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Abstract—With the increasing penetration of intermittent
inverter-based resources (IBRs) and flexible loads, identifying
critical variables that affect the monitoring and control of
stochastic power systems is essential for ensuring secure op-
eration. This paper proposes a hierarchically spatio-temporal
global sensitivity analysis framework for probabilistic transient
stability assessment (PTSA), capable of quantifying the temporal
and spatial sensitivity to correlated uncertain sources, such as
IBRs and loads, for correlated generator rotor angle dynamics.
To accelerate the computation of sensitivity indices, a computa-
tionally efficient surrogate model, i.e., a multi-output Gaussian
process emulator (MOGPE), is further developed to replace the
time-consuming time-domain simulator used in PTSA. Numerical
results on the modified IEEE 9-bus system and the NPCC 140-
bus system demonstrate the accuracy, efficiency, and scalability
of the proposed method.

Index Terms—Global sensitivity analysis, inverter-based re-
sources, multi-output Gaussian process emulator, probabilistic
transient stability assessment, spatiotemporal analysis.

I. INTRODUCTION

HE growing integration of inverter-based resources

(IBRs), such as photovoltaic (PV) and wind generation,
is transforming the electric grid into a low-inertia system
[1], [2]. The increased stochasticity and uncertainty arising
from these IBRs and flexible loads further pose significant
challenges to the stable operation of power systems. Since
traditional deterministic transient stability analysis methods
cannot comprehensively show the characteristics of stochastic
power systems, probabilistic transient stability assessment
(PTSA) has been developed to determine the transient stability
level in the presence of uncertain sources [3]-[7].

PTSA aims to quantify how uncertainties propagate from
various sources to transient stability. However, the analysis
becomes computationally prohibitive when handling numerous
uncertainty sources; on the other hand, modeling all poten-
tial uncertainties is unnecessary, as some exhibit negligible
influence on stability outcomes [8]. Consequently, identifying
dominant uncertainty sources can be beneficial in optimizing
resource allocation, improving operational efficiency, and es-
tablishing clearer input-output causality for PTSA [9].

Sensitivity analysis (SA) quantifies the relative impact of
uncertain sources on system outputs by evaluating how input
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variations propagate through the system. SA methodologies
fall into two categories: local sensitivity analysis (LSA) and
global sensitivity analysis (GSA) [8], [10], [11]. LSA com-
putes derivatives or finite differences at a nominal operating
point to assess the effect of small input perturbations, but it
ignores nonlinearities, variable interactions, and global input
variations. In contrast, GSA evaluates input influences across
the entire input space, accounting for nonlinear effects, higher-
order interactions, and individual contributions [12]. This
holistic approach makes GSA particularly advantageous for
high-dimensional power systems, where comprehensive un-
certainty characterization is critical for sensitivity assessment
[13], [14].

GSA employs three main methodologies: nonparametric,
density-based, and variance-based approaches [8]. Among
them, the variance-based method is most commonly used in
practice due to its ability to handle nonlinear systems and
explicitly decompose sensitivity contributions through hierar-
chical variance decomposition. This approach relies on Monte
Carlo sampling (MCS) [15] to statistically quantify the output
variance induced by input uncertainties, enabling simultaneous
evaluation of both individual and interactive effects. However,
MCS is computationally prohibitive, especially for dynamic
simulations, as it requires sampling the power system simula-
tor thousands of times for each input dimension. Although a
double-loop generalized unscented transform-based strategy is
developed in [16] to alleviate the sampling burden of MCS, it
remains time-consuming. This is because the required number
of samples grows quadratically with the input dimension.

Consequently, computationally efficient surrogate models
have been developed to replace the power system simulator
and accelerate computation. Specifically, [13] applied poly-
nomial chaos expansion (PCE) to conduct GSA of correlated
uncertain sources, such as load, PV, and wind power, reducing
the computational burden compared to a power system simula-
tor. [17] further developed a basis-adaptive sparse polynomial
chaos (BASPC) method to alleviate the computational burden
of constructing a full PCE while achieving the decomposition
of uncorrelated and correlated uncertain sources. [18] extended
this approach by developing a BASPC-based GSA scheme that
decomposes the sensitivity index into uncorrelated marginal
contribution, data correlation contribution and physical interac-
tion contribution. Meanwhile, [19] expanded the work in [17]
to multi-output scenarios, where the sensitivity of distributed
generations to electrical quantities, such as bus voltages at
different locations, is aggregated. To address the curse of
dimensionality in PCE and its variants, Gaussian process
(GP) and Deep Gaussian process (DGP) were employed in
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The authors of [19] have proposed a GSA framework for
steady-state multiple outputs, aggregating outputs such as
bus voltages at different locations without considering their
correlations. However, the method does not generalize to
temporally dependent outputs that arise in dynamic multi-
output GSA [23]. Furthermore, it requires a prohibitively large
sample size to reliably extract principal components, even
in the steady-state regime [24]. Therefore, two key research
questions remain: /) How can comprehensive GSA indices be
Sformulated to effectively characterize the impacts of correlated
uncertain sources on the dynamic responses in PTSA? 2)
How can these GSA indices be efficiently computed, given
the computational burden imposed by time-consuming time-
domain simulations?

To address the aforementioned challenges, this paper pro-
poses a hierarchical spatio-temporal GSA method for PTSA.
The main contributions are summarized as follows:

e Novel GSA indices are developed to capture the cor-
relations among high-dimensional inputs and temporal
outputs. These indices enable an accurate quantification
of the relative importance of various uncertainty sources
and their physical interactions on power system dynamic
responses.

o A computationally efficient surrogate model, termed as
the Multi-Output Gaussian Process Emulator (MOGPE),
is designed to significantly accelerate the otherwise time-
consuming time-domain simulations.

o To the best of our knowledge, this is the first work to
establish a comprehensive and interpretable hierarchical
spatio-temporal sensitivity analysis framework for PTSA.
The proposed method quantifies temporal, spatial, and
system-level sensitivities from uncertain sources to gen-
erator rotor angle dynamics, supporting the identification
of critical uncertainty sources and improving the under-
standing of uncertainty propagation in PTSA.
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Fig. 1. Problem formulation of PTSA
II. PROBLEM STATEMENT

In PTSA, dynamics are commonly characterized by a sys-
tem of differential-algebraic equations (DAEs) expressed as:
i:f(wvya(té) )
O = h(w) y? d? 5)’
where x« denotes the state variables (e.g., generator rotor
angles), y represents the algebraic variables (e.g., bus voltage
magnitudes), d signifies constant exogenous inputs, i.e., distur-
bances, and & € R*™ characterizes n, correlated uncertainty
sources, i.e., wind generation and loads in this paper. The
nonlinear functions f(-) and h(-) describe the dynamics and
algebraic constraints governing the power system.
Applying the backward Euler method to discretize (1)
yields:

xz(t) = x(t — At) + At x f(z(t),y(t),d, &)

0= h(z(t),y(t), d, )
where At denotes the time step. (2) can be compactly ex-
pressed using an implicit function M:
Through recursive composition, the multi-step formulation
emerges:

x(t) = MioMi_ppo---o My iae(x(te),d,€), (4
where t. denotes the fault inception time and o represents
function composition. In (4), if d is fixed, then x(¢.) depends
on xz(0), which is determined by the loading conditions
governed by &. Therefore, x(t.) is uniquely determined by d
and €. As PTSA focuses on analyzing the evolution of rotor
angle & C x under uncertain £ for a given d, (4) can be
rewritten in the compact form:

0(te + AL), -+, 8(te + TAD]T = M(€)], (5

geRng xT

@

where t. denotes the fault clearing time, and s =
[31,3; o jzg represents the post-fault rotor angle tra-
jectories of ng generators. For example, &5 denotes the post-
fault rotor angle trajectory of the second generator. M(-)
represents the functional relationship between £ and J. Given
that the uncertain sources & = [PW,PL]T exhibit diverse
probability distributions, the rotor angle trajectory matrix &
inherits a corresponding statistical distribution as uncertainties
propagate through the nonlinear function M(-), as illustrated
in Fig. 1. Under high penetration of renewable generations,
identifying critical uncertainty sources affecting transient sta-

bility becomes imperative. While conventional GSA provides a
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viable pathway, its application to PTSA is hindered due to the
twin challenges of incorporating high-dimensional correlated
outputs, and ensuring computational tractability, as mentioned
in the Introduction. To address these challenges, this paper
proposes a spatial-temporal GSA approach for PTSA, which
not only handles high-dimensional correlated outputs but also
significantly accelerates computations by developing an effi-
cient multi-output surrogate model.

III. GLOBAL SENSITIVITY ANALYSIS FOR PTSA

This section introduces several global sensitivity indices that
consider both spatial correlations among uncertain sources and
temporal dependencies in the dynamic rotor angle outputs
of power systems. To efficiently compute these indices, a
surrogate model, namely MOGPE, is proposed to replace the
time-domain simulator and significantly reduce computational
cost. Finally, a hierarchical spatiotemporal GSA framework is
developed to systematically identify critical uncertain sources
influencing the spatio-temporal dynamics of power systems
and to provide deeper insights into their impact on system
behavior.

A. Global Sensitivity Analysis for Scalar Output

This subsection introduces the methodology for GSA with
correlated inputs, beginning with scalar outputs before extend-
ing to multiple correlated outputs in the subsequent subsection.

1) Analytical First-Order and Total Global Sensitivity In-
dex: Let §;, denote the ¢-th temporal component associated
with the i-th generator in vector 8. The input-output relation-
ship is:

dit = M(&) = M(&1,82,---,&n,)s (6)

where M(-) represents a specific component of the vector-
valued function M(-), i.e., M(-) C M(-). For input vector

£E=1,8,...,&,], we define:
o A subset of selected inputs, v = [;1,...,&;s|, where
1 < s < ny.
« The complementary subset, v = [{j1,...,E&jn—s]
Thus, the complete input vector is & = [u,v]. The total
variance of the output is decomposed as [25]:
D" = Vo [Eo[M(u, 0)]]+Eu [V [M(u, 9)]] = Dy + D5,
(7

where V(] and E[-] denote variance and expectation operators.
D5t and DT represent variance contributions caused solely
by v and by v including its interaction effects, respectively.
Variables v and v distinguish between random vectors sampled
from joint probability distribution p(u,v) and those sampled
conditionally from p(u, 0|u).

The first-order global sensitivity (GS) index for subset w is:
gist — Vi [Ey [M(u, v)]] _ Dfiﬁ

u Dit Dit

= 553 [/M(u,v)p(u,v)dud’u UM (u,?")p (V' | )

dv’ —/M (u’,v’)p(u’,v’)du’dv’” ,

®)

where (u’,v’) represent integration variables corresponding
to independent realizations of the same uncertain sources as
(u,v). The total GS index for the complementary subset v is:

syt = EulVolMOw )] _ D: ©)
For consistency, (9) can be reformulated to quantify the total
GS index for subset u:
G B [Vu[M(@,0)]
T Dist
1

— s [ M) = M@ o) o)

x p(u' | v)dudu'dv. (10)
As a result, normalizing (7) by D%! yields the following
relationship:

1=85"+ 87 or 1= 85"+ St an

These sensitivity indices quantify the contribution of input
subsets to the total output variance. The first-order index S%?
captures the variance proportion attributed solely to w, while
SZTZ reflects w’s total contribution, including both its direct
effect and physical interaction effects with other variables.
If Sit is smaller than S}’i, it indicates positive physical
interaction effects; conversely, it implies negative physical
interaction effects.

2) Realization of First-Order and Total Global Sensitivity
Index: Since M(-) doesn’t have a closed analytical form,
directly computing (8) and (10) is not feasible. Instead, MCS
can estimate S’ and ST as follows:

git _ N LYY Mg, vp) (M(uy, 95) — M(uh, v}))
“ Dit ,
_ 2
Si,t o % Z;\Izl (M(ujvvj) - M(U;,’Uj))
T ™ 2Dist )

(12)
where (uj,v;) is the j-th sample from the MCS process, and
N is the total number of samples. Sampling (u,v), (u/,v’),
(u',v), and (u, ') directly is tricky due to correlations in &
and complex distributions. Notably, (@', v) and (u, v’) require
conditional distribution sampling. Such sampling can be done
using a Gaussian Copula [25], defined as:

Cw;R) = @y (27 (w)) , (13)
where w = [wy,ws,...,wy,,] are uniform random variables
n [0,1]", ®~! is the inverse CDF of an uncorrelated n-
dimensional standard normal distribution, and ®,s is the
CDF of an n,-dimensional standard normal distribution with
correlation matrix R:

R — R'LL Ru'u

-
R,, R,|— LL", (14)
with L as the Cholesky decomposition of R, and R, as the
correlation block for w (similarly for other blocks). (13) maps
any input variable &; to a standard normal distribution via a
uniform w;.
To sample the four pairs (u,v) and (w',v’) from the
joint distribution, and (u, ") and (@', v) from the respective
conditional distributions, two independent sets of uniform

random variables can be generated: w = [w,,,w,]| and
w' = [w),, w,], where:

Wy = (Wi, ..., Wis), Wy = [Wj1, ..., Win—s),

wy, = [wiy, ... wi], w, = [Wy,...,wj, ]
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Fig. 2. The relationships among sensitivity vectors if there are only two outputs for i-th generator .

Using the derivation in [25], we have the following properties
to generate all necessary sampleS'

@, b] = " ([wu, wy])LT,
{[acbﬂ — & ([u, w) )L, (4
L,L, = Ry, — Ryu Ry Ruw,
{L L] — Ry — RuoR,'Rou, (10
=®,'(w,)L; + RwuR,")a
{ — @y w, )]+ (RuR, )b,
(u,v) = (¥, (®(a)), ¥, (2(b)) ),
(u',v) = (T, (2(a)), T ' ( ®(b ), (18)
(u,v') = (¥, ' (®(a)), ¥, ' (B(V))),
(@',v) = (¥, '(®(a)), ¥, ' (B(D))),
where ®,,! and ®! are inverse CDFs of uncorrelated stan-

dard normal distributions for « and v, and ¥,! and ¥ !
inverse CDFs of their marginal distributions. For instance:
1 1 -1
v, [\1161"1[52""’\1151-5]’
where \Il i is the inverse CDF of the k-th component of u,
with a similar form for ¥ '. The variables a, b, @', and b’ are

intermediate variables 1ntr0duced during the sampling process.

B. Global Sensitivity Analysis for High-Dimension Outputs

GSA to the multi-
output case. of the ¢th generator,
8 = [6it,+At, " »0it.+TAL], exhibit dynamic correlation.
Let the correlation matrix of rotor angles for the i-th generator
be defined as:

extends
The rotor angles

This  subsection

R Jer = piu, (19)

where p; ;v is the correlation coefficient between outputs
at times ¢ and t'. We can construct an affine coordinate
system incorporating these correlations [26], comprising T’
unit directional vectors e, € RT*! ¢t =1,... T, that satisfy:
T
€, ey = [Rgi]tt’ = COS(9i7ttl) and ||€t||2 = 1, (20)
and 6, 4 is the angle between coordinate axes ¢ and ¢'.
For vectors o = 23:1 aze; and B = 23:1 Bie; in this
space, their inner product is linked to the correlation structure:

T T/
8= (Z Oétet> (Z ﬂt@t,) =a'Rz 8. (D)
=1

t'=1
This induces the Ry -weighted inner product and norm:

(@, B)r;, = 'R5.8, |alr, = /a"R5a. (22)

Based on the above defined affine coordinate system, (11)
can be extended into the vector form:

S =1'=8,+85 or S'=1"=8,+8,, (23
where 1 = [1,1,---,1]". Therefore, in this coordinate sys-
tem, sensitivity vectors are expressed as linear combinations
of basis vectors: §' = Y7 1-e;, S, = 3.1, Site;, and
Si = /., S7'e;. To better understand the relationship
among these sensitivity vectors, consider a simplified case
with only two outputs, i.e., two coordinate axes, ¢ and ¢’. The
relationships between the corresponding sensitivity vectors are
illustrated in Fig. 2.

To quantify relative contributions of sensitivity vectors to
1%, we project them onto 1° based on the vector relationship
shown in Fig. 2:

Shusi _ ||SZHR3? cosu®" || ShlIrs, {SL, 1i>F\T«§i |
TR T AT
S'?gg,i _ [ TUHR* COSQAgg’ ||SilvHR§i < %v,li>33i 7
- Miley Tl 155 e, 11w,
(24)
where 052" and 9:,Afg’i are the angles between respective sen-

sitivity vectors and 1°. The indices 53" and g?fg’i represent
the aggregated first-order and total GS indices, measuring the
sensitivity of uncertain parameters to the rotor angle trajectory
of the i-th generator. Based on the complementarity between
u and v, and in accordance with (24), we obtain:

saeei _ S Bgll (i (S) Ryl
(1f) R 1' or (1f) Rz 1t
guues _ (S Rg2 T o (S1,) Ry 1
v (19) "R, 1% Tu (1)) TR5, 1!
(25)

C. Multi-Output Gaussian Process Emulator

As indicated in (12) and (25), computing S%?, Sli Sheei
and S?fg’i for each input dimension requires invoking the
time-domain simulator 4N times, where N is the total number
of samples for each input dimension. In other words, con-
ducting the GSA of rotor angles with respect to all uncertain
sources demands 4N n, time-domain simulations. Typically, N
is on the order of O(10%), implying that even for the standard
IEEE 9-bus system, the computational time can exceed one
day. To address this computational burden, this subsection
introduces a computationally efficient surrogate model, namely
MOGPE, which serves as a replacement for the time-domain
simulator to expedite the calculation of 3" and S, The
following sections provide a detailed explanation of the design
and implementation of MOGPE.
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1) Construction of MOGPE: Consider a dataset D =
{£@,60}% | where £ € R™ denotes the n,-dimensional
input, and § = [81,02,...,0,,] =€ R™™T denotes the
neT'-dimensional output, with NV data points in total. The out-
put matrix is defined as Y = [Yy),..., Y, 7] = {6}, €
RNl - where Y(;; € RM*! represents the j-th output
across all samples. The corresponding input set is given by
X={¢ (i)} f\i1

Each output dimension can be modeled as a Gaussian
process. By definition, any finite collection of function values
g(-) follows a joint Gaussian distribution [27]:

9(X) = [g(™), ..., g(¢MNT ~ N(p, Kx x),  (26)
where the mean function is defined as p = H(X)8, and
H(X) € RM*™ denotes a set of basis functions. For the
i-th input sample 0 = [E( 2 e ,(fu)] the k-th element is
denoted by Ek , where Kk =1,2,...,n,. A constant basis can
be defined as H(¢®) = 1, corresponding to np = 1, while
a linear basis can be defined as H(£(®) = [1, {1 sy ,(fu)],
giving n, = 1+ n,, with 3 representing a vector of hyperpa-
rameters. The covariance matrix is given by:

k(€W W) k(€W ENV)

Kxx = : : , @7
k(&™) €M) k(€N €N)
where  the  kernel function is k(&,&) =
exp (—% & — ¢ /62) with ¢ denoting the length-scale
hyperparameter.

Assuming the observations consist of the latent function
corrupted by additive Gaussian noise, the observation model

becomes:
Y ~ N (HBK)

where K = Kx x +021y,. Here, 02 denotes the noise variance,
and I, is the N; x N; identity matrix.

Modeling each output dimension independently would re-
quire constructing ng7" covariance matrices, each of size IV; x
Ny, resulting in considerable computational cost. To mitigate
this, MOGPE models each output as a Gaussian process, po-
tentially sharing a common covariance structure across inputs
while allowing each output to have distinct scaling and mean
functions. A scaling factor A = [/\1,...,/\ngT] e RixnT
is introduced to independently control the magnitude of each
output. The observation model for the j-th output is:

Y, ~ N (Hﬂ[j Ay A2 K) (29)
where (3[; denotes a vector of hyperparameters in mean
function for j-th output.

2) Hyperparameter Optimization for MOGPE: Assuming
conditional independence across outputs given the hyperpa-
rameters, the joint log-likelihood is:

ngT 1 1
.
=Y [—N(?‘m) K (rg)
=1 J
1 Noy2N %
1o (2w K|)] ,
where ¥ = {3, A, £, 02} denotes the set of model hyperparam-

eters, and r(;) = Y[;; — HB[;\; represents the residual for
the j-th output dimension. ¥, 0, and \; can be optimized by

(28)

log P(Y | X,9)

(30)

minimizing —log P(Y | X, ) using gradient descent. Given
9, 02, and Aj, the optimal ,B[j] is obtained as:

-1
Bl =+ [H'KH| HK Yy
J

The training complexity is O(N? + n? + n,TN?).
Remark 1: The training complexity of the MOGPE em-
ulator arises from three main computational components.
First, inverting the covariance matrix K of size Ny x N
requires O(N}?). Second, solving for the polynomial mean
coefficients 3 involves inverting the design matrix of size n,
(the number of polynomial basis functions), which contributes
O(n3). Finally, for each of the ny,T outputs, evaluating
gradients of log P(Y | X, 1) requires repeated matrix-vector
multiplications with complexity O(N?), leading to a total
of O(nyTN?). Combining these contrlbutlons, the overall

training complexity is O(N}? + ng + ngTNE).
3) Prediction via MOGPE: For new inputs X,, the joint
distribution of training outputs Y; and test outputs Y{;}, is

{Ym} N [Hﬁm%} | NK S NKxx )
Y50 H.ByAi] 7 [ MKx.x  AjK.
(32)

where K, = Kx,x. +0°L, and H, = H(X,). L. is the
identity matrix with the same size of Kx_ x,. Conditioning
on Y[j]’ the predictive mean for Y[j]* is:

E[Y () = HX)B ) + Kx.xK ry. (33)
(33) is employed as the predicted output of the final model,
which can be rewritten in the functional form:

o F=M(© and 5y = M), (34
where M(-) denotes the surrogate model constructed using
MOGPE, and M (-) represents a specific component of M(-).
Consequently, (34) replaces (6) in (12) and (25), enabling the
calculation of S, Sp., S5 and SAgg "' Thus, (12) can be
rewritten as:

& 2 Mg, v)) (Mg, 9) - M(w), o)) )

3D

it
Su o Di7t )
Ly MV ) — MV . 2
it N Zj:l ( (u_]av]) ('LLJ,'U]))
St = 2Dt .

(35)
D. Hierarchically Spatial-Temporal Global Sensitivity Analy-
sis Framework

Once S5, Sht, Sat®' and SHE&" are calculated, they can
be utilized to analyze the spat1al temporal global sensitivity
for PTSA, as detailed below:

o Temporal Sensitivity Analysis: For the i-th generator,
the sensitivity of rotor angle dynamics at each time
step can be quantified using S%! and S}i This helps
operators understand how uncertain sources influence the
rotor angle response over time.

« Spatial Sensitivity Analysis: For all generators, Sy
and SAgg ** identify which uncertain sources exhibit the
hlghest sensitivity to each generator. These insights pro-
vide valuable guidance for future planning and allocation
of uncertain sources to mitigate transient instability risks.

Although the sensitivity indices SZ¢, SZ tSat and S?fg’i
enable detailed sensitivity analysis for the dynamic responses
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of each generator at each time step, they do not provide a
system-level perspective. To address this limitation, this study

further introduces first-order and total sensitivity indices for

the transient stability index (TSI), denoted as S.5' and ST,

respectively:
N _
§TSI _ i > =1 TSI(uy, v;) (TSI(uj,v;) — TSI(u, v;))
v DTS )
1 _, 2
gIst _ N Z 1 (TSI(uy,v;) — TSI(uja’Uj))
Tu — 2 DTSI

(36)
Here, D™! denotes the variance of the TSI, where TSI is
defined as TSI = 100 x ggg +gm" with d,,,, representing the
maximum absolute difference in rotor angles between any two
generators. This quantity can be efficiently computed using the
surrogate model M ().

The comprehensive spatial-temporal global sensitivity anal-
ysis framework is implemented through the following steps,

as shown in Fig. 3 and Algorithm 1:

o Step One: Probabilistic Modeling and Data Gener-
ation of Uncertain Sources. The marginal CDFs ¥
of wind speed and loads are estimated from historical
data. A Gaussian Copula is employed to capture their
joint distribution, incorporating the correlation matrix
R. For detailed Copula construction theory, refer to
[28]. Synthetic wind power and load data are generated
using Latin Hypercube sampling (LHS) based on the
identified Copula structure and subsequently simulated in
the time domain under specific fault conditions, yielding
the training dataset D = {£@ §( AN

o Step Two: Surrogate Modellng. The dataset D trains the
MOGPE surrogate model. Specifically, (31) is substituted
into (30), and —log P(Y | X,®) is minimized using
gradient descent over . iterations to optimize £. 0. and

Sensitivity Analysis. With the trained MOGPE, (u,v),
(uv',v"), (u,?'), and (u',v) are sampled via (15)-(18)
using MCS, and then fed into (34) to compute the cor-
responding rotor angle dynamic responses. The response
corresponding to (u,v) is used to compute R7, . Finally,
Sit and S}t are computed by substituting (34) ‘into (12),
while SAgg’ and S, 2287 are obtained using (25). The
system-level sensitivity indices ST' and ST are derived
from (36).

Consequently, the influence of uncertain sources on gen-
erator rotor angle responses can be analyzed across each
time instant, location, and the overall system stability
level, thereby providing insightful indices for subsequent
decision-making.

Remark 2: A general use case of the proposed spatial-
temporal global sensitivity analysis is provided for understand-
ing power system stability under uncertain conditions:

o At the system level, the analysis identifies which un-

certain sources, such as wind or load variations, have
significant impacts on overall stability.

o At the generator level, it highlights the synchronous

generators that are most sensitive to these dominant
uncertainties based on the system-level sensitivity anal-
ysis results. This allows operators to pinpoint the key
generators that critically influence system stability.

¢ At the time-instant level, the method reveals how these

uncertainties affect local dynamics over time, such as how
uncertain sources influence oscillations. This can guide
operators to deploy additional oscillation controllers at
uncertain sources, such as wind generators or loads, to
regulate the key generators identified in the generator-
level analysis.

Bv integrating these insights. operators gain a spatial-temporal

Step One: Probabilistic Modeling and Data

Generation of Uncertain Sources

“TTT77% 1777 Dynamicpower |

system simulator 1
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Algorithm 1: The proposed spatial-temporal global
sensitivity analysis for probabilistic transient stability
assessment.

Input: Recorded data of uncertain sources (e.g., wind
speed and load power); the number of training
data V;; the total number of samples for
sensitivity calculation N.

Output: Spatial-temporal sensitivity analysis indices:

S;‘L,t, Si»t, gﬁgg,i’ g?gg,i’ Sv;l;SI’ S;F{I_

1 Estimate the marginal distribution ¥ of wind speed
and load power based on their historical data;

2 Utilize the Gaussian Copula to capture the correlation
matrix R of uncertain sources;

3 Generate training data D = {£(*), §()} Y using LHS
based on the identified Copula structure;

4 Construct MOGPE by minimizing — log P(Y | X, )
in (30) to optimize ¢, o2, Aj, and /é[j];

5 Based on the constructed MOGPE, S, Si’i, Sheet
Syt SIS and ST are calculated via (25), (35),
and (36).

Stability Index: TSI
System-level
Sensitivity
S ,{ SI [ ]
Wind Wind
Generator 1 Generator 2 Leadyl
Gcncrator—lcvcl{
Sensitivity Ni l
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T.
Synchronous Synchronous Synchronous

Generator 1 Generator 2 Generator 1

‘Wind Generator 1

Tl

Time
Synchronous Generator 1
Synchronous Generator 2
Synchronous Generator 3

Wind
Generator 2

Sensitivity

Mean of rotor angle

Fig. 4. An use case for utilizing the proposed global sensitivity analysis.

under uncertainties. For instance, as shown in Fig. 4, the sys-
tem consists of three synchronous generators, two wind gener-
ators, and one load. Under a certain disturbance, synchronous
generator 2 exhibits the largest fluctuation in the mean rotor
angle, while the other synchronous generators show almost
no fluctuation. The system-level global sensitivity analysis
indicates that wind generators 1 and 2 have the greatest impact
on overall system stability. Based on the generator-level global
sensitivity analysis, it can be observed that wind generators 1
and 2 are both highly sensitive to synchronous generator 2,
which is therefore identified as the key synchronous generator
affecting system stability. Furthermore, the time-instant-level
global sensitivity analysis reveals that wind generator 1 con-
sistently exhibits high sensitivity to synchronous generator 2 at
all times, while wind generator 2 shows zero sensitivity in the
oscillation stage of the dynamics. Consequently, an additional

damping controller can be designed for wind generator 2 to
mitigate the rotor angle oscillations of synchronous generator
2, thereby ensuring system stability.

IV. NUMERICAL RESULTS

The proposed method is extensively validated on the modi-
fied IEEE 9-bus and modified NPCC 140-bus power systems.
In these systems, probabilistic models are employed to repre-
sent both wind generation and load uncertainties.

1) Wind generation uncertainty: Wind speed is characterized
by the Weibull distribution, as described in [29], with the
probability density function given by:1

ma—
(v, ma, mp) = my (V) ' e*(l//ma)mb’
Mg \Mq

where v denotes wind speed, and m, and m; represent the
scale and shape parameters, respectively. The wind generator’s
output power is subsequently derived from the wind turbine’s
speed-power relationship:
0 (V < Ve OF U > Veo)
Prated - (Vci <v< VT'd)
-Praled (Vrd <r< Vco)
Here, Py is the wind generator’s output power, Piaeq 15 its
rated power, and v;, V4, and v, are the cut-in, rated, and cut-
out wind speeds, respectively. Wind speed samples are drawn
from (37), and the corresponding power output is calculated
using (38).

2) Load uncertainty: Consistent with prior studies, load
variations are assumed to follow a Gaussian distribution [30],
with the probability density expressed as:

p(P) = N ef(PquL)2/(2of)’ (39)
L

where P represents the load, with . and o being its mean
and standard deviation, respectively.

In this paper, the multi-output Gaussian process emulator
is implemented using PyTorch, a Python library, while Pow-
erWorld is employed to conduct the time-domain simulations.
All simulations are conducted on a laptop equipped with an
AMD Ryzen 5 4600H CPU and 16 GB of RAM.

(37

V—Vc¢;

Vrd—Vci

Py = (38)

A. The Modified IEEE 9-Bus Power System

1) Accuracy Verification of MOGPE: For clarity of anal-
ysis, the proposed method is initially validated on a modi-
fied IEEE 9-bus system, as shown in Fig. 5. Two 45-MW
doubly fed induction generator (DFIG)-based wind farms are
connected to Bus 4 and Bus 7, referred to as Wind 4 and
Wind 7, respectively. Similarly, the loads are named following
the same convention. The parameters m, and my, for the wind
speed distribution are set to 12 and 2, respectively, while
pr and op are set to the nominal load power and 0.1up,
respectively. A three-phase short-circuit fault is applied at Bus
5 at 0.5 s and cleared at 0.6 s. For this test system, there are
ng = 3 synchronous generators with 7' = 264 time steps and a
simulation time resolution of At = 1/60 s. In this subsection,
the uncertain sources are assumed to be uncorrelated.

To  construct the MOGPE  surrogate  model,
the mean function is defined as H(&®) =
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Eod distribution of TSI. The nearly identical distributions of the

65¢ i true and predicted values further validate the high accuracy

60 | of MOGPE as a surrogate model.
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Fig. 8. True and predicted PDF of TSI for the modified IEEE 9-bus system.
1,6 el €2 €)2). A total of N = 40
training samples are generated using LHS, and the model is
trained over n, = 40 iterations. For performance evaluation,
10000 testing samples are generated via MCS. The true and
predicted responses of Generator 2 are illustrated in Figs. 6
and 7, respectively. Additionally, Fig. 8 shows the probability
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TABLE I
SENSITIVITY COMPUTATION TIME VIA THE SIMULATOR AND MOGPE.

simulator, the proposed method utilizing MOGPE achieves a
speedup of 2768 x. In these heatmaps, brighter colors indicate

Simulator MOGPE

Computation time 25.68 hours 33.39 seconds

higher sensitivity values. For instance, in Fig 11(a), Load 8
exhibits the highest total sensitivity, i.e., Sht > to Generator 1
compared to other uncertain sources. However its sensitivity

2) Spatial-Temporal GSA Assessment: Once MOGPE is
trained, it can be used to perform the spatial-temporal GSA
assessment. The simulation setup is similar to that described in
Section IV-A-1). N is set as 10000 to calculate each sensitivity
index.

Figs. 9(a)-9(c) and 10(a)-10(c) present the heatmaps of
the spatiotemporal first-order sensitivity analysis computed
using the simulator and MOGPE, respectively. Similarly,
Figs. 11(a)-11(c) and 12(a)-12(c) depict the heatmaps of the
spatiotemporal total sensitivity analysis obtained from the
simulator and MOGPE, respectively. It can be observed that
MOGPE produces results consistent with the simulator, further
demonstrating its accuracy. However, as shown in Table I,
compared to computing these sensitivity indices using the

Generator 2

Generator 1

1.0 1.0
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Fig. 11. Total sensitivity index for all generators, calculated using the

simulator under uncorrelated uncertain sources: (a) S;f of Generator 1; (b)

SlTi of Generator 2; (c) STu of Generator 3; (d) SAgg’ of all generators.
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Fig. 12. Total sensitivity index for all generators calculated using MOGPE
under uncorrelated uncertain sources: (a) ST of Generator 1; (b) ST of

Generator 2; (c) S;i of Generator 3; (d) SAig  of all generators.

is not consistently higher than that of other uncertain sources
at every time step and shows greater sensitivity in the later
stages of the dynamics. This indicates that Load 8 has a greater
late-stage dynamic impact on the rotor angle of Generator 1.
On the other hand, comparing Figs. 9(c) with 11(c), Load
5’s first-order sensitivity, i.e., Sit, is significantly larger than
its total sensitivity, i.e., S}i This indicates that the physical
interaction effects among uncertain sources are prominent and
predominantly exhibit negative contributions for Generator 3.
It can be also seen from Figs. 9(c) and 11(c), Load 8 exhibits
positive physical interaction effects for Generator 3. We further
explain why Load 5 exhibits negative interactions while Load
8 shows positive interactions for Generator 3. As illustrated
in Fig. 5, compared with Load 8, Load 5 has additional
connections to Generator 3 through Wind Generator 7 and
Wind Generator 4. Since generators produce active power
while loads consume active power, the wind generators and
Load 5 play opposite roles in determining the system’s power
distribution, further influencing the rotor angle of Generator 3.
Consequently, compared with Load 8, Load 5 exhibits stronger
negative interactions with other uncertain sources with respect
to the rotor angle of Generator 3. However, Load 8 has no
wind generation in its connection path to Generator 3, leading
to stronger positive interactions.

Figs. 9(d) and 10(d) present the calculated S4%' using
both the simulator and MOGPE. Figs. 11(d) and 12(d) present
Sp4% using both the simulator and MOGPE. The results
demonstrate a high degree of consistency between the two
methods. Comparing Figs. 9(d) and Fig. 11(d), it is evident
that 53" and SAgg’ vary across different uncertain sources.
This observation ahgns with the heatmap analysis, further
confirming the presence of physical interaction effects among
uncertain sources. Additionally, as seen in Figs. 9(d) and
Fig. 11(d), the sensitivity of different generators to the same
uncertain sources is not identical. To determine whether S5
or Sy, Agg’ is more suitable for evaluating the impact of uncertain
sources in PTSA, this study fixes the power output of each
uncertain source at its nominal value while performing MCS
on the remaining uncertain sources, as shown in Table II.
Case 1 represents the scenario without fixing any input, and
the variance of each generator’s rotor angle is plotted in
Fig. 13. In each case, if the variance of a generator’s rotor
angle is closer to that in Case 1, it implies that the fixed
input in this case has lower sensitivity to the generator’s rotor
angle dynamics. Observations indicate that the sensitivity trend
reflected by S%gtg’z aligns with the trend in variance differences
between each case and Case 1, as depicted in Fig. 13, whereas
S qoes not capture this trend. For example, in Fig. 13(b),
Case 4 exhibits the largest variance difference compared to
Case 1, consistent with the ranking of SA%*? in Figs. 11(d)

and 12(d) present SH%’, but inconsistent with 5452 in Figs.
9(d) and 10(d). Thus, 'the total sensitivity index STig’z provides
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TABLE II
DIFFERENT CASES OF FIXING UNCERTAIN SOURCES

Variance (Var.) of rotor angle for all generators under different cases.:

Cases Case 1 Case2 Case3 Case 4 Case 5 Case 6

Fixed U.S.* None Load5 Load6 Load8 Wind4 Wind 7

2 U.S.: Uncertain sources

a more accurate description of global sensitivity for each
generator and it can assist system operators in determining
which uncertain sources should be adjusted to regulate the
rotor angle dynamics of specific generators.

3) System-Level GSA for TSI: In this subsection, the sim-
ulation setup is similar to that in Section IV-A-1). Fig. 14
illustrates the PDFs of TSI under different cases. Results show
that fixing uncertain sources with higher S}il leads to larger
deviations from the reference scenario (Case 1, all uncertain
sources vary). Conversely, fixing sources based on higher ST5!
does not follow this trend. For example, in Fig. 15, Case 4
(fixing Load 8) shows a much smaller deviation from Case 1
compared to Case 2, despite Load 8 having a higher SI5! than
Load 5. Thus, S}il is a more effective metric for evaluating
the significance of uncertain sources in PTSA, as it captures
the interactions among these sources.

4) GSA under Different Distribution Correlations: This
subsection analyzes how changes in the correlation between
uncertain sources influence Sy, S?ig”, SISL and S';il.
The simulation setup remains consistent with Section IV-A-

(a) Generator 1; (b) Generator 2; (c) Generator 3.

1), except that Load 5 and Load 8 are assigned different
correlation coefficients.

Figs. 16 and 17 illustrate the values of Saf&’, g?fg’i,
STSI, and S:Tpil for all generators at various correlation co-
efficients. Sensitivity patterns differ among generators as the
correlation coefficient changes. Notably, as the correlation
between Load 5 and Load 8 increases, their corresponding
Saf values consistently rise, indicating an increased shared
variance contribution. Furthermore, the differences between
Spte’ and S’%‘fg’l for Loads 5 and 8, representing physical
interaction effects, also change with correlation. In contrast,
sensitivity indices of other uncorrelated uncertain sources
remain largely unaffected. These findings demonstrate that
changes in correlation significantly influence the sensitivity
indices.

5) GSA under Different Fault Severities: To investigate how
the sensitivity indices vary with fault duration and severity,
we scan the fault duration ¢4 from 0.05 s to 0.3 s. Taking
Generator 3 as an example, its sensitivity heatmaps for the
two indices are shown in Fig. 18. It can be seen that the
total sensitivity S:?}ut does not increase monotonically with fault
duration. The results also suggest that there is a critical fault
duration beyond which the sensitivity patterns fundamentally
change. For example, Wind 7’s SZ " first increase with fault
duration but begin to decrease once td = 0.25 s. This may be
because when the fault duration or severity is small, Wind 7
has large impacts on the system response, and its sensitivity
increases as the fault severity grows. However, when the fault
duration or severity becomes sufficiently large, the fault itself
becomes the dominant factor affecting system stability, and
the impact of Wind 7 on the dynamic response may change.

B. NPCC 140-Bus Power System

The proposed method is validated using the modified NPCC
140-bus power system, comprising 78 loads. Five synchronous
generators at Buses 23, 48, 57, 71, and 122 are substituted
with DFIG-based wind farms of equivalent capacity, resulting
in 83 uncertain sources. The simulation configuration aligns
with Section IV-A-1), except that a three-phase short-circuit
fault is introduced at Bus 8 at 0.5 s and cleared at 0.6 s. For
this test system, there are n, = 43 synchronous generators
with T = 264 time steps and a simulation time resolution
of At = 1/60 s. A total of Ny = 400 training samples are
generated using LHS to construct the MOGPE model. Loads
in Region 1 (Buses 11, 12, 14), Region 2 (Buses 53, 55, 59),
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and Region 3 (Buses 89, 90, 91), along with wind generation
in Region 2 (Buses 48, 57, 71), are assigned a correlation
coefficient of 0.4. Uncertain sources across distinct regions
are assumed to be independent. The sample size N is set to
20000 for computing each sensitivity index.

Fig. 19 presents the mean and variance of the true and
predicted rotor angle trajectories for all generators under
MCS. It can be observed that the MOGPE predictions closely
match the true values, thereby demonstrating the scalability
of MOGPE for surrogate modeling in large-scale dynamic
power systems. By using MOGPE, the proposed GSA scheme
achieves approximately a 1983-fold speed-up, as shown in
Table III. Fig. 20 shows the total aggregated sensitivity S7°'
corresponding to each uncertain source. It is observed that
most uncertain sources exhibit near-zero sensitivity with re-
spect to the TSI In this study, the uncertain sources with
the highest ST values—cumulatively accounting for 99% of
the total sensitivity—are selected as the final input variables
for MCS analysis, resulting in a total of 48 most influential
uncertain sources. As illustrated in Fig. 21, conducting proba-
bilistic transient stability assessment using only these 48 most
influential uncertain sources yields results that closely match
those obtained using all uncertain sources. This validates the
effectiveness of the proposed sensitivity analysis and demon-
strates its capability to significantly enhance the computational
efficiency of PTSA, while also assisting system operators in
focusing on the most critical influencing factors.

TABLE III
SENSITIVITY COMPUTATION TIME VIA THE SIMULATOR AND MOGPE.

Simulator MOGPE

Computation time 1368.72 hours 0.69 hours

C. Discussions

o Determination of the Amount of the Required Sam-
ples: The proposed MOGPE uses only three hyperparam-
eters for each output, £, o2, and Aj, which correspond to
the kernel length-scale, noise variance, and scaling coeffi-
cient, respectively. In theory, at least three data points are
sufficient to identify these three hyperparameters. How-
ever, in practice, the required number of training samples
for MOGPE also depends on the input dimensionality
[31], ensuring that each dimension is adequately sampled.
Therefore, the number of training samples should exceed
the input dimensionality. Through grid search, we found
that using a sample size IN; greater than approximately
four times the input dimension yields satisfactory pre-
diction accuracy. In the future, active learning strategies
can be employed for the proposed MOGPE to reduce the
required number of training samples. This is because they
prioritize sampling in regions where the model is most
uncertain or where system behavior changes rapidly, such
as near stability boundaries. Each new sample contributes
the most informative data, enabling faster accuracy im-
provement. Moreover, it avoids allocating samples to
regions that the model already captures well, thereby
reducing redundancy and lowering the total number of
training points needed for reliable predictions.

MOGPE Adaptation: If the fault type or location
changes, the MOGPE can be updated via transfer learning
to accelerate model adaptation and thereby improve as-
sessment efficiency. On one hand, the proposed MOGPE
requires only three hyperparameters for each output,
namely the kernel function length scale, noise variance,
and scaling factor, which theoretically means that only
a very small number of training samples (at least three
data points) are sufficient for updating the MOGPE. On
the other hand, transfer learning can provide a good initial
point (close to a well-trained model), further reducing the
number of samples needed to train the MOGPE. This data
efficiency is particularly valuable in large-scale power
systems.

Impacts under Non-Gaussian Tails or Nonlinear De-
pendency: The global sensitivity index proposed in this
paper involves sampling from the conditional probability
distributions of correlated input variables. The Gaussian
copula conveniently facilitates this task by leveraging the
properties of the Gaussian function to describe condi-



IEEE TRANSACTIONS ON POWER SYSTEMS, 2025

Generator 3

1.0
Load 5
Load 6
_=s
Load 8 0.5%%
Wind 4
Wind 7 ) | ) |
055 1.65_277. 388 500 00
Time [s]
(a) tqg = 0.05s

Generator 3

1.0

Load 5
Load 6
Load 8
Wind 4
Wind 7

0.70

177 285 .3.92 5.00
Time [s

d) tg = 0.2s

Generator 3

Generator 3

Fig. 18. The total sensitivity S%f of Generator 3 under different fault durations ¢.

tional correlations. However, it cannot capture heavy-
tailed distributions or nonlinear dependencies. Vine cop-
ulas can model such uncertainties, but they cannot nat-
urally describe the conditional probability distributions
of correlated input variables. Future work will explore
the use of Vine copulas to enable conditional probability
distribution sampling of correlated input variables.

V. CONCLUSION

In this paper, a spatial-temporal GSA method is proposed

for

PTSA. Several GSA indices are developed to hierarchically

evaluate the sensitivity between the spatiotemporal responses
of generator trajectories and uncertain sources in dynamic
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power systems. To efficiently compute these indices, a com-
putationally efficient multi-output surrogate model, namely
MOGPE, is developed to replace the time-consuming time-
domain simulator. Numerical results demonstrate the effec-
tiveness and scalability of the proposed method. The following
conclusions can be drawn:

[1]

[2]

[3]

MOGPE significantly improves the efficiency of dynamic
power system simulations and exhibits strong scalability.
For example, by using MOGPE, the spatial-temporal
global sensitivity analysis achieves up to a 1983x speed-
up for the NPCC 140-bus power system;

Compared to the first-order sensitivity index, the total
sensitivity index is more suitable for GSA as it accounts
for the physical interactions among uncertain sources;
The proposed spatial-temporal GSA scheme effectively
identifies the key influential factors impacting PTSA.
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