

FREE ARTICLE

Exciton-Assisted Relaxation of Hot Carriers in Semiconductor Quantum Dots

Hadassah B. Griffin, Andrei B. Kryjevski, Svetlana V. Kilina and Dmitri S. Kilin

© 2024 ECS - The Electrochemical Society

[ECS Meeting Abstracts, Volume MA2024-01, D04: Quantum Dot Science and Technology 3](#)

Citation Hadassah B. Griffin *et al* 2024 *Meet. Abstr. MA2024-01* 1396

DOI [10.1149/MA2024-01231396mtgabs](https://doi.org/10.1149/MA2024-01231396mtgabs)

[Authors](#) [Article information](#)

Abstract

The work provides computational arguments in support of excitonic approach for the treatment of the photo-induced processes in semiconductor quantum dots. The non-radiative relaxation, non-radiative recombination, and photo-luminescence quantum yield are computed for a range of atomistic models of semiconductor quantum dots (QDs) in the quantum confinement regime. The excitonic (EX) approach is compared to independent orbital approximation (IOA) approach. Both approaches address dissipation of the electronic energy from electronic degrees of freedom to thermal vibrations of the lattice. The difference of two approaches appears in treatment of energies of electronic states and in a way how the electron-phonon interaction is taken into account. IOA approach uses energies of Kohn-Sham orbitals and on the fly non-adiabatic couplings. [1-3] EX approach uses Bethe-Salpeter equation (BSE) for energies. [4-6] The excitonic wavefunctions from BSE is used to construct a linear transformation matrix that transforms IOA-based non-adiabatic couplings into an excitonic basis. Both approaches are compared in application to ultrasmall 1 nm diameter Si QD. Results include an evidence that hot excitons relax sooner in the excitonic picture than in the IOA picture. The observed effect is rationalized via smaller subgaps and different available relaxation pathways in the excitonic picture. The most surprising result is found for the simulated emission spectrum. The spectrum in the excitonic picture demonstrates intensity in several 5 orders of magnitude higher than in the IOA picture. This observation is related to formation of a bright exciton in the lowest excitation of the ultra-small Si QDs. Obtained evidence favors excitonic approach and promises a reliable interpretation and prediction of time-dependent observables in a range of semiconductor quantum dots of different composition, sizes, and surface environment. [7] Most intriguing results are expected for QDs representing interface between PbSe and CdSe. [8]

Support of National Science foundation via NSF CHE-2004197 is gratefully acknowledged.

[1] D. S. Kilin and D. A. Micha, "Relaxation of photoexcited electrons at a nanostructured Si(111) surface", *J. Phys. Chem. Lett.* 1, 1073-1077 (2010).

[2] D. J. Vogel and D. S. Kilin, "First-Principles Treatment of Photoluminescence in Semiconductors" *J. Phys. Chem. C* 119, 50, 27954-27964 (2015).

[3] D. J. Vogel, A. B. Kryjevski, T. M. Inerbaev, and D. S. Kilin, "Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots", *J. Phys. Chem. Lett.* 8, 13, 3032-3039 (2017).

[4] A. B. Kryjevski and Dmitri Kilin, "Enhanced multiple exciton generation in amorphous silicon nanowires and films", *Molec. Phys.* 114, 365-379 (2016).

[5] M. Rohlfs and S. G. Louie, "Electron-Hole Excitations in Semiconductors and Insulators", *Phys. Rev. Lett.* 81, 2312-2315 (1998).

[6] T. Sander, G. Kresse, "Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach", *J. Chem. Phys.* 146, 064110 (2017).

[7] S. V. Kilina, P. K. Tamukong, and D. S. Kilin, "Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives", *Acc. Chem. Res.* 49, 10, 2127-2135 (2016).

[8] H. B. Griffin, A. B. Kryjevski, and Dmitri S. Kilin, "Ab initio calculations of through-space and through-bond charge-transfer properties of interacting Janus-like PbSe and CdSe quantum dot heterostructures", *Molec. Phys.*, e2273415 (2023).

[Export citation and abstract](#)[BibTeX](#)[RIS](#)[← Previous article in issue](#)[Next article in issue →](#)[Article metrics](#)

136 Total downloads

[Permissions](#)

[Get permission to re-use this article](#)

[Share this article](#)

You may also like**JOURNAL ARTICLES**

Three-electron radiative transitions

Generalised non-linear optical master equations taking into account the correlation time of relaxational perturbations

Robustness of the photon-atom bound state in bandgap reservoirs

Effect of quantum fluctuations of medium polarisation on stimulated Raman scattering in a photonic crystal

Competition between non-correlative visible and correlative fluorescence transitions in Kr III

Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles

physicsworld|jobs

Researchers in Epitaxial van der Waals Quantum Solids
IBS - Center for Van der Waals Quantum Solids

International Faculty Position, UESTC, The Institute of Fundamental and Frontier Sciences (IFFS)

University of Electronic Science and Technology of China (UESTC) - IFFS

I-MRSEC REU - Materials Science - Join us! (copy)
Materials Research Science and Engineering Center at University of Illinois Urbana-Champaign

[More jobs](#) [Post a job](#)

physicsworld podcasts

Where science meets sound

Click to listen

physicsworld | podcasts**IOPSCIENCE****IOP PUBLISHING****PUBLISHING SUPPORT**[Journals](#)[Copyright 2024 IOP Publishing](#)[Authors](#)[Books](#)[Terms and Conditions](#)[Reviewers](#)[IOP Conference Series](#)[Disclaimer](#)[Conference Organisers](#)[About IOPscience](#)[Privacy and Cookie Policy](#)[Contact Us](#)[Text and Data mining policy](#)[Developing countries access](#)[IOP Publishing open access policy](#)[Accessibility](#)