USA), was used for the acid oxidation
of PLGA. Ground PLGA polymer was mixed with a 1 M concentration of sulfuric acid
(H2SO4) and nitric acid (HNO3) solution in a 3:1 ratio. This mixture comprised 200 mg of
PLGA and 60 mL of the acid solution.

The acid-dispersed PLGA mixture was transferred to a microwave sample holder,
which was then tightly closed and sealed to ensure an airtight environment. The microwave
reactor was operated under specific conditions: a standard control type program, power
set to 800 W at 80% intensity, temperature maintained at 60 �C, and pressure at 200 psi. The
reaction was allowed to run for 60 min, with a hold time of 10 min.

After completing the 60 min microwave-accelerated reaction, the acid-treated and
microwave-irradiated PLGA samples were vacuum-filtered through a 0.2-micron PTFE
membrane filter, washed with milli-Q water, and vacuum-dried for 48 h. Once dried, the
functionalized PLGA powder/crystalline particles were dispersed in milli-Q water. This
dispersion was then subjected to sonication using a probe sonicator. The samples were
sonicated in 60 min intervals while maintaining a controlled temperature to ensure that the
sample temperature remained at room temperature. The resulting sonicated particles are
referred to as nf PLGA.

2.3. Preparation of Co-Formulated DXM-GF-nfPLGA

An antisolvent precipitation method was employed to precipitate co-formulated drugs,
specifically DXM-GF and DXM-GF-nf PLGA composites, following a previously outlined
process [59,60]. Acetone was used to dissolve the 200 mg of DXM and 200 mg of GF
containing DXM-GF mixture (1:1), while nf PLGA (12 mg), a nano-functionalized polymer,
was dissolved in acetone to produce a clear polymer solution. The DXM-GF mixture in
acetone was subjected to bath sonication, and the polymer solution was gradually added
dropwise into the drug mixture. This process of adding the polymer and continuing
sonication for up to 10 min ensured proper mixing of the components. Afterward, the
combined drug solution was removed from the sonication bath and left at room temperature
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for 30 min to stabilize. Subsequently, the co-formulation was placed in an ice bath, and
milli-Q water was added dropwise to induce the antisolvent effect. The milli-Q water acted
as the antisolvent, and after sufficient addition, a milky suspension of the DXM-GF-nf PLGA
co-formulation was formed, which later resulted in the precipitation of a bulk amount
of the product. The precipitated particles were then filtered using a 0.2-micron PTFE
membrane filter and vacuum-dried in an oven at room temperature for 48 h to achieve
finely dried particles. Additionally, the co-formulation without nf PLGA (DXM-GF) was
prepared separately to distinguish the effects of nf PLGA incorporation.

2.4. Characterization of Co-Formulated DXM-GF-nfPLGA

Various analytical characterization techniques were employed to investigate and
characterize the formulated work. The hydrodynamic Z-average size and zeta potential
of the functionalized and nano-sized nf PLGA particles were measured using a Dynamic
Light Scattering (DLS) system (Malvern Nano ZS, Model: ZEN 3600, Worcestershire, UK).
A JEOL JSM-7900F scanning electron microscope (SEM) (JEOL, Tokyo, Japan) was utilized
to image the drug crystal formulations, and the samples were carbon-coated using an
EMS Quorum coater. Optimized operating conditions were applied during SEM imaging,
including a 10 mm working distance and an accelerating voltage of 5 kV. Aztec software
(AZtecLive 5.1) was used to produce the elemental identification and elemental mapping
of the co-formulation.

A PerkinElmer 8000 Model TGA instrument (Shelton, CT, USA) was used to analyze
the decomposition profile of the co-formulated drugs and quantify nf PLGA incorpora-
tion. For the TGA, approximately 10 mg of powder samples were placed in a ceramic
sample holder and heated in a furnace under a nitrogen flow rate of 20 mL/min. The
heating rate was set to 10 �C/min, and the temperature ranged from 30 to 700 �C. The
melting point and purity of the co-formulated drugs were determined using a Differential
Scanning Calorimeter (PerkinElmer DSC 6000, Shelton, CT, USA). In the DSC analysis,
the operating temperature was between 30 and 300 �C at a 10 �C/min heating rate, and
the sample amount was between 5 and 10 mg. Raman spectral intensity was measured
with a ThermoFisher Scientific DXR2xi Raman imaging microscope instrument (Madison,
WI, USA), employing a 532 nm laser wavelength and full-frequency acquisition mode
3800–200 cm�1 region. Powder X-ray diffraction (PXRD) was performed to confirm the
crystalline identity of the co-formulated drugs using the PANalytical EMPYREAN XRD
(Malvern, UK) instrument with a Cu K↵ radiation source. The diffraction intensity was
recorded over a 2✓ range of 5–70�. A HighScore Plus (version 5.2) software was used for
analysis. Fourier-transform infrared (FTIR) analysis was performed (using diamond ATR)
with an Agilent Cary 670 Benchtop spectrometer (Santa Clara, CA, USA) to assess the
functional properties of the drugs and their co-formulation. The analysis was conducted
with ResolutionsPro (version 5.4.0.3389) software, utilizing 64 scans per sample and a
resolution of 4 cm�1.

The aqueous solubility of the drug samples was determined as follows. The drug
formulation (50 mg) in 100 mL milli-Q water in a glass vial was stirred in water for
24 h using a magnetic stirrer to reach equilibrium [71,72]. Afterward, the mixture was
filtered, and the resulting solution was analyzed via UV absorption. The octanol–water
partition coefficient was measured as follows. For this experiment, 50 mg of the drug
sample was added to a 1:1 mixture (50 mL each) of water (aqueous phase) and octanol
(organic phase) for octanol–water partitioning. The mixture was stirred for one hour to
allow for partitioning between the organic and aqueous phases and to achieve equilibrium.
Afterward, ultracentrifugation separated the two phases, and the aqueous phase was
collected. The drug concentration in the aqueous phase was then determined using a UV-Vis
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spectrometer, and the concentration in the octanol phase was determined by subtracting the
aqueous phase value. Then, the logP was calculated based on these concentrations [73,74].

The in vitro dissolution test for the co-formulated drugs was conducted using the
USP apparatus II paddle system with sink condition, in accordance with the United States
Pharmacopeia (USP) dissolution method h711i [75–77]. The dissolution performance
was assessed using the Symphony 7100 Distek instrument (North Brunswick, NJ, USA)
following the established protocol. Simulated gastric fluid (SGF), prepared to mimic
stomach conditions at pH 1.4, was used as the dissolution medium. This was achieved
by mixing 900 mL of 0.1 N HCl to obtain the desired pH, which was then added to the
dissolution bath. The experiment was performed under optimized conditions, including
a temperature of 37 ± 0.5 �C and a paddle rotation speed of 75 rpm, over a 4 h duration.
Samples were collected at predetermined intervals. Drug particles (100 mg) were initially
dispersed in a small volume of water and introduced into the dissolution bath using
a syringe, allowing them to circulate freely in the medium. Aliquots of approximately
2 mL were withdrawn at time points of 5, 10, 20, 30, 50, 80, 120, 150, 180, and 240 min.
The collected samples were filtered through 0.2-micron sterile PTFE syringe filters and
transferred into cuvettes for UV-Vis analysis. Drug concentrations were quantified using an
Agilent 8453 UV-Vis spectrophotometer (Santa Clara, CA, USA), with calibration performed
at 240 nm and 295 nm.

3. Results and Discussion
3.1. Characteristics of DXM-GF-nfPLGA

The SEM images of pure GF, DXM, DXM-GF, and DXM-GF-nf PLGA composites are
presented in Figure 1a–d. It is evident from Figure 1c that the crystal structure of the
single drug GF and DXM remains intact within the physical integration, and the nf PLGA
attaches to the surface of the co-formulated drugs. Additionally, the nf PLGA particles are
expected to provide hydrophilic linkages over the drug surfaces, which may produce a
water channel to the co-formulated drugs that will lead to high dispersibility and aqueous
solubility. The analyses suggest that the co-formulated drugs can retain their structural and
morphological integrity upon nf PLGA incorporation during the antisolvent process.
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Figure 1. SEM images of (a) Pure GF, (b) pure DXM, (c) DXM-GF-nf PLGA co-formulation (carbon
coated), (d) DXM-GF, and (e) EDS elemental mapping for co-formulation of DXM-GF-nf PLGA.

The elemental point ID and mapping (EDS) analysis, illustrated in Figure 1e, confirms
the distribution of constituent elemental concentrations within the co-formulations derived
from individual drugs [78,79]. The analysis reveals the presence of oxygen at 67.5 wt% (from
both GF and DXM), chlorine at 20.4 wt% (from GF), and fluorine at 12.1 wt% (from DXM).
The figure displays a color legend with distinct color codes corresponding to numerical
values, indicating the concentration gradient of specific elements or a combination of
elements from lowest to highest. Furthermore, the EDS mapping highlights two distinct
crystals that appear to be stacked or attached.
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Table 1 presents the water solubility and octanol–water partition coefficient (log P) of
the drugs and their co-formulated counterparts. The solubility of the co-formulated drugs
with incorporated nf PLGA was 0.064 mg/mL, surpassing that of DXM-GF. Furthermore,
the log P for the co-formulated drugs was 1.15, indicating a moderately low value due
to the enhanced hydrophilicity provided by nf PLGA incorporation. The data in Table 1
also reveal that DXM-GF-nf PLGA demonstrated an increased zeta potential of �30.2 mV,
reflecting improved stability in the aqueous medium. This enhanced stability is attributed
to the surface charge of nf PLGA particles in the dispersion. Conversely, the pure drugs or
DXM-GF alone exhibited a lower zeta potential of �19.7 mV, underscoring their limited
ability to achieve similar stability.

Table 1. Physicochemical properties of the formulated drugs’ co-formulation.

Formulations Aqueous Solubility
(µg/mL)

Zeta Potential
(mV) logP Melting Point

(�C)

Pure DXM 89.00 �17.2 1.96 261.74

Pure GF 8.64 �15.4 2.16 222.10

DXM-GF 83.70 �19.7 1.75 258.12 (DXM)
203.71 (GF)

DXM-GF-
nf PLGA 128.70 �30.2 1.15 242.41 (DXM)

212.54 (GF)

An important consideration was whether the DXM or GF structure was altered during
the co-formulation process. Figures 2–4 display the XRD, Raman, and FTIR spectral
intensity analysis of pure DXM, GF, DXM-GF, and DXM-GF-nf PLGA co-formulations.
Raman spectra showed distinct peaks for dexamethasone at the C-F stretch (769 cm�1)
and for griseofulvin at the C–Cl stretch (651 cm�1), both of which were present in the
co-formulation, indicating that their polymorphism remained unchanged. Additionally,
X-ray diffraction (XRD) of the co-formulated drugs revealed intensity peaks at different
2✓ angles (Supplementary Files contain detailed XRD analysis) corresponding to those of
DXM and GF, further supporting the idea that their crystallinity was not altered. In the
Fourier-transform infrared spectroscopy (FTIR) analysis, characteristic absorption bands for
GF, such as C–O–C (1213 cm�1) and C–Cl (800 cm�1), as well as for DXM, including –O–H
(3448 cm�1), C=O (1662 cm�1), and C–F (1056 cm�1), were detected in the co-formulated
drugs. Importantly, no changes were observed in the characteristic functional group
intensities of the individual drugs after co-formulation. FTIR analysis thus confirmed
the presence of both DXM and GF in the co-formulated products, with no significant
structural alterations.

In Figure 5a, thermogravimetric analysis (TGA) was used to study the nf PLGA incor-
poration into the co-formulated drugs. The analysis shows that the major decomposition
temperature for the co-formulation occurred between 250 and 400 �C. The final formu-
lation contained 66% GF, 31% DXM, and 3% nf PLGA. The DXM-GF without nf PLGA
incorporation contained 60% GF and 40% DXM. Figure 6 shows the differential scanning
calorimetry (DSC) for the co-formulated drugs’ endothermic peak and the melting point
measurement. The DSC thermograms showed a change in the heat capacity and the glass
transition at approximately 82 �C and 84 �C [80], followed by a slightly lower endothermic
crystallization peak shift between 242.24 �C (DXM) and ~212.5 �C (GF), respectively, from
the original drug [81]. The presence of nf PLGA and co-precipitation of the two drugs
appear to alter the melting points (Table 1) slightly.
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3.2. In Vitro Drug Dissolution Analysis

The in vitro drug dissolution and release tests were performed in accordance with the
USP-42 dissolution protocol. In this procedure, 0.1 N HCl with a pH of 1.4 was used as the
dissolution medium to simulate gastric conditions. The improved dissolution observed in
the nf PLGA-incorporated drugs and/or co-formulated drug formulations is hypothesized
to result from the hydrophilic surface properties of nf PLGA, which facilitate interactions
with drug molecules, leading to the formation of inter- and intramolecular hydrogen bonds.

Figure 7a is the dissolution profile for DXM, GF, DXM-GF, and DXM-GF-nf PLGA. It
is evident that nf PLGA incorporation led to an enhanced dissolution rate and aqueous
solubility, which was attributed to intermolecular interaction with water. The maximum
dissolution for GF and DXM reached 100% in DXM-GF-nf PLGA, which was not achievable
for the pure DXM, GF, or DXM-GF. DXM-GF showed some enhancement over the pure
drugs but was still significantly lower than DXM-GF-nf PLGA.
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Table 2 presents key dissolution property data, including the improved initial disso-
lution rate and the time required to achieve 50% dissolution (T50) and 80% dissolution
(T80), respectively. Pure DXM and GF had poor water solubility; the T50 was 52 and 82 min,
respectively. DXM-GF and DXM-GF-nf PLGA showed enhanced dissolution compared to
the pure APIs; the overall T50 in DXM-GF was 34 min, whereas GF and DXM had T50s of
29 and 19 min, respectively. With DXM-GF-nf PLGA, the overall T50 reduced to 23 min,
while those of GF and DXM were 27 and 18 min, respectively. The enhancement was most
marked for T80, where pure DXM and GF never reached 80% dissolution, and in DXM-GF,
only DXM could achieve an 80% dissolution mark. However, DXM-GF-nf PLGA showed an
excellent overall T80 of 50 min, where GF was at 61 min and DXM at 44 min. The initial rate
of dissolution was also an important consideration. Pure GF and DXM had initial dissolu-
tion rates of 110.27 µg/min and 180.90 µg/min, respectively. The co-formulated DXM-GF
showed an initial dissolution rate of 540.60 µg/min, with GF and DXM at 220.61 µg/min
and 290.74 µg/min, respectively. However, the initial dissolution rate was significantly
enhanced by the incorporation of nf PLGA and reached as high as 650.92 µg/min, with
266.81 µg/min for GF and 325.74 µg/min for DXM.
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Table 2. The dissolution profile of the co-formulated drugs.

Formulations 50% Dissolution
Time (T50)

80% Dissolution
Time (T80)

Initial Dissolution Rate
[0 to 20 min] (µg/min)

Maximum
Dissolution (%)

Pure GF 82 Undissolved 110.27 66.2

Pure DXM 52 Undissolved 180.90 76.8

DXM-GF 34 100 540.60 81.0

GF in DXM-GF 29 Undissolved 220.61 74.55

DXM in GF-DXM 19 72 290.74 87.05

DXM-GF-nf PLGA 23 50 650.92 105

GF in DXM-GF-nf PLGA 27 61 266.81 90.9

DXM in
DXM-GF-nf PLGA 18 44 325.74 110.6

4. Conclusions
This research presents a novel approach to pharmaceutical formulation, leveraging

nano-functionalized PLGA (nf PLGA) to enhance the dissolution and potentially improve
the bioavailability of hydrophobic co-formulated drugs. By combining antisolvent precipi-
tation technology with nf PLGA hydrophilic functionalization achieved through microwave-
induced oxidation, this study offers an innovative solution to the persistent challenge of
poor drug solubility. The findings demonstrate that the DXM-GF-nf PLGA co-formulation
achieved complete dissolution (100%) for both GF and DXM, exhibiting superior dissolu-
tion kinetics compared to formulations without nf PLGA. The incorporation of nf PLGA not
only reduced the time spent in the gastric environment but also significantly shortened
the amount of time taken to reach 50% and 80% dissolution (T50 and T80) while improv-
ing the initial dissolution rate, addressing a critical obstacle in drug delivery for poorly
soluble drugs.

A comprehensive suite of characterization techniques, including XRD, Raman spec-
troscopy, FTIR, SEM, and in vitro dissolution tests, was employed to assess the structural,
morphological, and dissolution properties of the DXM-GF-nf PLGA formulation. The results
reveal that the inclusion of nf PLGA and the multi-drug antisolvent precipitation method
markedly enhance solubility and dissolution, likely improving bioavailability. Accelerated
initial dissolution rates further confirm that nf PLGA plays a pivotal role in enhancing
aqueous solubility through hydrogen-bonding interactions, facilitating the formation of
water channels. This work validates the hypothesis that nf PLGA is an effective agent for
promoting faster solubility and dissolution of hydrophobic drugs in co-formulations, offer-
ing significant potential for pharmaceutical applications and addressing a major limitation
in drug development.
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