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Abstract

This study compares alternative implementations of species distribution models (SDMs) for quantifying static and dynamic

patterns in marine habitat use, with a case study focusing on juvenile salmon in the eastern Bering Sea. We compare the per-

formance of two prevalent SDM frameworks——generalized additive models (GAMs) and vector autoregressive spatio-temporal

(VAST) models——in predicting juvenile salmon distributions and assessing interannual variation in habitat utilization. The two

SDM frameworks produced similar spatial predictions but performed di�erently in tests of within-sample and out-of-sample

predictive power. Our findings indicate that VAST models may provide more precise estimates of distribution compared to

GAMs. Maps of predicted juvenile salmon distributions showed highest salmon densities in habitats within the 50 m isobath

of the continental shelf, underscoring the importance of these coastal areas, although among-species di�erences were evident.

Model performance results suggested evidence for spatial variation in juvenile salmon species’ distributions through time. Our

findings suggest that an SDM approach can be e�ective for estimating static and dynamic juvenile salmon distributions, and

for providing insights that are useful in spatial fisheries management contexts.
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Introduction

Development and implementation of spatial management

strategies in fisheries require comprehensive understanding

of species’ distribution in space, and the extent to which

distributions change across time. In the United States, the

Magnuson–Stevens Fishery Conservation and Management

Act utilizes essential fish habitat (EFH) to ensure the conser-

vation of “those waters and substrate necessary to (federally

managed) fish for spawning, breeding, feeding, or growth

to maturity” (16 U.S. Code § 1802). Knowledge of EFH in-

forms conservation decisions and initiates cross-agency com-

munication on fishing and/or nonfishing activities that may

adversely a�ect EFH. Ecosystem approaches like the EFH

regulations are implemented internationally, particularly in

North America, Europe, and Australia (FAO 1995; Environ-

ment Protection and Biodiversity Conservation Act 1999;

Malta MedFish4Ever Ministerial Declaration 2017; EU Action

Plan 2023). Expanding habitat conservation planning to the

ecosystem scale is an ongoing challenge, particularly for mi-

gratory species like salmon. EFH and other related ecosys-

tem approaches have typically produced static representa-

tions of fish habitat, but these may fall short in the face of

interannual variation in habitat utilization or climate-driven

changes in species distribution.

Definition of EFH requires synthesis of available infor-

mation on species’ occurrence or habitat-related abundance

across space. Species distribution models (SDMs) represent

a contemporary, quantitative approach for describing spa-

tial or spatio-temporal variations in habitat use and relation-

ships with environmental covariates. As such, SDMs present

an opportunity to standardize observations of presence and

abundance of species based on fishery-independent survey

data or fishery-dependent catch rates to describe both static

and dynamic EFH. Spatio-temporal SDMs have been widely

utilized in fisheries research to standardize indices of abun-

dance (Thorson and Barnett 2017; Grüss et al. 2019; Maunder

et al. 2020) for stock assessment, and measure the impacts

of past climate variability on species distributions (Mueter

and Litzow 2008; Thorson 2019a; Yasumiishi et al. 2020;

Brodie et al. 2021). However, in the context of updating EFH
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definitions, spatio-temporal SDMs are a relatively novel ap-

proach (Laman et al. 2018; Harris et al. 2023; Pirtle et al. 2024).

There exists a diversity of statistical frameworks for con-

structing spatio-temporal SDMs. Two commonly applied

spatio-temporal SDM frameworks within fisheries are gen-

eralized additive models (GAMs) and vector autoregressive

spatio-temporal (VAST) models. A GAM is a generalized lin-

ear model with a linear predictor that captures nonlinear

variability as a sum of smooth functions of the predictor

variables (Wood 2006). GAMs describe flexible, nonparamet-

ric relationships between predictors and the response vari-

able, and can represent both spatial and spatio-temporal vari-

ation as the smoothed interaction between latitude, longi-

tude, and possibly time. VAST models are a class of spatio-

temporal SDMs that integrate autoregressive time compo-

nents and spatial random e�ects (Thorson and Barnett 2017).

VAST models, unlike GAMs, explicitly model spatial and/or

temporal correlation among observations, and are specifi-

cally designed formodelingmultivariate time series data. An-

other notable di�erence between the two SDM frameworks

lies in their approaches to prediction; GAMs provide predic-

tions for specific input values, whereas VAST generates a net-

work of polygons across the spatial domain for which abun-

dance and occurrence may be predicted. GAMs have wide

application in research related to spatial ecology, and were

used to refine EFH definitions for Alaska groundfish and crab

species in the 2018 EFH review (Laman et al. 2018) and as

ensemble SDM (e-SDM) constituents for the 2023 EFH review

(Harris et al. 2022, 2023; Laman et al. 2022; Pirtle et al. 2023,

2024). VAST models have been employed within stock, habi-

tat, climate, and ecosystem assessments (see Thorson (2019b)

for a list of early studies), and are actively being developed

for a variety of quantitative fisheries science applications,

including extending SDMs to estimate spatially varying co-

e
cients (Thorson et al. 2023), account for spatially vary-

ing catchability (Grüss et al. 2023), and for building stream

networks to relate changes in freshwater fish distributions

to fish length and river habitat attributes (Charsley et al.

2023).

Despite the applicability of these two statistical frame-

works in quantifying spatial and spatio-temporal variation in

fish abundance and occurrence, there remains an opportu-

nity to evaluate tradeo�s among these methods in describ-

ing EFH. There has been limited research directly comparing

their performance in describing species distributions (but see

Brodie et al. 2020). Brodie et al. (2020) found that VASTmodels

estimated abundance trendsmore precisely than GAMswhen

fit to empirical data for three species (arrowtooth flounder

Atheresthes stomias, Pacific cod Gadus macrocephalus, and wall-

eye pollock Gadus chalcogrammus). However, the performance

of candidate SDM frameworks are likely context dependent,

influenced by both the spatial dynamics of the focal species

and aspects of the observation or sampling process. At the

same time, there exists a need to identify applicable SDM

methods for refining EFH descriptions for juvenile salmonids

in their ocean life history stages, including in the eastern

Bering Sea (EBS) region of Alaska.

Current EFH maps for juvenile salmon in the marine wa-

ters surrounding Alaska were created using empirical cumu-

lative distribution function (ECDF) methods that associated

salmon occurrence with habitat conditions, including sea

surface temperature, sea surface salinity, and bottom depth

(Echave et al. 2012). The extent of juvenile salmon ocean

life history stage EFH, as defined by the ECDF methods, ex-

tends along the entire continental shelf and slope between

the Chukchi Sea and the Dixon Entrance in the area of the

U.S. Exclusive Economic Zone o� Alaska (NPFMC 2024). The

mapping methods employed in 2012 represented the best-

available-science at the time, but the authors of the study rec-

ognized the risk of such broad EFH descriptions. Broad EFH

descriptions dilute the e�ective power of EFH and the utility

of EFH maps by reducing the credibility and actionability of

the data at the scales demanded by management organiza-

tions and processes (Echave et al. 2012).

Our study compared the use of GAMs and VAST for de-

scribing the distributions of juvenile salmon species in the

EBS, and reflected on the application of SDM results to up-

date juvenile salmon EFH definitions in this region. The first

objective of this study was to compare the performance of

the two applicable SDM frameworks represented by GAMs

and VAST models, based on within and out-of-sample per-

formance metrics. The second objective was to describe the

species-specific average distribution of juvenile salmon in

the EBS using SDMs, with a view toward updating exist-

ing EFH definitions for this life stage. Five species of Pa-

cific salmon that are endemic to the EBS were considered

in this analysis: Chinook salmon (Oncorhynchus tshawytscha),

chum salmon (Oncorhynchus keta), coho salmon (Oncorhynchus

kisutch), pink salmon (Oncorhynchus gorbuscha), and sockeye

salmon (Oncorhynchus nerka). The third objective of this study

was to quantify the temporal variation in the core distribu-

tion areas occupied by juvenile salmon in the EBS; specifi-

cally, to assess whether core areas persist or shift through

time. Prior research into connections between salmon ma-

rine distribution and climate, including juvenile salmon in

the EBS (Yasumiishi et al. 2020) and Chinook salmon along

theWest Coast of the United States (Shelton et al. 2021) found

evidence for nonlinear and possibly stock-specific changes to

distributions and abundance in response to climate warming.

Methods

To describe spatial and spatio-temporal variation in juve-

nile salmonid abundance-density, four SDM variants of in-

creasing complexity were implemented as parallel model

structures within the GAM and VAST frameworks, total-

ing eight candidate SDMs (Table 1). These four model vari-

ants, with approximately parallel implementations in GAM

and VAST frameworks, build layers of complexity upon the

null model (Model StaticN) by (1) adding interannual varia-

tion in total catch across space (Model StaticYr), (2) spatio-

temporal variation with temporal autocorrelation (Model

SpatiotA), and (3) spatio-temporal variation that was inde-

pendent among years (Model SpatiotB). The functional form

of the most complex model variant is described below (eq.

1; Model SpatiotB), with all other variants (i.e., models Stat-

icN, StaticYr, and SpatiotA) representing simplified versions
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of this most flexible form (Table 1).

ln (A (si, ti )) = β0 + f1 (si ) + βti + fti (si ) + o (ln (ki ))(1)

Equation 1 describes the predicted natural log of catch in

numbers for a given location in space si and year of sampling

ti for observation i, where space is represented by latitude

and longitude coordinates. Predicted abundance (A) is an ad-

ditive function of average abundance across space and time

β0, an average spatial field f1 (si ) (spatial e�ects), categori-

cal (factor) year e�ects β ti (temporal e�ects), and year-specific

spatio-temporal fields fti (si) (spatio-temporal e�ects), with an

o�set (o) for the natural log of e�ort k in area swept (km2). Ves-

sel e�ects were tested during exploratory data analysis with

one species (Chinook). Overall vessel e�ects had a small e�ect

size that was not statistically distinguishable from zero at the

p = 0.05 level in explaining variation in catch observations,

and were therefore not included in subsequent analyses.

This study paid particular attention to the configuration

of spatio-temporal GAMs in the implementation of smooth

functions. Thin plate splines were specified for the tensor

product spatial smooths in all GAM variants to accommo-

date expected anisotropy in the response to latitude and

longitude. The Model SpatiotA variants, which contained

smoothed three-way space–time interaction terms f2 (si, ti ) ,

used a thin plate basis for the spatial component, and a cu-

bic spline basis for the temporal component. To address un-

reasonably high predictions of abundance in areas with few

observations, we limited model predictions to values within

the range of encounter data by setting the smoothing penalty

to a�ect the first derivative (Barnes et al. 2022; Harris et

al. 2023). To e�ectively handle catch data with many zeros,

we specified a Tweedie distribution within the GAM frame-

work for the error structure, with a log link function (Shono

2008).

VAST models were configured to approximate the four

GAM structures described previously (Table 1). To the ex-

tent possible, parallel model structures were implemented

to allow comparison of model performance among GAM and

VAST models of increasing complexity. Zero-inflation was ac-

counted for within VAST models by specifying a Poisson-link

delta model, which approximates the Tweedie distribution in

a computationally e
cient manner. The gamma distribution

was selected to model the positive catch component, follow-

ing recommendations from a case study (Thorson 2021). Esti-

mation of VAST spatio-temporal fields was turned o� for the

static models (Models StaticN–StaticT), while spatio-temporal

fields were estimated for the time-varying spatio-temporal

models (Models SpatiotA–SpatiotB). A constant-intercept-only

VAST null model was also fit for each model variant to calcu-

late percent deviance explained relative to this alternative.

The equation used to calculate percent deviance explained

of VAST model variants is described below (eq. 2), where DMi

represents the deviance of the model of interest, and DMn
rep-

resents the deviance of the VAST null model.

% Deviance Explained =
1 − DMi

DMn

(2)
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The eight candidate SDM structures were applied to esti-

mate juvenile salmon distributions in the EBS. The Bering Sea

represents important habitat for Pacific salmon while they

forage and grow at sea. Major freshwater systems connected

to the EBS that have historically supported abundant salmon

runs include the rivers of Bristol Bay, the Yukon River, and

the Kuskokwim River. The southern EBS shelf represents an

important ocean migration corridor for Bristol Bay juvenile

sockeye salmon (Farley et al. 2005), and EBS juvenile pink

salmon likely also utilize the continental shelf as a migration

corridor as they head south toward overwintering habitat in

the north Pacific Ocean (Beamish 2018). Distribution models

of high-seas salmon data have highlighted high predicted rel-

ative abundance of Chinook salmon along the EBS shelf dur-

ing the summer months (Langan et al. 2024). Additionally,

life history models identified juvenile salmon abundance in

the northern Bering Sea as significantly related to the num-

ber of adult salmon returning to natal freshwaters (Farley et

al. 2020).

Surface trawl survey data from the Bering–Arctic–Subarctic

Integrated Survey (BASIS) were used to inform models for

each species of Pacific salmon endemic to the EBS. BASIS was

initiated in 2002 by the National Marine Fisheries Service to

improve the understanding of salmon life histories and ecol-

ogy in the Bering Sea (Murphy et al. 2021). Time series of spa-

tially referenced catch and e�ort data fromBASIS are publicly

available through the Alaska Ocean Observing System por-

tal. The survey consists of surface trawls conducted annually

between the months of August and October. The sampling

design, roughly centered around the coastal domain of the

northern EBS shelf (Murphy et al. 2017), has varied consider-

ably among years due to survey objectives and available sam-

pling e�ort (Fig. 1). The area of the Bering Sea within ∼55◦–

65◦N and ∼160◦–173◦Whas received the most consistent sur-

vey sampling, while the Chukchi Sea has been sampled inter-

mittently. The number of stations comprising the survey each

year ranged from 31 stations in 2008 to 159 stations in 2010,

with a median value of 125 stations. Fish caught in the trawl

are identified to species and then subsamples are weighed,

counted, and further processed according to species proto-

cols (McKelvey and Williams 2018). Sampling e�ort in units

of area swept (km2) is associated with each survey tow, cal-

culated based on the horizontal opening from the net sonar

and the distance from GPS (global positioning system) lo-

cations at the start and end of the trawl set (Murphy et al.

2021).

Data were filtered to remove sampling events where prob-

lems with gear or unsatisfactory tows occurred. Initial explo-

ration revealed large di�erences in the number of positive

catch records for each species of salmon. Chum and pink

salmon were encountered most frequently across years (53%

and 50%, respectively), followed by Chinook salmon (37%),

sockeye salmon (37%), and coho salmon (31%). Due to low

catch rates for coho salmon and model convergence issues,

we did not consider this species in further analysis. While the

BASIS sample design occasionally included the Chukchi Sea

and areas south of the Aleutian Islands, data were clipped to

a region of interest encompassing the north eastern Bering

Sea (NEBS) and southeastern Bering Sea (SEBS) (Supplemen-

tary Fig. S9) to eliminate areas with consistently low sampling

e�ort.

Following inspection of model diagnostic plots (quantile–

quantile plots, residual maps) (Supplementary Figs. S1–S8),

models that converged were then used to predict salmon

abundance across the area of interest (AOI) (Supplementary

Fig. S9) (i.e., extrapolation grid) in the NEBS and SEBS. We

defined the spatial extent of the extrapolation grid manu-

ally by selecting points around survey stations in the AOI,

converting these coordinates to a spatial polygon, generat-

ing a regional grid (resolution = 0.002 km2), and clipping the

grid to the extent of the spatial polygon (knots = 162 174) (R

packages “rgdal”, “sf”, and “sp”; Pebesma and Bivand 2005;

Bivand et al. 2013; Pebesma 2018; Bivand et al. 2023). This

clipped grid was also used to derive prediction surfaces for

the GAM predictions of abundance density. To overcome

computational demands resulting from the large number

of spatial prediction locations in the VAST grid, n = 10 000

latitude and longitude locations from this grid were ran-

domly sampled without replacement and saved as a new grid

file. Predictions from GAMs were generated using the pre-

dict() function from the “mgcv” package (Wood et al. 2016).

Both VAST and GAM predictions were then mapped with the

“ggplot2” (Wickham 2016), “rnaturalearth” (Massicotte and

South 2023), and “akgfmaps” (Rohan 2023) packages.

The performance of the two SDM frameworks, GAMs and

VAST, were compared quantitatively using percent deviance

explained for within-sample predictive performance, and 10-

fold cross-validation to assess out-of-sample predictive per-

formance (Thorson and Barnett 2017). For cross-validation,

the data were partitioned by randomly assigning each sur-

vey haul record a fold value from 1 to 10 (total 1845 records

per species). These fold values were then used to subset the

original dataset into testing and training subsets, for a total

of 10 sets of testing and training data. Following partition-

ing, each of the candidate statistical models were fit to the

training data. These models were subsequently used to pre-

dict the expected value of the response variable (abundance)

for the testing data. Negative log likelihood (NLL) scores for

GAMs were calculated following a three-step approach. First,

Tweedie dispersion and power term values were extracted

from the GAM model object. These dispersion and power

term values were then used to calculate the likelihood of

the observations in the testing dataset. Finally, the likeli-

hood was log-transformed and multiplied by negative one

to form the NLL value. The NLL of the model was summed

across the 10-folds to create a total out-of-sample NLL for

a given model, describing out of sample predictive perfor-

mance for a fitted model. A lower NLL indicates higher out-

of-sample predictive power. Information theory (Akaike in-

formation criterion; Burnham and Anderson 2002) and per-

cent deviance explained were used to compare model perfor-

mance and to evaluate whether there was model-based sta-

tistical evidence for shifts in species distributions through

time.

Model residuals were calculated according to the SDM

framework. Quantile residuals were calculated for GAMs,

while DHARMa residuals were calculated for VAST models.

Both residual types are scaled, but DHARMa residuals are the
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Fig. 1. Maps showing the sampling design of the Bering–Arctic–Subarctic Integrated Survey from 2002 to 2019, with survey

stations represented as black points over gray marine waters bordered by polygons of the land masses of Russia’s Chukchi

Peninsula, and Alaska. Basemap: rnaturalearth (Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum:

NAD83, EPSG code: 3338, Coordinates = Cartesian 2D.

preferred method for mixed e�ects models and were there-

fore more suitable for the VAST framework. Quantile residu-

als were calculated in R from saved GAMmodel objects using

the “statmod” package (Dunn and Smyth 1996). Scaled quan-

tile residuals (“DHARMa residuals”) were extracted from stan-

dard VAST reports associated with each fitted VAST model.

Maps of predicted juvenile salmon distributions condi-

tional on SDMs were generated to compare model-predicted

habitat areas against those described empirically in the litera-

ture, and to assess the application of SDMs to juvenile salmon

EFH descriptions. The latest Alaska EFH 5-year review pro-

duced EFHmaps by representing the area circumscribing the

top 95% of SDM-predicted abundance (Pirtle et al. 2024). In

this study, individual static and spatio-temporal model pre-

dictions of juvenile salmon distributions were used to create

static and dynamic EFH and Core EFH maps. For each species

and model type, we calculated the cumulative sum of abun-

dance predictions and retained those comprising the top 95%

(EFH) and 50% (Core EFH) of predicted abundance. The areas

encompassed by static SDM-based EFH definitions were cal-

culated and compared against those areas delineated by cur-

rent o
cial EFH definitions (NPFMC 2024). Prediction points

were aggregated and converted to spatial polygons (R package

“concaveman”; Gombin et al. 2020). The areas of these spatial
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Table 2. Model performance metrics used for within-framework model evaluation (AIC, % deviance explained (DE)) and for

cross-framework evaluation (% deviance explained (DE), negative log likelihood (NLL)).

Species Model structure
AIC

(GAM)
AIC

(VAST)
% DE
(GAM)

% DE
(VAST)

NLL
(GAM)

NLL
(VAST)

Chinook

Model StaticN: (Static) Average spatial field 5295 5261 53% 38% 2704 2633

Model StaticT: (Static) Average spatial field with factor year e�ect 5187 5094 58% 44% 2653 2552

Model SpatiotA: (Dynamic) Model capturing spatio-temporal
autocorrelation

5029 5049 65% 52% 2604 2551

Model SpatiotB: (Dynamic) Spatio-temporal model with independent
spatial fields

NA 5015 NA 64% NA 2769

Chum

Model StaticN: (Static) Average spatial field 10 621 10 555 32% 26% 5420 5419

Model StaticT: (Static) Average spatial field with factor year e�ect 10 475 10 145 39% 36% 5362 5198

Model SpatiotA: (Dynamic) Model capturing spatio-temporal
autocorrelation

10 237 9942 49% 54% 5303 5195

Model SpatiotB: (Dynamic) Spatio-temporal model with independent
spatial fields

9628 9774 80% 71% 6747 5997

Pink

Model StaticN: (Static) Average spatial field 10 097 10 054 26% 22% 5160 5138

Model StaticT: (Static) Average spatial field with factor year e�ect 9753 9557 42% 38% 5136 5040

Model SpatiotA: (Dynamic) Model capturing spatio-temporal
autocorrelation

9524 9401 53% 55% 5215 5106

Model SpatiotB: (Dynamic) Spatio-temporal model with independent
spatial fields

9054 9209 79% 69% 6625 5586

Sockeye

Model StaticN: (Static) Average spatial field 8700 8677 43% 32% 4441 4421

Model StaticT: (Static) Average spatial field with factor year e�ect 8419 8228 55% 43% 4316 4216

Model SpatiotA: (Dynamic) Model capturing spatio-temporal
autocorrelation

8104 8101 68% 59% 4203 4208

Model SpatiotB: (Dynamic) Spatio-temporal model with independent
spatial fields

7928 8002 81% 70% 5477 4553

Note: GAM, generalized additive model; VAST, vector autoregressive spatio-temporal.

Table 3. Calculated areas of model-predicted essential fish habitat (EFH) in square kilometers, and their size relative to the cur-

rent o
cial Alaska juvenile salmon EFH definitions from National Oceanic and Atmospheric Administration (NOAA) National

Marine Fisheries Service (NMFS) Alaska Fisheries Science Center (AFSC) Technical Memorandum NMFS-AFSC-236.

Species GAM-predicted EFH area VAST-predicted EFH area O
cial EFH area clipped to AOI Percent change-GAM Percent change-VAST

Chinook 222 738 km2 222 209 km2 560 335 km2
−60% −60%

Chum 352669 km2 326 804 km2 521 916 km2
−38% −43%

Pink 513 123 km2 477 698 km2 588 819 km2
−13% −19%

Sockeye 288 688 km2 266 188 km2 582 962 km2
−50% −54%

Note: GAM, generalized additive model; VAST, vector autoregressive spatio-temporal; AOI, area of interest.

polygons were compared to those of o
cial EFH shapefiles

clipped to the AOI, and the percent di�erence in EFH area

was calculated for each species based on static (Model Stat-

icN) SDMs.

Results

Objective 1: Compare GAM and VAST
frameworks for predicting species distributions

Quantitative metrics used for model selection within the

respective VAST and GAM frameworks showed agreement

across metrics (Table 2). AIC and percent deviance explained

favored model structures that accounted for spatial varia-

tion in species distributions through time (Models SpatiotA–

SpatiotB). Di�erences across model frameworks emerged in

the tests of out-of-sample predictive performance (10-fold

cross-validation). 10-fold cross-validation results indicated

that VAST models had higher out-of-sample predictive power

when compared with parallel GAM structures, as indicated

by lower NLL scores (Table 3). Exceptions included the sock-

eye salmon spatio-temporal models (Models SpatiotA and

SpatiotB), where GAMs produced better (lower) negative log-

likelihood scores when compared with VAST models, and

Model SpatiotB for Chinook salmon, where nonconvergence

of the GAMs barred comparison across model frameworks.

Diagnostic quantile–quantile plots (Supplementary Figs. S1–

S4) indicated that residuals were approximately normally dis-

tributed, with slight deviations at the tails for most salmon

species, and stronger deviations for Chinook salmon (Sup-

plementary Fig. S1). Maps of residuals (quantile residuals

for GAMs, and DHARMa residuals for VAST models) showed

greater spatial correlation in GAM residuals compared to

VAST residuals, although the degree of correlation appeared

to be fairly moderate (Supplementary Figs. S5–S8).

C
an

. 
J.

 F
is

h
. 
A

q
u
at

. 
S

ci
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 c

d
n
sc

ie
n
ce

p
u
b
.c

o
m

 b
y
 7

4
.2

4
4
.7

2
.2

1
4
 o

n
 0

1
/0

7
/2

6



Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 82: 1–13 (2025) | dx.doi.org/10.1139/cjfas-2024-0137 7

Fig. 2. Side-by-side comparisons of GAM and VAST static model (Model StaticN) predictions for log abundance density (per

km2) in the eastern Bering Sea. Yellow colors denote areas of higher predicted abundance, while darker colors denote areas of

lower predicted abundance. Data sources: bathymetry——akgfmaps (Rohan 2023), rivers——USA Rivers and Streams (Esri 2020);

Basemap: rnaturalearth (Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NAD83, EPSG code:

3338, Coordinates = Cartesian 2D. GAM, generalized additive model; VAST, vector autoregressive spatio-temporal.

Visual inspection of predicted abundance density across

the EBS indicated that GAMs and VAST models predicted

largely similar distributions from a qualitative perspective.

Species-specific maps of static model (Model StaticN) predic-

tions were nearly identical across the two frameworks (Figs.

2 and 3). However, the VAST framework tended to produce

more concentrated static (Model StaticN) distributions of pre-

dicted abundance density, leading to model-based EFH (i.e.,

top 95% of predicted abundance) areas that were 4% (0%–7%)

smaller on average than those estimated by the GAMs (Fig.

3; Table 3). Greater di�erences among the VAST and GAM

frameworks were found in maps of spatio-temporal model

(Model SpatiotB) predictions (Fig. 4; Supplementary Figs. S10–

S12). GAM-predicted Model SpatiotB distributions appeared

to deviate more often from patterns predicted by the time-

averaged, static model (Model StaticN) and often predicted

hotspots of abundance along the margins of the prediction

grid. In contrast, VAST-predicted Model SpatiotB distribu-

tions appeared to more closely follow the long-term average

patterns predicted by static model variants. Maps of model

residuals indicated that GAMs tended to under-predict abun-

dance, while VAST models produced both under- and over-

predictions across a range of locations and sample years (Sup-

plementary Figs. S5–S8).

Objective 2: Describe juvenile salmon
distributions in the EBS

Maps of static model (Model StaticN) predictions of juve-

nile salmon distributions in the EBS estimated the greatest

densities of juvenile salmon within the 50 m isobath of the

continental shelf (Figs. 2 and 3). Species-specific di�erences in

predicted distributions were observed for both classes of sta-

tistical models. Parallel GAM and VAST model structures pre-

dicted similar areas of high abundance for each species, with

minor di�erences among static model predictions (Model

StaticN) (Fig. 2) and larger di�erences among spatio-temporal

model predictions (Model SpatiotB) (Fig. 4). The EFH estimates

produced using static SDM methods in this study were more

spatially concentrated than the current EFH estimates for
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Fig. 3. Essential fish habitat maps describing the area representing the top 95% of abundance generated by static generalized

additive model (in red) and vector autoregressive spatio-temporal (in blue) model predictions (Model StaticN), with overlapping

areas represented in purple. The boundaries of current essential fish habitat definitions are outlined in green, andwere sourced

from essential fish habitat map shapefiles in Fishery Management Plan for the Salmon Fisheries in the EEZ o� Alaska (NPFMC

2024). Data sources: bathymetry——akgfmaps (Rohan 2023), rivers——USA Rivers and Streams (Esri 2020); Basemap: rnaturalearth,

(Massicotte and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NAD83, EPSG code: 3338, Coordinates= Carte-

sian 2D.

juvenile salmon in the EBS (Table 3), with reductions in EFH

area ranging from 13% to 19% (pink salmon) to 60% (Chinook

salmon) across VAST and GAM frameworks. All model struc-

tures were successfully fit to the data, with the exception of

the most flexible spatio-temporal GAM (Model SpatiotB) for

juvenile Chinook salmon, which did not converge.
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Fig. 4. Maps of GAM (in red) and VAST (in blue) spatio-temporal model predictions (Model SpatiotB) of core essential fish

habitat (top 50% of predicted abundance) of juvenile chum salmon in the eastern Bering Sea. The red and blue polygon out-

lines represent the essential fish habitat areas predicted by GAM and VAST static models (Model StaticN), respectively. Data

sources: bathymetry——akgfmaps (Rohan 2023), rivers——USA Rivers and Streams (Esri 2020); Basemap: rnaturalearth (Massicotte

and South 2023), Projection: Alaska Albers Conic Equal Area, Datum: NAD83, EPSG code: 3338, Coordinates = Cartesian 2D.

GAM, generalized additive model; vast, vector autoregressive spatio-temporal.

Objective 3: Determine whether juvenile
salmon distributions shift through time

To evaluate whether juvenile salmon distributions demon-

strate interannual variability, we quantified the strength of

evidence for spatial changes in juvenile salmon species dis-

tributions through time by comparing the performance of

SDMs with either static or dynamic spatial e�ects. Model se-

lection results indicated greater support for spatio-temporal

models that allow juvenile salmon distributions to vary

among years for all species (Table 2). The GAM structures

with the lowest AIC scores and highest percent deviance

explained were the spatio-temporal models with indepen-

dent spatial fields for each survey year (Model SpatiotB). This

was true for all modeled species except juvenile Chinook

salmon. The Model SpatiotB GAM failed to fully converge

when fit to the Chinook salmon catch data, even after in-

creasing themaximum iteration threshold to 3600. The alter-

native spatio-temporal GAM structure (Model SpatiotA), rep-

resenting spatio-temporal autocorrelation, was successfully

fit to the Chinook salmon data, produced the lowest AIC

score among the Chinook salmon models and explained the
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most deviance in the Chinook salmon observations. Model

SpatiotA produced the second-lowest AIC scores and second-

highest percentages of deviance explained across all other

salmon species analyzed in this study.

When out-of-sample predictive performancewas compared

across the four alternativemodel structures of varying spatio-

temporal complexity, results for both VAST and GAM frame-

works showed lower Tweedie deviance scores (NLL, Table

2) for the spatio-temporal model with time-varying distri-

butions (Model SpatiotB) for Chinook, chum, and sockeye,

but not pink salmon. These results indicate that for most

species, spatio-temporal models that allowed distributions to

vary among years better predicted thewithheld data (observa-

tions) in 10-fold cross-validation. Interestingly, for the species

where out-of-sample predictive performance was higher for

spatio-temporal models (e.g., Chinook, chum, and sockeye

salmon), the constrained spatio-temporal model structure

which assumed that species’ distribution in a given year

were conditional on the distribution in surrounding years

(Model SpatiotA) demonstrated higher out-of-sample predic-

tive power.

Visual inspection of model-predicted core (50%) habi-

tat maps from the best-performing spatio-temporal models

(Model SpatiotB) provided a more comprehensive picture of

distribution changes through time (Fig. 4).While yearly distri-

butions did deviate from the average spatial fields predicted

by maps produced by static models (Model StaticN) in terms

of size and extent, key habitat areas largely persisted through

time in locations predicted by the static spatial models. Fur-

thermore, visual inspection of core essential habitat did not

reveal signs of long-term range shifts northward or in any

other direction.

Discussion

Our application of static and spatio-temporal SDMs using

VAST and GAM frameworks yielded several interesting find-

ings. The GAM and VAST modeling frameworks showed no-

table di�erences in performance (Table 2). Statistical metrics

(% Deviance Explained, Negative-Log-Likelihood) used to com-

pare the model frameworks indicated that the GAM frame-

work produced models with higher within-sample predictive

power (% Deviance Explained), while the VAST framework

producedmodels with higher out-of-sample predictive power

(Tweedie negative log-likelihood from cross-validation). This

was unexpected based on previous research comparing GAM

and VAST model frameworks in SDM applications (Brodie et

al. 2020). We also found that GAM spatio-temporal models of-

ten predicted hotspots of abundance in ecologically unlikely

places, close to the margins of the survey footprint. Reducing

the spatial extent of training data and the prediction surface,

as well as implementing a first-derivative smoothing penalty,

reduced the occurrence of these unlikely abundance hotspots

along spatial margins, but it did not completely eliminate

them. A simulation analysis exploring di�erences between

Tweedie GAM models in mgcv and Poisson-link delta models

(which approximate the Tweedie distribution) in VAST, when

confronted with spatially imbalanced input, may help to bet-

ter identify di�erences across these two particular estimation

platforms.

The predicted EFH spatial footprints from this study en-

compassing an estimated 95% of the population——pursuant

to the current guidelines for Alaska EFH definitions (NPFMC

2024)——were more compact than current o
cial EFH esti-

mates as predicted by the ECDF methods outlined in Echave

et al. (2012) (Fig. 3; Table 3). GAMs produced EFH estimates up

to 7% larger in extent than those produced by VAST models

(Table 3), but would still represent substantial reductions of

13%–60% in EFH area compared to current definitions, across

salmon species. Although incorporating environmental co-

variates into SDM models would facilitate more direct com-

parisons between SDM- and ECDF-estimated EFH, the results

of this study provide initial insights into how they may dif-

fer. This is particularly the case in conditions similar to those

informing our study, where there exist a limited number of

catch rate observations in space and time for a particular

life stage of a species, and/or where spatio-temporal data in-

clude years with low sampling e�ort. The ramifications of

reducing the spatial extent of EFH in the context of spatial

fisheries management are unclear. Refining our understand-

ing of core habitat areas could be helpful for securing stake-

holder confidence in future updates to EFH descriptions and

in using those habitat areas to prioritize locations for tar-

geted conservation measures, such as gear restrictions and

area closures. Shrinking (otherwise changing) the space de-

lineated as “essential” to a species due to changes in quan-

titative methodologies also requires in-depth conversations

among scientists, managers, and the public over manage-

ment priorities and tradeo�s. This study provides additional

information for fisheries researchers to consider when ex-

ploringmethodologies for quantitatively defining species dis-

tributions, hotspots of abundance, and interannual variabil-

ity in habitat occupation.

The overall better within-sample and out-of-sample pre-

dictive performance of the spatio-temporal SDMs (Models

SpatiotA–SpatiotB) over the static models (Models StaticN–

StaticT) indicates that there is evidence for spatial variation

in juvenile salmon distributions in the EBS among years

(Table 2). The direction of spatial change in distributions var-

ied according to species, the given year, and the modeling

framework, as can be seen in the prediction maps (Fig. 4,

Supplementary Figs. S10–S12). Juvenile Chinook, chum, and

pink salmon appear to aggregate within or expand across

the southern portions of their average distributions in the

EBS, even under years spanning the most recent warm cli-

mate stanza (2014–2019). There are few proposed hypothe-

ses which touch on the expansion of juvenile salmon dis-

tributions in the SEBS. Farley and Trudel (2009) explore the

subject, noting that juvenile sockeye salmon were found

to have a broader latitudinal distribution during warmer

years, when the field of optimal growth rate potential broad-

ened. One substantial challenge of working with migratory

species like salmon is capturing intra-annual variation in

marine distribution——winter surveys, for example, are par-

ticularly di
cult to execute in the Bering Sea and remain

an area with limited data for salmon. The results of our

study suggest that despite interannual variation in juvenile
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salmon distributions, the areas of highest abundance-density

in each year have largely remained within EFH areas as cir-

cumscribed using the top 95% of time-averaged (static) SDM-

predicted relative abundance (model StaticT). This might in-

dicate that static EFH definitions provide adequate cover-

age to meet management objectives. However, the data we

used reflected late summer juvenile salmon distributions

only, and it is still unclear how future salmon distributions

may respond to climate change throughout their marine resi-

dence. Much of the present literature on climate-related shift-

ing of fish distributions in the Bering Sea has focused on

groundfish species of commercial interest, particularly juve-

nile walleye pollock (Theragra chalcogramma) (Moss et al. 2009;

Hollowed et al. 2012; Kotwicki and Lauth 2013; Goodman et

al. 2022). Nonetheless, these and other studies of EBS fisheries

oceanography and trophic ecology have developed a founda-

tion of EBS ecological theory from which to guide future re-

search into interannual variability in Pacific salmon distribu-

tions.

Similar to prior studies that have applied SDM frameworks

to define EFH (Laman et al. 2018; Harris et al. 2023), our re-

sults indicate that an SDM approach can e�ectively refine

EFH definitions where data are limited and existing EFH def-

initions are broad. Further study of the similarities and dif-

ferences among GAM and VAST frameworks when utilized

for marine habitat delineation would be beneficial for in-

forming managers of the tradeo�s when selecting one or

more SDM frameworks to guide policy decisions. The most

recent updates to EFH descriptions in Alaska were developed

through an SDM ensemble (e-SDM) approach, which lever-

aged maximum entropy models, presence–absence GAMs,

hurdle GAMs, and two forms of standard GAMs, to reduce

bias and produce better uncertainty estimates (Harris et al.

2023; Pirtle et al. 2024). The e-SDM approach to spatial fish-

eries management has seen expanded use in other regions

of the world as well, including the Mediterranean (Quinci et

al. 2022; Panzeri et al. 2024), and the China Seas (Liu et al.

2023; Sun et al. 2024). In summary, the integration of diverse

SDM frameworks such as GAMs and VAST models in ensem-

ble approaches demonstrates significant potential for refin-

ing EFH descriptions and enhancing spatial fisheries man-

agement strategies. Continued exploration and comparison

of these methods may help to inform policy decisions in the

face of environmental variability and change.
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