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Abstract

Manganese (Mn) is a possibly critical yet poorly understood element controlling soil carbon (C)
stocks. In temperate forests, Mn availability correlates strongly with organic C decay, but we know
little about its role in soil organic matter decomposition in most terrestrial environments. In this
study, we evaluate Mn in grassland C dynamics along a rainfall gradient in Hawaii. We measured
Mn, organic matter, and microbial enzyme activities along the rainfall gradient to evaluate
relationships among Mn oxidation state, chemical/biological reactivity, and soil C turnover.
Neither Mn abundance nor its oxidation state are strong predictors of organic C instability along
the grassland gradient. We also used an incubation experiment to investigate how dissolved
organic C and CO> release from the grassland soil respond to increased Mn bioavailability. We
found that Mn availability did not correlate with soil C instability; Mn additions corresponded with
lower dissolved organic C and CO> fluxes from soils than did additions of deionized water. Mn

availability may not predict soil C stability as well as previously thought.

1. Introduction

Manganese (Mn) is a reactive, biologically essential element ubiquitous in soil. It composes 0.1%
of the Earth’s crust (Turekian and Wedepohl, 1961), is the most energetically favorable redox-
active metal, and has been shown to interact with soil organic matter (SOM) (Cui and Dolphin,
1990; Berg and McClaugherty, 2003; Berg et al., 2007; Davey et al., 2007; Keiluweit et al., 2015;
Whalen et al., 2018), the largest reservoir of potentially dynamic carbon (C) on Earth (Ciais and
Sabine, 2013; Kochy et al.,, 2015). Yet Mn remains one of the least understood elements

influencing soil C stocks.
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Mn exists in three oxidation states in soils: Mn?" is the most reduced, energetically stable,
soluble species and the only nutritionally available form; Mn>**, a powerful and unstable oxidant,
is the most reactive form (van der Lee, 1999; Rezanezhad et al., 2014; Keiluweit et al., 2016; Jones
et al., 2018); and Mn*', which can also act as an oxidant, is the most oxidized and least soluble
form. Mn cycles through these dynamic states when soil redox conditions fluctuate. Mn?" is the
most common form in primary minerals; it is released to soils through weathering and can be
oxidized in the presence of Oz to Mn>". Mn** can persist if stabilized in mineral forms or combined
with ligands; otherwise, it is further oxidized to Mn*" or reduced back to Mn?" (Madden and
Hochella, 2005; Webb et al., 2005; Lan et al., 2017). Where soils are anoxic, Mn** can be reduced
to Mn?" (Schulze et al., 1995), with Mn** as a possible, albeit thermodynamically unlikely,
intermediate product (Luther, 2005). The forms of Mn and how Mn functions in soils depend on
the soils’ micro- and macroenvironments.

As organic matter (OM) breaks down, Mn accumulates. A comprehensive literature review
found Mn concentration highly correlated with degree of decomposition, appearing to be “the
single main factor” predicting OM decay in many study sites (Berg et al., 2010). Oxic-anoxic
interfaces are ubiquitous within soils and have been found to be hotspots of Mn** oxidation (Mn>*
production), soil organic matter (SOM) oxidation, and microbial activity (Rezanezhad et al., 2014;
Jost et al., 2015; Jones et al., 2018). Due to its small size, solubility, and potent reactivity, Mn>" is
the oxidation state directly involved in SOM breakdown: when chelated, most commonly in soils
by a low-molecular-weight organic acid (LMWOA) (e.g., citrate), Mn>* can persist long enough
to diffuse into complex soil matrices and non-specifically oxidize previously protected OM,

breaking the compound down into now accessible constituents (Janusz et al., 2013; Whalen et al.,
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2018). Understanding what governs Mn** production in soils will clarify its role in destabilizing
SOM.

Although, Mn*" reduction and Mn?" oxidation can ultimately enhance SOM breakdown by
generating Mn**, Mn?" oxidation is the primary route directly generating Mn*". Oxidation can
occur abiotically or biotically. Abiotic oxidations are highly redox and pH sensitive (Jung et al.,
2017; Zhang et al., 2021); biotic Mn oxidation depends less on pH and may progress more rapidly
than abiotic oxidation in most natural systems (Hastings and Emerson, 1986; Tebo et al., 2004;
Villalobos et al., 2006; Luther, 2010; Learman et al., 2011; Santelli et al., 2011). Microbes are,
accordingly, thought to be the primary driver of Mn oxidation in natural environments (Emerson
et al., 1982; Tebo et al., 1984; Tebo and Emerson, 1985; Clement et al., 2009; Dick et al., 2009).
While diverse taxa (bacterial, archaeal, and fungal) living in many different environments can
oxidize Mn (Hansel and Learman, 2016), evidence suggests fungi are the major biotic catalysts in
soils (Possinger et al., 2022).

SOM derives from decomposed plant tissue, and its stability varies with a soil’s
microenvironment—mineral composition; structure; texture; water content; and microbial
community, activity, and distribution (Meentemeyer, 1978; Gramss, 1997; Paul, 2006; Schmidt et
al., 2011; Cotrufo et al., 2013; Lehmann and Kleber, 2015; Heckman et al., 2021; Possinger et al.,
2022). In laboratory experiments, low O: availability limits OM mineralization by inhibiting
white-rot fungi, which are aerobic decomposers (Kirk and Farrell, 1987); but in the field, OM
degradation is greatest when O> fluctuates and in microsites near anoxic-oxic interfaces (Hall et
al., 2015; Jones et al., 2018). Of the litter-degrading fungi, white-rot fungi are the most efficient
decomposers (Abbas et al., 2005; Wong, 2009; Dashtban et al., 2010). They include numerous

basidiomycetes species and a few ascomycetes, characterized by the suite of extracellular enzymes
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they can secrete: phenol oxidases (laccase), heme peroxidases (e.g., lignin peroxidase [LiP] and
Mn peroxidase [MnP]), and versatile peroxidase (VP) (Martinez et al., 2009; Sigoillot et al., 2012).
Other fungi produce laccases, but the peroxidases are a hallmark of white rot (Riley et al., 2014).
Not all white rot fungi make LiP and VP, but all known species produce MnP (Hofrichter, 2002),
suggesting that MnP plays a conserved role in their metabolism (Hatakka and Hammel, 2011;
Floudas et al., 2012). Despite their name, ligninolytic enzymes attack a variety of SOM
biopolymers, not just lignin (Cui and Dolphin, 1990; Baldrian, 2006).

To degrade SOM’s polymers and phenolic constituents, oxidative enzymes must be small
and non-specific themselves or use small, nonspecific reactive mediators to diffuse into structures
and attack diverse bonds (Hatakka and Hammel, 2011). When stabilized by weak ligands, Mn**
can serve as a reactive mediator. All the discussed enzymes (MnP and VP directly; laccases, VP,
and LiP indirectly) can oxidize Mn** to generate Mn**. MnP, though, should be the main actor, for
it is the most common and more potent than VP and laccases (Hofrichter, 2002; Hatakka and
Hammel, 2011). In some systems (e.g, temperate forests), MnP represents up to 99% of
ligninolytic-enzyme expression (Entwistle et al., 2018). It is also the only enzyme dependent on
Mn?*, which serves as its sole reducing substrate and increases its expression and activity
(Paszczynski et al., 1986; Brown et al., 1991; Li et al., 1995; Sigoillot et al., 2012). In contrast,
Mn availability does not affect laccase and VP expressions and may even inhibit LiP production
(Janusz et al., 2013). Therefore, MnP appears to be the enzyme most clearly tied to Mn and its
influence on OM degradation.

The distribution of Mn in soil profiles depends on a network of factors. Like other cations,
Mn can be pumped through biological uplift from subsurface to surface soils and leached within

or from soils (Hernandez-Soriano et al., 2012). Soil En, pH, and SOM concentration, which
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influence Mn speciation, vary throughout soil profiles and often on a microscale (Keiluweit et al.,
2018; Wanzek et al., 2018). Mn concentrations and oxidation states in soils evolve from complex
interactions among the relative intensities of biological uplift, leaching, pH, and redox conditions.
Above ground, in temperate and tropical forests, the influence of Mn on OM decomposition
dynamics (decomposition rate and the mix of compounds ultimately transferred to SOM) has been
clearly demonstrated (Berg et al., 2007, 2010; Davey et al., 2007; Keiluweit et al., 2015; Trum et
al., 2015; Fujii et al., 2020). No such study exists on grasslands. OM stability depends on the
ecosystem, hinging on complex interactions among the abiotic and biotic factors of an environment
(Schmidt et al., 2011; Lehmann and Kleber, 2015). An ecosystem’s climate, potential organo-
mineral interactions, nutrient accessibility, and plant and microbial community and functioning
influence OM decomposition. Given the differences between temperate forests and grasslands, Mn
may not exercise the same control on grass-litter decomposition as it reportedly does on forest-
litter decay.

In this study, we investigate if Mn significantly influences soil organic C (SOC) turnover
in a grassland by evaluating Mn redox cycling, Mn oxidation states, dissolved organic C (DOC),
and COz efflux in soils along the Kohala rainfall gradient. We hypothesize that if Mn is a dominant
controller of SOC stability, patterns in Mn** redox cycling and Mn** abundance (the two oxidizing
Mn species) should correlate with DOC concentration and CO; efflux. We also use an incubation
experiment to investigate whether supplemental bioavailable Mn?" has the same destabilizing
effect on OC in a grassland soil as it does in temperate forests (Berg et al., 2007, 2010; Davey et
al., 2007; Keiluweit et al., 2015; Trum et al., 2015). To our knowledge, this is the first study to
evaluate how Mn directly affects SOM in a grassland. This work elucidates Mn redox cycling in

field soils and investigates its influence on grassland SOM.
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2. Materials and Methods

2.1 Study Sites

This study uses a grassland rainfall gradient to decipher the role of Mn in soil C cycling. The field
sites are arrayed along a ~14-km transect on Kohala Mountain, Island of Hawai‘i (Figure 1). This
is a well-characterized rainfall gradient that receives <300 to >3200 mm mean annual precipitation
(MAP) (Giambelluca et al., 2013): mean annual temperatures and elevation range from 23.5°C and
50 m at the driest site to 16°C and 1000 m at the wettest site (Giambelluca et al., 2014). It has been
thoroughly studied for decades. Most germane to this study, Chadwick et al. (2003) developed an
integrated analysis of weathering and pedogenesis, Vitousek and Chadwick (2013) identified
pedogenic thresholds and process domains, Peay et al. (2017) surveyed microbial community
compositions, and von Sperber et al. (2017) evaluated N cycling on the gradient (Chadwick et al.,
2003; Vitousek and Chadwick, 2013; Peay et al., 2017; von Sperber et al., 2017).

All sample points are located on the same ~150,000-year-old Haw1 volcanic formation
(Chadwick et al., 2003; Sherrod et al., 2007), possess the same relief, and have been grazed by
cattle for over 100 years (Kagawa and Vitousek, 2012). Soils are volcanic Andisols: Typic
Haplotorrands in the driest sites and Typic (or Hydric) Fulvudands in the wettest sites (Chadwick
et al., 2003). The gradient also offers multiple advantages specific to understanding Mn-SOM
interactions: sites span an expansive range of rainfall, soil pH (Figure S1A), soil water content
(Figure S1B), soil redox conditions (Figure S1C), and SOM (Figure 4A) while parent material,

topography, and vegetation remain consistent.

2.2 Field Study: Sample Collection
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Grass (Pennisetum clandestinum and Pennisetum ciliare) and soil samples were collected from 46
sites along the ~14-km transect on the leeward side of Kohala Mountain, Hawai‘i in July—August
of 2018 and/or 2019 and 2021. Aboveground grass matter was cut, collected, weighed, and oven-
dried immediately after removal from the field. All collected grasses were weighed after drying to
obtain standardized aboveground biomass data. Each soil sample was collected as a continuous
10-cm core, manually homogenized and picked through to remove root matter and rocks, sealed
in three layers of plastic bags, and frozen. Soil subsamples were sieved to 2 mm, weighed, oven-
dried at 65°C until dry, weighed again to gravimetrically determine percent soil moisture, and
ground with mortar and pestle.

Sampling soil to 10 cm allows for consistent sampling depth in all sites and focuses
analyses within a biologically and redox active region within the soil profile: 10-cm soil depth
spans much of the grass rooting zone and extends deep enough to capture oxic-anoxic interfaces,

hotspots of redox activity and organic C oxidation (Hall et al., 2015; Jones et al., 2018).

2.3 Field Study: CO> Measurements

To measure gas efflux from soil collected along the gradient, we constructed air-tight gas chambers
using 236.5ml mason jars and compression fittings (Figures S3A, B). In each lid, a compression
fitting sealed a butyl plug into a hole drilled to accommodate a syringe needle. Syringes with Luer-
lock stopcocks and 22-gauge, 25.4-mm needles (BD, Franklin Lakes, NJ USA) were used to
sample gas—the needle was inserted into the sealed gas chamber through the butyl plug, the
stopcock was opened, 12 ml of gas was extracted, the stopcock was closed, the needle was
withdrawn from the chamber, and the gas sample was transferred to an evacuated 12-ml gas vial

(Lampeter, UK) and subsequently analyzed for CO: concentration on a Shimadzu 2014 Gas



178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Paulus and Vitousek 9

Chromatograph (GC) in the Environmental Measurements (EM-1) Facility at Stanford University.
Gas chambers were tested to confirm they were air-tight before being used to measure soil gas
efflux.

In July—August 2021, 10-cm soil cores were collected from 13 sites along the gradient. Soil
cores were double bagged in the field and manually homogenized to remove root matter and rocks.
Within hours of field collection, equal volumes of soils were divided among gas-chamber mason
jars, four jars per site. The soil jars rested undisturbed and uncovered for 24 h before gas sampling
commenced. Gas was collected from each chamber at 0, 5, 15, and 30 min. At 0 min, the lid was
sealed onto the jar and gas sampled. The gas chambers remained sealed until the final gas sample
was taken at 30 min. Ambient temperature was monitored for the duration of gas sampling using
a hand-held digital thermometer (Garmin, Olathe, KS USA); temperature data were used to

calculate CO; flux.

2.4 Field Study: Enzyme Activities

Following methods adapted from Saiya-Cork et al. (2002), we assayed the activities of ligninolytic
enzymes peroxidase, MnP, and phenol oxidase in soil samples collected in Summer 2021 (Saiya-
Cork et al., 2002). We used 3,3'-5,5'-Tetramethylbenzidine (TMB + 0.3% hydrogen peroxide
[H202]; Kementec, Amherst, NH USA), TMB + 0.3% H>O> + 0.625M manganese sulfate
(MnSO0Os4), and 2,2'-azino-bis(3ethylbenzothiazoline-6-sulphonic acid) (ABTS; Sigma Aldrich, St.
Louis, MO USA) as substrates to evaluate peroxidase, MnP, and phenol oxidase activities (Floch
et al., 2007; Johnsen and Jacobsen, 2008; Kinnunen et al., 2017). For these measurements, 0.45 g
field-moist soils were mixed with 45 ml of 50 mM sodium acetate buffer (CH; COONa, pH 4.8).

Mixtures were vortexed for 30 s, shaken for 3 minutes, and centrifuged at 10,000xg for 1 minute.
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Supernatants and enzyme-specific substrates were added to clear, flat-bottomed 96-well
microplates (Corning, Corning, NY USA) and incubated at 25°C for substrate-specific periods
determined to maximize potential enzyme activities. Peroxidase and MnP plates incubated for 25
minutes and were stopped and stabilized with 0.2M sulfuric acid (H2SO4); phenol oxidase plates
incubated for 15 minutes and were stopped and stabilized with 1% sodium dodecyl sulfate (SDS).
Absorbances were assessed using a Tecan Infinite M200 Microplate Reader (Minnedorf,
Switzerland) with emission wavelengths set at 450 nm (for TMB + H202 and TMB + 0.3% H>0>
+ MnSO4) or 405 nm (for ABTS). Final enzyme activity values were calculated as described in
DeForest (2009) and expressed in units of pmole substrate per hour per g dry soil (umol hlg™)
(DeForest, 2009; Giambelluca et al., 2013). Reported enzyme activities were measured in 16

reaction wells and averaged for each field site.

2.5 Field Study: Manganese Chemistry

Oven-dried grass samples were shipped to Stanford University, finely ground using a Wiley mill,
and analyzed as powders for total Mn (and other metal) content using X-ray fluorescence (XRF)
spectrometry (Spectro Xepos HE XRF Spectrometer). Oven-dried, sieved, and finely ground soil
samples were also analyzed as powders for Mn and other metal concentrations using XRF
spectrometry.

Reduced and organically bound soil Mn was determined using sodium pyrophosphate
(NasP207°10H>0) extractions (Carter and Gregorich, 2008; Keiluweit et al., 2015; Qian et al.,
2019). In this method, when soil is mixed with Na-pyrophosphate, pyrophosphate chelates
organically bound Mn, producing an extractable Mn species (Mn-pyrophosphate) that represents

the reduced and organically bound pool of Mn. Accordingly, 0.6 g soil from each site (sampled in
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2019 and 2021) was mixed with 30 ml sodium pyrophosphate solution (50mM NasP>O7°10H>0,
pH 7.6) and shaken for 16 h at 25°C. The soil slurries were then centrifuged for 10 min @ 20,000xg
and filtered to 0.22 pm. DI water was also used as an extractant in parallel to represent the most
reduced, non-organically bound Mn pool (Chantigny et al., 2014; Guigue et al., 2014). 6 g of soil
was shaken with 24 ml DI water for 45 minutes. Slurries were then centrifuged at 20,000xg for 10
minutes and filtered to 0.22 um. Mn (and other metal) contents in the Na-pyrophosphate and DI-
water extracts were measured using inductively coupled plasma optical emission spectroscopy
(ICP-OES) on an Inductively Coupled Plasma Spectrometer ICAP 6300 Duo View. Mn contents
in DI-water extracts were subtracted from Na-pyrophosphate extracts to yield the concentrations
of organically bound Mn. Reported values (Figure 2C) are differences between Na-pyrophosphate
and DI water extract values (Figure 2D) measured in triplicate.

Mn oxidation states in soils were determined using Mn X-ray Near Edge Structure
(XANES) Spectroscopy (Lytle et al., 1984). Soils remained frozen until they were loaded and
sealed into sample holders using X-ray-transparent Kapton tape; loaded sample holders were kept
in the dark at 4°C for 24 h, then flash frozen in liquid nitrogen and run on the XANES instrument.

XRF and ICP-OES measurements were performed in the EM-1 Facility at Stanford
University. Mn XANES spectra were measured at the Stanford Synchrotron Radiation Lightsource

at SLAC National Accelerator Laboratory (SLAC SSRL) on beamline 9-3 (Lytle et al., 1984).

2.6 Field Study: Carbon and Nitrogen Chemistry
Dried, ground soils were analyzed for C and N content using a Carlo Erba NA 1500 Elemental
Analyzer (EA). Frozen, field-moist soils were shaken with DI water (6g:24ml) for 45 minutes to

extract dissolved OM. Slurries were centrifuged at 20,000xg for 10 min, and supernatants were
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filtered to 0.45 um. Dissolved organic C (DOC) content in extracts was measured on a Shimadzu
TOC-L Total Organic Carbon Analyzer;, LMWOA (acetate, formate, lactate, and oxalate)
concentrations were measured using ion chromatography (IC) on a Dionex DX-500 Ion
Chromatograph. EA, TOC, and IC measurements were performed in the EM-1 Facility at Stanford

University.

2.7 Wet-up Experiment: Soil Sample Collection

Soil samples were collected from a site on the Kohala Mountain rainfall gradient that experiences
~2163 mm MAP. Each soil sample was collected as a continuous 10-cm core from the A horizon,
sealed in two layers of plastic bags, manually homogenized to remove root matter and rocks, and
frozen at -20°C. Soils remained frozen until 48 h before the experiment’s start, at which time they
thawed at 20°C while still sealed in plastic bags. 24 h before the experiment’s start, we manually
homogenized soils again and divided equal masses among the experimental mason jars. The soils
were left to settle for 24 h in the open jars until the experiment began.

To measure percent soil moisture gravimetrically and to characterize air-dry-to-oven-dry
mass conversions, soil subsamples were sieved to 2 mm, weighed, oven-dried at 65°C until dry,
and weighed again. We determined background Mn and DOC contents in, respectively, dried and
ground subsamples or thawed subsamples and used the air-dry-to-oven-dry mass conversions to
report Mn concentrations and DOC contents for all samples on a dry-weight basis. Field-condition
soil subsamples were found to contain 44% moisture + 7.34% (SD), averaged from triplicate

measurements.

2.8 Wet-up Experiment



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

Paulus and Vitousek 13

The experiment was designed to investigate the effect of biologically relevant levels of Mn
treatment on SOC stability. In preparation for the experiment, 24 half-pint glass mason jars were
acid-washed and sterilized. Thawed soil samples were gently homogenized and randomly assigned
to one of three conditions: Control, Moderate Mn, or High Mn. Eight jars belonged to each
condition: one jar for soil sampling at each timepoint for 5 timepoints and three jars for gas
sampling at each timepoint, totaling 24 jars. Over the course of the experiment, the jars’ gas or soil
were sampled at 0 h (time of wet up), 0.5 h, 24 h, 72 h, and 120 h.

90 g of thawed, field-moist soil was added to each jar and left to rest at 20°C for 24 h. At
Time 0 h, jars received equal volumes of deionized (DI) water (Control), 0.08M manganese
chloride (MnCl») (Moderate Mn), or 0.24M MnCl, (High Mn) to increase soil moisture from 44%
(field-condition moisture) to 65%; 65% allows adequate moisture and air within soil pores to
support reduction and oxidation—redox cycling—within the experiment’s 120h timeframe (Wen
et al., 2019). To avoid damaging the soil’s micro-structural integrity and microbial community,
we did not dry the soil to 0% before wetting it to 65% moisture content. Instead, we assumed
background 44% soil moisture from our measurements in field-condition soils. MnCl, dilutions
were prepared with DI water. Soil Mn concentrations along the Kohala rainfall gradient ranges
from ~400-3500 pg Mn g! dried soil (ppm). Field-condition experimental soils from the site we
used contain 1100 ppm Mn. The Moderate Mn group received 0.08M MnCl to increase total soil
Mn to approximately 2000 ppm, and the High Mn group received 0.24M MnCl; to raise soil Mn
to approximately 4000 ppm.

At Time 0, the jars were wetted with the appropriate treatment; Time O soil jars were
weighed and then sampled; gas jars were capped for immediate gas collection at 0, 5, 10, and 15

min. We collected gas and soil again at 0.5, 24, 72, and 120 h to monitor changes in CO; efflux,
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DOC and extractable Mn concentrations, and soil moisture. After each soil collection, all soil

samples were immediately frozen at -20°C until they could be analyzed.

2.9 Wet-up Experiment: CO: Sampling

The same air-tight gas chambers used in the field experiment were used in the wet-up experiment
(Figures S3C-D). Butyl plugs and seals were replaced, and the gas chambers were retested to
confirm they were air-tight before being used to measure soil gas efflux. Gas was collected from
each chamber at 0, 5, 10, and 15 minutes—the minute 0 collection occurred at the designated
experimental timepoint: 0, 0.5, 24, 72, or 120 h. At minute 0, the lid was sealed onto the jar and
gas sampled. The gas chambers remained sealed until the final gas sample was taken at 15 min,
after which time the jars remained open until the next experimental sampling timepoint. Gas
samples were analyzed for CO; concentrations on the GC in the EM-1 Facility at Stanford

University.

2.10 Wet-up Experiment: Laboratory Analyses

Background Mn content in soils were determined in oven-dried, sieved, and ground samples using
XRF. Water-extractable soil Mn, Na-pyrophosphate-extractable soil Mn, and DOC were processed
and measured in triplicate in the same manner as described for field samples. Unlike with the field
samples, we did not subtract experiment’s water-extractable soil Mn values from the Na-
pyrophosphate-extractable soil Mn values; the Na-pyrophosphate-extractable soil Mn is assumed

to include reduced and organically bound Mn.

2.11 Wet-up Experiment: Micro-X-ray Fluorescence Imaging
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Mn distribution and oxidation states in soils were determined using elemental maps and Mn
uXANES spectra. Synchrotron micro-X-ray absorption spectroscopy (LXAS) and uXRF imaging
were performed on beamline 2-3 at the Stanford Synchrotron Radiation Lightsource (SSRL),
SLAC National Accelerator Laboratory. This beamline uses a water-cooled, double-crystal
Si(111) monochromator; the energy was calibrated using the first derivative of a Mn metal foil to
6537.7 eV (Manceau et al., 2012). Soil subsamples for each condition at Time 0 and 72 h were
impregnated with epoxy (Epoxy Technology, Billerica, MA), cured, mounted on quartz slides (Ted
Pella, Redding, CA), thin-sectioned, and polished at SLAC SSRL.

Each soil thin section was initially imaged using coarse resolution to map total Mn
abundance. We used these data to choose regions for Mn multi-energy mapping and XANES
spectroscopy to map Mn oxidation states across soil surfaces. Fine-resolution images were
generated using a 2x2-pum beam focus on small areas of interest. We used principal component
analyses (PCA) and simplex volume maximization (SiVM) in SMAK (v2.00) to choose the most
appropriate locations for XANES spectroscopy (Webb, 2011; Alfeld et al., 2017; Kravchenko et
al., 2022). XANES spectra were normalized and verified in SixPack (v1.5.6) using previously
published standards (Hansel et al., 2012; Johnson et al., 2016).

To compare relative densities of Mn oxidation states across soil surfaces, we used SMAK
to perform particle statistics. Particles were distinguished from backgrounds using InvBinary or
Otsu thresholding algorithms, and the minimum-sized particle was defined as two pixels. Regions
of Interest (ROI) were assigned by the Particle Statistics function in SMAK following PCA and

XANES analyses.

2.12 Data and Statistical Analyses
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Means and standard errors of means were calculated for all soil analyses. We applied the Shapiro-
Wilk test to assess normality in all datasets. When the data satisfied normality assumptions, we
applied the parametric One-way Analysis of Variance (ANOVA) and Tukey’s Honest Significant
Difference (HSD) post-hoc test to compare the dataset means among Control, Moderate Mn, and
High Mn conditions. When the data did not meet normality assumptions, we applied the
nonparametric Kruskal-Wallis test and the Dunn-Bonferroni post-hoc test. Significance was
determined as p-values < 0.05. Calculations, graphing, and statistics were performed in Microsoft
Excel (v16.67) and R (v4.2.2). Synchrotron data were collected using SMAK (v2.00) (Webb,
2011); spectra normalizations and statistics (Principal Component Analyses [PCA] and Linear
Combination Fitting [LCF]) were performed using Sixpack (v1.5.6) (Webb et al., 2005) and
Athena (v0.9.26) (Ravel and Newville, 2005); fits were verified using previously published
standards (Hansel et al., 2012; Johnson et al., 2016; Wen et al., 2022). Kohala gradient mean

annual precipitations (MAP) were reported from Giambelluca et al. 2013.

3. Results

3.1 Field Study: Manganese Patterns

To understand how rainfall influences Mn redox cycling, we measured Mn concentrations in three
different pools along the gradient that reflect distinct Mn reactivities—soil, grass litter, and bound
to OM. Total soil Mn concentrations (Figure 2A) generally decreased as MAP increased. Grass
Mn concentrations (Figure 2B) remained low until around 1800 mm MAP, where concentrations
rose and then peaked at 1900 mm MAP before diminishing. Organically bound Mn (extractable
Mn) (Figure 2C) and water-extractable Mn (Figure 2D) increased in concentration from about

800—-1800 mm MAP and then gradually decreased from 1800-2000 mm MAP. Organically bound
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Mn subtly rose again at the wettest site. Notably, each Mn pool—total soil Mn, plant Mn, and Mn
most likely to be oxidized to and stabilized as reactive Mn*"—predominates in distinct rainfall
regions along the gradient.

XANES analyses of frozen soils revealed trends in Mn oxidation states along the gradient
(Figure 2E). Mn?* generally increases in abundance in wetter soils, composing 6% of total soil Mn
in the driest site and nearly 60% in the wettest site. Mn>" is relatively abundant in the driest third
and wettest third of MAP regions, showing the lowest percentages in the middle of the gradient
(from ~900-2000 mm MAP). Mn*" predominates Mn composition in most sites, overshadowing
Mn?* and Mn*" percentages from about 800-2000 mm MAP (except at the site receiving 1100 mm
MAP); its abundance precipitously declines, however, becoming absent in all but one site receiving

more than 2500 mm MAP.

3.2 Field Study: Trends in Low-molecular-weight Organic Acids

LMWOA can stabilize Mn®>" long enough for the oxidant to diffuse into SOM and oxidize
otherwise protected C. We measured LMWOA concentration in soils to identify where along the
gradient LMWOA are abundant and to see if patterns in LMWOA abundance overlap with Mn>*
cycling along the gradient (Figure 2C, Figure 3). We found that acetate concentrations are greatest
below 900 mm MAP, formate concentrations are greatest from 300-1800 mm MAP, lactate
concentrations are greatest below 1800 and above 2800 mm MAP, and oxalate concentrations are
greatest from 822—1500 mm MAP and around 2900 mm MAP (Figure 3A-D). Formate, lactate,
and oxalate showed the most similar patterns, appearing in lowest abundance in the wettest regions

of the gradient until around 3000 mm MAP.
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3.3 Field Study: Trends in Enzyme Activities

MnP is the enzyme responsible for generating most biologically derived Mn>". We measured its
activity along the gradient to investigate how it changes with rainfall and whether its activity
pattern overlaps with that of Mn*>" cycling (Figure 2C) and metrics of soil C instability (Figures
4B, C). Enzyme activity data are shown in Figure 3E. We also measured peroxidase and phenol
oxidase activities to provide context for MnP observations. Phenol oxidase activity remained low
for the entire gradient. Peroxidase and MnP activities showed a similar trend: activities were
consistently high above 1700 mm MAP, peaking at 1900 mm MAP.

MnP constitutes 99% of ligninolytic-enzyme expression in some systems. In comparison,
over the entire gradient, we observed MnP composes an average of 28.5% of total lignin-decay
enzyme activity (median is 28.4%), with maxima of 55.9% at 343 mm MAP and 52.5% at 3238
mm MAP (Figure S1D). From 10002400 mm MAP, where we found organically bound Mn** to
be greatest, MnP makes up an average of 26.2% of total ligninolytic enzyme activity (median is
27.2%), maxing out at 46.1% at 1808 mm MAP. In this grassland, MnP appears to be a less
dominant decay enzyme than it is in temperate and tropical forests (Entwistle et al., 2018; Fujii et

al., 2020).

3.4 Field Study.: Organic Matter and CO; Flux along the Gradient

We found that SOM increases with rainfall along the gradient, indicated by increasing % C and %
N with MAP (Figure 4A). These data agree with previous studies on the gradient (von Sperber et
al., 2017; Vitousek et al., 2019). Water-extractable DOC showed a bimodal trend: elevated DOC
was found from 5002000 mm MAP (maximum at 1200 mm MAP) and above 2200 mm MAP

(Figure 4B). DOC data measured in sites wetter than 1100 mm MAP showed great variability,
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illustrated by large standard error of the mean (SEM) values. The greatest DOC concentration was
observed in soils collected from the site receiving 1159 mm MAP, followed closely by the sites
receiving 2200 and 2700 mm MAP.

Soil CO> flux was measured in sites receiving from 459—3123 mm MAP (Figure 4C). Each
of these sites was measured four times (n = 4). Along most of the gradient, CO> efflux varies
between 2.5 and 3.8 mg CO>» m? h'!, dipping to the lowest values at sites receiving 1340 and 2238~
2686 mm MAP; at the wettest site, CO2 efflux abruptly jumps to nearly 6 mg CO> m? h''. The
greatest CO» flux is from the wettest site, and the next highest efflux values are from the sites
receiving 1527 and 2035 mm MAP. CO; efflux along the gradient did not follow the linear patterns

of %C and %N, nor the bimodal trend of DOC.

3.5 Wet-up Experiment: Soil Moisture

At time 0, following wet-up, the Control, Moderate Mn, and High Mn conditions contained ~65%
soil moisture, which endured through 0.5 h (Figure 5a). Soil moisture then steadily decreased,
approximating 64% at 24 h, 35% at 72 h, and 16% at 120 h. Within each timepoint, the conditions’
soil moistures did not significantly differ.

Qian et al. (2019) found 65% soil moisture to facilitate redox cycling. At the time of
sampling, the soil moisture on the Kohala gradient varied from 7% at the dry end to 68% at the
wet end. The experimental soil contained 44% soil moisture prior to wet-up (Table S1), 65% at
wet-up (Time 0 h), and 16% by the experiment’s end at 120 h. The experimental soil experienced
environmentally relevant soil moistures for the gradient; the C and Mn dynamics observed over

the experiment may suggest how this soil’s nutrient cycles could respond to a changing climate,
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predicted to cause drier conditions but more frequent and intense rainfall in some areas (IPCC,

2022).

3.6 Wet-up Experiment: Carbon Dynamics

CO; flux was measured from the soils at each timepoint by sealing the jars and drawing gas over
15 min. The greatest gas flux across all timepoints was measured at 0.5 h in the Control group
(Figure 5B). At this time and at 72 h, the Control group experienced significantly higher CO» flux
than the Moderate Mn and High Mn groups (p < 0.05). No statistically significant differences were
found at any other timepoint.

Dissolved organic C (DOC) was measured in DI water soil extracts (Figure 5C). A clear
pattern emerged and endured through the entirety of the experiment: the Control group extracts
contained significantly more DOC than did the Moderate Mn and High Mn groups (p < 0.05).
Furthermore, at every timepoint, DOC was about two-times as concentrated in Control extracts as
it was in Moderate Mn and High Mn extracts, which never significantly differed. The data clearly

and strongly demonstrate that DOC concentrations negatively correlate with added Mn.

3.7 Wet-up Experiment: Manganese

Table 1 displays the concentrations of Mn measured in deionized (DI) water and sodium-
pyrophosphate (NaPP) extracts. The DI water extracts capture the most reduced and energetically
stable pool of soil Mn, predominately Mn?*. When shaken with NaPP, organically bound Mn
exchanges with sodium ions, forming stable Mn-pyrophosphate complexes. Under natural soil
conditions, Mn*" is thermodynamically unstable and must be chelated (typically by LMWOA) to

persist. If not chelated, it will rapidly oxidize to Mn*" or reduce to Mn**, depending on the soil’s
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pH and redox environment. Accordingly, NaPP extractions approximate the reduced and
organically bound fractions of Mn, which include Mn?" and Mn>*,

DI water and NaPP extracts of field-condition soil contain, respectively, 0.658 pg Mn g'!
dried soil (SEM =0.029) and 201 ug Mn g! dried soil (SEM = 12.2) (Table S1). All field-condition
soils collected along the gradient show this trend in which NaPP extracts contain far greater Mn
concentrations than DI water extracts do (~1000:1). Following wet-up, the Control group’s soils
initially showed a similar pattern; however, the Control group’s later sampling periods and the
Mn-treated soils diverged. The Control group’s ratio of Mn concentrations in NaPP vs. water
extracts dropped from 473 at 0 h to 27.2 at 120 h, indicating an increase in soluble Mn relative to
organically bound Mn (Table 1). The Moderate Mn group’s ratio peaked at 0 h then decreased
over 0.5 and 24 h before increasing again. The High Mn group’s ratio increased from 0—72 h then
slightly decreased at 120 h, settling at 1.52. Intriguingly, over the first 24 h, this group showed
greater Mn content in the DI water extracts than in the NaPP, suggesting the added Mn?" (as
MnCl,) originally far exceeded the bound Mn fraction; such ratios are not observed in field soils
along the gradient.

The Control group had the lowest Mn concentrations in both extracts of all conditions. Mn
concentrations in DI water extracts did not vary with time; Mn concentrations in the Control NaPP
extracts significantly decreased from 72 to 120 h but showed no other differences with time. Mn
concentrations in the Moderate Mn DI water extracts approximately doubled from 0 to 0.5 h and
then settled halfway between the 0-h and 0.5-h concentrations. The Moderate Mn NaPP extracts
showed no differences in Mn concentration over time. The High Mn DI water extracts showed the
highest Mn concentrations at 0.5 h and the lowest at 72 and 120 h. In contrast, the High Mn NaPP

extracts had the lowest Mn contents at 0 h and the greatest at 72 h.
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At all timepoints, Mn contents in the Control and the Moderate Mn conditions’ extracts
were greater when extracted with NaPP than with DI water. The High Mn conditions saw slightly
greater Mn concentrations in the DI water extracts than in the NaPP extracts until 72 h, when the
NaPP extracts contained significantly more Mn; this ratio held through 120 h.

Particle density analyses were performed on thin sections of soils collected from all three
conditions at Time 0 and 72 h (Figure 5D). The particle density analysis reveals the relative
compositions of Mn?*, Mn**, and Mn*" across the soil-sample surfaces. The p-X-ray Absorption
Spectroscopy (LXAS) images on which the particle density analyses were performed are shown
in Figure S4. From Time 0 to 72 h, the overall compositions in Mn oxidations states do not
significantly change within any experimental condition. The Control condition showed the greatest
compositions of Mn*" and Mn>"; the High Mn condition showed the greatest levels of Mn?* and
the lowest concentrations of Mn*" and Mn*"; and the Moderate Mn condition presented
intermediate levels of all Mn oxidation states relative to the other two conditions. These data reveal
that MnCl, addition enhances Mn?" relative to Mn>* and Mn*" and that these relationships persist

over time at the soil surface.

4. Discussion

4.1 Field Study: Manganese and Soil C Stability along the Rainfall Gradient

If Mn is a significant controller of SOC stability, we would expect to see the greatest SOC
instability correlate with Mn>" redox activity or with Mn*" abundance—the two oxidizing Mn
species. We profiled Mn oxidation states, Mn redox reactivity, soil DOC concentrations, and CO>

efflux along the rainfall gradient to investigate whether Mn correlates with SOC instability.
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Each Mn oxidation state can directly or indirectly degrade SOM. Mn?" negatively
correlates with SOC storage (Stendahl et al., 2017; Kranabetter, 2019; Hou et al., 2021): it is the
bioavailable form of Mn that the fungal enzyme MnP oxidizes to release Mn>*, a diffusible and
powerful oxidant that—if chelated by a low-molecular-weight organic molecule (LMWOA) (e.g.,
citrate}—can directly attack and break down SOM (Hatakka et al., 2003). Mn-oxides are also
strong oxidants that occur in soils (Sparks, 2003); these oxides, especially Mn*"-oxides (e.g.,
birnessite), have been shown to oxidize OM (Chorover and Amistadi, 2001; Xia and Stone, 2019).

Mn?" and Mn*" are more energetically stable than Mn®* is (Bartlett and James, 1993;
Stumm and Morgan, 1996; Luther, 2005). Even if chelated, Mn>" is unstable. This instability
makes Mn>" a particularly potent oxidant and likely limits its existence to systems where redox
conditions fluctuate (Peiffer et al., 2021; Wen et al., 2022). If redox conditions remain oxic or
anoxic for too long, Mn*" will oxidize or reduce to more energetically favorable Mn states: Mn**
or Mn?" (Ehrlich, 1987; Luther, 2005, 2010). Accordingly, in addition to profiling Mn oxidation
states along the rainfall gradient, we investigated where Mn>" is most likely to cycle by measuring
standard reduction potentials, LMWOA concentrations, MnP activity, and organically
bound/extractable Mn concentrations. These patterns in combination with those of OM, DOC, and
CO, efflux reveal the lack of a clear relationship between Mn and SOC.

OM increases with rainfall along the gradient (Figure 4A), and DOC does not show a clear
pattern in concentration, except possibly in the wettest site where its concentration plummets to its
nadir (Figure 4B). As SOM breaks down, DOC is released then quickly disappears from circulation
as it sorbs onto mineral surfaces or degrades into its constituents and CO> (Mcdowell and Wood,
1984; Qualls and Haines, 1991; Herbert and Bertsch, 1995). Therefore, DOC concentrations

should decrease where it is being oxidized to CO> and lost to the atmosphere. Soil CO; efflux
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showed a similar lack of trend until the wettest site (Figure 4C)—here, CO2 efflux increased
drastically. The low DOC concentration and high CO; efflux measured at the wettest site indicates
that SOC turnover is greatest on the gradient in this site, as is the pool size of SOM.

Total Mn (Figure 2A) and Mn*" (Figure 2E) decrease with higher rainfall, showing lowest
abundance where CO; efflux is greatest. Plant-available Mn (Figure 2B) and Mn*" (Figure 2E)
follow an opposite trend, generally increasing with rainfall. The bioavailable form of Mn is Mn?*
(Marschner, 1988; Alejandro et al., 2020), so plant Mn suggests how the most accessible pool of
Mn?" changes along the gradient. Plant Mn concentrations increase with rainfall until the wettest
few sites, in which plant Mn drops off. This decrease in concentration is likely due to the heavy
rainfall leaching reduced Mn through the soil profile to below the rooting zone, where it is
inaccessible to plants. XANES measurements reveal Mn** composes nearly 60% of total Mn in
the wettest site; Mn>" composes the other 40%. However, as noted, total soil Mn is low in this site.
The redox conditions are oxidizing in the wettest site (likely due to dense root penetration deep
into the A horizon); and redox heterogeneity, the temporal variance in standard electromotive
potential, is low (Figure S1C). Hence, despite its presence in the soil, Mn** may not significantly
contribute to SOC instability here. The overall Mn abundance is likely too low and redox
heterogeneity too narrow for Mn** to generate sufficient Mn®* to account for the CO; efflux and
DOC concentration measured in this site.

Direct and indirect measurements of Mn>" cycling corroborate these inferences. LMWOA
concentrations suggest where along the gradient Mn®* can be chaperoned, MnP enzyme activity
indicates where it can be generated, redox heterogeneity implies where Mn can cycle, and
organically bound/extractable Mn concentrations show where it can exist. XANES measurements

specify the pattern in persistent soil Mn**, the Mn>" that is stabilized in the mineral form and not
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as redox responsive as organically bound Mn**. Together, these data illustrate that Mn** is most
redox active and, therefore, most likely to destabilize SOC between 1000-2400 mm MAP. This
range does not overlap with where we observed the lowest DOC concentrations or greatest CO2
efflux, suggesting Mn** redox cycling in the top 10 cm of soil does not significantly destabilize

SOC on the gradient.

4.2 Wet-up Experiment: Does Mn concentration influence the stability of organic carbon in a
grassland soil?

Numerous studies have demonstrated a strong positive correlation between Mn availability and
OC decomposition (Berg, 2000; Berg et al., 2007, 2010; Davey et al., 2007; Keiluweit et al., 2015;
Trum et al., 2015; Kranabetter, 2019). Mn has even been described as the “single main factor”
influencing litter decomposition rates and was found to be the strongest predictor of SOC (Berg et
al., 2010; Stendahl et al., 2017). These studies were completed in temperate forests or with litter
and soil collected from temperate forests. One study on a temperate grassland found that
differences in species’ sensitivities to Mn toxicity reshaped the plant community—the grassland
was treated with N for a decade, acidifying the soil and increasing Mn bioavailability to toxic
levels. Consequently, the once forb- and grass-composed community shifted to one exclusively of
grasses (forbs are more sensitive to Mn toxicity) (Tian et al., 2016). A follow-up study observed
that greater N additions correlated with greater Mn liberation and increased litter decomposition
rates (Hou et al., 2021). Such shifts in litter biomass, quality, and decomposition rates suggest that
Mn may shape an ecosystem’s C cycle. But how Mn does so remains unclear, especially in

grasslands, where the evidence is not as robust as it is in temperate forests.
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We observed that the Control incubations experienced greater DOC and COz releases than
the Moderate Mn and High Mn treatment groups did. The wet-up at Time 0 mimicked a heavy
rainfall event; in natural soils, rainfall dissolves the soluble fraction of SOM, which can then be
lost as leachate or as CO> from microbial decomposition (Mcdowell and Wood, 1984; Vance and
David, 1992; David et al., 1995; Neff and Asner, 2001). If Mn potentiates C loss from a grassland
soil, DOC and CO: release should correlate with Mn concentration (Trum et al., 2011; Berg et al.,
2015). We observed the opposite, however (Figures 5B, C). In fact, DOC concentrations in Mn-
treated soils remained approximately 50% of concentrations measured in the Control soils.

NaPP extractions (Table 1), pXAS imaging, and particle density analyses (Figure 5D)
confirm that Mn treatments increased the bioavailable fractions of Mn relative to the Control
condition. These data illustrate that Mn?" and Mn®** dominate the soil surface and soluble fraction
of total Mn—the pools directly interacting with the released DOC. Both Mn oxidation states can
bind with DOC: Mn*" requires an organic chelator to persist as a diffusible oxidant (Hatakka et
al., 2003), and Mn?" can form outer-sphere complexes with organic acids (Deczky and Langford,
1978; Rainville and Weber, 1982; Chen and Gunn, 1990; Radoykova et al., 2015). Therefore, it is
possible that the Mn treatment bound DOC, preventing its oxidation and eventual loss as CO». The
additional Mn swamped the soil system, slowing rather than potentiating SOC turnover.
Background evidence collected from this soil and other sites along the Kohala gradient
demonstrate that Mn cycling occurs in the field (Figures 2A—E, Figure 3E, Table S1); Mn** and
Mn?* coexist in the soil, soluble, and extractable pools (Table 1, Figure 5D, Table S1, Figure S4,
and Figure S5); the soil moisture and pH environment are appropriate (Figure SA and Table S1);
and MnP is produced (Table S1). However, MnP composes approximately 31% of ligninolytic

enzyme activity in this soil. MnP can dominate ligninolytic-enzyme expression in ecosystems
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(Entwistle et al., 2018), and it is the only enzyme dependent on Mn?* (Paszczynski et al., 1986;
Brown et al., 1991; Li et al., 1995; Sigoillot et al., 2012).

White-rot fungi are the most efficient lignin-degrading fungi, producing a suite of lignin-
degrading enzymes that includes MnP (Hofrichter, 2002; Abbas et al., 2005; Wong, 2009;
Dashtban et al., 2010; Hatakka and Hammel, 2011). These fungi are ubiquitous and well-studied
in forest soils (Cairney, 2005). Their role in grasslands has received less attention. Evidence
suggests they are present and active in grasslands, but they appear to be less abundant than they
are in forests (Thorn et al., 1996; Gramss, 1997; Deacon et al., 2006; Lynch and Thorn, 2006;
Robinson et al., 2009; Kabuyah et al., 2012). Peay et al. 2017 reported basidiomycete and overall
fungal abundance increase with MAP along the gradient; this soil is rich with fungal DNA,
especially with that of white-rot fungi. DNA can persist in the environment long after its source
organism has expired, making it difficult to infer if DNA abundance reflects current or legacy
communities (Pochon et al., 2017). In contrast, enzyme activity reveals current conditions—the
organisms must be alive to produce active enzymes.

The divergence in patterns between fungal DNA abundance and MnP activity can be
interpreted in a few ways. If the DNA reflects current conditions, then the basidiomycetes on the
gradient are not producing MnP as expected—the basidiomycetes in the middle of the gradient are
producing much more MnP than the fungi are in the wettest sites; MnP is more likely to be active
in the mildly acidic soil found in the middle of the gradient than it is in the wettest region’s ~pH 4
soil (Figure S1A) (Fujii et al., 2013). If the DNA is vestigial, then the MnP activity may reveal
where basidiomycetes are currently abundant and active. In either scenario, the ratio of MnP
activity to total ligninolytic enzyme activity suggest that MnP (and fungal Mn cycling) is not the

primary mechanism for SOC turnover in this grassland soil. The system is adapted to the natural
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Mn levels found in this soil. Adding bioavailable Mn did not increase SOC turnover; it merely

flooded the soil.

5. Conclusions

Our field and experimental findings suggest that Mn does not control SOC turnover in this
grassland. Our measurements were limited to the top 10 cm of soil, so it is possible investigations
deeper in the soil profile could reveal greater Mn influence. It is notable, however, that MnP
enzyme activity did not compose more than 55% of total enzyme activity anywhere on the gradient.
Peay et al. (2017) found that fungal (specifically basidiomycete) abundance on the gradient
correlates with rainfall. Therefore, the pattern in MnP activity we observed does not necessarily
result from a decline in fungal population.

Our findings also reflect the soil’s current conditions and microbial activity. Under
changing climate conditions, the microbial community composition could shift and adapt to
increased Mn bioavailability. Further study is warranted on the current and potential functioning
of Mn redox cycling in this and other grasslands to understand how this ecosystem’s C stocks
respond or could respond to climate change.

Most studies that have demonstrated that Mn abundance potentiates SOC loss were done
in temperate forests (Berg, 2000; Berg et al., 2007, 2015; Keiluweit et al., 2015; Stendahl et al.,
2017; Jones et al., 2018). Our findings provide evidence that this relationship does not persist
across all ecosystems. OM stability is an ecosystem property, reflecting the abiotic and biotic
environment (Schmidt et al., 2011; Lehmann and Kleber, 2015). A soil’s environmental factors—
its total Mn content; mineral composition; structure; texture; water content; and microbial

community, activity, and distribution—may override the importance of bioavailable Mn to SOM
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decomposition (Gramss, 1997; Schmidt et al., 2011; Lehmann and Kleber, 2015; Heckman et al.,
2021; Possinger et al., 2022; Santos and Herndon, 2023). The Hawaiian gradient’s volcanic soils
may limit Mn availability by adsorbing Mn as it does Fe. Future studies should introduce higher-
resolution techniques (e.g., X-ray photoelectron spectroscopy and Auger electron spectroscopy)
that can parse the C and Mn dynamics at a finer scale. Although Mn does not appear to affect SOC
turnover enough to manifest in DOC concentrations or CO> efflux, it could influence C dynamics

in subtler or slower ways that may yet shape this grassland’s nutrient cycle.
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8. Tables

Table 1. Manganese (Mn) concentrations in deionized (DI) water and sodium-pyrophosphate
(NaPP) extracts from each condition’s soils, collected at each experimental timepoint. Moderate
Mn is abbreviated as Mod. Mn. The reported values are averaged from three replicates and are
shown with their respective standard error of the mean (SEM).

Sampling Timepoint (h)
0 0.5 24 72 120

Condition, Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM
Extractant

(ug g soil) (ngg'soil)  (ngg'soil)  (nugg’soil) (ng g' soil)
gv";terr"l’ 0.0300 0.0140 0.139 0.110 0.147 0.117 0.169 0.120 0341  0.320
Mod. Mn, 157 408 410 104 261 156 222 201 189  1.57
Water
High Mn, 183 19.6 233 647 207 699 166 723 160  10.6
Water
Control, 14.1 1.04 117 214 147 0547 181 189 928  0.550
NaPP
Mod-Mn, o5 555 108 179 101 660 103 787 931  5.60
NaPP
HighMn, 50 963 183 448 177 116 273 227 242 374
NaPP

Sampling Timepoint (h)

Extract ratios:
NaPP/water 0 0.5 24 72 120
Control 473 83.7 99.7 107 27.2
Mod. Mn 4.99 2.62 3.85 4.66 4.92
High Mn 0.747 0.785 0.851 1.65 1.52
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1092 9. Figures

1093  Figure 1. Field sites arrayed along a 14-km transect on the Kohala rainfall gradient, Island of
1094  Hawaii. Mean annual precipitation (MAP) varies from <300 to >3200 mm. Google Earth map

1095  and inset of the Island of Hawaii display the field sites (white dots).

1096  Figure 2. A) Total soil manganese (Mn) concentrations measured in homogenized 10-cm soil
1097  cores along the gradient. B) Total Mn concentrations measured in grasses collected along the
1098  gradient. C) Organically bound Mn measured as the difference between Mn measured in
1099  sodium-pyrophosphate (NaPP) and deionized (DI) water soil extracts. D) Total Mn
1100  concentrations measured in DI water extracts from gradient soils. Filled markers symbolize
1101  averaged values (n = 3). Error bars represent SEM. E) Relative abundances of Mn oxidation
1102  states in homogenized 10-cm soil cores collected along the gradient were determined using X-
1103  ray absorption near-edge structure (XANES) spectroscopy, principal component analysis
1104 (PCA), and linear combination fitting (LCF). Corresponding spectra and fits are shown in
1105  Figure S2. Percentages of Mn**, Mn**, and Mn*" composing total soil Mn are illustrated by

1106  blue, green, and purple bars, respectively.

1107  Figure 3. A) Acetate, B) formate, C) lactate, and D) oxalate concentrations in deionized (DI)
1108  water extracts from homogenized 10-cm soil cores collected from 46 sites along the rainfall
1109  gradient; error bars represent standard error of the mean (SEM). E) Enzyme activities measured
1110  1in soils along the rainfall gradient; hollow markers symbolize peroxidase, black-filled markers

1111  manganese (Mn) peroxidase (MnP), and gray-filled markers phenol oxidase enzyme activities.
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1112 Figure 4. A) Soil carbon (C) and nitrogen (N) percentages were measured in 10-cm
1113 homogenized soil cores collected in 46 sites along the Kohala rainfall gradient; filled and hollow
1114  markers represent averaged values (n=3) of N and C, respectively. B) Dissolved organic carbon
1115 (DOC) was measured in deionized (DI) water soil extracts; filled markers symbolize averaged
1116  values (n = 3). C) CO; efflux measured from soil cores collected from gradient sites. . Soil CO>
1117  efflux was measured four times in each site (n = 4). Error bars represent standard error of the

1118  mean (SEM).

1119  Figure 5. A) Percent soil moisture did not significantly differ among the experimental
1120  conditions at any timepoint (n = 4-7). B) The soil CO; efflux was statistically greater for the
1121  Control group at times 0.5 and 72 h. C) Dissolved organic C (DOC) in Control soils was
1122 statistically greater than in Moderate and High Manganese (Mn) soils at all timepoints. Hollow
1123 columns represent Control, gray Moderate Mn, and black High Mn conditions’ mean values
1124 (n=3) for each timepoint. D) The distribution of Mn oxidation states in each condition’s soil did
1125  not significantly change from time O h to 72 h: Control (C), Moderate Mn (M), and High Mn
1126  (H). Corresponding p-X-ray absorption spectroscopy (1-XAS) maps are shown in Figure S4.
1127  Blue columns represent Mn?>* composition, green Mn*', and purple Mn*". Solid and dashed
1128  error bars indicate standard error of the mean (SEM). Asterisks denote statistical significance
1129  atp<0.05.

1130
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10. Supplementary Information: Methods

10.1 Soil pH

Soil pH (Figure S1A) was measured in samples collected from each site in the summers of 2019
and 2021. Soil samples were mixed with deionized (DI) water in 1g:1mL slurries and shaken for
5 min (Thomas, 1996). Slurries stood for 10 min before pH was read. Each soil sample was

measured six times.

10.2 Soil Redox-potential (Eh) and Temperature Measurements
Platinum (Pt) electrodes and reference probes were designed to minimize soil disturbance and to
maximize field durability and measurement reproducibility. Pt-electrodes were constructed as
described in Wanzek et al. 2018 (Wanzek et al., 2018). Accordingly, 1.5-cm lengths of 16-gauge
99.9% pure Pt wire (American Elements, Los Angeles, CA USA) were soldered using lead-free
silver solder wire (Oatey Co., Cleveland, OH USA) to 0.5-m lengths of insulated 16-gauge copper
wire (Cerrowire, Hartselle, AL USA); soldered junctions were reinforced with heat-shrink tubing
(Gardner Bender, Milwaukee, WI USA). Pt-Cu wires were fed into plastic 10-mL pipette tips
(Rainin RC UNV 10mL 200A/1, Mettler-Toledo, Oakland, CA USA), exposing 1 cm of the Pt-
wire through the pipette tips tapered end and sealed in place with epoxy.

Silver-silver chloride (Ag-AgCl) reference electrodes were constructed according to
Barlag et al. 2014 (Barlag et al., 2014, p. 201). Accordingly, five 1-cm-diameter holes were drilled
into 15-mL centrifuge tubes (Corning, Corning, NY USA): one hole through the center of the
tapered tip, three holes around the tube’s circumference 2 cm from the end, and one hole in the
cap; holes at the bottom of the centrifuge tubes allow the salt bridge to contact the soil, and the

hole in the cap allows the Ag-AgCl to exit the capped tube and connect to the voltmeter. The tubes
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were then acid-washed, rinsed in deionized (DI) water, dried, and placed upright and uncapped in
a 500-mL beaker. The agarose-gel salt bridge was prepared by dissolving 7 g of lab-grade agarose
and 25 g of potassium nitrate (KNO3) in 500 mL of heated DI water. The heated solution was
poured into the beaker containing the prepared centrifuge tubes to a depth sufficient to fill the tubes
with 5 mL of solution. The agar solution was left to cool and harden in the tubes for 24 h; the tubes
were then stored at 4°C until needed for field use.

AgCl(s) was chemically deposited onto Ag(s) by immersing 8-cm segments of 18-gauge
99.9% pure Ag wire (Rio Grande, Albuquerque, NM USA) in laundry bleach (Clorox, Oakland,
CA USA) for 30 min at 25°C. The wires were removed, rinsed in DI water, and stored at 25°C in
a foil-covered container filled with potassium chloride (3M KCIl). Pt-electrodes and reference
electrodes were tested for accuracy prior to installation in the field using commercial redox/ORP
standards (Orion, Thermo Scientific, Waltham, MA USA). If any probe deviated more than +/- 10
mV outside of the standard reference potential at 25°C (220 mV), the Pt-electrode was cleaned,
the batch of reference probes was thrown out and remade, and the probes were retested (Jones,
1966; Austin and Huddleston, 1999; Thermo Fisher, 2007).

In September 2021, soil redox potential (En) and surface temperature were measured using
a Fluke 289 True-RMS Data Logging Multimeter (Everett, WA USA) and hand-held manual
digital thermometer (Garmin, Olathe, KS USA) in 13 sites along the Kohala rainfall gradient. Soil
surface temperature was manually measured every minute for 10 min before and after electrodes
were installed; measurements were averaged over the 20-min collection period for each site. Pt-
and reference electrodes were seated 3-cm deep in soil; this consistent depth was used after deeper
placement in the dry sites was found to substantially alter the soil structure and/or damage the

probes. Once in place, reference electrodes were filled with 3M KCl and Ag-AgCl wires were
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inserted into the tubes through the drilled holes 1 cm below the tube caps, leaving 1-cm wire
segments outside of the 3M-KCl-filled centrifuge tubes to connect to the voltmeter. A plastic
toolbox was used to protect the electrodes and multimeter from strong winds, sun exposure,
rainfall, and animals: two holes were drilled in the bottom of the toolbox to allow the electrodes
to sit in the soil, and the toolbox was latched closed and tethered in place. Redox potential
measurements were automatically logged every 10 min for 25 h: 12 h at the start of data collection
were discarded to allow electrodes time to equilibrate in situ; the final hour of data collection was
also neglected to provide a buffer between data collection and instrument retrieval; data from the
remaining 12 h (n = 73 timepoints) were normalized relative to the standard hydrogen electrode,
calculated using daily soil temperature data for each site (Nordstrom and Wilde, 2005;

Wolkersdorfer, 2008). Data are shown in Figure S1C.
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1198  11. Supplementary Tables

Table S1. Background characteristics for the site on the Kohala rainfall gradient where
soil for the experiment was collected. 10-cm soil cores were collected, manually
homogenized, and cleaned of plant, rock, and fauna material. All reported values are
means, n=3—-6 replicates. Standard error of the mean = SEM. Mean Annual
Precipitation (MAP) is ~2163 mm (Giambelluca et al. 2013). Soils were collected in
the summers of 2018, 2019, and 2021.

Soil Feature Mean SEM
Volumetric Water Content (0) 0.440 0.0300
pH 4.47 0.0200
total soil manganese (Mn) (ug g dried soil) 1180 17.8
plant-available Mn (ug g'! dried plant mass) 311 34.6
deionized (DI) water extractable Mn (ug g™! dried soil) 0.658 0.0290
extractable (organically bound) Mn (ug g'! dried soil) 201 12.2
% Carbon 16.1 0.280
% Nitrogen 1.19 0.0500
dissolved organic carbon (DOC) (mg g soil) 0.0700 0.0170
CO:> flux per unit area (mg CO,-C m? h'!) 3.38 0.140
Mn peroxidase (MnP) activity (umol h! g! soil) 14.9 NA
peroxidase activity (umol h'! g'! soil) 29.2 NA
phenol oxidase activity (umol h'! g'! soil) 4.26 NA

Mn compositions collected using X-ray absorption near-edge structure (XANES)
spectroscopy on single replicates of homogenized 10-cm soil samples.

Mn Oxidation State Composition (%)
Mn?** 5.30
Mn** 42.6
Mn* 52.1

1199
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12. Supplementary Figures

Figure S1. A) Soil pH and B) Volumetric Water Content (VWC, ©) measured in homogenized
10-cm soil cores along the gradient. Filled markers represent averaged values (n=3-6). Error
bars illustrate the standard error of the mean (SEM). C) Standard reduction potentials measured
to 3-cm soil depths in sites with sufficient soil moisture (receiving > 1750 mm MAP) along the
gradient. Filled markers symbolize average standard reduction potentials taken every 10
minutes for 10 hours. Error bars represent standard deviations (SD). D) Contribution of
manganese (Mn) peroxidase (MnP) activity to ligninolytic enzyme activity, expressed as
percent MnP activity of the summed enzyme activity for each gradient site. Filled markers
represent % MnP of total enzyme activity. Average percentage is 28.5%, median is 28.4%, and

maxima are 55.9% at 343 mm mean annual precipitation (MAP) and 52.5% at 3238 mm MAP.

Figure S2. Representative manganese (Mn) X-ray absorption near-edge structure (XANES)
spectra and their corresponding fits of gradient soil; homogenized 10-cm soil cores were
collected from each gradient site. The measured Mn K-edge XANES spectra are shown in black;
principal component analysis (PCA) and linear combination fitting (LCF) were used to
determine Mn**, Mn**, and Mn** peaks; LCF fits are shown in red. Vertical dashed lines indicate
the approximate positions of Mn?*, Mn**, and Mn*' peaks across spectra. Numbers to the right of

spectra identify the mean annual precipitation (MAP) (mm) of site samples.

Figure S3. A) Open mason jars and lids with compression fittings to measure soil CO> flux from
field soils. B) Sealed mason jars with equal volumes of soils. Soils were manually homogenized,

picked through to remove root matter and rocks, and transferred to mason jars within hours of
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field collection. Soils rested in open mason jars for 24 hours before we capped the jars and
started CO> collection. C) The experimental array of mason jars for gas and soil sampling is
shown. B) The compression fitting through the mason jar lid, shown from D) above and E) side,
allow for gas sampling from the air-tight, sealed jar. The jars remained open (unlidded) between

sampling timepoints.

Figure S4. Images of thin-sectioned soils collected from each condition at Time 0 and 72 hours.
Images were created using p-X-ray fluorescence (XRF) analyses at SLAC SSRL: A) Control at

hour 0, B) Control at hour 72, C) Moderate Manganese (Mn) at hour 0, D) Moderate Mn at hour
72, E) High Mn at hour 0, and F) High Mn at hour 72. The distribution of Mn oxidation state

Mn?" is represented by blue, Mn** by green, and Mn** by red.

Figure S5. A) Composition of manganese (Mn) oxidation states in deionized-water (DIW) and
sodium-pyrophosphate (NaPP) extracts of homogenized 10-cm soil cores collected along the
Kohala rainfall gradient. Blue columns symbolize the percentage of Mn**, green columns Mn*",
and purple columns Mn**. Mn oxidation states were identified and assigned using X-ray
absorption near-edge structure (XANES) spectroscopy, principal component analysis (PCA), and
linear combination fitting (LCF). B) XANES spectra and fits: black lines represent measured

spectra, and red lines represent fits based on PCA and LCF analyses.
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