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Abstract

This study compares alternative implementations of species distribution models (SDMs) for quantifying static and dynamic
patterns in marine habitat use, with a case study focusing on juvenile salmon in the eastern Bering Sea. We compare the per-
formance of two prevalent SDM frameworks—generalized additive models (GAMs) and vector autoregressive spatio-temporal
(VAST) models—in predicting juvenile salmon distributions and assessing interannual variation in habitat utilization. The two
SDM frameworks produced similar spatial predictions but performed differently in tests of within-sample and out-of-sample
predictive power. Our findings indicate that VAST models may provide more precise estimates of distribution compared to
GAMs. Maps of predicted juvenile salmon distributions showed highest salmon densities in habitats within the 50 m isobath
of the continental shelf, underscoring the importance of these coastal areas, although among-species differences were evident.
Model performance results suggested evidence for spatial variation in juvenile salmon species’ distributions through time. Our
findings suggest that an SDM approach can be effective for estimating static and dynamic juvenile salmon distributions, and

for providing insights that are useful in spatial fisheries management contexts.
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Introduction

Development and implementation of spatial management
strategies in fisheries require comprehensive understanding
of species’ distribution in space, and the extent to which
distributions change across time. In the United States, the
Magnuson-Stevens Fishery Conservation and Management
Act utilizes essential fish habitat (EFH) to ensure the conser-
vation of “those waters and substrate necessary to (federally
managed) fish for spawning, breeding, feeding, or growth
to maturity” (16 U.S. Code § 1802). Knowledge of EFH in-
forms conservation decisions and initiates cross-agency com-
munication on fishing and/or nonfishing activities that may
adversely affect EFH. Ecosystem approaches like the EFH
regulations are implemented internationally, particularly in
North America, Europe, and Australia (FAO 1995; Environ-
ment Protection and Biodiversity Conservation Act 1999;
Malta MedFish4Ever Ministerial Declaration 2017; EU Action
Plan 2023). Expanding habitat conservation planning to the
ecosystem scale is an ongoing challenge, particularly for mi-
gratory species like salmon. EFH and other related ecosys-

tem approaches have typically produced static representa-
tions of fish habitat, but these may fall short in the face of
interannual variation in habitat utilization or climate-driven
changes in species distribution.

Definition of EFH requires synthesis of available infor-
mation on species’ occurrence or habitat-related abundance
across space. Species distribution models (SDMs) represent
a contemporary, quantitative approach for describing spa-
tial or spatio-temporal variations in habitat use and relation-
ships with environmental covariates. As such, SDMs present
an opportunity to standardize observations of presence and
abundance of species based on fishery-independent survey
data or fishery-dependent catch rates to describe both static
and dynamic EFH. Spatio-temporal SDMs have been widely
utilized in fisheries research to standardize indices of abun-
dance (Thorson and Barnett 2017; Griiss et al. 2019; Maunder
et al. 2020) for stock assessment, and measure the impacts
of past climate variability on species distributions (Mueter
and Litzow 2008; Thorson 2019a; Yasumiishi et al. 2020;
Brodie et al. 2021). However, in the context of updating EFH
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definitions, spatio-temporal SDMs are a relatively novel ap-
proach (Laman et al. 2018; Harris et al. 2023; Pirtle et al. 2024).

There exists a diversity of statistical frameworks for con-
structing spatio-temporal SDMs. Two commonly applied
spatio-temporal SDM frameworks within fisheries are gen-
eralized additive models (GAMs) and vector autoregressive
spatio-temporal (VAST) models. A GAM is a generalized lin-
ear model with a linear predictor that captures nonlinear
variability as a sum of smooth functions of the predictor
variables (Wood 2006). GAMs describe flexible, nonparamet-
ric relationships between predictors and the response vari-
able, and can represent both spatial and spatio-temporal vari-
ation as the smoothed interaction between latitude, longi-
tude, and possibly time. VAST models are a class of spatio-
temporal SDMs that integrate autoregressive time compo-
nents and spatial random effects (Thorson and Barnett 2017).
VAST models, unlike GAMs, explicitly model spatial and/or
temporal correlation among observations, and are specifi-
cally designed for modeling multivariate time series data. An-
other notable difference between the two SDM frameworks
lies in their approaches to prediction; GAMs provide predic-
tions for specific input values, whereas VAST generates a net-
work of polygons across the spatial domain for which abun-
dance and occurrence may be predicted. GAMs have wide
application in research related to spatial ecology, and were
used to refine EFH definitions for Alaska groundfish and crab
species in the 2018 EFH review (Laman et al. 2018) and as
ensemble SDM (e-SDM) constituents for the 2023 EFH review
(Harris et al. 2022, 2023; Laman et al. 2022; Pirtle et al. 2023,
2024). VAST models have been employed within stock, habi-
tat, climate, and ecosystem assessments (see Thorson (2019b)
for a list of early studies), and are actively being developed
for a variety of quantitative fisheries science applications,
including extending SDMs to estimate spatially varying co-
efficients (Thorson et al. 2023), account for spatially vary-
ing catchability (Griiss et al. 2023), and for building stream
networks to relate changes in freshwater fish distributions
to fish length and river habitat attributes (Charsley et al.
2023).

Despite the applicability of these two statistical frame-
works in quantifying spatial and spatio-temporal variation in
fish abundance and occurrence, there remains an opportu-
nity to evaluate tradeoffs among these methods in describ-
ing EFH. There has been limited research directly comparing
their performance in describing species distributions (but see
Brodie et al. 2020). Brodie et al. (2020) found that VAST models
estimated abundance trends more precisely than GAMs when
fit to empirical data for three species (arrowtooth flounder
Atheresthes stomias, Pacific cod Gadus macrocephalus, and wall-
eye pollock Gadus chalcogrammus). However, the performance
of candidate SDM frameworks are likely context dependent,
influenced by both the spatial dynamics of the focal species
and aspects of the observation or sampling process. At the
same time, there exists a need to identify applicable SDM
methods for refining EFH descriptions for juvenile salmonids
in their ocean life history stages, including in the eastern
Bering Sea (EBS) region of Alaska.

Current EFH maps for juvenile salmon in the marine wa-
ters surrounding Alaska were created using empirical cumu-

lative distribution function (ECDF) methods that associated
salmon occurrence with habitat conditions, including sea
surface temperature, sea surface salinity, and bottom depth
(Echave et al. 2012). The extent of juvenile salmon ocean
life history stage EFH, as defined by the ECDF methods, ex-
tends along the entire continental shelf and slope between
the Chukchi Sea and the Dixon Entrance in the area of the
U.S. Exclusive Economic Zone off Alaska (NPFMC 2024). The
mapping methods employed in 2012 represented the best-
available-science at the time, but the authors of the study rec-
ognized the risk of such broad EFH descriptions. Broad EFH
descriptions dilute the effective power of EFH and the utility
of EFH maps by reducing the credibility and actionability of
the data at the scales demanded by management organiza-
tions and processes (Echave et al. 2012).

Our study compared the use of GAMs and VAST for de-
scribing the distributions of juvenile salmon species in the
EBS, and reflected on the application of SDM results to up-
date juvenile salmon EFH definitions in this region. The first
objective of this study was to compare the performance of
the two applicable SDM frameworks represented by GAMs
and VAST models, based on within and out-of-sample per-
formance metrics. The second objective was to describe the
species-specific average distribution of juvenile salmon in
the EBS using SDMs, with a view toward updating exist-
ing EFH definitions for this life stage. Five species of Pa-
cific salmon that are endemic to the EBS were considered
in this analysis: Chinook salmon (Oncorhynchus tshawytscha),
chum salmon (Oncorhynchus keta), coho salmon (Oncorhynchus
kisutch), pink salmon (Oncorhynchus gorbuscha), and sockeye
salmon (Oncorhynchus nerka). The third objective of this study
was to quantify the temporal variation in the core distribu-
tion areas occupied by juvenile salmon in the EBS; specifi-
cally, to assess whether core areas persist or shift through
time. Prior research into connections between salmon ma-
rine distribution and climate, including juvenile salmon in
the EBS (Yasumiishi et al. 2020) and Chinook salmon along
the West Coast of the United States (Shelton et al. 2021) found
evidence for nonlinear and possibly stock-specific changes to
distributions and abundance in response to climate warming.

Methods

To describe spatial and spatio-temporal variation in juve-
nile salmonid abundance-density, four SDM variants of in-
creasing complexity were implemented as parallel model
structures within the GAM and VAST frameworks, total-
ing eight candidate SDMs (Table 1). These four model vari-
ants, with approximately parallel implementations in GAM
and VAST frameworks, build layers of complexity upon the
null model (Model StaticN) by (1) adding interannual varia-
tion in total catch across space (Model StaticYr), (2) spatio-
temporal variation with temporal autocorrelation (Model
SpatiotA), and (3) spatio-temporal variation that was inde-
pendent among years (Model SpatiotB). The functional form
of the most complex model variant is described below (eq.
1; Model SpatiotB), with all other variants (i.e., models Stat-
icN, StaticYr, and SpatiotA) representing simplified versions
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gam(Catch) ~ te(Lon, Lat, bs = “tp,” k = 9, m = 1) + offset(log(Effort))

+ fac(Year)

In (A(si, 1)) = Bo + f1 (si) + By + o(In (ki)

gam(Catch ~ te(Lon, Lat, bs = “tp,” k = 9, m = 1) + offset(log(Effort))

fac(Year) + te(Lon, Lat, Year, d = ¢(2,1), bs = c(“tp,”“cr”), k=9, m = 1)

In (A(si, 1)) = Bo + f1(si) + B, + J2 (si. 1) + o(In (k;))

9) + offset(log(Effort)) +

gam(Catch ~ te(Lon, Lat, bs = “tp,” k

fac(Year) + te(Lon, Lat, by

In (A(si, ti)) = Bo + f1 (si) + Bri + fi (si) + o(In (ki)

fac(Year), bs = “tp,” k =9)

Note: Abundance at location s and time t is modeled as a log response to the additive functions of a long-term average spatial pattern f; (s;), average abundance across space and time By, plus any additional parameters
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of this most flexible form (Table 1).
(1) In(A(si, &) = Bo + fi(si) + B + Ji (s1) + o(In (ki)

Equation 1 describes the predicted natural log of catch in
numbers for a given location in space s; and year of sampling
t; for observation i, where space is represented by latitude
and longitude coordinates. Predicted abundance (A) is an ad-
ditive function of average abundance across space and time
Bo, an average spatial field f; (s;) (spatial effects), categori-
cal (factor) year effects 8,; (temporal effects), and year-specific
spatio-temporal fields f; (s;) (spatio-temporal effects), with an
offset (0) for the natural log of effort k in area swept (km?). Ves-
sel effects were tested during exploratory data analysis with
one species (Chinook). Overall vessel effects had a small effect
size that was not statistically distinguishable from zero at the
p = 0.05 level in explaining variation in catch observations,
and were therefore not included in subsequent analyses.

This study paid particular attention to the configuration
of spatio-temporal GAMs in the implementation of smooth
functions. Thin plate splines were specified for the tensor
product spatial smooths in all GAM variants to accommo-
date expected anisotropy in the response to latitude and
longitude. The Model SpatiotA variants, which contained
smoothed three-way space-time interaction terms f; (si, i),
used a thin plate basis for the spatial component, and a cu-
bic spline basis for the temporal component. To address un-
reasonably high predictions of abundance in areas with few
observations, we limited model predictions to values within
the range of encounter data by setting the smoothing penalty
to affect the first derivative (Barnes et al. 2022; Harris et
al. 2023). To effectively handle catch data with many zeros,
we specified a Tweedie distribution within the GAM frame-
work for the error structure, with a log link function (Shono
2008).

VAST models were configured to approximate the four
GAM structures described previously (Table 1). To the ex-
tent possible, parallel model structures were implemented
to allow comparison of model performance among GAM and
VAST models of increasing complexity. Zero-inflation was ac-

z = § counted for within VAST models by specifying a Poisson-link

= S 2 delta model, which approximates the Tweedie distribution in
g g ; é a computationally efficient manner. The gamma distribution
§ ;U _5 § E was selected to model the positive catch component, follow-
g| B w% § & ing recommendations from a case study (Thorson 2021). Esti-
.;3 § EE|Z E mation of VAST spatio-temporal fields was turned off for the
£ 2 =g = g static models (Models StaticN-StaticT), while spatio-temporal
& é SR|E g fields were estimated for the time-varying spatio-temporal
5% o 3z 7:5“ g '§ models (Models SpatiotA-SpatiotB). A constant-intercept-only
e £ g ) g % E VAST null model was also fit for each model variant to calcu-
% E E E g “é ) § late percent deviance explained relative to this alternative.
IR IR g The equation used to calculate percent deviance explained
PES ER ET g q _ ; P p
SAE|AFAF YE of VAST model variants is described below (eq. 2), where Dy,

BS represents the deviance of the model of interest, and Dy, rep-
. g _ gg % resents the deviance of the VAST null model.
S SE|SE|SE| 88 1— Dy,
:,)*3 § ;%‘ § :“; § % E (2) % Deviance Explained = TM’
Mp
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The eight candidate SDM structures were applied to esti-
mate juvenile salmon distributions in the EBS. The Bering Sea
represents important habitat for Pacific salmon while they
forage and grow at sea. Major freshwater systems connected
to the EBS that have historically supported abundant salmon
runs include the rivers of Bristol Bay, the Yukon River, and
the Kuskokwim River. The southern EBS shelf represents an
important ocean migration corridor for Bristol Bay juvenile
sockeye salmon (Farley et al. 2005), and EBS juvenile pink
salmon likely also utilize the continental shelf as a migration
corridor as they head south toward overwintering habitat in
the north Pacific Ocean (Beamish 2018). Distribution models
of high-seas salmon data have highlighted high predicted rel-
ative abundance of Chinook salmon along the EBS shelf dur-
ing the summer months (Langan et al. 2024). Additionally,
life history models identified juvenile salmon abundance in
the northern Bering Sea as significantly related to the num-
ber of adult salmon returning to natal freshwaters (Farley et
al. 2020).

Surface trawl survey data from the Bering-Arctic-Subarctic
Integrated Survey (BASIS) were used to inform models for
each species of Pacific salmon endemic to the EBS. BASIS was
initiated in 2002 by the National Marine Fisheries Service to
improve the understanding of salmon life histories and ecol-
ogy in the Bering Sea (Murphy et al. 2021). Time series of spa-
tially referenced catch and effort data from BASIS are publicly
available through the Alaska Ocean Observing System por-
tal. The survey consists of surface trawls conducted annually
between the months of August and October. The sampling
design, roughly centered around the coastal domain of the
northern EBS shelf (Murphy et al. 2017), has varied consider-
ably among years due to survey objectives and available sam-
pling effort (Fig. 1). The area of the Bering Sea within ~55°-
65°N and ~160°-173°W has received the most consistent sur-
vey sampling, while the Chukchi Sea has been sampled inter-
mittently. The number of stations comprising the survey each
year ranged from 31 stations in 2008 to 159 stations in 2010,
with a median value of 125 stations. Fish caught in the trawl
are identified to species and then subsamples are weighed,
counted, and further processed according to species proto-
cols (McKelvey and Williams 2018). Sampling effort in units
of area swept (km?) is associated with each survey tow, cal-
culated based on the horizontal opening from the net sonar
and the distance from GPS (global positioning system) lo-
cations at the start and end of the trawl set (Murphy et al.
2021).

Data were filtered to remove sampling events where prob-
lems with gear or unsatisfactory tows occurred. Initial explo-
ration revealed large differences in the number of positive
catch records for each species of salmon. Chum and pink
salmon were encountered most frequently across years (53%
and 50%, respectively), followed by Chinook salmon (37%),
sockeye salmon (37%), and coho salmon (31%). Due to low
catch rates for coho salmon and model convergence issues,
we did not consider this species in further analysis. While the
BASIS sample design occasionally included the Chukchi Sea
and areas south of the Aleutian Islands, data were clipped to
a region of interest encompassing the north eastern Bering
Sea (NEBS) and southeastern Bering Sea (SEBS) (Supplemen-

tary Fig. S9) to eliminate areas with consistently low sampling
effort.

Following inspection of model diagnostic plots (quantile-
quantile plots, residual maps) (Supplementary Figs. S1-S8),
models that converged were then used to predict salmon
abundance across the area of interest (AOI) (Supplementary
Fig. S9) (i.e., extrapolation grid) in the NEBS and SEBS. We
defined the spatial extent of the extrapolation grid manu-
ally by selecting points around survey stations in the AOI,
converting these coordinates to a spatial polygon, generat-
ing a regional grid (resolution = 0.002 km?), and clipping the
grid to the extent of the spatial polygon (knots = 162 174) (R
packages “rgdal”, “sf”, and “sp”; Pebesma and Bivand 2005;
Bivand et al. 2013; Pebesma 2018; Bivand et al. 2023). This
clipped grid was also used to derive prediction surfaces for
the GAM predictions of abundance density. To overcome
computational demands resulting from the large number
of spatial prediction locations in the VAST grid, n = 10000
latitude and longitude locations from this grid were ran-
domly sampled without replacement and saved as a new grid
file. Predictions from GAMs were generated using the pre-
dict() function from the “mgcv” package (Wood et al. 2016).
Both VAST and GAM predictions were then mapped with the
“ggplot2” (Wickham 2016), “rnaturalearth” (Massicotte and
South 2023), and “akgfmaps” (Rohan 2023) packages.

The performance of the two SDM frameworks, GAMs and
VAST, were compared quantitatively using percent deviance
explained for within-sample predictive performance, and 10-
fold cross-validation to assess out-of-sample predictive per-
formance (Thorson and Barnett 2017). For cross-validation,
the data were partitioned by randomly assigning each sur-
vey haul record a fold value from 1 to 10 (total 1845 records
per species). These fold values were then used to subset the
original dataset into testing and training subsets, for a total
of 10 sets of testing and training data. Following partition-
ing, each of the candidate statistical models were fit to the
training data. These models were subsequently used to pre-
dict the expected value of the response variable (abundance)
for the testing data. Negative log likelihood (NLL) scores for
GAMs were calculated following a three-step approach. First,
Tweedie dispersion and power term values were extracted
from the GAM model object. These dispersion and power
term values were then used to calculate the likelihood of
the observations in the testing dataset. Finally, the likeli-
hood was log-transformed and multiplied by negative one
to form the NLL value. The NLL of the model was summed
across the 10-folds to create a total out-of-sample NLL for
a given model, describing out of sample predictive perfor-
mance for a fitted model. A lower NLL indicates higher out-
of-sample predictive power. Information theory (Akaike in-
formation criterion; Burnham and Anderson 2002) and per-
cent deviance explained were used to compare model perfor-
mance and to evaluate whether there was model-based sta-
tistical evidence for shifts in species distributions through
time.

Model residuals were calculated according to the SDM
framework. Quantile residuals were calculated for GAMs,
while DHARMa residuals were calculated for VAST models.
Both residual types are scaled, but DHARMa residuals are the
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Fig. 1. Maps showing the sampling design of the Bering-Arctic—Subarctic Integrated Survey from 2002 to 2019, with survey
stations represented as black points over gray marine waters bordered by polygons of the land masses of Russia’s Chukchi
Peninsula, and Alaska. Basemap: rnaturalearth (Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum:

NADS83, EPSG code: 3338, Coordinates = Cartesian 2D.

Latitude

180° 173°W166°W159°W152°W 180° 173°W166°W159°W152°W 180° 173°W166°W159°W152°W
Longitude

preferred method for mixed effects models and were there-
fore more suitable for the VAST framework. Quantile residu-
als were calculated in R from saved GAM model objects using
the “statmod” package (Dunn and Smyth 1996). Scaled quan-
tile residuals (“DHARMa residuals”) were extracted from stan-
dard VAST reports associated with each fitted VAST model.
Maps of predicted juvenile salmon distributions condi-
tional on SDMs were generated to compare model-predicted
habitat areas against those described empirically in the litera-
ture, and to assess the application of SDMs to juvenile salmon
EFH descriptions. The latest Alaska EFH 5-year review pro-
duced EFH maps by representing the area circumscribing the

top 95% of SDM-predicted abundance (Pirtle et al. 2024). In
this study, individual static and spatio-temporal model pre-
dictions of juvenile salmon distributions were used to create
static and dynamic EFH and Core EFH maps. For each species
and model type, we calculated the cumulative sum of abun-
dance predictions and retained those comprising the top 95%
(EFH) and 50% (Core EFH) of predicted abundance. The areas
encompassed by static SDM-based EFH definitions were cal-
culated and compared against those areas delineated by cur-
rent official EFH definitions (NPFMC 2024). Prediction points
were aggregated and converted to spatial polygons (R package
“concaveman”; Gombin et al. 2020). The areas of these spatial

Can. J. Fish. Aquat. Sci. 82: 1-13 (2025) | dx.doi.org/10.1139/cjfas-2024-0137 5




Can. J. Fish. Aquat. Sci. Downloaded from cdnsciencepub.com by 74.244.72.214 on 01/07/26

‘Canadian Science Publishing

Table 2. Model performance metrics used for within-framework model evaluation (AIC, % deviance explained (DE)) and for

cross-framework evaluation (% deviance explained (DE), negative log likelihood (NLL)).

AIC AIC % DE % DE NLL NLL
Species Model structure (GAM) (VAST) (GAM) (VAST) (GAM) (VAST)
Model StaticN: (Static) Average spatial field 5295 5261 53% 38% 2704 2633
Chinook Model StaticT: (Static) Average spatial field with factor year effect 5187 5094 58% 44% 2653 2552
inook
Model SpatiotA: (Dynamic) Model capturing spatio-temporal 5029 5049 65% 52% 2604 2551
autocorrelation
Model SpatiotB: (Dynamic) Spatio-temporal model with independent NA 5015 NA 64% NA 2769
spatial fields
Model StaticN: (Static) Average spatial field 10621 10555 32% 26% 5420 5419
Ch Model StaticT: (Static) Average spatial field with factor year effect 10475 10145 39% 36% 5362 5198
um
Model SpatiotA: (Dynamic) Model capturing spatio-temporal 10237 9942 49% 54% 5303 5195
autocorrelation
Model SpatiotB: (Dynamic) Spatio-temporal model with independent 9628 9774 80% 71% 6747 5997
spatial fields
Model StaticN: (Static) Average spatial field 10097 10054 26% 22% 5160 5138
Pink Model StaticT: (Static) Average spatial field with factor year effect 9753 9557 42% 38% 5136 5040
in
Model SpatiotA: (Dynamic) Model capturing spatio-temporal 9524 9401 53% 55% 5215 5106
autocorrelation
Model SpatiotB: (Dynamic) Spatio-temporal model with independent =~ 9054 9209 79% 69% 6625 5586
spatial fields
Model StaticN: (Static) Average spatial field 8700 8677 43% 32% 4441 4421
Socl Model StaticT: (Static) Average spatial field with factor year effect 8419 8228 55% 43% 4316 4216
ockeye
Y Model SpatiotA: (Dynamic) Model capturing spatio-temporal 8104 8101 68% 59% 4203 4208
autocorrelation
Model SpatiotB: (Dynamic) Spatio-temporal model with independent 7928 8002 81% 70% 5477 4553

spatial fields

Note: GAM, generalized additive model; VAST, vector autoregressive spatio-temporal.

Table 3. Calculated areas of model-predicted essential fish habitat (EFH) in square kilometers, and their size relative to the cur-
rent official Alaska juvenile salmon EFH definitions from National Oceanic and Atmospheric Administration (NOAA) National

Marine Fisheries Service (NMFS) Alaska Fisheries Science Center (AFSC) Technical Memorandum NMFS-AFSC-236.

Species GAM-predicted EFH area  VAST-predicted EFH area  Official EFH area clipped to AOI Percent change-GAM Percent change-VAST
Chinook 222738 km? 222209 km? 560 335 km? —60% —60%
Chum 352 669 km? 326 804 km? 521916 km? —38% —43%
Pink 513123 km? 477 698 km? 588 819 km? —13% —19%
Sockeye 288 688 km? 266188 km? 582 962 km? —50% —54%

Note: GAM, generalized additive model; VAST, vector autoregressive spatio-temporal; AOI, area of interest.

polygons were compared to those of official EFH shapefiles
clipped to the AOI, and the percent difference in EFH area
was calculated for each species based on static (Model Stat-
icN) SDMs.

Results

Objective 1: Compare GAM and VAST

frameworks for predicting species distributions

Quantitative metrics used for model selection within the
respective VAST and GAM frameworks showed agreement
across metrics (Table 2). AIC and percent deviance explained
favored model structures that accounted for spatial varia-
tion in species distributions through time (Models SpatiotA-
SpatiotB). Differences across model frameworks emerged in
the tests of out-of-sample predictive performance (10-fold
cross-validation). 10-fold cross-validation results indicated

that VAST models had higher out-of-sample predictive power
when compared with parallel GAM structures, as indicated
by lower NLL scores (Table 3). Exceptions included the sock-
eye salmon spatio-temporal models (Models SpatiotA and
SpatiotB), where GAMs produced better (lower) negative log-
likelihood scores when compared with VAST models, and
Model SpatiotB for Chinook salmon, where nonconvergence
of the GAMs barred comparison across model frameworks.
Diagnostic quantile-quantile plots (Supplementary Figs. S1-
S4) indicated that residuals were approximately normally dis-
tributed, with slight deviations at the tails for most salmon
species, and stronger deviations for Chinook salmon (Sup-
plementary Fig. S1). Maps of residuals (quantile residuals
for GAMs, and DHARMa residuals for VAST models) showed
greater spatial correlation in GAM residuals compared to
VAST residuals, although the degree of correlation appeared
to be fairly moderate (Supplementary Figs. S5-S8).
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Fig. 2. Side-by-side comparisons of GAM and VAST static model (Model StaticN) predictions for log abundance density (per
km?) in the eastern Bering Sea. Yellow colors denote areas of higher predicted abundance, while darker colors denote areas of
lower predicted abundance. Data sources: bathymetry—akgfmaps (Rohan 2023), rivers—USA Rivers and Streams (Esri 2020);
Basemap: rnaturalearth (Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NAD83, EPSG code:
3338, Coordinates = Cartesian 2D. GAM, generalized additive model; VAST, vector autoregressive spatio-temporal.
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Visual inspection of predicted abundance density across
the EBS indicated that GAMs and VAST models predicted
largely similar distributions from a qualitative perspective.
Species-specific maps of static model (Model StaticN) predic-
tions were nearly identical across the two frameworks (Figs.
2 and 3). However, the VAST framework tended to produce
more concentrated static (Model StaticN) distributions of pre-
dicted abundance density, leading to model-based EFH (i.e.,
top 95% of predicted abundance) areas that were 4% (0%-7%)
smaller on average than those estimated by the GAMs (Fig.
3; Table 3). Greater differences among the VAST and GAM
frameworks were found in maps of spatio-temporal model
(Model SpatiotB) predictions (Fig. 4; Supplementary Figs. S10-
S12). GAM-predicted Model SpatiotB distributions appeared
to deviate more often from patterns predicted by the time-
averaged, static model (Model StaticN) and often predicted
hotspots of abundance along the margins of the prediction
grid. In contrast, VAST-predicted Model SpatiotB distribu-
tions appeared to more closely follow the long-term average
patterns predicted by static model variants. Maps of model

Juvenile chum salmon
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residuals indicated that GAMs tended to under-predict abun-
dance, while VAST models produced both under- and over-
predictions across a range of locations and sample years (Sup-
plementary Figs. S5-S8).

Objective 2: Describe juvenile salmon

distributions in the EBS

Maps of static model (Model StaticN) predictions of juve-
nile salmon distributions in the EBS estimated the greatest
densities of juvenile salmon within the 50 m isobath of the
continental shelf (Figs. 2 and 3). Species-specific differences in
predicted distributions were observed for both classes of sta-
tistical models. Parallel GAM and VAST model structures pre-
dicted similar areas of high abundance for each species, with
minor differences among static model predictions (Model
StaticN) (Fig. 2) and larger differences among spatio-temporal
model predictions (Model SpatiotB) (Fig. 4). The EFH estimates
produced using static SDM methods in this study were more
spatially concentrated than the current EFH estimates for
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Fig. 3. Essential fish habitat maps describing the area representing the top 95% of abundance generated by static generalized
additive model (in red) and vector autoregressive spatio-temporal (in blue) model predictions (Model StaticN), with overlapping
areas represented in purple. The boundaries of current essential fish habitat definitions are outlined in green, and were sourced
from essential fish habitat map shapefiles in Fishery Management Plan for the Salmon Fisheries in the EEZ off Alaska (NPFMC
2024). Data sources: bathymetry—akgfmaps (Rohan 2023), rivers—USA Rivers and Streams (Esri 2020); Basemap: rnaturalearth,
(Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NAD83, EPSG code: 3338, Coordinates = Carte-
sian 2D.
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juvenile salmon in the EBS (Table 3), with reductions in EFH  tures were successfully fit to the data, with the exception of
area ranging from 13% to 19% (pink salmon) to 60% (Chinook the most flexible spatio-temporal GAM (Model SpatiotB) for
salmon) across VAST and GAM frameworks. All model struc-  juvenile Chinook salmon, which did not converge.
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Fig. 4. Maps of GAM (in red) and VAST (in blue) spatio-temporal model predictions (Model SpatiotB) of core essential fish
habitat (top 50% of predicted abundance) of juvenile chum salmon in the eastern Bering Sea. The red and blue polygon out-
lines represent the essential fish habitat areas predicted by GAM and VAST static models (Model StaticN), respectively. Data
sources: bathymetry—akgfmaps (Rohan 2023), rivers—USA Rivers and Streams (Esri 2020); Basemap: rnaturalearth (Massicotte
and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NADS83, EPSG code: 3338, Coordinates = Cartesian 2D.
GAM, generalized additive model; vast, vector autoregressive spatio-temporal.
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Objective 3: Determine whether juvenile

salmon distributions shift through time

To evaluate whether juvenile salmon distributions demon-
strate interannual variability, we quantified the strength of
evidence for spatial changes in juvenile salmon species dis-
tributions through time by comparing the performance of
SDMs with either static or dynamic spatial effects. Model se-
lection results indicated greater support for spatio-temporal
models that allow juvenile salmon distributions to vary
among years for all species (Table 2). The GAM structures

166°W
Longitude

159°W 166°W 159°W

with the lowest AIC scores and highest percent deviance
explained were the spatio-temporal models with indepen-
dent spatial fields for each survey year (Model SpatiotB). This
was true for all modeled species except juvenile Chinook
salmon. The Model SpatiotB GAM failed to fully converge
when fit to the Chinook salmon catch data, even after in-
creasing the maximum iteration threshold to 3600. The alter-
native spatio-temporal GAM structure (Model SpatiotA), rep-
resenting spatio-temporal autocorrelation, was successfully
fit to the Chinook salmon data, produced the lowest AIC
score among the Chinook salmon models and explained the
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most deviance in the Chinook salmon observations. Model
SpatiotA produced the second-lowest AIC scores and second-
highest percentages of deviance explained across all other
salmon species analyzed in this study.

When out-of-sample predictive performance was compared
across the four alternative model structures of varying spatio-
temporal complexity, results for both VAST and GAM frame-
works showed lower Tweedie deviance scores (NLL, Table
2) for the spatio-temporal model with time-varying distri-
butions (Model SpatiotB) for Chinook, chum, and sockeye,
but not pink salmon. These results indicate that for most
species, spatio-temporal models that allowed distributions to
vary among years better predicted the withheld data (observa-
tions) in 10-fold cross-validation. Interestingly, for the species
where out-of-sample predictive performance was higher for
spatio-temporal models (e.g., Chinook, chum, and sockeye
salmon), the constrained spatio-temporal model structure
which assumed that species’ distribution in a given year
were conditional on the distribution in surrounding years
(Model SpatiotA) demonstrated higher out-of-sample predic-
tive power.

Visual inspection of model-predicted core (50%) habi-
tat maps from the best-performing spatio-temporal models
(Model SpatiotB) provided a more comprehensive picture of
distribution changes through time (Fig. 4). While yearly distri-
butions did deviate from the average spatial fields predicted
by maps produced by static models (Model StaticN) in terms
of size and extent, key habitat areas largely persisted through
time in locations predicted by the static spatial models. Fur-
thermore, visual inspection of core essential habitat did not
reveal signs of long-term range shifts northward or in any
other direction.

Discussion

Our application of static and spatio-temporal SDMs using
VAST and GAM frameworks yielded several interesting find-
ings. The GAM and VAST modeling frameworks showed no-
table differences in performance (Table 2). Statistical metrics
(% Deviance Explained, Negative-Log-Likelihood) used to com-
pare the model frameworks indicated that the GAM frame-
work produced models with higher within-sample predictive
power (% Deviance Explained), while the VAST framework
produced models with higher out-of-sample predictive power
(Tweedie negative log-likelihood from cross-validation). This
was unexpected based on previous research comparing GAM
and VAST model frameworks in SDM applications (Brodie et
al. 2020). We also found that GAM spatio-temporal models of-
ten predicted hotspots of abundance in ecologically unlikely
places, close to the margins of the survey footprint. Reducing
the spatial extent of training data and the prediction surface,
as well as implementing a first-derivative smoothing penalty,
reduced the occurrence of these unlikely abundance hotspots
along spatial margins, but it did not completely eliminate
them. A simulation analysis exploring differences between
Tweedie GAM models in mgcv and Poisson-link delta models
(which approximate the Tweedie distribution) in VAST, when
confronted with spatially imbalanced input, may help to bet-

ter identify differences across these two particular estimation
platforms.

The predicted EFH spatial footprints from this study en-
compassing an estimated 95% of the population—pursuant
to the current guidelines for Alaska EFH definitions (NPFMC
2024)—were more compact than current official EFH esti-
mates as predicted by the ECDF methods outlined in Echave
et al. (2012) (Fig. 3; Table 3). GAMs produced EFH estimates up
to 7% larger in extent than those produced by VAST models
(Table 3), but would still represent substantial reductions of
13%-60% in EFH area compared to current definitions, across
salmon species. Although incorporating environmental co-
variates into SDM models would facilitate more direct com-
parisons between SDM- and ECDF-estimated EFH, the results
of this study provide initial insights into how they may dif-
fer. This is particularly the case in conditions similar to those
informing our study, where there exist a limited number of
catch rate observations in space and time for a particular
life stage of a species, and/or where spatio-temporal data in-
clude years with low sampling effort. The ramifications of
reducing the spatial extent of EFH in the context of spatial
fisheries management are unclear. Refining our understand-
ing of core habitat areas could be helpful for securing stake-
holder confidence in future updates to EFH descriptions and
in using those habitat areas to prioritize locations for tar-
geted conservation measures, such as gear restrictions and
area closures. Shrinking (otherwise changing) the space de-
lineated as “essential” to a species due to changes in quan-
titative methodologies also requires in-depth conversations
among scientists, managers, and the public over manage-
ment priorities and tradeoffs. This study provides additional
information for fisheries researchers to consider when ex-
ploring methodologies for quantitatively defining species dis-
tributions, hotspots of abundance, and interannual variabil-
ity in habitat occupation.

The overall better within-sample and out-of-sample pre-
dictive performance of the spatio-temporal SDMs (Models
SpatiotA-SpatiotB) over the static models (Models StaticN-
StaticT) indicates that there is evidence for spatial variation
in juvenile salmon distributions in the EBS among years
(Table 2). The direction of spatial change in distributions var-
ied according to species, the given year, and the modeling
framework, as can be seen in the prediction maps (Fig. 4,
Supplementary Figs. S10-S12). Juvenile Chinook, chum, and
pink salmon appear to aggregate within or expand across
the southern portions of their average distributions in the
EBS, even under years spanning the most recent warm cli-
mate stanza (2014-2019). There are few proposed hypothe-
ses which touch on the expansion of juvenile salmon dis-
tributions in the SEBS. Farley and Trudel (2009) explore the
subject, noting that juvenile sockeye salmon were found
to have a broader latitudinal distribution during warmer
years, when the field of optimal growth rate potential broad-
ened. One substantial challenge of working with migratory
species like salmon is capturing intra-annual variation in
marine distribution—winter surveys, for example, are par-
ticularly difficult to execute in the Bering Sea and remain
an area with limited data for salmon. The results of our
study suggest that despite interannual variation in juvenile
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salmon distributions, the areas of highest abundance-density
in each year have largely remained within EFH areas as cir-
cumscribed using the top 95% of time-averaged (static) SDM-
predicted relative abundance (model StaticT). This might in-
dicate that static EFH definitions provide adequate cover-
age to meet management objectives. However, the data we
used reflected late summer juvenile salmon distributions
only, and it is still unclear how future salmon distributions
may respond to climate change throughout their marine resi-
dence. Much of the present literature on climate-related shift-
ing of fish distributions in the Bering Sea has focused on
groundfish species of commercial interest, particularly juve-
nile walleye pollock (Theragra chalcogramma) (Moss et al. 2009;
Hollowed et al. 2012; Kotwicki and Lauth 2013; Goodman et
al. 2022). Nonetheless, these and other studies of EBS fisheries
oceanography and trophic ecology have developed a founda-
tion of EBS ecological theory from which to guide future re-
search into interannual variability in Pacific salmon distribu-
tions.

Similar to prior studies that have applied SDM frameworks
to define EFH (Laman et al. 2018; Harris et al. 2023), our re-
sults indicate that an SDM approach can effectively refine
EFH definitions where data are limited and existing EFH def-
initions are broad. Further study of the similarities and dif-
ferences among GAM and VAST frameworks when utilized
for marine habitat delineation would be beneficial for in-
forming managers of the tradeoffs when selecting one or
more SDM frameworks to guide policy decisions. The most
recent updates to EFH descriptions in Alaska were developed
through an SDM ensemble (e-SDM) approach, which lever-
aged maximum entropy models, presence-absence GAMs,
hurdle GAMs, and two forms of standard GAMs, to reduce
bias and produce better uncertainty estimates (Harris et al.
2023; Pirtle et al. 2024). The e-SDM approach to spatial fish-
eries management has seen expanded use in other regions
of the world as well, including the Mediterranean (Quinci et
al. 2022; Panzeri et al. 2024), and the China Seas (Liu et al.
2023; Sun et al. 2024). In summary, the integration of diverse
SDM frameworks such as GAMs and VAST models in ensem-
ble approaches demonstrates significant potential for refin-
ing EFH descriptions and enhancing spatial fisheries man-
agement strategies. Continued exploration and comparison
of these methods may help to inform policy decisions in the
face of environmental variability and change.
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