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Abstract—As the global population continues to urbanize, city
residents are increasingly exposed to extreme heat due to the
urban heat island phenomenon, which poses a serious threat
to human health. Understanding heat exposure in urban areas
is challenging due to the heterogeneity of urban form and
land uses, which create micro-climates that expose individuals
to a wide variation of temperatures in outdoor environments.
To address this issue, we have deployed a sensor network
throughout the city of Bloomington, Indiana and on the campus
of Indiana University. The environmental sensor network includes
air temperature, relative humidity, and soil moisture sensors
in different urban-forms such as along streets, among densely
clustered trees, in parking lots, and in community gardens.
The sensor network captures a rich set of data related to
local climate, heat exposure, and vegetative heat stress. Local
environmental monitoring is an important area of research that
enables researchers to more precisely predict and quantify an
individuals’ exposure to extreme heat in urban environments.
In this paper, we describe the application of our environmental
sensor network, the Healthy Cities Sensor Network (HCSN) and
how it can be utilized to increase climate resilience for local
communities.

Index Terms—sensor network, extreme heat, urban heat island

I. INTRODUCTION

Extreme heat kills more people annually in the United
States than all other extreme weather events combined and
these mortality rates are only intensifying with our changing
climate [1]-[4]. Cities are particularly vulnerable to extreme
heat events because of the urban heat island (UHI) effect. The
UHI effect is seen when temperatures in cities are higher
than temperatures in their surrounding rural areas [S5]-[7].
This amplification in local urban temperatures is due to the
displacement of natural landscapes by impervious surfaces
such as roads, buildings and parking lots [6]. Additionally, heat
wave characteristics, such as frequency, timing, duration and
intensity, have been found to be increasing across U.S. cities
[8]. The amplification of temperatures due to the urban heat
island effect and increase in heat wave frequency, place urban
residents in a vulnerable position. Determining an individual’s
risk of heat stress is challenging as extreme heat exposures
vary dramatically throughout a city as do individuals’ underly-
ing health conditions, which can compromise a person’s ability
to regulate internal temperatures [9]. Furthermore, the lack of
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public awareness regarding risks associated with extreme heat
make heat waves a silent killer [9]. The increased frequency of
heat waves increases the need for communities to determine
how best to prepare and recover from disasters [8].

Understanding the heat exposure of individuals in urban
areas is challenging [21]. Meteorological stations for urban
regions are typically situated at airports, which are often
the only long-term, quality-controlled sources of temperature
data available in urban areas. Data from these meteorological
stations are commonly used to calculate urban climate trends
[22]-[24], but no single monitor location can fully represent
the heterogeneity of a region’s urban landscape. Temperature
data from airport-based meteorological weather stations do not
account for variations in temperature caused by differences in
land cover and land use [25]. The heterogeneity of urban form
and land uses in an urban environment create microclimates
exposing individuals to a wide variation of temperatures in
outdoor environments [26]. Urban climatologists often use
satellite data to illustrate shifting temperatures in the built
environment, but satellite data are inherently limited by the
spatial and temporal resolutions of any given satellite. Ad-
ditionally, satellite data represent surface temperatures as op-
posed to near surface air temperatures (temperatures measured
at approximately 2 meters above ground level). Near surface
air temperature is the temperature metric used by urban
climatologists to unpack the negative health effects that arise
from exposure to extreme heat [9]. Aligning local climate
data with individual heat exposures and health data can help
cities and residents be better prepared to plan for and address
challenges of extreme heat.

As such, local environmental monitoring through ubiqui-
tous sensing and Internet of Things (IoT) technologies is an
important area of research that has the potential to enable
researchers to more precisely quantify individuals’ exposure
to extreme heat in urban environments [27]. Local sensor
networks can be used to improve the understanding of indi-
vidual and community exposure to high temperatures, quantify
performances of climate responsive designs, and validate both
urban and regional climate models [27], [28]. Additionally,
access to local environmental data may empower individuals
and communities to advocate for change [29]. The collection
and validation of local environmental data through ubiquitous
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Network Name Location Time Period Sensor Model No. Communication Purpose
Method
Fixed Increase confidence of land surface
Observational Madison, WI 03/12 - 03/19 HOBO U23 Pro v2 146 Manual
temperature measurements
Network [10]
BUCL UMN Birmingham, Va1s§11a WXTS.ZO & Cellular & Create testbed for high quality
06/12 - 12/14 Aginova Sentinel 108 . p
[11] ENG . Wi-Fi crowd-sourced and satellite data
Micro (ASM)
Boston Met. . .
Urban Sensor Area, MA 03/14 - 11/15 HOBO U23 Pro v2 25 Manual Invc;stlgate how ur.ban land use affects
Network [12] environmental variables
Greater Los . ) . ) . ]
Angeles Network | 108 AMEEIeS | 6,14 00/14 | Thermochron iButton | 300|  Manual Examine effects of vegetation on urban
[13] MSA, CA climate dynamics
Tech Climate Examine effects of land cover, tree canopy
Network [14] Atlanta, GA 2015 - 2017 HOBO U23 Pro v2 37 Manual and UHI on temperature
Intra-Urban HOBO Temperature Examine performance of Low Cost
Sensor Network Bern, SWTZ 05/18 - 09/18 Pendant & 82 Manual Devicess for data quality & sources of
[15] AWS-Thygan VTP6 error
Custom Fixed .
Sensor Network Bolzano, 07/20 - 05/21 Custom 17 LoRaWAN Analyze tech required for sensor network
[16] ITLY deployments
Project Eclipse Chicago, IL 07/21 - Present Custom 115 Cellular Develop a low-cost end-tg—end method of
[17] urban environmental sensing
Array of Things . _ . Publicly provide real-time research quality
(AoT) [18] Chicago, IL 08/16 - Present Custom 130 Cellular data about different areas in urban spaces
Twin Cities Twin Cities
) Metropolitan 08/11 - 08/14 HOBO U23 Pro v2 200 Manual Canopy layer UHI monitoring and research
Network [19] Area
Schools Weather Greater — . Encourage citizens to get involved in
and Air Quality Sydney Area, | 09/19 - Present Vd;;:il:agig?fzgnd 11 Cellular urban climate and air quality monitoring
Network [20] AU ’ and metrics

Table I: Table indicating different in-situ environmental sensor networks throughout the world, sensors used, communication
channel and objective. Table includes urban scale networks that have been active in the past decade.

low-cost sensor networks can help cities identify heat stress
management strategies that increase resilience using sophisti-
cated prediction and adaptive response measures [30].

To better understand the configuration of urban sensor
networks and their rationale for deployment, we conducted
a literature review of in-situ urban environmental sensor net-
works. From the literature review, we identified eleven in-
situ urban sensor networks deployed in the last decade and
highlighted information that characterizes each network (See
Table I). Sensor networks vary by sensor type, communication
technology, network density, duration, and overall aim/purpose
of network. The objectives of a sensor network dictate the
resulting spatial coverage and resolution with networks fo-
cused on urban phenomena typically being in the Urban/City
scale (area of 10* — 10°m) [31], [32]. Dense city scale
networks are vital to understanding the urban heat island
(UHI) effect as cities often have heterogeneous land cover
making it difficult for a single sensor to effectively characterize
a large area [11], [31], [32]. Due to time and high costs
associated with maintenance and operation, sensor networks
and Urban Meteorological Networks (UMNs) are typically
short-term projects not designed for long-term deployment
[11], [17], [31]. Barriers to long-term deployment can be
exacerbated by sensor network spatial coverage, density, and
the types of communication technology used [11], [31]. An
example of a more recent urban sensor networks designed for
long-term deployments and integrated into the infrastructure
of cities is the the Array of Things. The Array of Things
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(AoT) in Chicago has upwards of 500 planned installations
with approximately 130 active sensor modules that have been
online since 2016 where each module collects a variety of data
such as air quality, climate, video, and sound [18].

This paper describes the deployment and application of
the Healthy Cities Sensor Network, an environmental sensor
network in Bloomington, Indiana designed for monitoring
hyperlocal extreme heat and heat wave trends. The network
is comprised of an array of in-situ sensing technologies to
capture hyperlocal environmental data. We describe how we
use these data to create interactive visualizations depicting
how temperatures vary within the built environment. We
discuss how our sensor network can connect communities
with hyperlocal heat exposure data and describe how the
data can been used to inform individuals and communities
about unhealthy environmental exposures. As cities across
the country transition into what are being called “Smart
Cities”, the collection and validation of local environmental
data through ubiquitous low cost sensors is becoming an
increasingly important research area.

II. SENSOR NETWORK OVERVIEW

Our environmental sensor network consists of an array
of in-situ sensors located across the city of Bloomington,
on the Indiana University (IU) campus, and in two urban
agricultural locations. The sensor network captures climate and
environmental variables such as near surface air temperature
and relative humidity (T/RH), dew point, soil moisture, wind
speed/wind direction, and solar radiation. Sensors are deployed
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in differing urban form environments (i.e. along streets, in
parking lots, and in community gardens) in order to measure
how these environmental data vary across the urban landscape.
To support heat resilience planning, in-situ monitoring cap-
tures diurnal variations and continuous monitoring of extreme
heat events throughout summer months. The sensor network
began in 2018. Since 2018 we have maintained and expanded
our sensor with the largest growth occurring in 2024 when we
added 21 new sensors to our network.

Our urban sensor network consists of a total of 37 sensors.
Individual sensors measure temperature/relative humidity/dew-
point (T/RH) (32), soil moisture (SM) (3), solar radiation (SR)
(1), and wind speed/wind direction (WSWD) (1). See Table
II for a list of sensor technologies deployed in the network.
T/RH sensors are widely and evenly distributed across the
city and university campus to ensure adequate representation
of different urban form conditions. We have installed 13
T/RH sensors on IU’s campus and the remaining 19 T/RH
sensors are distributed across the city of Bloomington. In
addition to our city-level network, we have also established
two high density mesh networks at the micro-scale to examine
hyperlocal temperature variations and to integrate additional
environmental variables. These two high density mesh net-
works are located along a highly travelled street corridor and
in a community orchard (See Fig 1). The dense array of
sensors installed along a busy and hot street corridor is used
to quantify personal heat exposure for pedestrian and transit
riders and to explore opportunities for creating a cool corridor.
The sensors located in the community orchard and garden
examine the impact of green infrastructure, agriculture land
cover, irrigation and evapotranspiration on local temperatures.
The solar radiation and wind speed sensors are also installed
in the urban agricultural location in order to calculate and
monitor evapotranspiration.

A. Sensor Technology

Our sensor network primarily utilizes two sensor config-
urations from the Onset Computer Corporation; the HOBO
MX?2302A External Temperature/Relative Humidity Sensor
Data Logger and the HOBO RX2106-900 Remote Micro-
Station which allows for a wireless connection with several
different sensor models. The HOBO units are widely used

Model Variable No.| Location LCZ
Campus 2.3,5,6,8,
MX2302A Temp, RH 22 CiF ’ 9, 11, 12,
¥ 14, 15
Street,
RXW-THC-900 Temp, RH 10 Orchard 2,3,5, 14,9
RXW-SMD-900 Soil 3 | Orchard 9
Moisture
Wind Speed
RXW-WCF-900 & Wind 1 Orchard 9
Direction
RXW-LIB-900 Solar 1| Orchard 9
Irradiance
RXW-RPTR-900 NA 2 | Street. NA
(Repeater)

Table II: Sensor technology utilized in our urban environmen-
tal sensor network.
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Fig. 1: Maps illustrating two mesh networks and areas of
interest targeted for sensor deployment.A: Street Corridor. B:
Community Orchard.

and validated in academic research, MicroStations support a
variety of sensors, and are robust enough to add additional
sensors if the parameters of the sensor network change in the
future [14], [33]-[36]. The MX2302A sensors are versatile
data loggers designed for measuring temperature, humidity,
and calculating dew point. They are battery-powered and blue-
tooth enabled sensors that can be deployed in remote locations.
Data is stored locally on the data logger and collected via
bluetooth through the Hobo mobile app, “HOBOconnect”,
and is uploaded to the HOBOlink cloud server. T/RH sensors
are housed within a Solar Radiation Shield (HOBO RS3-B)
to improve the accuracy of temperature sensor readings for
periods when sensors are exposed to sunlight and to ensure
sensors do not overheat.

Our sensor network also utilizes wireless sensors for the
creation of our two high density mesh networks, one of which
is deployed along a street corridor with major pedestrian
activity and the other which is deployed in a local community
orchard. To create our high density mesh networks, a series of
wireless sensors connect to a HOBO RX2106-900 MicroRX
Monitoring System (MicroStation). The MicroStation has a
built-in solar panel with a rechargeable battery and acts as
a central data logger where environmental data is collected
and transmitted over the cellular network to HOBO’s cloud
servers. Each wireless sensor has a built-in antennae for
radio communication across the mesh network with a 450-
600 meter wireless range (line of sight) and is equipped with
a built-in solar panel and a rechargeable battery. The mesh
networks includes 10 T/RH wireless sensors (RXW-THC-
900), 3 wireless soil moisture sensors (RXW-SMD-900), 1
windspeed/wind direction wireless sensor (RXW-WCF-900)
and 1 solar radiation wireless sensor(RXW-LIB-900). Two
wireless repeaters were needed along the street corridor in

Authorized licensed use limited to: Indiana University. Downloaded on February 10,2025 at 16:52:37 UTC from IEEE Xplore. Restrictions apply.



order to effectively connect sensors wirelessly. Buildings,
buses, trees, other urban infrastructure and elevation changes
can create physical barriers that inhibit the connection of
wireless sensors to the central MicroStation. Wireless repeaters
help to bridge these communication gaps and can be installed
at higher elevations compared to the T/RH sensors to facilitate
connection.

The sensors collect data at regular intervals of 5 minutes,
store the data locally and transmits the data wirelessly to our
university server. All collected data are stored on HOBOlink, a
cloud storage solution designed to store, manage, and export
collected data from all MX and RX series sensors. Sensors
connected to a Microstation broadcast data to the HOBOlink
website and to our servers every hour, whereas MX sensors
can store data up to 3 months locally. Data is pushed for these
sensors weekly during summer months.

B. Location

When determining where to locate T/RH sensors, we take
into account several factors including the height above ground
level, local land cover and built environment characteristics,
socioeconomic characteristics, and areas of interest to the
community. The T/RH sensors are mounted to structures
approximately 2 meters above ground, which is the optimal
height for capturing temperature metrics that impact human
health [9]. In-situ sensors are mounted on street posts, trees,
and other vertical structures. Soil Moisture (SM) sensors are
deployed at either 6 inches or 12 inches below grade depend-
ing on the location. All sensor heights as well as mounting
type (post, tree,etc) are recorded in our database. The in-situ
T/RH sensors are strategically placed throughout the city and
campus to ensure that they are spatially evenly distributed
across our region of interest [6], [37]. The overall average
distance between a sensor and its nearest three neighbors
across the city is 0.42 km. Sensor locations are also selected
to ensure representation across different urban forms.

When selecting a sensor location we take into account
the characteristics of the local built environment. City design
and local urban morphological conditions cause hyperlocal
temperatures to vary dramatically throughout cities. For ex-
ample, near surface air temperatures over dark-paved imper-
vious surfaces, such as parking lots, can be more than 22°F
hotter than near surface air temperatures in forested areas and
greenspaces [6], [38]. To identify potential sensor location,
we collect land cover and urban form data to classify our
region of interest into distinct urban form typologies known
as local climate zones [26]. Local Climate Zones (LCZ), are
predefined typology classes used by urban climatologists to
more accurately describe the surrounding physical landscape
into micro climates [26]. LCZs were originally established in
order to standardize urban sensor network installations and
have been used to predict near surface air temperatures in
relation to other LCZs [26]. To classify the city into LCZs,
we use a random forest (RF) machine learning classifier in
Google Earth Engine, training data and a combination of input
features such as multi-temporal Landsat 8 data. The LCZ
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Fig. 2: T/RH sensor locations overlaid on top of 30 meter
resolution LCZ map. Sensors are color coded by location. LCZ
categories are represented below the image. Urban classes are
from 1-10 and natural class are from A-G.

classification scheme includes 17 different class, where 10
represent developed classes and 7 represent natural land cover
classes (see Fig 2). We try to ensure consistent representation
of sensors across LCZs which are present in the city. We
document the LCZ of each sensor location in our back-end
database. Figure 2 illustrates a LCZ map with sensor locations
and examples of different LCZs for the in-situ sensors.

We also worked extensively with local stakeholders to de-
termine optimal locations for our sensors across the three sites
(campus, city, and community orchard). For IU’s campus, we
worked directly with a representative from landscape services
in order to ensure sensor deployments were deployed in ac-
cordance with campus protocols. For the city of Bloomington,
we worked with their Economic and Sustainability department
to identify both areas of high heat vulnerability as well as
places of interest to the community. Specifically, we targeted
busy bus stops which did not have shelters, housing authority
apartment complexes, mobile home parks, and Title I schools.
We also identified locations based on community impact and
outreach such as the local public library, a children’s science
museum, and the downtown courthouse which is located in a
high density mixed use commercial development which serves
as a central location for community gatherings. For the com-
munity orchard, we held two public engagement workshops for
orchard leadership and volunteers. The workshops introduced
stakeholders to the dangers of heat, the potential application
of sensing technology, and explored areas of interests and
concern for the community orchard members. Designing sen-
sor networks with communities allows for more meaningful
application and outcomes for IoT deployments.

C. Data Flow

Data generated from the in-situ sensor network is consoli-
dated and integrated into a robust back-end database system,
where we implement consistent quality control measures and
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Fig. 3: Diagram depicting data flow from individual in-situ
sensor to final data visualization output

produce real-time continuous heat monitoring visualizations.
Figure 3 illustrates the data flow from in-situ sensors to online
visualizations. The collected sensor data from HOBOlink is
exported to a university-hosted linux server every hour as
CSV files. The Linux server hosts a PostgreSQL database
and a website. An hourly CRON job runs Python scripts
that process the incoming data, remove duplicates (if any),
and inserts it into the PostgreSQL database. The database
is the main storage for all collected sensor data, which is
backed up periodically into CSV files. A website hosts Tableau
visualizations that are frequently updated to provide real-
time insights into environmental conditions over the sensor
network. The Tableau dashboards are directly connected to
the PostgreSQL database, and whenever new data is added by
the CRON job, the visualizations are refreshed automatically.
We utilize a Confluence wiki for project documentation,
knowledge management, and metadata documentation and rep-
resenting our internal knowledgebase for our sensor network.
We utilize the Confluence wiki to monitor the status of our
database. For each sensor in our network, a table is auto-
updated in Confluence recording sensor location and the last
available timestamp of the sensor observation. This allows for
monitoring and verification of the data, ensuring that each
sensor data is timely, and that sensors are not malfunctioning.
Additional, we use the wiki for on-boarding new researchers.
We create how-to tutorials that describe installation proto-
cols for each sensor type, training documentation for data
acquisition, and documentation of our database structure. We
use the wiki to document the history of the sensor network,
which include routine maintenance (i.e. battery replacements),
sensors removals/additions, and network problems/failures.

III. DATA ANALYSIS AND VISUALIZATIONS

Utilizing this database system, we create interactive vi-
sualizations of near surface air temperature and heat index
data. We calculate apparent temperature to represent the heat
index (the “feels like” temperature) using similar methods as
the National Weather Service (NWS). We include separate
visualizations that depict hourly average temperature and heat
index graphs as well as daily min/max temperature graphs
for partnering stakeholder groups. These visualizations can
help community members identify when they are experiencing
unhealthy heat days. The Heat Index (HI) is calculated based
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on temperature (T) and relative humidity (RH). Corrections are
applied if the relative humidity (RH) is less than 13% and the
temperature (T) is between 80°F and 112°F, or if the relative
humidity (RH) is greater than 85% and the temperature (T) is
between 80°F and 87°F [39].

We identify Extreme Heat Events (EHEs) and Heat Waves
(HWs) for every sensor in our network and illustrate how
communities exhibit various levels of heat exposures and heat
waves trends. Extreme heat thresholds are based on the long-
term average for each community and HW calculations are
based on our previous HW methodology [8]. To identify EHEs
and HWSs, we calculate threshold markers for both minimum
and maximum apparent temperature. To determine the local
threshold for EHEs, we use the 85" percentile for the long-
term average (July and August temperatures from 1981-2010).
The maximum and minimum apparent temperature thresholds
for our location is 92.84°F and 74.79°F respectively and
these thresholds are included in the online temperature and
heat index graphs. Figure 4 illustrates the temperature variation
for the hottest week of 2023 across three sensor locations.
Temperatures peaked on August 25, 2023 with the highest
temperatures occurring in a parking lot with a heat index of
118°F. However a nearby forested area exhibited the coolest
temperatures of 107°F representing an 11-degree difference
between these two sensor location and their representative
local climate zone. The urban form data for these locations
provides additional insights into this temperature disparity.
The forested location has a pervious surface fraction of 100%,
meaning the entire area is permeable (grass, trees, dirt, etc).
Conversely, the parking lot is highly impervious with only
a 10% pervious surface fraction with the majority of the
land cover dedicated to buildings, parking lot or roads. This
difference in land cover directly impacts the 11-degree tem-
perature variation, as the parking lot’s heat-retaining surfaces
and limited vegetation create a more intense urban heat island
effect compared to the forested area. Using data from our
sensor network we can also analyze which areas of a city
are experiencing more frequent and intense heat waves. Table
IIT lists the number of HW days in 2024 per LCZ. Sensors
located in built environments classified as Open Midrise (LCZ

Fig. 4: Real time hourly temperature data visualization
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LCZ No. of heatwave
days

5 - Open Midrise 29

15 - Bare rock or paved 15

14 - Low Plants 15

2 - Compact Midrise 14

11 - Dense Trees 7

12 - Scattered Trees 6

Table III: No. of heatwave days per local climate zone (LCZ)
based on the daily maximum apparent temperature

5) experienced 29 HW days compared to LCZs classified as
Scattered Trees (LCZ 12) which has only experienced 6 HW
days. This illustrates that different locations across one city can
experience a wide variations of unhealthy hot days exposing
residents to different levels of extreme heat.

Diurnal variations allow us to see the difference between
maximum and minimum temperatures throughout a day. When
visualizing temperature trends, it is important to analyze diur-
nal variations across different land cover patterns. Minimum
temperatures, also known as high nighttime temperatures,
have been shown to be a better predictor of negative health
effect to extreme heat [9] and as such are often prioritized
in analyzing trends in EHEs and heat waves [8]. Various
types of green infrastructure such as urban forests, parks, and
urban agriculture play a role in lowering temperatures in the
built environment and do so to varying degrees. Increasing
tree coverage can significantly reduce maximum temperatures
compared to other land cover strategies, as can be seen in
Figure 4 and Figure 5. On the the other hand, open green space
and urban agricultural locations are better at reducing mini-
mum temperatures due to their high skyview factor (percentage
of sky that is visible) which allows for long-wave radiation to
be more efficiently released into the atmosphere [6]. Figure
5 illustrates average hourly temperature for three distinct
location in our sensor network: a parking lot, a forested area
(Dunn Woods) and an urban agriculture site (Willie Streeter).
The parking lot exhibits the highest maximum and minimum
temperatures, and the forested area exhibits the lowest max-
imum temperature, approximately 10°F less than the parking
lot. Though the urban agricultural site moderately reduces
maximum temperatures as compared to the parking lot, we see
at night, temperatures are the coolest in the agricultural site
— outperforming the forested location in reducing minimum

Hourly Temperature Average

Fig. 5: Average hourly temperature for three distinct locations-
forested, urban agriculture, and parking lot.

temperatures. Green infrastructure also modulates temperature
and heat index values due to the process of evapotranspiration
and due to irrigation practices. Evapotranspiration reduces
near surface air temperatures in the built environment but
the combine process of irrigation and evapotranspiration also
increases local humidity levels thereby elevating the heat index
(apparent temperatures)

IV. DISCUSSION - CHALLENGES & BROADER IMPACTS
A. Challenges

Creating urban environmental sensor networks is a complex
task with various challenges, from the design of the sensor
network to deployment and maintenance of the network.
Community and civic partnerships are essential to establish
and sustain effective long-term deployments. In order to design
and deploy our network, we worked extensively with campus
leadership (landscape services), the local government (the
office of sustainability, the parks department, the department
of public works, and the local utility company), and com-
munity leaders for the community garden and orchard. When
designing the sensor network we needed to ensure sensors
were evenly distributed across different LCZs and finding
suitable locations could be difficult. Land ownership influ-
enced potential installation sites thus limiting site options. As a
result, identifying potential installation sites required flexibility
as we needed to identify multiple substitute locations which
took consistent outreach and coordination. This process can
be time consuming and requires careful planning. Installation
challenges were exacerbated when sensors utilizing radio
frequency for data communication were deployed and required
line of sight between devices to ensure complete and efficient
data transfer. To accommodate the line of sight requirement,
we situated our data loggers above our sensors to avoid any
interruptions from intermittent sources (i.e. vehicular traffic)
and used repeaters to extend the communication signal.

Working with local stakeholders is key when designing
and installing a sensor network which can ensure sensor
technology is incorporated into the infrastructure of campuses
and cities allowing for long-term monitoring, maintenance,
support and engagement. For long-term deployments, sensors
should be viewed as public infrastructure. Introducing sensors
as a type of public infrastructure helps to facilitate the essential
collaboration needed to successfully integrate sensors into
the current infrastructure. For example, repeaters needed for
wireless mesh networks would have benefited with higher
elevation locations to better support line of sight and avoid
structural interference but this placement would require more
coordination for both installation and maintenance.

B. Tools for Researchers

Maintaining a sensor network over time has a set of unique
challenges which require a significant amount of time, effort,
an array of tools, and constant tracking and observation.
Interactive tools developed to support sensor networks can
help to increase efficiency, cost, and reduce system failures.
Metadata documentation is needed to sufficiently describe
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the evolution of a sensor network such as documenting
new/decommissioned sensors, battery changes, sensor failures,
hose clamp readjustments to prevent tree girdling, etc. Tools
that allow user to seamlessly enter metadata in the field
as well as receive push notifications to alert researchers of
potential systems failures or when a network node is reaching
its carrying capacity (full data loggers, batteries not charging,
etc) can support the overall function of the network. New
tools are needed to better enable researchers to understand the
state of their networks and to anticipate and manage potential
equipment challenges before they become problematic.

C. Data to Knowledge

The Healthy Cities Sensor Network generates a large vol-
ume of environmental data that can be used by a wide
variety of stakeholders to better understand their local climate.
However, translating these data into actionable knowledge for
use by a lay audience is no trivial task. Interactive technologies
such as dashboards, mobile apps, or dedicated tools designed
for professionals can help bridge this gap by visualizing
these environmental data and educating stakeholders on how
to engage with and better understand their local climate.
Effectively translating environmental data into knowledge with
the goal of supporting decision making and community action
can be challenging as how we measure heat stress is not
always straightforward. Therefore, it is important to educate
stakeholders about the different metrics that are commonly
used. For example, minimum temperatures are often over-
looked by residents and local stakeholders as an important
measure of heat even though minimum temperatures play a
significant role in impacting heat-related mortality. Explaining
the differences between surface temperature and near surface
air temperatures, or describing why local thresholds are used to
define EHEs can be be complicated as is educating individuals
on the difference between using apparent temperature (the
combination of temperature and humidity) as compared to
Wet Bulb Globe Temperature (which includes wind speed,
solar radiation, temperature and humidity) as a measure of
heat stress. Unpacking environmental data is complicated and
new approaches are needed to help accomplish this need so
that the full impact of deploying a local sensor network to
collect hyperlocal environmental data can be realized.

D. Broader Impacts

The long-term deployment of urban sensor networks has the
potential to make significant multidisciplinary contributions to
a community’s climate resilience by enabling comprehensive
monitoring of environmental parameters across cities while de-
livering real time data to support decision-making for various
applications. Sensor networks can help campuses and cities
achieve sustainability goals by enabling city sustainability
officers, as well as campus facilities, to better understand how
their built environment is contributing to extreme heat, how
vegetation strategies may reduce near surface air temperatures
and how smart watering systems may be incorporated in
order to efficiently monitor and manage vegetation on campus
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Fig. 6: The long-term outcomes and synergies from an envi-
ronmental sensor network.

and throughout a city (See Figure 6). Urban environmental
sensor networks can play a role in establishing meaningful
community engagement and can be leveraged to support citi-
zen science, environmental stewardship, and can also enhance
climate education. Data collected from urban sensor network
can be used to monitor and document the local responses to the
changing climate, can help cities identify and target sustainable
design measures to improve efficiency and performance of
various operations and can be used to create a healthier climate
for local communities.

V. CONCLUSION

In this paper, we describe the deployment and application of
an environmental sensor network in Bloomington, Indiana, and
its applications in monitoring hyperlocal extreme heat expo-
sures and trends. We discuss the overall design and construc-
tion of our sensor network, including sensor technology, sensor
installation and locations, data flow and management, and data
analysis. We also discuss the purpose and of utility of our
sensor network for connecting communities with hyperlocal
heat exposure data through the deployment of sensor tech-
nologies for heat observations. This paper can act as blueprint
for communities across the United States to establish local
heat monitoring networks and how they leverage hyperlocal
environmental data to increase heat resilience in their local
community.
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