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ABSTRACT
Approximate Bayesian computation (ABC) methods are applicable to statistical models specified by generative processes with
analytically intractable likelihoods. These methods try to approximate the posterior density of a model parameter by comparing
the observed data with additional process-generated simulated data sets. For computational benefit, only the values of certain
well-chosen summary statistics are usually compared, instead of the whole data set. Most ABC procedures are computation-
ally expensive, justified only heuristically, and have poor asymptotic properties. In this article, we introduce a new empirical
likelihood-based approach to the ABC paradigm called ABCel. The proposed procedure is computationally tractable and approx-
imates the target log posterior of the parameter as a sum of two functions of the data—namely, the mean of the optimal
log-empirical likelihood weights and the estimated differential entropy of the summary functions. We rigorously justify the proce-
dure via direct and reverse information projections onto appropriate classes of probability densities. Past applications of empirical
likelihood in ABC demanded constraints based on analytically tractable estimating functions that involve both the data and the
parameter; although by the nature of the ABC problem such functions may not be available in general. In contrast, we use con-
straints that are functions of the summary statistics only. Equally importantly, we show that our construction directly connects
to the reverse information projection and estimate the relevant differential entropy by a k-NN estimator. We show that ABCel is
posterior consistent and has highly favorable asymptotic properties. Its construction justifies the use of simple summary statistics
like moments, quantiles, and so forth, which in practice produce accurate approximation of the posterior density. We illustrate the
performance of the proposed procedure in a range of applications.

1 | Introduction

The concept of likelihood is central to parametric statistical
inference. However, for many models encountered in natural,
engineering, and environmental sciences, tractable analytic
forms of their likelihoods are not available. These models

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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are often specified by a generative process, in the sense that
independent samples can be generated from them for any input
value of the model parameters. Approximate Bayesian compu-
tation (ABC) methods [1–8] are useful for Bayesian inference
for models like these. Given the observed data, their objective
is to estimate the posterior density of the parameters associated
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with the data generating process without specifying a functional
relationship between those parameters and the data.

In this article, we introduce a newmodified empirical likelihood-
based approach to the ABC problem that we call ABCel. Along
the line of the traditional ABC procedures, it assumes the avail-
ability of the observed data and the ability to generate indepen-
dent and identically distributed data sets of the same size from
the generating process for any given value of the parameter of
interest. In particular compared to the empirical likelihood-based
BCel − AMIS algorithm [5] our method does not require specifi-
cations of estimating equations depending both on the observed
data and the parameters, which are typically unavailable. The
estimating equations are specified by the differences in the val-
ues of the appropriate summary statistics of the observed and
the replicated data sets. These equations form natural constraints
for our proposed modified empirical likelihood without directly
involving the parameters. ABCel can be rigorously justified using
various information projections and basic principles of Bayesian
statistics. Furthermore, ABCel exhibits many favorable asymp-
totic properties and is computationally tractable.

Because of their potential application to complex models, ABC
methods have generated immense interest in statistics. Suppose
𝑋𝑜 = (𝑋𝑜1, 𝑋𝑜2, … , 𝑋on)

𝑇 is the vector of observations of length 𝑛,
simulated from the “black box” (aka the data generating process)
with an unknown input 𝜃𝑜. Let the parameter 𝜃 take value in the
set Θ and we assign a prior 𝜋(𝜃) on this set. We want to approx-
imate the posterior Π(𝜃|𝑋𝑜) and estimate 𝜃𝑜 from that posterior.
The inference is based on additional data sets replicated from the
black box for various input parameters 𝜃 ∈ Θ.

The ABC procedures proposed in the literature can be classified
into two broad groups. The first one tries to estimate the posterior
directly, and the second one attempts to estimate the density of𝑋𝑜

given 𝜃 from the replicates.

1.1 | Direct Estimation of the True Posterior

The Rejection ABC procedures try to sample from the parameter
posterior directly. The basic ABC algorithm goes through the fol-
lowing steps:

1: Generate 𝜃 from 𝜋(𝜃).
2: Simulate 𝑋1 = (𝑋11, … , 𝑋1𝑛) from the black box with

parameter 𝜃.
3: if 𝑋𝑜 = 𝑋1 then
4: Accept 𝜃.
5: end if
6: Return to Step 1.

It is undeniable that at least hypothetically, the above algorithm
provides a sample from the target posterior, fromwhich inference
about 𝜃𝑜 can be drawn. However, for continuous random vari-
ables the probability that 𝑋𝑜 = 𝑋1 is zero. So the above algorithm
cannot be used as it is in most applications. Furthermore, due to
the curse of dimensionality, an exact match of the data, even in
discrete cases might be difficult to achieve. That is direct approxi-
mation ofΠ(𝜃|𝑋𝑜)may be computationally cumbersome [9]. The

acceptance rate of the test values of 𝜃might be minuscule, reduc-
ing the computational efficiency of the procedure significantly.

In order to avoid the above pitfalls an approximate posterior is
sampled from. The steps of this simple rejection algorithm are as
follows:

1: Choose a small tolerance 𝜖 > 0, a distance function 𝑑,
and a vector of summary statistics 𝑠(⋅).

2: Generate 𝜃 from 𝜋(𝜃).
3: Simulate 𝑋1 = (𝑋11, … , 𝑋1𝑛) from the black box with

parameter 𝜃.
4: if 𝑑(𝑠(𝑋𝑜), 𝑠(𝑋1)) < 𝜖 then
5: Accept 𝜃
6: end if
7: Return to Step 2.

Even though attractive at first glance, and in spite of the availabil-
ity of sophisticated and efficient sampling algorithms [10–12]
with improved efficiency, the simple rejection algorithm
described above has several shortcomings. First of all, instead of
the full data, a vector of summary statistics are compared. That
is, samples are actually drawn from Π(𝜃|𝑠(𝑋𝑜)). If 𝑠(⋅) is suffi-
cient for 𝜃, which of course cannot be determined, the posterior
given 𝑋𝑜 is the same as the posterior given 𝑠(𝑋𝑜). However, for
non-sufficient 𝑠(⋅) they may not be the same.

More crucially, the accuracy of the posterior approximation
depends heavily on the value of the pre-specified tolerance.
Clearly, small tolerances are preferred, but they are computa-
tionally prohibitive. The same curse of dimensionality prevents
the use of high-dimensional summary statistics. Available results
(e.g., Frazier et al. [13], Li and Fearnhead [14], Li and Fearnhead
[15], Miller and Dunson [16], Bernton et al. [17]) show that,
unless the pre-specified tolerance satisfies certain conditions
which depend both on the summary statistics as well as the
specified distance function (Miller and Dunson [16]; Bernton
et al. [17]), the resulting rejection ABC posteriors may not
have desirable asymptotic properties (e.g., Bayesian consistency,
correct asymptotic frequentist coverage of credible intervals).
Even though the posterior obtained from the simple rejection
ABC is often considered to be the “gold standard” in the lit-
erature, Frazier et al. [13] argue that the connection between
the exact posterior and the rejection ABC approximate could be
quite remote. We refer to Robert [18] for a more detailed and
succinct discussion of the possible pitfalls of the rejection ABC
procedures.

1.2 | Methods Based on Density Estimation

Alternatives to the rejection-based ABC are provided by the
so-called pseudo-likelihoodmethods. For each value of the param-
eter, these methods attempt to estimate the likelihood of the
observed summaries, from observations simulated from the data
generating process. One of the most popular pseudo-likelihood
method is the synthetic likelihood introduced by Wood [8]. Here,
in order to compute the likelihood, the summary statistics are
assumed to be approximately jointly distributed as a multivariate
normal random vector. Their mean and the covariance matrix
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vary with the parameter and are estimated using the summaries
simulated from the data generating process (see Price et al. [19]).
Synthetic likelihood does not perform well when the normal
approximations of the summary statistics are inaccurate. This
happens, for example, when extreme values of the observations
are used as summaries, or often when the process generates
data vectors with dependent components, for example, from
a time series, and so forth. In such cases, even well-chosen
marginal transformations [8] usually cannot ensure the validity
of the normal approximation over the whole parameter space.
Extensions that relax the requirement of normality have been a
continuous topic of interest for many researchers in this area.
Fasiolo et al. [20] consider an extended saddle-point approxi-
mation, whereas Dutta et al. [21] proposes a method based on
logistic regression. Bymaking use of various transformations An,
Nott, and Drovandi [22] and Priddle and Drovandi [23] consider
semi-parametric extensions of synthetic likelihood. Drovandi,
Pettitt, and Lee [24] describe an encompassing framework for
many of the above suggestions, which they call parametric
Bayesian indirect inference. Frazier and Drovandi [25] have
recently proposed a robustified version of synthetic likelihood
that is able to detect and provide some degree of robustness to
misspecification.

1.3 | An Empirical Likelihood Based Method

The BCel − AMIS procedure introduced by Mengersen, Pudlo,
and Robert [5] is pseudo-likelihood based, where the intractable
data likelihood is replaced by a non-parametric empirical like-
lihood [26]. This procedure follows the traditional Bayesian
empirical likelihood (BayesEL) procedures [27, 28] and spec-
ifies the likelihood from the jumps of the joint empirical
distribution function of the data computed under appropriate
constraints.

In particular they assumed that 𝑋𝑜1, … , 𝑋on are i.i.d and a set
of constraints of the form 𝐸[ℎ(𝑋oi, 𝜃)] = 0, ∀𝑖 = 1, … , 𝑛 are
available. Here the expectation is taken w.r.t. the unknown true
distribution. An empirical likelihood can then be calculated by
re-weighting the data by weights given by:

𝑤̂ = argmax𝑤∈𝜃

𝑛∏
𝑖=1

𝑤𝑖, where

𝜃 =

{
𝑤 ∶

𝑛∑
𝑖=1

𝑤𝑖ℎ(𝑋oi, 𝜃) = 0

}
∩ Δ𝑛−1

Empirical likelihood does not require the summaries to be
approximately normal. However, the BCel − AMIS procedure
typically requires constraints based on analytically tractable
estimating functions of both the data and the parameters. By
the nature of the ABC problem, such functions are not readily
available, and thus, the proposed BCel − AMIS algorithm is not
always easy to implement in practice. The exponentially tilted
empirical likelihood [29] based ABC proposed by Grazian and
Liseo [30] suffers from similar problems.

The proposed paradigm of ABCel, which is essentially amodified
empirical likelihood-based method, neither uses any tolerance
parameter nor assume any specific form of a pseudo-likelihood.

It first finds an analytic expression of an approximation of the
target posterior. This expression is then used to approximate the
data density and obtain an optimal approximate of the target.

1.4 | The Proposed ABCel

The proposed ABCel procedure operates directly on the set of
densities and estimates the posterior by using only the simple
known properties of the data generating process. In particular,
it only assumes that given the parameter 𝜃, the generated sum-
maries are independent and identically distributed.

For an input value 𝜃, let 𝑠1 be one replicated summary gener-
ated from the data generating process. Furthermore suppose that
𝑓0(𝜃, 𝑠1, 𝑠𝑜) is the true joint density of (𝜃, 𝑠1, 𝑠𝑜). Clearly, our target
is the posterior density𝑓0(𝜃|𝑠𝑜). The conditional independence of
𝑠1 and 𝑠𝑜 given 𝜃 implies that the true conditional density of (𝜃, 𝑠1)

given 𝑠𝑜 can be factored as𝑓0(𝜃, 𝑠1|𝑠𝑜) = 𝑓0(𝑠1|𝜃)Π(𝜃|𝑠𝑜). Thus, in
order to approximate the posterior, we first consider a joint den-
sity 𝑓(𝜃, 𝑠1, 𝑠𝑜) and project the corresponding conditional density
𝑓(𝜃, 𝑠1|𝑠𝑜) on a set of densities of the form 𝑓0(𝑠1|𝜃)𝑞(𝜃), where
𝑞(𝜃) varies over all densities defined on Θ. Once the projection
𝑓0(𝑠1|𝜃)𝑞⋆(𝜃) is determined, 𝑞⋆(𝜃) is the required approximation
of Π(𝜃|𝑠𝑜). The main result of Section 3.1 is that 𝑞⋆(𝜃) obtained
from a direct information projection of 𝑓(𝜃, 𝑠1|𝑠𝑜) has a closed
form (Theorem 1). In particular, the result shows that the log
numerator of the optimal 𝑞⋆(𝜃) is the sum of the true expecta-
tion of the log-joint density log𝑓(𝜃, 𝑠1, 𝑠𝑜) w.r.t. 𝑓0(𝑠1|𝜃) and the
true differential entropy of the density 𝑓0(𝑠1|𝜃).

It is not difficult to argue that the optimal 𝑞⋆(𝜃) obtained from
the true joint density 𝑓0(𝜃, 𝑠1, 𝑠𝑜) is indeed Π(𝜃|𝑠𝑜). The approx-
imate true posterior is by applying Theorem 1 on an estimate
of 𝑓0(𝜃, 𝑠1, 𝑠𝑜) obtained from a reverse-information projection
(i.e., m-projection) over a subset of the joint densities defined
on (𝜃, 𝑠1, 𝑠𝑜). This subset is primarily determined by the second
known property of the data-generating process, namely, the
conditional marginal densities of 𝑠𝑜 give 𝜃 is identical to the
conditional marginal density of 𝑠1 given 𝜃.

Finally we show that the proposed empirical likelihood estimator
follows the above recipe in the sample. For the summary statistics
which can identify the underlying density, for example, quan-
tiles, moments, and so forth, constraints on the empirical likeli-
hood approximately ensure the requiredmatch of the conditional
marginal likelihoods. Moreover, the empirical likelihood is com-
puted bymaximizing over a vast class of non-parametrically spec-
ified likelihoods. That is, the proposed ABCel approximates the
true joint likelihood well by satisfying the basic assumptions on
the data-generating process.

The proposed posterior hasmany favorable properties. Asymptot-
ically, under mild conditions, the proposed posterior is Bayesian
and posterior consistent for the true value of the parameter
when both the sample size and the number of replications grow
unbounded (Section 4). We invoke the results from Ghosh,
Chaudhuri, Gangopadhyay [31], to further explore its properties
when the number of replications increases, but the sample size
is held fixed (Section 4.2).
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Finally, perhaps the biggest advantage of our procedure is its
easy implementation. In order to compute the likelihood, a
user only needs to specify an appropriate set of summary statis-
tics and the number of replications to be simulated for each
value of the parameter. For the estimation of the differential
entropy, the order of the percentile (see Section 2.3) has to be
chosen. Unlike many ABC procedures, no other parameters
tuning or otherwise are either need to be specified or estimated.
Moreover, both the empirical likelihood and the proposed
differential entropy estimator can be computed using a fast
algorithm implemented in multiple software. An easy adaptive
Markov chain Monte Carlo procedure due to Haario, Saks-
man, and Tamminen [32] can be adapted to efficiently sample
from the resulting posterior (see Section E of the Supporting
Information).

2 | ABC Empirical Likelihood Posterior

In this section, we introduce the basic ideas of the proposed ABC
empirical likelihood (ABCel) posterior. A modified empirical
likelihood-based method which only depends on the observed
data and replicated data simulated from the generating process is
described. One part of the ABCel posterior is constructed using
this likelihood. The other part is an estimate of a differential
entropy, which is computed using a non-parametric Euclidean
likelihood. We only describe the motivation and computation of
ABCel posterior in this section. The justification of the procedure
is presented in the subsequent sections.

2.1 | Setup

Let 𝜃 be the input parameter of the data generating process. We
assume 𝜃 takes values in a set Θ and assign a prior 𝜋(𝜃) to it. For
any given value 𝜃 ∈ Θ, the process generates i.i.d. n-dimensional
random vectors from an unknown density depending on param-
eter 𝜃. Since the density of the same random variable would
change with the value of the parameter, we make their connec-
tion explicit in the notation. As for example, the observed data 𝑥𝑜

is a realization of the random variable𝑋𝑜(𝜃𝑜), that is, the random
variable 𝑋𝑜(𝜃) generated from the process with 𝜃 = 𝜃𝑜. Addition-
ally, for each 𝜃 ∈ Θ, realizations from 𝑚 i.i.d. replicated random
variables 𝑋𝑖(𝜃), 𝑖 = 1, 2, … , 𝑚 are drawn from the process with
input parameter value 𝜃. That is in total, we consider a set of
𝑛-dimensional random vectors {𝑋𝑖(𝜃), 𝑖 ∈ 𝕄𝑜, 𝜃 ∈ Θ}, where
𝕄𝑜 = {𝑜} ∪ ℕ, that is, the set of positive integers appended with
the symbol 𝑜. By construction, conditional on 𝜃, {𝑋𝑖(𝜃), 𝑖 ∈ 𝕄𝑜}

are independent and identically distributed.

The true density 𝑓0(𝑋𝑜(𝜃)|𝜃) is unknown, which prevents
computation of the exact posterior Π(𝜃|𝑋𝑜)Π(𝜃|𝑋𝑜(𝜃) = 𝑥𝑜) ∝

𝑓0(𝑥𝑜|𝜃)𝜋(𝜃). The problem is to approximate the posterior using
the observation 𝑥𝑜 and the replications 𝑋𝑖(𝜃), 𝑖 = 1, 2, … ,𝑚.

As we have noted before due to the curse of dimensionality direct
approximation of Π(𝜃|𝑋𝑜) may be computationally cumbersome
[9]. Thus inmost ABC applications inference on 𝜃 is drawn using
a posterior conditional on 𝑟 × 1 vector 𝑠(⋅) of summary statistics
of the observations.

Suppose that for a given 𝜃 ∈ Θ, 𝑠(𝑋(𝜃)) inherits a density
𝑓0(𝑠(𝑋(𝜃))|𝜃) from 𝑋(𝜃). Using the summaries 𝑠(𝑋𝑖(𝜃)), 𝑖 ∈ 𝕄𝑜,
most ABC procedures estimate the target posterior

Π(𝜃|𝑠(𝑋𝑜))Π(𝜃|𝑠(𝑋𝑜(𝜃)) = 𝑠(𝑥𝑜)) =
𝑓0(𝑠(𝑥𝑜)|𝜃)𝜋(𝜃)

∫ 𝑓0(𝑠(𝑥𝑜)|𝑡)𝜋(𝑡)dt
(1)

2.2 | Construction of ABCel Posterior

The ABCel posterior is based on the following observation.
Suppose 𝜃 = 𝜃𝑜. Then by construction, the random variables
𝑠(𝑋𝑜(𝜃𝑜)), 𝑠(𝑋1(𝜃)), … , 𝑠(𝑋𝑚(𝜃)) are identically distributed. Now
if 𝐸0

𝑠∣𝜃𝑜
denotes the expectation w.r.t 𝑓0(𝑠(𝑋𝑖(𝜃𝑜))|𝜃𝑜), then for any

𝑖 = 1, … ,𝑚,

𝐸0
𝑠∣𝜃𝑜

[𝑠(𝑋𝑖(𝜃𝑜)) − 𝑠(𝑋𝑜(𝜃𝑜))] = 0 (2)

The proposed empirical likelihood estimator of the posterior con-
sists of two parts. The first is an empirical likelihood which is
constructed using constraints based on the expectation in (2). For
any 𝜃 ∈ Θ and for each 𝑖 = 1, 2, … ,𝑚, define

ℎ𝑖(𝜃) = 𝑠(𝑋𝑖(𝜃)) − 𝑠(𝑋𝑜(𝜃𝑜)) (3)

and the random set:

𝜃 =

{
𝑤 ∶

𝑚∑
𝑖=1

𝑤𝑖[𝑠(𝑋𝑖(𝜃)) − 𝑠(𝑋𝑜(𝜃𝑜))] = 0

}
∩ Δ𝑚−1 (4)

where Δ𝑚−1 is the𝑚 − 1 dimensional simplex.

We define the optimal weights 𝑤̂ as:

𝑤̂ ≔ 𝑤̂(𝜃) ≔ argmax
𝑤∈𝜃

(
𝑚∏
𝑖=1

mw𝑖

)
(5)

If the problem in (5) is infeasible, 𝑤̂ is defined to be zero. These
optimalweights are used in the first part of the posterior estimate.

The second part requires an estimate of the differential entropy
𝐻0

𝑠∣𝜃
(𝜃) of 𝑓0(⋅|𝜃) at the input 𝜃 ∈ Θ, which is defined by,

𝐻0
𝑠∣𝜃

(𝜃) = − ∫ 𝑓0(𝑠|𝜃) log𝑓0(𝑠|𝜃)ds. Let, 𝐻̂0
𝑠∣𝜃

(𝜃) is an estimate of
𝐻0

𝑠∣𝜃
(𝜃) (see Section 2.3 below for details).

By using this estimate and the optimal 𝑤̂we defineABC empirical
likelihood (ABCel) estimate of the required posterior as,

Π̂(𝜃|𝑠(𝑋𝑜)) =

[
𝑒

(
1
𝑚

∑𝑚
𝑖=1 log(𝑤̂𝑖 (𝜃))+𝐻̂

0
𝑠∣𝜃 (𝜃)

)]
𝜋(𝜃)

∫
𝑡∈Θ

[
𝑒

(
1
𝑚

∑𝑚
𝑖=1 log(𝑤̂𝑖 (𝑡))+𝐻̂

0
𝑠∣𝑡 (𝑡)

)]
𝜋(𝑡)dt

(6)

When
∏𝑚

𝑖=1𝑤̂𝑖 = 0, we define Π̂(𝜃|𝑠(𝑋𝑜)) = 0.

The empirical likelihood used in (6) is different from the original
Bayesian empirical likelihood (BayesEL) posterior [27, 28] and
the previous use of Bayesian empirical likelihood in an ABC set-
ting [5] in two ways. First, instead of the sum, it uses the mean of
the log-weights. This is significant in severalways (see below) and
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can be justified by an information projection argument described
in Section 3.1.

The second aspect is our choice of the constraints, which is
probably more significant. Usual BayesEL formulations (as in
Mengersen, Pudlo, and Robert [5]) would have used constraints
which are functions of 𝑠(𝑋𝑜) and 𝜃. Such estimating equations are
not necessarily known in an ABC problem. In our formulation,
we avoid such specifications using constraints based on 𝑠(𝑋𝑜) and
the replicated summaries 𝑠(𝑋𝑖), 𝑖 = 1, 2, … , 𝑚. The summaries
in (3) are routinely used in Exponential Random Graph Models
(ERGM) literature [33]; however, the weights are obtained by
maximizing the entropy [34, 35] instead of a likelihood as in (5)
above. This is equivalent to maximizing a cross-entropy term
(see (12)). Unlike the rejection ABC, we do not need to specify
any distance function or any tolerance parameter.

From the formulation of the constraints, the optimal weights
in (5) define a constrained joint-conditional empirical distri-
bution function supported on 𝑚 observations (𝑠(𝑋𝑖(𝜃)), 𝑠(𝑥𝑜))
given 𝜃. This is somewhat similar to the data-replication meth-
ods, discussed in Lele, Dennis, and Lutscher [36] and Doucet,
Godsill, and Robert [37] (see also Gouriéroux and Monfort [38]).
More importantly, as we argue in Section 3.3 below, for sim-
ple choices of summary our constraints ensure that the above
joint-conditional 𝑓(𝑠(𝑋𝑖(𝜃)), 𝑠(𝑋𝑜(𝜃))|𝜃) is estimated by approx-
imately equating the underlying marginal conditional densities
𝑓(𝑋𝑖(𝜃)|𝜃) and 𝑓(𝑋𝑜(𝜃)|𝜃) of 𝑋𝑖(𝜃) and 𝑋𝑜(𝜃) respectively, which
provides an argument in favor of the optimality of our procedure.

No analytic expression for the proposed ABCel posterior exists
in general. By construction, each 𝑤̂𝑖 is bounded for all values 𝜃.
All components of 𝑤̂ in (5) and the ABCel posterior are strictly
positive iff the origin of ℝ𝑟 is in the interior of the convex hull
defined by the vectors ℎ1, ℎ2, … , ℎ𝑚. Otherwise the ABCel
posterior would be zero (even though in the boundary of the
above convex hull, the constrained optimization in (5) is still
feasible). It is well-known (see, e.g., Chaudhuri, Mondal, and
Yin [39]) that the supports of the Bayesian empirical likelihood
(BayesEL) posteriors are in general non-convex. It is expected
that the proposed ABCel posterior will suffer from the same
deficiency as well. However, as we discuss below (see Section 5)
the non-convexity of the support does not make the proposed
ABCel posterior computationally expensive. One can devise easy
Markov chainMonte Carlo (MCMC) techniques to draw samples
from this posterior at a reasonable computational cost. Such
samples are enough for making posterior inference.

Finally, the proposed method is more general than the synthetic
likelihood [8]. The latter assumes normality of the joint distri-
bution of the summary statistics. Even though many summary
statistics are asymptotically normally distributed, this is not
always the case. This is especially true if the process generates
dependent data sets, for example, a time series, spatial data, and
so forth. In such cases, the synthetic likelihood can perform
quite poorly (see, e.g., Section 6.2 below). Some relaxation of
normality has been proposed by various authors, but many of
these procedures require specification or estimation of additional
tuning parameters. In our empirical likelihood approximation,
we only require the observed data and simulated data from the
generating process for a given 𝜃.

2.3 | Differential Entropy Estimation

Several estimators of differential entropy have been studied in the
literature. The oracle estimator is given by−

∑𝑚
𝑖=1 log𝑓0(𝑠(𝑋𝑖(𝜃)))∕

𝑚. In this article we implement a weighted k-nearest neighbor
based estimator due to Kozachenko and Leonenko [40] described
in Berrett, Samworth, and Yuan [41]. This estimator is easy to
compute and has better asymptotic properties than histogram or
kernel-based estimators [42].

The nearest-neighbor estimator requires us to specify 𝑘, the order
of the nearest neighbor. Ideally, 𝑘 should depend on𝑚. Our exper-
iments suggest any value of 𝑘 as long as it is not very small or
not very large, makes little difference. Note that, other than the
summary statistics and the number of replications 𝑚, this 𝑘 is
the only parameter a user needs to specify in order to compute
the proposed posterior. No other parameters tuning or otherwise
are required.

2.4 | Example

In Figure 1, we compare the shape of the ABCel log-posteriors
with the true log-posteriors Π for the variance of a Normal dis-
tribution with zero mean conditional on (a) 𝑠(1)(𝑋𝑖) =

∑
𝑗 𝑋2

ij∕𝑛

(Figure 1A) and (b) 𝑠(2)(𝑋𝑖) = max𝑗

(
𝑋ij

)
(Figure 2B). Here, for

each 𝑖 = 1, 2, … , 𝑚, and 𝑗 = 1, 2, … , 100, the observation 𝑋ij is
drawn from a𝑁(0, 𝜃), with 𝜃𝑜 = 4.We assume that the parameter
𝜃 follows a 𝑈(0, 10) prior.

The log-posteriors were compared on a grid of parameters whose
true posterior values were larger than the 0.05. Based on 100 rep-
etitions, At each value of 𝜃 and𝑚, the mean and the endpoints of
the symmetric 95% confidence intervals are shown in the figure.
Tomake the comparison of the shapes easier, for each𝑚, themax-
imum of the mean of ABCel log-posterior was matched with the
maximum value of the true log-posterior.

From Figure 1, it follows that for 𝑚 = 25 and 𝑚 = 50, for each
value of 𝜃 the means of the estimated log-posteriors (solid col-
ored lines) are very close to the true log-posterior (solid black
line) for both 𝑠(1)(𝑋𝑜) and 𝑠(2)(𝑋𝑜). Furthermore, the 95% con-
fidence bands always cover the corresponding true value of the
log-posterior. It is evident that the proposed ABCel posterior is a
good approximation of the true posterior up to a scaling constant.
This is even true for the summary function 𝑠(2)(𝑋𝑜), which unlike
𝑠(1)(𝑋𝑜), asymptotically does not converge to a normal random
variable under any centering or scaling.

As the number of replicates, that is, 𝑚 increases (see 𝑚 = 500),
in Figure 1, the log-posterior, tends to get more flat in shape.
However, the confidence bands get narrower. This is somewhat
expected. We have kept the number of summaries fixed here.
However, statistical intuition mandates that the number of sum-
maries used should increase with the number of replications.
Using results from [31], we discuss such phenomena in more
detail in Section 4.2 below. Furthermore, an example illustrating
the inter-relationship between the number and the nature of the
summary statistics with the number of replications can be found
in Section 6.1.
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FIGURE 1 | Comparison of the true log-posterior with the logarithm of the proposed estimator for different values of𝑚. The samples of size 𝑛 = 100
were drawn from 𝑁(0, 𝜃) distribution with 𝜃𝑜 = 4. We chose (A) 𝑠(1)(𝑋𝑖) =

∑
𝑗 𝑋2

ij∕𝑛 and (B) 𝑠(2)(𝑋𝑖) = max𝑗

(
𝑋ij

)
and a 𝑈(0, 10) prior on 𝜃. The true

log-posterior is in black. For each value of 𝜃 and 𝑚 the means and the 95% confidence intervals of the estimated log-posterior based on 100 repetitions
are shown.

3 | Justification for the ABC Empirical
Likelihood Posterior

In this section, we provide a rigorous justification for the
proposed modified empirical likelihood-based posterior esti-
mate Π̂(𝜃|𝑠(𝑋𝑜)) introduced in Section 2. Our arguments use
direct and reverse information projections of appropriate con-
ditional densities on judiciously chosen density sets. We first
discuss a general functional form of a posterior approximation,
then use this functional form to find an accurate approxima-
tion of the true posterior. Both of these approximations are
obtained in the population. Finally, it is argued that our poste-
rior estimate Π̂(𝜃|𝑠(𝑋𝑜)) approximates the above recipe in the
sample.

Let 𝑠1𝑠(𝑋1(𝜃)) denote a replicated summary random variable
corresponding to 𝑋1(𝜃) obtained from the data generating
process with an input 𝜃 ∈ Θ. As before, the observed summary
random variable 𝑠𝑜𝑠(𝑋𝑜(𝜃)). In order to justify the proposed
empirical likelihood-based estimator, it is more convenient to
work with the joint densities (denoted by 𝑓(𝜃, 𝑠1, 𝑠𝑜)) defined on
(𝜃, 𝑠1, 𝑠𝑜). Let  be the set of all such joint densities.

Let 𝑓0(𝜃, 𝑠1, 𝑠𝑜) be the true joint density of (𝜃, 𝑠1, 𝑠𝑜) of the data
generating process. We first explore its properties. By assumption
given on 𝜃, the 𝑠𝑜 and 𝑠1 are identically distributed and mutually
independent. If we assume that 𝑓0(𝑠1|𝜃) is the unknown condi-
tional density 𝑠1 inherits from the data-generating process, the
conditional density of 𝑠𝑜 given 𝜃 will also be the same density. We
will denote the latter by 𝑓0(𝑠𝑜|𝜃).

Clearly, the corresponding true joint density of (𝜃, 𝑠1, 𝑠𝑜), denoted
by 𝑓0(𝜃, 𝑠1, 𝑠𝑜) is in the set  . Furthermore, using the conditional
independence of 𝑠1 and 𝑠𝑜 given 𝜃 we get:

𝑓0(𝜃, 𝑠1, 𝑠𝑜) = 𝑓0(𝑠1|𝜃)𝑓0(𝑠𝑜|𝜃)𝜋(𝜃)

where by construction the true marginal of 𝜃, that is, 𝑓0(𝜃)

equals the prior 𝜋(𝜃). From construction, it also follows that,
Π(𝜃|𝑠(𝑋𝑜)) = 𝑓0(𝜃|𝑠𝑜), where 𝑓0(𝜃|𝑠𝑜) is the conditional density
of 𝜃 given 𝑠𝑜 corresponding to the joint 𝑓0(𝜃, 𝑠1, 𝑠𝑜).

We now focus on the conditional density of (𝜃, 𝑠1) given 𝑠𝑜. Using
the conditional independence of 𝑠𝑜 and 𝑠1 given 𝜃, for all 𝜃 ∈ Θ,
the true conditional density of (𝜃, 𝑠1) given 𝑠𝑜 can be written as:

𝑓0(𝜃, 𝑠1|𝑠𝑜) = 𝑓0(𝑠1|𝑠𝑜, 𝜃)𝑓0(𝜃|𝑠𝑜) = 𝑓0(𝑠1|𝜃)Π(𝜃|𝑠(𝑋𝑜)) (7)

Suppose ′ is the subset of densities on (𝜃, 𝑠1) defined as:

′ =
{
𝑞′(𝜃)𝑓0(𝑠1|𝜃) ∶ 𝑞′(𝜃) ∈ Θ

}
(8)

where Θ be the set of all densities defined on the set Θ. Since
the posteriorΠ(𝜃|𝑠(𝑋𝑜)) are inΘ, the true 𝑓0(𝜃, 𝑠1|𝑠𝑜) ∈ ′. Fur-
thermore, any density in ′ is a product of a density of 𝑠1 and a
density of 𝜃. That is,Π(𝜃|𝑠(𝑋𝑜)) can be approximated by integrat-
ing any density in ′ with respect to 𝑠1.

Our strategy of approximating Π(𝜃|𝑠(𝑋𝑜)) is as follows:

1. Take a joint density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  , and find the corre-
sponding conditional density of (𝜃, 𝑠1) given 𝑠𝑜 denoted by
𝑓(𝜃, 𝑠1|𝑠𝑜).

2. Find the density 𝑞⋆(𝜃, 𝑠1) ∈ Θ closest to 𝑓(𝜃, 𝑠1|𝑠𝑜) under
some pre-specified criterion.

3. Integrate 𝑞⋆(𝜃, 𝑠1) over 𝑠1.

The ABCel posterior described in Section 2 uses direct informa-
tion projection in Step (2), which leads to a closed form solution
of the approximate Π(𝜃|𝑠𝑜) for any joint 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  . Some
heuristic justification of information projection can be found in
Cuc [43].
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3.1 | Functional Form of the Posterior
Approximation

Let 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  , and 𝑓(𝜃, 𝑠1|𝑠𝑜) be the corresponding condi-
tional density of (𝜃, 𝑠1) given 𝑠𝑜. We compute the information
projection of 𝑓(𝜃, 𝑠1|𝑠𝑜) on ′ by minimizing Kullback–Leibler
divergence between the above conditional density and each
density 𝑞(𝜃, 𝑠1) ∈ ′. For any 𝑠𝑜, the Kullback–Leibler diver-
gence [44] between 𝑞(𝜃, 𝑠1) and 𝑓(𝜃, 𝑠1|𝑠𝑜) is defined as
𝐷KL

[
𝑞(𝜃𝑠1)

‖‖‖𝑓(𝜃, 𝑠1|𝑠𝑜)] = ∫ 𝑞(𝜃, 𝑠1) log
(

𝑞(𝜃,𝑠1)

𝑓(𝜃,𝑠1|𝑠𝑜)
)
ds1d𝜃. The

information projection of 𝑓(𝜃, 𝑠1|𝑠𝑜) onto ′ is given by:

𝑞⋆(𝜃, 𝑠1) ≔ arg min
𝑞(𝜃,𝑠1)∈′

𝐷KL

[
𝑞(𝜃𝑠1)

‖‖‖𝑓(𝜃, 𝑠1|𝑠𝑜)]
Since the set ′ is convex [45], for any density 𝑓(𝜃, 𝑠1|𝑠𝑜) its pro-
jection is unique. Next, we find an analytic expression of 𝑞⋆(𝜃, 𝑠1).

Theorem 1. For any density 𝑓 ∈  , let 𝐸0
𝑠1∣𝜃

[log𝑓(𝜃, 𝑠1, 𝑠𝑜)] =

∫ 𝑓0(𝑠1|𝜃) log𝑓(𝜃, 𝑠1, 𝑠𝑜)ds1 and 𝐻0
𝑠1∣𝜃

(𝜃) = − ∫ 𝑓0(𝑠1|𝜃) log𝑓0
(𝑠1|𝜃)ds1 be the differential entropy of the density 𝑓0(𝑠1|𝜃).
Furthermore, let us define:

𝑓′(𝜃|𝑠𝑜) ≔ 𝑒
𝐸0

𝑠1 ∣𝜃
[log𝑓(𝜃,𝑠1 ,𝑠𝑜)]+𝐻0

𝑠1 ∣𝜃
(𝜃)

∫
𝑡∈Θ

𝑒
𝐸0

𝑠1 ∣𝑡
[log𝑓(𝑡,𝑠1 ,𝑠𝑜)]+𝐻0

𝑠1 ∣𝑡
(𝑡)dt

(9)

Then 𝑞⋆(𝜃, 𝑠1) = 𝑓′(𝜃|𝑠𝑜)𝑓0(𝑠1|𝜃).

The proof of above theorem is presented in the Appendix A. We
show that, for any 𝑞(𝜃, 𝑠1) = 𝑞′(𝜃)𝑓0(𝑠1|𝜃) ∈ ′, such that 𝑞′ ∈

Θ, the relationship𝐷KL[𝑞(𝜃𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜)] =𝐷KL[𝑞
′(𝜃)||𝑓′(𝜃|𝑠𝑜)]

+ 𝐶 holds, where 𝐶 is a non-negative function of 𝑠𝑜 and some
hyper-parameters of the prior, and does not depend on 𝑞 or 𝑞′.
Now the L.H.S. is minimum when 𝑞′(𝜃) = 𝑓′(𝜃|𝑠𝑜), from which
the result follows.

Theorem 1 shows that for any joint density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  ,
the density 𝑓0(𝑠1|𝜃)𝑓′(𝜃|𝑠𝑜) is the best approximation of
𝑓0(𝑠1|𝜃)Π(𝜃|𝑠(𝑋𝑜)) over ′, for all 𝜃, 𝑠1 and 𝑠𝑜. The posterior
Π(𝜃|𝑠(𝑋𝑜)) can naturally be approximated by integrating this
best approximation over 𝑠1. Since 𝑓′(𝜃|𝑠𝑜) is independent of 𝑠1,
the corresponding approximation of Π(𝜃|𝑠(𝑋𝑜)) is trivially given
by ∫ 𝑓0(𝑠1|𝜃)𝑓′(𝜃|𝑠𝑜)ds1 = 𝑓′(𝜃|𝑠𝑜).
If 𝑓(𝜃, 𝑠1, 𝑠𝑜) = 𝑓0(𝜃, 𝑠1, 𝑠𝑜), clearly 𝑓0(𝜃, 𝑠1|𝑠𝑜) ∈ ′, and by
definition it is its own information projection. That is the
approximation of Π(𝜃|𝑠(𝑋𝑜)) is exact. That is 𝑓′

0(𝜃|𝑠𝑜) =

Π(𝜃|𝑠(𝑋𝑜)). Furthermore, when 𝑓0(𝑠1|𝜃) belongs to a loca-
tion family 𝐻0

𝑠1∣𝜃
(𝜃) is not a function of 𝜃. In that case 𝑓′

0(𝜃|𝑠𝑜) ∝

exp
{

𝐸0
𝑠1|𝜃[log𝑓0(𝜃, 𝑠1, 𝑠𝑜)]

}
.

Note that, like it should in a Bayesian procedure, in the expres-
sion of 𝑓′(𝜃|𝑠𝑜), the effect of the replicate summary 𝑠1 gets inte-
grated out. In the proposed empirical likelihood-based estimator,
the expectation of the log-joint density is approximated by the
mean of the log-optimal weights, which approximately averages
out the effect of the replicated summaries from the posterior esti-
mate. Furthermore, the proposed empirical likelihood estimates
an optimal approximate of the true posterior, as we argue below.

3.2 | Optimal Posterior Approximation

Theorem 1 shows that for any joint density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  , the
density 𝑓′(𝜃|𝑠𝑜) provides an approximation of Π(𝜃|𝑠(𝑋𝑜)) via
information projection, with no other assumption required.
Furthermore, the approximation is exact when the chosen joint
density 𝑓(𝜃, 𝑠1, 𝑠𝑜) is the true joint density 𝑓0(𝜃, 𝑠1, 𝑠𝑜). It, how-
ever, does not provide a way to choose the joint 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈ 
such that 𝑓′(𝜃|𝑠𝑜) is an optimal approximation of the true poste-
rior in any sense. We discuss the criterion of such optimality in
this section and then discuss its relationship with the proposed
empirical likelihood-based procedure.

To that goal, suppose for a joint density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  , 𝑓(𝜃, 𝑠𝑜),
and 𝑓(𝑠1|𝑠𝑜, 𝜃) respectively denote the corresponding marginal
density of (𝜃, 𝑠𝑜) and the conditional density of 𝑠1 given 𝜃 and
𝑠𝑜. Furthermore, suppose 𝑓(𝑠1|𝜃) and 𝑓(𝑠𝑜|𝜃) respectively denote
the conditional densities of 𝑠1 and 𝑠𝑜 given 𝜃. Recall that, unless
𝑓(𝜃, 𝑠1, 𝑠𝑜) is the true joint density 𝑓0, the two conditional densi-
ties of 𝑠1 and 𝑠𝑜 given 𝜃may not be equal. The optimality criterion
is based on the following result.

Theorem 2.

a. Let 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  . Then for all 𝜃, 𝑠1 and 𝑠𝑜,

log𝑓(𝜃, 𝑠𝑜) −
{

𝐸0
𝑠1|𝜃[log𝑓(𝜃, 𝑠1, 𝑠𝑜)] + 𝐻0

𝑠1∣𝜃
(𝜃)

}
= 𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝑠𝑜, 𝜃)
] ≥ 0 (10)

b. If under the joint 𝑓(𝜃, 𝑠1, 𝑠𝑜), 𝑠𝑜 is conditionally independent
of 𝑠1 given 𝜃, it follows that:

log𝑓(𝜃, 𝑠𝑜) −
{

𝐸0
𝑠1|𝜃[log𝑓(𝜃, 𝑠1, 𝑠𝑜)] + 𝐻0

𝑠1∣𝜃
(𝜃)

}
= 𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝜃)
]

c. If 𝑓(𝜃, 𝑠1, 𝑠𝑜) = 𝑓0(𝜃, 𝑠1, 𝑠𝑜), 𝐸0
𝑠1∣𝜃

[log𝑓(𝜃, 𝑠1, 𝑠𝑜)] + 𝐻0
𝑠1∣𝜃

(𝜃)

= log𝑓(𝜃, 𝑠𝑜) = log𝑓0(𝜃, 𝑠𝑜). Furthermore, 𝑓′(𝜃|𝑠𝑜) =

𝑓(𝜃|𝑠𝑜) = 𝑓0(𝜃|𝑠𝑜) = Π(𝜃|𝑠(𝑋𝑜)).

Theorem 2a can be proved by a direct expansion of the left-hand
side of the expression. The other two statements follow from
the first. In particular, we get 𝐸0

𝑠1∣𝜃
[log𝑓0(𝜃, 𝑠1, 𝑠𝑜)] + 𝐻0

𝑠1∣𝜃
(𝜃) =

log𝑓0(𝜃, 𝑠𝑜).

This theorem shows that for any joint density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  ,
𝑓′(𝜃|𝑠𝑜) is not same as the corresponding conditional density
𝑓(𝜃|𝑠𝑜). The log-numerator in the expression of𝑓′(𝜃|𝑠𝑜) is a lower
bound of log𝑓(𝜃, 𝑠𝑜). Furthermore, their difference equals the
Kullback–Leibler divergence between the true data-generating
density 𝑓0(𝑠1|𝜃) and the user-specified conditional density of 𝑠1
given 𝑠𝑜 and 𝜃, that is, 𝑓(𝑠1|𝑠𝑜, 𝜃). Clearly, 𝑓0 is a minima of this
divergence over  , for which, by Theorem 2c, the approximation
of Π(𝜃|𝑠𝑜) by 𝑓′

0(𝜃|𝑠𝑜) is exact. Thus, we minimize the above
Kullback–Leibler divergence to find the optimal approximation.

For any density 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  ,
𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝑠𝑜, 𝜃)
]

= 0

⇔ 𝑓0(𝑠1|𝜃) = 𝑓(𝑠1|𝑠𝑜, 𝜃) for all 𝑠1, 𝑠o and 𝜃
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⇔ 𝑠1 is conditionally independent of 𝑠𝑜 given 𝜃, and

𝑓(𝑠1|𝜃) = 𝑓0(𝑠1|𝜃) for all 𝑠1, 𝑠𝑜 and 𝜃

Thus by minimizing the above Kullback–Leibler divergence we
can only identify the density 𝑓0(𝑠1|𝜃). The choice of 𝑓(𝑠𝑜|𝜃) and
the marginal 𝑓(𝜃) remains arbitrary. That is minimum is not
unique and 𝑓0(𝜃, 𝑠1, 𝑠𝑜) is not the unique density in  where the
minimum of the above Kullback–Leibler divergence is attained.

In order to make the minimal argument unique, define  ′ ⊆ 
be the collection of all joint-densities 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  , such that
for all values of 𝜃 ∈ Θ,

a. the corresponding conditional density of 𝑠1 given 𝜃 is the
same as the corresponding conditional density of 𝑠𝑜 given 𝜃,
and

b. the corresponding marginal density of 𝜃 is the prior 𝜋.

The constraints that specify  ′ comply with our assumption
about the data generating process. In particular, the true joint
density 𝑓0 ∈  ′ (see Section 3). That is, it minimizes the diver-
gence in (10) over  ′.

However, if 𝑓 ∈  ′ such that the above divergence is zero, then
for all 𝜃, 𝑠1 and 𝑠𝑜,

𝑓(𝜃, 𝑠1, 𝑠𝑜) = 𝑓(𝑠1|𝑠𝑜, 𝜃)𝑓(𝑠𝑜|𝜃)𝑓(𝜃) = 𝑓0(𝑠1|𝜃)𝑓(𝑠𝑜|𝜃)𝑓(𝜃)

Furthermore, by the construction of  ′, it follows that 𝑓(𝑠𝑜|𝜃) =

𝑓0(𝑠𝑜|𝜃) and 𝑓(𝜃) = 𝜋(𝜃) for all 𝑠𝑜 and 𝜃. So it follows that, for all
𝜃, 𝑠1 and 𝑠𝑜,

𝑓(𝜃, 𝑠1, 𝑠𝑜) = 𝑓0(𝑠1|𝜃)𝑓0(𝑠𝑜|𝜃)𝜋(𝜃) = 𝑓0(𝜃, 𝑠1, 𝑠𝑜)

From the arguments above, the following result is now evident.

Theorem 3. Suppose  ′ is the subset of densities over
(𝜃, 𝑠1, 𝑠𝑜) as defined above. Then 𝑓0 ∈  ′ uniquely minimizes
𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝑠𝑜, 𝜃)
]
over  ′.

An estimate of 𝑓𝑜(𝜃, 𝑠1, 𝑠𝑜) can therefore be obtained as:

𝑓0(𝜃, 𝑠1, 𝑠𝑜) = argmin
𝑓∈ ′

𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝑠𝑜, 𝜃)
]

(11)

The estimate 𝑓0(𝜃, 𝑠1, 𝑠𝑜) in (11) is actually a reverse information
projection of 𝑓0(𝑠1|𝜃) on the set of densities 𝑓(𝑠1|𝑠𝑜, 𝜃) such that
𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  ′. Furthermore, since 𝑓0(𝑠1|𝜃) is fixed, we get

argmin
𝑓∈ ′

𝐷KL

[
𝑓0(𝑠1|𝜃)

‖‖‖𝑓(𝑠1|𝑠𝑜, 𝜃)
]

= argmax
𝑓∈ ′ ∫ 𝑓0(𝑠1|𝜃) log𝑓(𝑠1|𝑠𝑜, 𝜃)ds1

= argmax
𝑓∈ ′

{
∫ 𝑓0(𝑠1|𝜃) log𝑓(𝑠1, 𝑠𝑜|𝜃)ds1

− log∫ 𝑓(𝑠1, 𝑠𝑜|𝜃)ds1
}

(12)

That is, in order to minimize our loss function, we only need to
maximize the cross-entropy term over the specified  ′.

3.3 | Connection to the Proposed ABCel
Posterior

From the justifications presented above, for appropriate
summary statistics, the task is to specify the set of joint den-
sities  ′, at least approximately, and minimize the divergence
in (10) over this specified set. Once 𝑓0(𝜃, 𝑠1, 𝑠𝑜) is computed,
the corresponding approximation of Π(𝜃|𝑠𝑜) is given by the
corresponding 𝑓

′

0(𝜃|𝑠𝑜). This can be obtained by substituting
𝑓(𝜃, 𝑠1, 𝑠𝑜) by 𝑓

′

0(𝜃, 𝑠1, 𝑠𝑜) in (9).

We now argue that with simple choices of summary statistics,
the proposed modified empirical likelihood-based procedure fol-
lows the same recipe. In the notations of Section 2, for 𝑖 = 1, 2,
… , 𝑚, let 𝑠𝑖 = 𝑠(𝑋𝑖(𝜃)) be the values of summary of 𝑋𝑖(𝜃) gener-
ated with input 𝜃 ∈ Θ. Note that, the optimal weights from (5)
defines an empirical estimate of the conditional distribution of
(𝑠1, 𝑠𝑜) given 𝜃, supported over the points (𝑠𝑖 , 𝑠𝑜), 𝑖 = 1, 2, … , 𝑚.
This estimate is obtained byminimizing the required divergence,
over an approximated  ′. The argument takes several steps:

3.3.1 | Marginal Matching

In this section, purely for simplicity, suppose the vector of
summary statistics 𝑠 consists of 𝑟 quantiles of the data vectors.
Assuming that the problem in (5) is feasible the optimal weights
𝑤̂(𝜃) satisfy the constraints:

𝑤̂(𝜃) ∈ Δ𝑚−1 and
𝑚∑
𝑖=1

𝑤̂𝑖(𝜃)(𝑠𝑖 − 𝑠𝑜) = 0

By our construction, the empirical estimate of the conditional
joint distribution of the random vector (𝑠1, 𝑠𝑜) given 𝜃 can be
obtained as:

𝐹̂𝑚(𝑡1, 𝑡𝑜|𝜃) =

𝑚∑
𝑖=1

𝑤̂𝑖(𝜃)1{(𝑠𝑖 ,𝑠𝑜)≤(𝑡1 ,𝑡𝑜)}

We first verify that the condition (a) in the definition of  ′ is
approximately satisfied. Note that the constraints imply that:

∫ 𝑠1𝑑𝐹̂𝑚(𝑡1, 𝑡𝑜|𝜃) = 𝑠𝑜

That is the conditional joint distribution is estimated bymatching
𝑠𝑜 with the marginal conditional expectation of 𝑠1 given 𝜃.

The concept of matching the expected quantiles with the
observed is the key behind the goodness-of-fit plots like the Q–Q
plots, probability plots, and so forth. If the match is close, the
densities of the corresponding random variables are approx-
imately equal. Following the same argument, the proposed
empirical likelihood-based procedure computes the estimate 𝐹̂𝑚

by approximately equating the conditional marginal densities
of the observed data 𝑋𝑜 and the replicated data 𝑋1 given the
input parameter value 𝜃. Now since the summary statistics, 𝑠

(in this case 𝑟 quantiles) are deterministic functions of the data,
consequently, the conditional marginal densities of 𝑠1 and 𝑠𝑜
given 𝜃 would be approximately equal. That is, the condition (a)
in the definition of the set  ′ is approximately satisfied.
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3.3.2 | Cross-Entropy

The proposed empirical likelihood based method maximizes the
sample version of the Kullback–Leibler divergence in (12). Note
that, the empirical estimate of the marginal distribution of 𝑠1
given 𝜃 can be obtained as:

𝐹̂𝑚(𝑡1|𝜃) =
1
𝑚

𝑚∑
𝑖=1
1{𝑡𝑖<𝑡1}

Thus the sample version of the cross-entropy term in (12) is
given by

1
𝑚

𝑚∑
𝑖=1

log(𝑤𝑖(𝜃)) − log

(
𝑚∑
𝑖=1

𝑤𝑖(𝜃)

)
In viewof the constraint that 𝑤̂(𝜃) ∈ Δ𝑚−1, this justifies the objec-
tive function𝑚−1∑𝑚

𝑖=1 log𝑤𝑖 , that ismaximized in (5). That is, the
proposed empirical likelihood maximizes the sample version of
the required cross-entropy in (12).

3.3.3 | Approximation of  ′

Other than the constraints which defines  ′, in the proposed
method 𝐹̂𝑚 is computed with minimal restrictions. For any 𝜃,
the maximum of 𝑚−1∑𝑚

𝑖=1 log𝑤𝑖(𝜃) is finite when there exist
a 𝑤 ∈ 𝜃 , such that 𝑤𝑖(𝜃) > 0, for all 𝑖 = 1, 2, … , 𝑚. This is
equivalent to maximizing the divergence in (12) over all joint
densities 𝑓(𝜃, 𝑠1, 𝑠𝑜) ∈  ′ such that, for all 𝑖 = 1, 2, … , 𝑚, each
observation (𝑠𝑖 , 𝑠𝑜) is in the support of the conditional density
𝑓(𝑠1, 𝑠𝑜|𝜃). The proposed empirical likelihood-based method
thus maximizes the sample version of (12) over a large flexible
set of non-parametrically specified distributions approximately
satisfying the constraints which define  ′. No parameter, tuning
or otherwise need to be specified or estimated (as in e.g., An,
Nott, and Drovandi [22]).

The above argument can be generalized for summary statistics
which approximately specify the density of the underlying ran-
dom variable. Such summaries have been rigorously studied in
statistics. Other than the quantiles, moments, up crossing pro-
portions, and so forth can be used. We discuss various choices for
the summary statistics in Section 5 below.

4 | Properties of the ABC Empirical Likelihood
Posterior

The asymptotic properties of conventional ABC methods have
been a topic of much recent research [13–15]. Here we investi-
gate some basic asymptotic properties of our proposed empirical
likelihood method. The proofs of the results are deferred to the
Supporting Information.

Following Owen [26] the weights in (5) can be expressed as 𝑤̂𝑖 ={
𝑚
(
1 + 𝜆̂

𝑇
ℎ𝑖

)}−1
, where 𝜆̂ is obtained by solving the equation∑𝑚

𝑖=1ℎ𝑖∕
(
1 + 𝜆̂

𝑇
ℎ𝑖

)
= 0.

4.1 | Posterior Consistency

In what follows below, we consider limits as 𝑛 and 𝑚 = 𝑚(𝑛)

grow unbounded. Furthermore, for convenience, we make the

dependencies of 𝑋𝑜 and 𝑋1, 𝑋2, … , 𝑋𝑚 ∈ ℝ𝑛 on sample size 𝑛 as
well as parameter 𝜃 explicit. In what follows, a sequence of events
{𝐸𝑛, 𝑛 ≥ 1} is said to occur with high probability, if 𝑃(𝐸𝑛) → 1 as
𝑛 → ∞.

Suppose that we define ℎ(𝑛)
𝑖

(𝜃) =
{

𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
− 𝑠

(
𝑋(𝑛)

𝑜 (𝜃𝑜)
)}

,

and assume that 𝐸0
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
∣𝜃

[
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)]
is finite so that we

can write 𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
= 𝐸0

𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
∣𝜃

[
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)]
+ 𝜉(𝑛)

𝑖
(𝜃) =

𝔰(𝑛)(𝜃) + 𝜉(𝑛)
𝑖

(𝜃), where 𝐸0
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
∣𝜃

[
𝜉(𝑛)

𝑖
(𝜃)

]
= 0 for all 𝑖, 𝑛 and 𝜃.

We make the following assumptions:

A1. (Identifiability and convergence). There is a sequence of
positive increasing real numbers 𝑏𝑛 → ∞, such that, 𝔰(𝑛)(𝜃) =

𝑏𝑛{𝔰(𝜃) + 𝑜(1)}, where 𝔰(𝜃) is a one-to-one function of 𝜃 that
does not depend on 𝑛. Furthermore, 𝔰(𝜃) is continuous at 𝜃𝑜 and
for each 𝜀 > 0, and for all 𝜃 ∈ Θ, there exists 𝛿 > 0, such that
whenever ||𝜃 − 𝜃𝑜|| > 𝜖, ||𝔰(𝜃) − 𝔰(𝜃𝑜)|| > 𝛿.

A2. (Feasibility). For each 𝜃, 𝑛 and 𝑖 = 𝑜, 1, … , 𝑚(𝑛), the vec-
tors 𝜉(𝑛)

𝑖
(𝜃) are identically distributed, supported over the whole

space, and their distribution puts positive mass on every orthant,
𝑢 of ℝ𝑟, 𝑢 = 1, 2, … , 2𝑟. Furthermore, for every orthant 𝑢, as
𝑛 → ∞, sup{

𝑖∶𝜉(𝑛)
𝑖

(𝜃)∈𝑢

} ||𝜉(𝑛)
𝑖

(𝜃)|| → ∞ in probability, uniformly

in 𝜃.

A3. (Growth of extrema of errors). As 𝑛 → ∞, sup𝑖∈{𝑜,1,2, … ,𝑚(𝑛)}||𝜉(𝑛)
𝑖

(𝜃)||𝑏−1
𝑛

→ 0 in probability, uniformly in 𝜃 ∈ Θ.

Assumption (A1) ensures identifiability and additionally
implies that 𝔰(𝑛)(𝜃)∕𝑏𝑛 − 𝔰(𝜃) converges to zero uniformly
in 𝜃. Assumption (A2) is important for ensuring that with high
probability the empirical likelihood ABC posterior is a valid
probability measure for 𝑛 large enough. Assumptions (A2) and
(A3) also link the number of simulations 𝑚 to 𝑛 and ensure
concentration of the posterior with increasing 𝑛. The proofs
of the results below are given in the Appendix B. The main
result, Theorem 1, shows posterior consistency for the proposed
empirical likelihood method.

Let 𝑙𝑛(𝜃) ≔ exp
(∑𝑚(𝑛)

𝑖=1 log(𝑤̂𝑖(𝜃))∕𝑚(𝑛)
)
and for each 𝑛, we

define.

Θ𝑛

{
𝜃 ∶ ||𝔰(𝜃) − 𝔰(𝜃𝑜)|| ≤ 𝑏−1

𝑛

}
. By continuity of 𝔰 at 𝜃0, Θ𝑛 is

nonempty for each 𝑛. Furthermore, since 𝑏𝑛 is increasing in 𝑛,
Θ𝑛 is a decreasing sequence of sets in 𝑛.

Lemma 1. UnderAssumptions (A1)–(A3),with high probabil-
ity, the likelihood 𝑙𝑛(𝜃) > 0 for all 𝜃 ∈ Θ𝑛.

Lemma 1 shows that for large𝑛 the estimated likelihood is strictly
positive in a neighborhood of 𝜃0. Next, we show that the empirical
likelihood is zero outside certain neighborhood of 𝜃0.

Lemma 2. Under Assumptions (A1)–(A3), for every 𝜖 > 0, let
𝐵(𝜃0, 𝜖) be the open ball of radius 𝜖 centered at 𝜃𝑜. The empirical
likelihood is zero outside 𝐵(𝜃0, 𝜖), with high probability.
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Now suppose we choose 𝜖 = 𝑏−1
1 and 𝑛 > 𝑛

(
𝑏−1
1

)
such that

𝑙𝑛(𝜃) is positive on Θ𝑛 with high probability. Furthermore,
for all 𝑛 and for all 𝜃 ∈ Θ𝑛, min𝑖≠𝑗 ||𝑠(𝑋𝑗(𝜃)

)
− 𝑠(𝑋𝑖(𝜃))|| > 0

with probability 1, which implies for an appropriate choice
of 𝑘, (see the Supporting Information) the estimate of the dif-
ferential entropy ∣ 𝐻̂

0(𝑛)

𝑠∣𝜃
(𝜃) ∣< ∞ with probability 1 as well.

This proves that for large values of 𝑛, with high probability:
∫
𝜃∈Θ

𝑙𝑛(𝜃)𝑒𝐻̂
0(𝑛)

𝑠∣𝜃 (𝜃)𝜋(𝜃)d𝜃 ≥ ∫
𝜃∈Θ𝑛

𝑙𝑛(𝜃)𝑒𝐻̂
0(𝑛)

𝑠∣𝜃 (𝜃)𝜋(𝜃)d𝜃 > 0, and

Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜))) =
(
𝑙𝑛(𝜃)𝑒𝐻̂

0(𝑛)

𝑠∣𝜃 (𝜃)𝜋(𝜃)
)
∕ ∫

𝑡∈Θ
𝑙𝑛(𝑡)𝑒

𝐻̂
0(𝑛)

𝑠∣𝑡 (𝑡)𝜋(𝑡)dt is
a valid probability measure (with high probability). The main
result, Theorem 1 below, establishes posterior consistency.

Theorem 4. As 𝑛 → ∞, Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜))) converges in proba-
bility to 𝛿𝜃𝑜

, where 𝛿𝜃0
is the degenerate probability measure sup-

ported at 𝜃0.

4.2 | Behavior of the Proposed Posterior With
Growing Number of Replications

We now discuss how the proposed ABCel posterior behaves with
fixed sample size 𝑛 and observed summary and growing 𝑚. Our
primary goal is to find appropriate number of replicates, that is,
𝑚 for a fixed sample size 𝑛. We also discuss the bias-variance
trade-off as observed in Figure 3 in more details.

Under the setup of fixed 𝑛 and the observed summary, it is more
appropriate to consider expectation of ℎ(𝑛)

𝑖
(𝜃) conditional on(

𝜃, 𝑠
(
𝑋(𝑛)

𝑜 (𝜃𝑜)
))

. Since each 𝑋(𝑛)
𝑖

(𝜃) is conditionally indepen-

dent of 𝑋(𝑛)
𝑜 (𝜃𝑜) given 𝜃, for each 𝑖 = 1, 2, … , 𝑚, and 𝜃 ∈ Θ we

get:
𝐸0

𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
∣
(
𝜃,𝑠

(
𝑋(𝑛)

𝑜 (𝜃𝑜)
))[ℎ(𝑛)

𝑖
(𝜃)

]
= 𝐸0

𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
∣𝜃

[
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)]
− 𝑠

(
𝑋(𝑛)

𝑜 (𝜃𝑜)
) ≠ 0 a.e

That is, for fixed 𝑛, after conditioning on 𝑠
(
𝑋(𝑛)

𝑜 (𝜃𝑜)
)
, the con-

straints in the problem (5) ℎ(𝑛)
𝑖

(𝜃), 𝑖 = 1, 2, … ,𝑚 are misspecified
for all 𝜃 ∈ Θ almost everywhere (even when 𝜃 = 𝜃𝑜). The con-
strained optimization problem in (5), however, could still be fea-
sible and the resulting estimated posterior could be positive. The
properties of empirical likelihood undermisspecified but feasible
constraint have been studied by Ghosh, Chaudhuri, Gangopad-
hyay [31]. We now evoke their results.

Using the notations introduced above, when 𝑟 = 1, that is, there
is only one constraint present, under conditions similar to those
described above, it can be shown that, [31, Theorem 3.4] for any
𝜃 ∈ Θ:

𝑙𝑚(𝜃) ≔ 1
𝑚

𝑚∑
𝑖=1

log(𝑤̂(𝜃))

= −
1

𝑚(𝜃)

||||𝐸𝑠
(
𝑋(𝑛)
1 (𝜃)

)
∣𝜃

[
𝑠
(
𝑋(𝑛)
1 (𝜃)

)]
−

[
𝑠
(
𝑋(𝑛)

𝑜 (𝜃𝑜)
)]||||

×
(
1 + 𝑜𝑝(1)

)
,

= −
𝑏𝑛

𝑚(𝜃)

|||||(𝔰(𝜃) − 𝔰(𝜃𝑜) + 𝑜(1)) −
𝜉(𝑛)

𝑜 (𝜃𝑜)

𝑏𝑛

|||||(1 + 𝑜𝑝(1)
)

(13)

where𝑚(𝜃) is a non-random 𝑜(𝑚) sequence such that, as𝑚 →

∞, 𝑚 → ∞ and both −1
𝑚

(𝜃)max1≤𝑖≤𝑚
|||𝜉(𝑛)

𝑖
(𝜃)

|||1{𝜉(𝑛)
𝑖

(𝜃)>0
} =

1 + 𝑜𝑝(1), and −1
𝑚

(𝜃)max1≤𝑖≤𝑚
|||𝜉(𝑛)

𝑖
(𝜃)

|||1{𝜉(𝑛)
𝑖

(𝜃)<0
} = 1 + 𝑜𝑝(1)

are satisfied.

The sequence 𝑚(𝜃) is the rate at which the maximum of the
𝑠(𝑋𝑖(𝜃)) grows away from its mean. The above conditions are eas-
ily satisfied. As for example, when 𝜉(𝑛)

𝑜 (𝜃0) is a 𝑁
(
0, 𝜎20

)
random

variable,𝑚 ∼ 𝜎0
√
2 log𝑚.

In the rest of this section, we assume that 𝑟 = 1. Using the results
from Ghosh, Chaudhuri, Gangopadhyay [31] it is possible to
specify bounds on the rate of growth of the number of repli-
cates with the sample size. Since the differential entropy plays
a relatively minor role in determining the posterior, in what
follows we assume that for each 𝜃, the estimate of the differential
entropy remains bounded, and focus on 𝑙𝑚(𝜃). Furthermore, for
brevity, we present the results as Remarks below. More details
are available in the Supporting Information.

4.2.1 | Bounds on the Growth of the Number
of Replications in Terms of Sample Size

We first consider the bounds of the replication size 𝑚 in terms
of sample size 𝑛. Our results follow from various advantageous
properties of the posterior. For the purposes of easier description
and illustration, we would sometime assume that the errors 𝜉(𝑛)

𝑜

follow a 𝑁
(
0, 𝜎2

𝑜

)
distribution.

The posterior is Bayesian consistent [13] if with high probability
two things happen:

1. exp(𝑙𝑚(𝜃)) would converge to zero for all 𝜃 ≠ 𝜃𝑜, and

2. exp(𝑙𝑚(𝜃𝑜)) would not collapse to zero.

Remark 1. In order to ensure the first condition it is enough to
choose𝑚 and𝑛 such that 𝑏𝑛∕𝑚(𝜃) diverges. Anupper bound of
the rate of growth of𝑚 can thus be obtained by inverting the rela-
tion 𝑏𝑛 > 𝑚(𝜃). Depending on the distribution of 𝜉(𝑛)

𝑜 ,𝑚 can be
much larger than 𝑛. For example, if 𝜉(𝑛)

𝑜 follows a normal distri-
bution with mean zero and variance 𝜎2

𝑜
, 𝑏𝑛 =

√
𝑛 and𝑚(𝜃) is

of the order 𝜎𝑜

√
2 log(𝑚), which allows an upper bound of 𝑚 as

large as exp
(
𝑛∕

(
2𝜎2

𝑜

))
.

Remark 2. A more accurate relationship can be obtained from
the second condition. The condition implies that there exists a
constant 𝐶1 > 0 such that, 𝑙𝑚(𝜃𝑜) > −𝐶1 with a high probability.
Assuming that 𝜉(𝑛)

𝑜 (𝜃𝑜) is a 𝑁
(
0, 𝜎2

𝑜

)
random variable, from (13),

it follows that Pr[𝑙𝑚(𝜃𝑜) ≤ −𝐶1] ≤ exp
(
−𝐶2

1 log𝑚
)

= 𝑚−𝐶2
1 . Now

if we fix the rate of reduction of the above probability to 𝑛−𝛼 for
some 𝛼, we get𝑚 = 𝑛𝛼∕𝐶2

1 .

Other bounds can be found by controlling the rate at which the
probability of a Type I error for testing the null hypothesis 𝜃 = 𝜃𝑜

against the unrestricted alternative decrease to zero. By construc-
tion 𝑙𝑚(𝜃) is different from the traditional empirical likelihood, so
this problem is of broad interest.
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Remark 3. The log-likelihood ratio logLR(𝜃𝑜) turns out to be
𝑙𝑚(𝜃𝑜) + log𝑚. The test rejects 𝐻0 if logLR(𝜃𝑜) is smaller than
log𝐶0, for some pre-specified 𝐶0 ∈ (0, 1). Assuming that, 𝜉(𝑛)(𝜃)

is a 𝑁
(
0, 𝜎20

)
random variable, it follows that, the probability

of rejecting the null hypothesis is given by (see the Supporting
Information):

Pr[log𝑚 + 𝑙𝑚(𝜃𝑜) ≤ log𝐶0]

≤ exp
{
−(log𝑚)3 + 2(log𝑚)2 log𝐶0 − (log𝑚)(log𝐶0)

2}
Now ensuring that the probability of rejecting the null hypothesis
reduces at the rate of 𝑝𝑛, we get 𝑝𝑛 = exp

{
−(log𝑚)3

}
, which

implies the number of replications𝑚 = exp
{

(− log𝑝𝑛)
1∕3

}
.

4.2.2 | Behavior of the Log-LikelihoodWhen
𝒎(𝜽)∕𝒃𝒏 Diverges

This scenario includes the situation when the sample size 𝑛

is fixed and the number of replication 𝑚 grows. We discuss
the bias-variance trade-off or the flattening of the approximate
likelihood as observed in Figure 1.

Remark 4. Let us fix 𝜃 ≠ 𝜃𝑜 and suppose 𝜉(𝑛)
𝑜 (𝜃𝑜) follows a

𝑁
(
0, 𝜎2

𝑜

)
distribution. For a fixed 𝐶2 > 0, it can be shown that

(see the Supporting Information):

Pr[𝑙𝑚(𝜃) ≤ −𝐶2] ≤
( 1

𝑚

){
𝐶2−

𝑏𝑛

𝜎𝑜
√
2 log𝑚

|𝔰(𝜃)−𝔰(𝜃𝑜)|}2

(14)

Now, if 𝑚(𝜃)∕𝑏𝑛 = 𝜎𝑜

√
2 log𝑚∕𝑏𝑛 diverges with 𝑚 and 𝑛,

clearly, for large values of 𝑚 and 𝑛, Pr[𝑙𝑚(𝜃) ≤ −𝐶2] ≈ 𝑚−𝐶2
2 .

That is, for any fixed 𝐶2 > 0 and 𝜃 ≠ 𝜃𝑜, 𝑙𝑚(𝜃) ≥ −𝐶2 with a
high probability. Furthermore, for a fixed 𝑛, R.H.S. of (14) is a
decreasing function in 𝑚. That is if the sample size is kept fixed,
increasing the number of replications will increase the proba-
bility of 𝑙𝑚(𝜃) ≥ −𝐶2. As a result, the log likelihood will become
increasingly flat in shape. This is exactly the phenomenon that
was observed in Figure 1. Remark 4 provides actual justification
to our observation.

Statistical intuition mandates with an increase in 𝑚, we should
increase the number of summary statistics. Remark 4 does not
apply to such situations.We present evidence in favor of our intu-
ition in Example 6.1 below.

5 | Choice of Summary Statistics

A judicious choice of summary statistics is crucial for a good
performance of any ABC procedure [3]. The proposed method
does not necessarily require summaries that are sufficient for
the parameter, which according to many authors (e.g., Frazier
et al. [13]; Robert [18]) are usually not available. Rather from the
arguments in Section 3, it mandates an use of summaries which
approximately define the density of 𝑋𝑖(𝜃), for 𝑖 ∈ 𝕄𝑜.

Sample quantiles, extreme values, or proportion of samples
exceeding the certain pre-specified thresholds that directly put
constraints on the data density (see D’Agostino and Stephens

[46]) can be used. Moreover, moments, if they exist, may under
certain conditions (e.g., Carleman’s condition) specify a density
(see Gut [47]). Thus, moments can be used as summaries in
many cases as well.

For complex datamodels, with dependent components, marginal
summariesmay not be adequate. In such cases, constraints can be
based on joint moments, joint quantiles or joint exceedances, and
so forth can be used. Other than these generic choices, one can
base the constraints on the functionals of transformed variables.
Since a density is a one-to-one function of its characteristic func-
tion, for dependent data sets, constraints based on the smoothed
spectral density of the data can be used. For example, in the case
of stochastic processes, summaries based on the exceedance pro-
portions of log-amplitudes, which actually put constraints on the
auto-covariance function of the process, are often beneficial (see
Section 6.3 below).

In our experience, often moments work the best. A judicious mix
and match of various forms of summaries decided after some
inspection of the summaries of observed data are required. It
should also be recognized that summaries with widely different
scales or an ill-conditioned covariance matrix may lead to a poor
estimate of differential entropy and subsequently to slow mixing
of the Markov Chain Monte Carlo procedures.

Finally, the number of summaries required would depend partly
on their nature, partly on the number of replications 𝑚, and
partly on the sample size 𝑛 (see (14)). Even though some judg-
ments is required, evidence shows (see Section 6) for any given
problem, appropriate summaries can be found without much
effort.

6 | Illustrative Examples and Applications

We illustrate the utility of the ABCel method with four examples
involving data simulated from a standard Gaussian model, an
ARCH(1) model (also considered in Mengersen, Pudlo, and
Robert [5]), The simple recruitment, boom and bust model
[22], and a real life example modeled as an elliptical inclu-
sion model respectively. Here in order to address dependence
we use non-Gaussian summaries based on auto-covariance
function and the periodogram of the data. We also present a
real application based on stereological extremes [48]. More
examples on the traditional 𝑔-and-𝑘 model and an application
to Erdös–Renyi random graphs can be found in the Supporting
Information.

6.1 | Normal Distribution

Our first example considers inference about a mean 𝜇 for
a random sample of size 𝑛 = 100 from a normal density,
𝑁(𝜇, 1). The prior for 𝜇 is 𝑁(0, 1). The observed data 𝑋𝑜

is generated with 𝜇 = 0. The exact posterior for 𝜇 is nor-
mal, 𝑁

(∑𝑛
𝑗=1𝑋oj∕(𝑛 + 1), (𝑛 + 1)−1

)
. The proposed empirical

likelihood based method was implemented with 𝑚 = 25. We
considered several choices of constraint functions 𝑠(1), … ,
𝑠(𝑟). Specifically, for 𝑖 = 𝑜, 1, … ,𝑚, we take (a) 𝑠(1)(𝑋𝑖(𝜃)) =
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𝑋𝑖⋅ =
∑𝑛

𝑗=1𝑋ij(𝜃)∕𝑛, (b) 𝑠(2)(𝑋𝑖(𝜃)) =
∑𝑛

𝑗=1

(
𝑋ij(𝜃) − 𝑋𝑖⋅

)2
∕𝑛,

(c) 𝑠(3)(𝑋𝑖(𝜃)) =
∑𝑛

𝑗=1

(
𝑋ij(𝜃) − 𝑋𝑖⋅

)3
∕𝑛, (d) 𝑠(4)(𝑋𝑖(𝜃)) =

median of 𝑋𝑖(𝜃), (e) 𝑠(5)(𝑋𝑖(𝜃)) = first quartile of 𝑋𝑖(𝜃), and
(f) 𝑠(6)(𝑋𝑖(𝜃)) = third quartile of 𝑋𝑖(𝜃). Here the constrains
considered use the first three central moments (a–c) and the
three quartiles (d–f). Combinations of these constraints are
considered within the empirical likelihood procedure.

The posteriors obtained from our proposed empirical likelihood-
based ABC method with the above summaries are close to the
true posterior. An illustrative example, with sample mean as a
summary, is presented in Figure 2. Here, the true posterior den-
sity, that is, the dashed line, is quite close to the histogram of the
samples drawn from the posterior obtained from the proposed
method.

In order to compare the performance of the proposed pro-
cedure for different choices of the summary statistics, we
consider frequentist coverages and the average lengths of the
95% credible intervals. The results are presented in Table 1.
The coverages are based on 100 repeats of the procedure. For

each repetition, MCMC approximations to the posterior are
based on 50,000 samples with 50,000 iterations discarded as
burn-in.

As we have shown before (see Figure 1 and Remark 4) the
approximate posterior gets flatter if we keep the number of
summary statistics fixed and increase the number of replications
𝑚. That is, with increasing 𝑚, one should increase the number
of summary statistics used. The same argument mandates that
when we increase the number of summary statistics we should
also increase the number of replications. In Table 1 we report the
value of𝑚 for which the Monte Carlo frequentist coverages were
close to the nominal value of 95%.

From Table 1, it is clear that the proposed method performs quite
well for various sets of summary statistics. For mean and the
median the frequentist coverage is matches exactly the nominal
value. Note that the sample mean is minimal sufficient for 𝜇, and
would be an ideal choice of summary statistic in conventional
likelihood-free procedures such as ABC. However, median is not
sufficient for the mean, but still produces the exact coverage.
Table 1 also shows that when multiple summary statistics are

FIGURE 2 | Comparison of the true posterior of the mean of a Normal distribution with unit variance conditional on the sample mean with our
proposed empirical likelihood based ABC posterior. Here 𝑛 = 100 and 𝑚 = 25. (A) The figure directly compares the true log-posterior (black curve)
with the means and 95% credible intervals of the proposed approximate posterior based on 1000 replications for each parameter value (in red). (B) The
figure compares the true posterior (dashed line) with the histogram of the samples drawn from the proposed empirical likelihood based ABC posterior
(underlying histogram).

TABLE 1 | The coverage and the average length of 95% credible intervals for 𝜇 for various choices of constraint functions when 𝜇 = 0 and 𝑛 = 100.

Constraint functions 𝒎 Coverage Average length

Mean, (a). 25 0.95 0.360

Median, (e). 25 0.95 0.446

First two central moments, (a), (b). 40 0.94 0.331

Mean and Median, (a), (e). 40 0.94 0.330

First three central moments, (a), (b), (c). 70 0.91 0.307

Three quartiles, (e), (f), (g). 75 0.93 0.329

Note: The coverage for the true posterior is 0.95 and average length is 0.39 (2 d.p.).
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used, by increasing the number of replicates it is possible to
obtain an approximate posterior with frequentist coverage close
to the nominal value of 95%.

6.2 | An ARCH(1) Model

We now present examples where summary statistics are not
close to normal, so that the assumptions behind the synthetic
likelihood are not satisfied. We consider an autoregressive
conditional heteroskedastic or ARCH(1) model, where for
each 𝑖 = 𝑜, 1, 2, … ,𝑚, the components 𝑋𝑖1(𝜃), 𝑋𝑖2(𝜃), … , 𝑋in(𝜃)

are dependent for all 𝜃 = (𝛼0, 𝛼1) ∈ Θ. This model was also
considered in Mengersen, Pudlo, and Robert [5]. For each
𝑖, the time series 𝑋ij1≤𝑗≤𝑛 is generated by 𝑋ij(𝜃) = 𝜎ij(𝜃)𝜀ij,
𝜎2ij(𝜃) = 𝛼0 + 𝛼1𝑋

2
𝑖(𝑗−1)(𝜃), where 𝜀ij are i.i.d. 𝑁(0, 1) random

variables, 𝛼0 > 0, and 0 < 𝛼1 < 1. We assume a uniform prior
over (0, 5) × (0, 1) for (𝛼0, 𝛼1).

Our summary statistics include the three quartiles of the abso-
lute values of the data. Since the data is dependent we also use
the following summary statistic. Let, for a fixed 𝑖 and for each 𝑗,
𝑌ij(𝜃) = 𝑋2

ij(𝜃) −
∑𝑛

𝑗=1𝑋
2
ij(𝜃)∕𝑛. Then for each 𝑖 = 1, 2, … ,𝑚, we

define,

𝑠(4)(𝑋𝑖(𝜃)) =
1
𝑛

𝑛∑
𝑗=2

(
1{(𝑌ij(𝜃)⋅𝑌𝑖(𝑗−1)(𝜃))≥0} − 1{(𝑌ij(𝜃)⋅𝑌𝑖(𝑗−1)(𝜃))<0}

)
That is, 𝑠(4) is the difference between the proportion of the con-
cordant and that of the discordant pairs between series𝑌𝑖 with its

lag-1 version. Empirical evidence suggests that 𝑠4 performs better
than the usual lag-1 auto-covariance of the series 𝑋2

𝑖
. The quar-

tiles of the absolute values of the data provide some information
about the marginal distribution.

Our observed data were of size 𝑛 = 1000, with (𝛼0, 𝛼1) = (3,0.75)
and we used 𝑚 = 50 replicates for each likelihood approxima-
tion for both empirical and synthetic likelihoods in Bayesian
computations. Marginal posterior densities were estimated for
the parameters based on 50,000 sampling iterations with 50,000
iterations burn-in for both the synthetic likelihood and pro-
posed empirical likelihood. We compare these methods with
the posterior obtained using rejection ABC with 1,000,000 sam-
ples, a tolerance of 0.0025, and linear regression adjustment.
The estimated marginal posterior densities in Figure 3 for the
proposed method are quite close to those obtained from the
rejection ABC. The synthetic likelihood produces quite different
marginal posterior densities, especially for 𝛼1. In this example
the 𝑠4 statistic is highly non-Gaussian, so the assumptions of the
synthetic likelihood are not satisfied.

6.3 | The Simple Recruitment, Boom and Bust
Model

The simple recruitment, boom and bust model is a discrete
stochastic temporal model, primarily used to explain fluctua-
tions in species population over time. The dynamics is controlled
by the parameter vector 𝜃 = (𝑟, 𝜅, 𝛼, 𝛽). For 𝑖 = 𝑜, 1, 2,… , 𝑚,

FIGURE 3 | Estimated marginal posterior densities of parameters 𝛼0 and 𝛼1 in the ARCH(1) model. The top row shows kernel density estimates
(empirical likelihood ABC (solid), synthetic likelihood (dashed), rejection ABC (dotted)), while the bottom row shows boxplots of posterior samples. In
the boxplots, the horizontal dotted lines show the true parameter values.
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FIGURE 4 | Estimated marginal posterior densities of parameters 𝑟, 𝜅, 𝛼, 𝛽 in the boom and bust model. The figures show kernel density estimates
(empirical likelihood ABC (solid), synthetic likelihood (dashed), rejection ABC (dotted)).

FIGURE 5 | Estimated marginal posterior densities of 𝜆, 𝜎 and 𝜉 using empirical likelihood ABC (solid), rejection ABC (dotted), and synthetic
likelihood (dashed).

given 𝑋ij(𝜃) = 𝑥ij, the distribution of 𝑋𝑖(𝑗+1)(𝜃) is given by:

𝑋𝑖(𝑗+1)(𝜃) ∼

{
Poisson

(
𝑥ij(1 + 𝑟)

)
+ 𝜖𝑗 if 𝑥ij ≤ 𝜅

Binomial
(
𝑥ij, 𝛼

)
+ 𝜖𝑗 if 𝑥ij > 𝜅

Here 𝜖𝑗 ∼ Poisson(𝛽) distribution. The sample paths rapidly cycle
between the large and small non-negative integers.

For our simulation study we follow An, Nott, and Drovandi [22]
and set 𝜃𝑜 = (0.4, 50, 0.09, 0.05), and assume a prior of 𝑈(0, 1) ×

𝑈(30, 80) × 𝑈(0, 1) × 𝑈(0, 1) on 𝜃. We generated observations of

length 𝑛 = 200, after discarding the first 50 values to remove the
transient phase of the process.

For each 𝜃 we generated 𝑚 = 40 replications from the model.
The summary statistics used were, (a) the proportion of obser-
vations in the interval (0, 15), (b) the proportion of differences
𝑋ij(𝜃) − 𝑋𝑖(𝑗−1)(𝜃) strictly larger than 2, and (c) the proportion of
log-amplitudes of the smoothed periodogram of the data lying in
the interval (5.120,6.278). The intervals were chosen rather judi-
ciously partly based on the observed data 𝑋𝑜.
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Our choice of summary statistics is targeted toward specifying
the underlying data density rather than any particular parameter.
Clearly, a process can be specified by its probabilities of
exceedance of certain thresholds. The use of lagged differ-
ences is also natural for the same reason. The periodogram of
the process is connected to its auto-covariance function. Thus,
the exceedance probabilities of its log amplitude should put
constraints on the auto-covariances between the successive
observations. Note that, none of the summary statistics are
normally distributed in the case.

The density plots of observations sampled from the proposed
ABCel (solid), synthetic likelihood (dashed), and the rejection
ABC with a ridge regression adjustment with tolerance 0.001
(dotted) are presented in Figure 4. From the plot, it is clear that
the rejection ABC has very heavy tails, which essentially cover
the whole of the support of the priors and do not change if differ-
ent tolerances or rejection methods are used. The synthetic ABC
is not expected to work well in this case. However, they seem to
show a lighter tail than the Rejection ABC. Among the three,
the proposed ABCel posterior seems to be the most concentrated
around true parameter values and seems to approximate the true
posterior well.

6.4 | Stereological Data

Next, we consider an example concerning the modeling of
diameters of inclusions (microscopic particles introduced in the
steel production process) measured from planar cross-sections
in a block of steel. The size of the largest inclusion in a block
is thought to be important for steel strength. We focus on an
elliptical inclusion model due to Bortot, Coles, and Sisson [49]
here, which is an extension of the spherical model studied by
Anderson and Coles [48]. Unlike the latter, the elliptical model
does not have a tractable likelihood.

It is assumed that the inclusion centers follow a homogeneous
Poisson process with a rate 𝜆. For each inclusion, the three prin-
cipal diameters of the ellipse are assumed independent of each
other and of the process of inclusion centers. Given𝑉, the largest
diameter for a given inclusion, the two other principal diameters
are determined by multiplying 𝑉 with two independent uniform
𝑈[0, 1] randomvariables. The diameter𝑉, conditional on exceed-
ing a threshold value 𝑣0 (5μm in Bortot, Coles, and Sisson [49])
is assumed to follow a generalized Pareto distribution:

pr(𝑉 ≤ 𝑣|𝑉 > 𝑣0) = 1 −

{
1 +

𝜉(𝑣 − 𝑣0)

𝜎

}− 1
𝜉

+

The parameters of the model are given by 𝜃 = (𝜆, 𝜎, 𝜉). We
assume independent uniform priors with ranges (1, 200), (0, 10)
and (−5, 5) respectively. A detailed implementation of ABC for
this example is discussed in Erhardt and Sisson [50].

The observed data has 112 entries, measuring the largest prin-
cipal diameters of elliptical cross-sections of inclusions for a
planar slice. The number of inclusions 𝐿 in each dataset gen-
erated from the model is random. The summary statistics used
are (a) (𝐿 − 112)∕100, (b) the mean and (c) the median of the
observed planar measurements, and (d) the proportion of planar

measurements less than or equal to six (approximately the
median for the observed data).

Using the summary statistics described above, we compare the
proposed empirical likelihood-based method with the synthetic
likelihood (𝑚 = 25 for both) and a rejection ABC algorithm
with small tolerance (0.00005) and linear regression adjustment.
The resulting estimated marginal posterior densities for 𝜆, 𝜎, 𝜉

are shown in Figure 5. The results for the proposed empirical
likelihood-based method are more concentrated than the rejec-
tion ABC or the synthetic likelihood both of whom exhibit quite
long tails. The chosen summaries mixed faster than those used in
Pham, Nott, and Chaudhuri [51] and were comparable in speed
to the synthetic likelihood.

7 | Discussion

This article develops a new empirical likelihood-based easy-
to-use approach to the ABC paradigm called ABCel. For its
implementation, the method only requires a set of summary
statistics, their observed values, and the ability to simulate these
summary statistics from a given black box or a suitable auxiliary
model. We first use a direct information projection to derive
an analytic form for an approximation of the target posterior.
Using this analytic expression, the best approximation to the
target posterior is then obtained from a reverse information
projection. The procedure is implemented using a modified
empirical likelihood. By construction, the proposed empirical
likelihood estimates the joint distribution of the observed and
replicated summaries by minimizing a cross-entropy over a large
set of distributions. Furthermore, for appropriate summaries,
at each value of the parameter, the above joint distribution is
estimated by approximately equating the marginal densities of
the observed and the replicated data. The construction does not
require any specification of a distance function, a tolerance or a
bandwidth. Neither does it assume any asymptotic distribution
of the summary statistics. No constraints that are functions
of the parameter and the data are required either. We explore
the properties of the proposed posterior both analytically and
empirically. The method is posterior consistent under reasonable
conditions and shows good performance in simulated and real
examples.

The modified empirical likelihood works with user-specified
simple summaries like quantiles, moments or proportion of
exceedance, that specify the underlying data density. Summaries
based on the spectral density of the data can also be conveniently
used. Even though no specific algorithm is so far available, our
experience suggests appropriate simple summary statistics could
easily be postulated from basic statistical considerations for
almost all problems.

The number of replications depends in principle both on the
number and the nature of the summary statistics used. We make
recommendations on the relative magnitudes of the number of
replications and the sample size.

Finally, empirical evidence as seen in the Q–Q plots in
Sections F.2 and G of the Supporting Information, suggest
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that under suitable conditions, the proposed posteriors would
asymptotically converge to a normal density. The conditions
under which such convergences would hold is a natural question
for further investigation.

Author Contributions

Sanjay Chaudhuri: Conception, formulation, structural and theoretical
derivations, implementation, simulation, writing. Subhroshekhar
Ghosh: Theoretical derivation, wrting. Kim Cuc Pham: Some
simulation.

Acknowledgements

Sanjay Chaudhuri was partially funded by the National Science
Foundation grant DMS-2413491. Subhroshekhar Ghosh was sup-
ported in part by the MOE grants R-146-000-250-133, R-146-000-312-114,
A-8002014-00-00, and MOE-T2EP20121-0013.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated
or analysed during the current study.

References

1. M. A. Beaumont, W. Zhang, and D. J. Balding, “Approximate Bayesian
Computation in Population Genetics,” Genetics 162 (2002): 2025–2035.

2. M. G. B. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson, “A Compar-
ative Review of Dimension ReductionMethods in Approximate Bayesian
Computation,” Statistical Science 28 (2013): 189–208.

3. P. Fearnhead and D. Prangle, “Constructing Summary Statistics
for Approximate Bayesian Computation: Semi-Automatic Approximate
BayesianComputation (WithDiscussion),” Journal of the Royal Statistical
Society, Series B 74 (2012): 419–474.

4. J.-M. Marin, P. Pudlo, C. P. Robert, and R. Ryder, “Approximate
Bayesian Computational Methods,” Statistics and Computing 21 (2011):
289–291.

5. K. L.Mengersen, P. Pudlo, andC. P. Robert, “BayesianComputation via
Empirical Likelihood,” Proceedings of the National Academy of Sciences
110, no. 4 (2013): 1321–1326.

6. D. B. Rubin, “Bayesianly Justifiable and Relevant Frequency Calcula-
tions for the Applied Statistician,” Annals of Statistics 12, no. 4 (1984):
1151–1172.

7. S. Tavaré, D. J. Balding, R. C. Griffiths, and P. Donnelly, “Inferring
Coalescence Times From DNA Sequence Data,” Genetics 145 (1997):
505–518.

8. S. N. Wood, “Statistical Inference for Noisy Nonlinear Ecological
Dynamic Systems,” Nature 466, no. 7310 (2010): 1102–1104.

9. C. Drovandi and D. T. Frazier, “A Comparison of Likelihood-Free
Methods With and Without Summary Statistics,” Statistics and Comput-
ing 32, no. 3 (2022): 42.

10. M. A. Beaumont, C. P. Robert, J.-M. Marin, and J. M. Corunet, “Adap-
tivity forABCAlgorithms: TheABC-PMCScheme,”Biometrika 96 (2009):
983–990.

11. P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré, “Markov Chain
Monte Carlo Without Likelihoods,” Proceedings of the National Academy
of Sciences of the USA 100 (2003): 15324–15328.

12. S. A. Sisson, Y. Fan, andM.M. Tanaka, “SequentialMonteCarloWith-
out Likelihoods,” Proceedings of the National Academy of Sciences of the
USA 104 (2007): 1760–1765. Errata (2009), 106, 16889.

13. D. T. Frazier, G.M.Martin, C. P. Robert, and J. Rousseau, “Asymptotic
Properties of Approximate Bayesian Computation,” Biometrika 105, no. 3
(2018): 593–607.

14. W. Li and P. Fearnhead, “On the Asymptotic Efficiency of Approxi-
mate Bayesian Computation Estimators,” Biometrika 105, no. 2 (2018b):
285–299.

15. W. Li and P. Fearnhead, “Convergence of Regression-Adjusted
Approximate Bayesian Computation,” Biometrika 105, no. 2 (2018a):
301–318.

16. J. W. Miller and D. B. Dunson, “Robust Bayesian Inference via Coars-
ening,” Journal of the American Statistical Association 114, no. 527 (2019):
1113–1125.

17. E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert, “Approximate
Bayesian Computation With the Wasserstein Distance,” Journal of the
Royal Statistical Society, Series B: Statistical Methodology 81, no. 2 (2019):
235–269.

18. C. P. Robert, “Approximate Bayesian Computation: A Survey on
Recent Results,” in Monte Carlo and Quasi-Monte Carlo Methods, eds.
R. Cools and D. Nuyens (Cham, Switzerland: Springer International Pub-
lishing, 2016), 185–205.

19. L. F. Price, C. C. Drovandi, A. C. Lee, and D. J. Nott, “Bayesian Syn-
thetic Likelihood,” Journal of Computational and Graphical Statistics 27,
no. 1 (2018): 1–11.

20. M. Fasiolo, S. N. Wood, F. Hartig, andM. V. Bravington, “An Extended
Empirical Saddlepoint Approximation for Intractable Likelihoods” (2016),
arXiv:1601.01849.

21. R. Dutta, J. Corander, S. Kaski, and M. U. Gutmann, “Likelihood-Free
Inference by Penalised Logistic Regression” (2016), arXiv:1611.10242.

22. Z. An, D. Nott, and C. Drovandi, “Robust Bayesian Synthetic Like-
lihood via a Semi-Parametric Approach,” Statistics and Computing 30
(2020): 543–557.

23. J. W. Priddle and C. Drovandi, “Transformations in Semi-Parametric
Bayesian Synthetic Likelihood” (2020), arxiv:2007.01485.

24. C. C. Drovandi, A. N. Pettitt, and A. Lee, “Bayesian Indirect Inference
Using a Parametric Auxiliary Model,” Statistical Science 30, no. 1 (2015):
72–95.

25. D. T. Frazier andC.Drovandi, “RobustApproximateBayesian Inference
With Synthetic Likelihood” (2020), arXiv:1904.04551.

26. A. B. Owen, Empirical Likelihood (London, UK: Chapman and Hall,
2001).

27. S. Chaudhuri and M. Ghosh, “Empirical Likelihood for Small Area
Estimation,” Biometrika 98 (2011): 473–480.

28. N. A. Lazar, “Bayesian Empirical Likelihood,” Biometrika 90 (2003):
319–326.

29. S. M. Schennach, “Bayesian Exponentially Tilted Empirical Likeli-
hood,” Biometrika 92, no. 1 (2005): 31–46.

30. C. Grazian and B. Liseo, “Approximate Bayesian Inference in Semi-
parametricCopulaModels,”BayesianAnalysis 12, no. 4 (2017): 991–1016.

31. S. Ghosh, S. Chaudhuri, and U. Gangopadhyay, “Maximum Like-
lihood Estimation Under Constraints: Singularities and Random Criti-
cal Points,” IEEE Transactions on Information Theory 69, no. 12 (2023):
7976–7997.

32. H. Haario, E. Saksman, and J. Tamminen, “An Adaptive Metropolis
Algorithm,” Bernoulli 7, no. 2 (2001): 223–242.

16 of 20 Statistical Analysis and Data Mining: The ASA Data Science Journal, 2024



33. S. Horvát, E. Czabarka, and Z. Toroczkai, “Reducing Degeneracy in
Maximum Entropy Models of Networks,” Physical Review Letters 114
(2015): 158701.

34. E. T. Jaynes, “Information Theory and Statistical Mechanics,” Physics
Review 106 (1957a): 620–630.

35. E. T. Jaynes, “Information Theory and Statistical Mechanics. II,”
Physics Review 108 (1957b): 171–190.

36. S. R. Lele, B. Dennis, and F. Lutscher, “Data Cloning: Easy Maximum
Likelihood Estimation for Complex Ecological Models Using Bayesian
MarkovChainMonteCarloMethods,”Ecology Letters 10 (2007): 551–563.

37. A. Doucet, S. Godsill, and C. Robert, “MarginalMaximum a Posteriori
Estimation Using Markov Chain Monte Carlo,” Statistics and Computing
12 (2002): 77–84.

38. C. Gouriéroux and A. Monfort, Simulation-Based Econometric Meth-
ods (Oxford, UK: Oxford University Press, 1996).

39. S. Chaudhuri, D.Mondal, andT. Yin, “HamiltonianMonteCarlo Sam-
pling in Bayesian Empirical Likelihood,” Journal of the Royal Statistical
Society, Series B 79 (2017): 293–320.

40. L. F. Kozachenko and N. N. Leonenko, “Sample Estimate of the
Entropy of a Random Vector,” Problemy Peredachi Informatsii 23, no. 2
(1987): 9–16.

41. T. B. Berrett, R. J. Samworth, and M. Yuan, “Efficient Multivariate
Entropy Estimation via 𝑘-Nearest NeighbourDistances,”Annals of Statis-
tics 47, no. 1 (2019): 288–318.

42. P. Hall and S. Morton, “On the Estimation of Entropy,” Annals of the
Institute of Statistical Mathematics 45 (1993): 69–88.

43. P. T. K. Cuc, “Empirical Likelihood, Classifiaction and Approximate
Bayesian Computation,” (PhD thesis, National University of Singapore,
2016).

44. T. Cover and J. Thomas, Elements of Information Theory (Hoboken,
New Jersey: Wiley, 2012).

45. J. Whittaker, Graphical Models in Applied Multivariate Statistics
(Chichester, UK: Wiley, 1990).

46. R. D’Agostino and M. A. Stephens, eds., Goodness of Fit Techniques
(New York: Marcel Dekker, 1986).

47. A. Gut, “On theMoment Problem,” Bernoulli 8, no. 3 (2002): 407–421.

48. C. W. Anderson and S. G. Coles, “The Largest Inclusions in a Piece of
Steel,” Extremes 5, no. 3 (2002): 237–252.

49. P. Bortot, S. Coles, and S. Sisson, “Inference for Stereological
Extremes,” Journal of the American Statistical Association 102, no. 477
(2007): 84–92.

50. R. Erhardt and S. A. Sisson, “Modelling Extremes Using Approximate
Bayesian Computation,” in Extreme Value Modelling and Risk Analysis:
Methods and Applications, eds. D. K. Dey and J. Yan (Boca Raton, Florida:
Chapman and Hall/CRC Press, 2015), 281–306.

51. K. C. Pham, D. J. Nott, and S. Chaudhuri, “A Note on Approximating
ABC-MCMC Using Flexible Classifiers,” Stat 3, no. 1 (2014): 218–227.

52. C. Faes, J. T. Ormerod, and M. P. Wand, “Variational Bayesian
Inference for Parametric and Nonparametric Regression With Missing
Data,” Journal of the American Statistical Association 106, no. 495 (2011):
959–971.

53. J. T. Ormerod and M. P. Wand, “Explaining Variational Approxima-
tion,” American Statistics 64, no. 2 (2010): 140–153.

Supporting Information

Additional supporting information can be found online in the Supporting
Information section.

Appendix A

Proofs of Results in Section

Proof of Theorem 1. The proof proceeds by expanding the Kullback–
Leibler divergence

𝐷KL[𝑞(𝜃, 𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜)]
when 𝑞(𝜃, 𝑠1) = 𝑞′(𝜃)𝑓0(𝑠1|𝜃).

For a 𝑓 ∈  , suppose 𝑓(𝑠𝑜) is the marginal distribution of 𝑠𝑜 . It is well
known that [52, 53] the so called log evidence, that is, log𝑓(𝑠𝑜) can be
expressed as:

log𝑓(𝑠𝑜) = 𝐷KL[𝑞(𝜃, 𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜))]
+ ∫ 𝑞(𝜃, 𝑠1) log

(
𝑓(𝜃, 𝑠1, 𝑠𝑜)

𝑞(𝜃, 𝑠1)

)
ds1 d𝜃 (A.1)

For the convenience of notation, for an 𝑓 ∈  we define:

𝑓′′(𝜃, 𝑠𝑜) =
exp

(
𝐸0

𝑠1|𝜃[log𝑓(𝜃, 𝑠1, 𝑠𝑜)]
)

∫ exp
(
𝐸0

𝑠1|𝑡[log𝑓(𝑡, 𝑠1, 𝑡
′)]

)
dtd𝑡′

,

𝑓′′(𝑠𝑜) = ∫ 𝑓′′(𝜃, 𝑠𝑜)d𝜃 and

𝑓′′(𝜃|𝑠𝑜) = 𝑓′′(𝜃, 𝑠𝑜)∕𝑓′′(𝑠𝑜)

By substituting the expression of 𝑞(𝜃, 𝑠1) ∈ ′ in (A.1) we get:

𝐷KL[𝑞(𝜃, 𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜)]
= log𝑓(𝑠𝑜) + ∫ 𝑞′(𝜃)𝑓0(𝑠1|𝜃) log𝑓0(𝑠1|𝜃)ds1d𝜃

− ∫ 𝑞′(𝜃)

{
∫ log𝑓(𝜃, 𝑠1, 𝑠𝑜)𝑓0(𝑠1|𝜃)ds1 − log 𝑞′(𝜃)

}
d𝜃

= log𝑓′′(𝑠𝑜) − ∫ 𝑞′(𝜃) log
⎛⎜⎜⎜⎝
exp

(
𝐸0

𝑠1|𝜃[log𝑓(𝜃, 𝑠1, 𝑠𝑜)]
)

𝑞′(𝜃)

⎞⎟⎟⎟⎠d𝜃
− ∫ 𝐻0

𝑠1 ∣𝜃
(𝜃)𝑞′(𝜃)d𝜃 + log

(
𝑓(𝑠𝑜)

𝑓′′(𝑠𝑜)

)
= log𝑓′′(𝑠𝑜) − ∫ 𝑞′(𝜃)

{
log

(
𝑓′′(𝜃, 𝑠𝑜)

𝑞′(𝜃)

)
− log∫ exp

(
𝐸0

𝑠1|𝑡[log𝑓
(
𝑡, 𝑠1, 𝑡

′
)])

dtd𝑡′
}
d𝜃

− ∫ 𝐻0
𝑠1 ∣𝜃

(𝜃)𝑞′(𝜃)d𝜃 + log
(

𝑓(𝑠𝑜)

𝑓′′(𝑠𝑜)

)
(A.2)

Similar to (A.1) one can show that:

log𝑓′′(𝑠𝑜) = ∫ 𝑞′(𝜃) log
(

𝑓′′(𝜃, 𝑠𝑜)

𝑞′(𝜃)

)
d𝜃 + 𝐷KL

[
𝑞′(𝜃)||𝑓′′(𝜃|𝑠𝑜)]

where second addendum is the Kullback–Leibler divergence between
the densities 𝑞′(𝜃) and 𝑓′′(𝜃|𝑠𝑜). Moreover, the third addendum in (A.2)
depends on the hyper-parameters of 𝜋(𝜃) and thus independent of 𝜃.
Suppose we denote 𝐶′ = log ∫ exp

(
𝐸0

𝑠1|𝑡[log𝑓(𝑡, 𝑠1, 𝑡
′)]

)
dtd𝑡′.

By substituting the above result in (A.2) and from (A.1) we get:

𝐷KL[𝑞(𝜃, 𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜)]
= log𝑓(𝑠𝑜) − ∫ 𝑞′(𝜃)𝑓0(𝑠1|𝜃) log

(
𝑓(𝜃, 𝑠1, 𝑠𝑜)

𝑞′(𝜃)𝑓0(𝑠1|𝜃)

)
ds1 d𝜃

= 𝐷KL
[
𝑞′(𝜃)||𝑓′′(𝜃|𝑠𝑜)] − ∫ 𝐻0

𝑠1 ∣𝜃
(𝜃)𝑞′(𝜃)d𝜃 − 𝐶′ + log

(
𝑓(𝑠𝑜)

𝑓′′(𝑠𝑜)

)
(A.3)
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Now by expanding the first two addenda in (A.3) we get:

𝐷KL
[
𝑞′(𝜃)||𝑓′′(𝜃|𝑠𝑜)] − ∫ 𝐻0

𝑠1 ∣𝜃
(𝜃)𝑞′(𝜃)d𝜃

= ∫ 𝑞′(𝜃)

{
log

(
𝑞′(𝜃)

𝑓′′(𝜃|𝑠𝑜)
)

− 𝐻0
𝑠1 ∣𝜃

(𝜃)

}
d𝜃

= ∫ 𝑞′(𝜃)

⎧⎪⎨⎪⎩log
⎛⎜⎜⎜⎝

𝑞′(𝜃)

𝑓′′(𝜃|𝑠𝑜)exp(𝐻0
𝑠1|𝜃(𝜃)

)⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭d𝜃

= ∫ 𝑞′(𝜃)

{
log

(
𝑞′(𝜃)

𝑓′(𝜃|𝑠𝑜)
)

−

(
log∫ 𝑓′′(𝑡|𝑠𝑜) exp(𝐻0

𝑠1|𝑡(𝑡)
)
dt
)}

d𝜃

(A.4)

The first addendum in (A.4) is the Kullback–Leibler divergence between
𝑞′ and 𝑓′(𝜃|𝑠𝑜). The second addendum is a function of 𝑠𝑜 and is indepen-
dent of 𝜃. By denoting it by 𝐶(𝑠𝑜) and collecting the terms from (A.3) and
(A.4) we get:

𝐷KL[𝑞(𝜃, 𝑠1)||𝑓(𝜃, 𝑠1|𝑠𝑜)]
= 𝐷KL

[
𝑞′(𝜃)||𝑓′(𝜃|𝑠𝑜)] − 𝐶(𝑠𝑜) − 𝐶′ + log

(
𝑓(𝑠𝑜)

𝑓′′(𝑠𝑜)

)
(A.5)

Note that, the R.H.S. of Equation (A.5) is non-negative for all 𝑞′ ∈ Θ.
Furthermore, only the first addendum depends on 𝑞′, which is also
non-negative, with equality holding iff 𝑞′(𝜃) = 𝑓′(𝜃|𝑠𝑜). This implies
the R.H.S. of (A.5) attains its minimum at 𝑞′(𝜃) = 𝑓′(𝜃|𝑠𝑜). So, it
clearly follows that the information projection of 𝑓(𝜃, 𝑠1|𝑠𝑜) is given by
𝑓′(𝜃|𝑠𝑜)𝑓0(𝑠1|𝜃). ◽

Proof of Theorem 2. From the LHS of 2 we get:

log𝑓(𝜃, 𝑠𝑜) −
{

𝐸0
𝑠1|𝜃[log𝑓(𝜃, 𝑠1, 𝑠𝑜)] + 𝐻0

𝑠1 ∣𝜃
(𝜃)

}
= log𝑓(𝜃, 𝑠𝑜) − ∫ 𝑓0(𝑠1|𝜃) log𝑓(𝑠1|𝑠𝑜, 𝜃)ds1

− ∫ 𝑓0(𝑠1|𝜃) log𝑓(𝜃, 𝑠𝑜)ds1 + 𝐻0
𝑠1 ∣𝜃

(𝜃)

= ∫ 𝑓0(𝑠1|𝜃) log
(

𝑓0(𝑠1|𝜃)

𝑓(𝑠1|𝑠𝑜, 𝜃)

)
ds1

= 𝐷KL[𝑓0(𝑠1|𝜃)||𝑓(𝑠1|𝑠𝑜, 𝜃)]

Rest of the theorem follows from above. ◽

Appendix B

Proofs of Results in Section 4.1

Proof of Lemma 1. We show that for every 𝜖 > 0, there exists 𝑛0 = 𝑛0(𝜖)

such that for any 𝑛 ≥ 𝑛0 for all 𝜃 ∈ Θ𝑛 the maximization problem in (5)
is feasible with probability larger than 1 − 𝜖.

By assumption, for each 𝜃, random vectors 𝜉(𝑛)
𝑖

(𝜃) are i.i.d., put positive
mass on each orthant and supremum of their lengths in each orthant
diverge to infinity with 𝑛. The random vectors

{
𝜉(𝑛)

𝑖
(𝜃) − 𝜉(𝑛)

𝑜 (𝜃𝑜)
}
will

inherit the same properties. That is, there exists integer 𝑛0, such that for
each 𝑛 ≥ 𝑛0, the convex hull of the vectors

{
𝜉(𝑛)

𝑖
(𝜃) − 𝜉(𝑛)

𝑜 (𝜃𝑜)
}
, 𝑖 = 1,… ,

𝑚(𝑛), would contain the unit sphere with probability larger than 1 − 𝜖∕2.

We choose an 𝑛 ≥ 𝑛0 and a 𝜃 ∈ Θ𝑛 . For this choice of 𝜃:

ℎ(𝑛)
𝑖 (𝜃, 𝜃𝑜) = 𝑏𝑛{𝔰(𝜃) − 𝔰(𝜃𝑜)} + 𝜉(𝑛)

𝑖
(𝜃) − 𝜉(𝑛)

𝑜 (𝜃𝑜)

= 𝑐𝑛(𝜃) + 𝜉(𝑛)
𝑖

(𝜃) − 𝜉(𝑛)
𝑜 (𝜃𝑜)

where, ||𝔰(𝜃) − 𝔰(𝜃𝑜)|| ≤ 𝑏−1
𝑛
. That is, ||𝑐𝑛(𝜃)|| ≤ 1. Now, since −𝑐𝑛(𝜃) is

in the convex hull of the vectors
{

𝜉(𝑛)
𝑖

(𝜃) − 𝜉(𝑛)
𝑜 (𝜃𝑜)

}
, 𝑖 = 1, … , 𝑚(𝑛),

with probability larger than 1 − 𝜀∕2, there exists weights 𝑤 ∈ Δ𝑚(𝑛)−1
such that,

−𝑐𝑛(𝜃) =

𝑚(𝑛)∑
𝑖=1

𝑤𝑖

{
𝜉(𝑛)

𝑖
(𝜃) − 𝜉(𝑛)

𝑜 (𝜃𝑜)
}

Now it follows that for the above choice of 𝑤 that

𝑚(𝑛)∑
𝑖=1

𝑤𝑖ℎ
(𝑛)
𝑖 (𝜃, 𝜃𝑜) = 𝑐𝑛(𝜃) +

𝑚(𝑛)∑
𝑖=1

𝑤𝑖

{
𝜉(𝑛)

𝑖
(𝜃) − 𝜉(𝑛)

𝑜 (𝜃𝑜)
}

= 0

which shows that the problem in (5) is feasible. ◽

Proof of Lemma 2. Let 𝜀 be as in the statement. By Assumption (A1), for
some 𝛿 > 0, ||𝔰(𝜃) − 𝔰(𝜃𝑜)|| > 𝛿 for all 𝜃 with ||𝜃 − 𝜃𝑜|| > 𝜖.

Consider 𝜂 > 0. We show that there exists 𝑛0 = 𝑛0(𝜂) such that for any
𝑛 ≥ 𝑛0, the constrained maximization problem in (5) is not feasible for
all ||𝜃 − 𝜃𝑜|| > 𝜖, with probability larger than 1 − 𝜂.

Let if possible 𝑤 ∈ Δ𝑚(𝑛)−1 be a feasible solution. Hence we get:

0 =

𝑚(𝑛)∑
𝑖=1

𝑤𝑖ℎ
(𝑛)
𝑖 (𝜃, 𝜃𝑜) =

𝑚(𝑛)∑
𝑖=1

𝑤𝑖

{
𝑠
(
𝑋(𝑛)

𝑖
(𝜃)

)
− 𝑠

(
𝑋(𝑛)

𝑜 (𝜃𝑜)
)}

=
{
𝔰(𝑛)(𝜃) − 𝔰(𝑛)(𝜃𝑜)

}
+

{
𝑚(𝑛)∑
𝑖=1

𝑤𝑖𝜉
(𝑛)
𝑖

(𝜃)

}
− 𝜉(𝑛)

𝑜 (𝜃𝑜)

so that

−𝑏𝑛{𝔰(𝜃) − 𝔰(𝜃𝑜) + 𝑜(1)} =

𝑚(𝑛)∑
𝑖=1

𝑤𝑖𝜉
(𝑛)
𝑖

(𝜃) − 𝜉(𝑛)
𝑜 (𝜃𝑜)

By dividing both sides by 𝑏𝑛 we get:

− {𝔰(𝜃) − 𝔰(𝜃𝑜)} =

𝑚(𝑛)∑
𝑖=1

𝑤𝑖

{
𝜉(𝑛)

𝑖
(𝜃)

𝑏𝑛

−
𝜉(𝑛)

𝑜 (𝜃𝑜)

𝑏𝑛

}
− 𝑜(1) (B.1)

Now, ||𝜉(𝑛)
𝑜 (𝜃𝑜)||∕𝑏𝑛 ≤ sup𝑖∈{𝑜,1,2… ,𝑚(𝑛)} ||𝜉(𝑛)

𝑜 (𝜃𝑜)||∕𝑏𝑛 and

||||||
||||||
𝑚(𝑛)∑
𝑖=1

𝑤𝑖

𝜉(𝑛)
𝑖

(𝜃)

𝑏𝑛

||||||
|||||| ≤

𝑚(𝑛)∑
𝑖=1

𝑤𝑖

||𝜉(𝑛)
𝑖

(𝜃)||
𝑏𝑛

≤ sup
𝑖∈{𝑜,1,2,… ,𝑚(𝑛)}

||𝜉(𝑛)
𝑖

(𝜃)||
𝑏𝑛

That is, by Assumption (A3), there exists 𝑛0(𝜂) such that for any 𝑛 ≥ 𝑛0,
the RHS of (B.1) is less than 𝛿 for all 𝜃 ∈ 𝐵(𝜃𝑜, 𝜖), with probability larger
than 1 − 𝜂. However, ||𝔰(𝜃) − 𝔰(𝜃𝑜)|| > 𝛿. We arrive at a contradiction.
Thus the problem is infeasible for every 𝜃 ∈ 𝐵(𝜃𝑜, 𝜖)

𝐶 with probability
larger than 1 − 𝜂. ◽

Proof of Theorem 4. Let 𝑔(𝜃) be a continuous, bounded function. We
choose an 𝜖 > 0. Then by Lemma 2, there exists 𝑛(𝜖), such that for any
𝑛 > 𝑛(𝜖) and 𝜃 ∈ 𝐵(𝜃𝑜, 𝜖)

𝐶 , 𝑙𝑛(𝜃) = 0 and by definition (6) the posterior
Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜))) = 0. That is for any 𝑛 > 𝑛(𝜖),

∫Θ

𝑔(𝜃)Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜)))d𝜃 = ∫𝐵(𝜃𝑜 ,𝜖)

𝑔(𝜃)Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜)))d𝜃

= ∫𝐵(𝜃𝑜 ,𝜖)

{𝑔(𝜃) − 𝑔(𝜃𝑜)}Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜)))d𝜃

+ 𝑔(𝜃𝑜)∫𝐵(𝜃𝑜 ,𝜖)

Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜)))d𝜃

Since the function 𝑔(𝜃) is bounded and continuous at 𝜃𝑜 , the first term is
negligible. Furthermore, ∫

𝐵(𝜃𝑜 ,𝜖)
Π̂𝑛(𝜃|𝑠(𝑋𝑜(𝜃𝑜)))d𝜃 = 1. This implies the
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integral converges to 𝑔(𝜃𝑜). This shows, the posterior converges weakly
to 𝛿𝜃𝑜

. ◽

Appendix C

Details of the Remarks in Section 4.2

Using the notations introduced above, when 𝑟 = 1, that is, there is only
one constraint present, under conditions similar to those described above,
it can be shown that, [31, Theorem 3.4] for any 𝜃 ∈ Θ:

𝑙𝑚(𝜃) ≔ 1
𝑚

𝑚∑
𝑖=1

log(𝑤̂(𝜃))

= −
1

𝑚(𝜃)

||||𝐸𝑠
(
𝑋(𝑛)
1 (𝜃)

)
∣𝜃

[
𝑠
(
𝑋(𝑛)
1 (𝜃)

)]
−

[
𝑠
(
𝑋(𝑛)

𝑜 (𝜃𝑜)
)]||||(1 + 𝑜𝑝(1)

)
= −

𝑏𝑛

𝑚(𝜃)

|||||(𝔰(𝜃) − 𝔰(𝜃𝑜) + 𝑜(1)) −
𝜉(𝑛)

𝑜 (𝜃𝑜)

𝑏𝑛

|||||(1 + 𝑜𝑝(1)
)

(C.1)

Details of Remark 1. In order to ensure the first condition, suppose
𝜃 ≠ 𝜃𝑜 , and as 𝑚, 𝑛 → ∞, and in (C.1), 𝑏𝑛∕𝑚(𝜃) diverges. Since
by assumption (A3), as 𝑚, 𝑛 → ∞, sup𝑖∈{𝑜,1,2, … ,𝑚} ∣ 𝜉(𝑛)

𝑜 (𝜃𝑜) ∣ ∕𝑏𝑛

→ 0, in probability, uniformly over 𝜃, and by assumption (A1),||𝔰(𝜃) − 𝔰(𝜃𝑜)|| > 0, for each 𝜃 ≠ 𝜃𝑜 , the R.H.S. of (C.1) diverges to
−∞. So exp(𝑙𝑚(𝜃)) converges to zero. That is, an upper bound of the
rate of growth of 𝑚 can thus be obtained by inverting the relation
𝑏𝑛 > 𝑚(𝜃).

Depending on the distribution of 𝜉(𝑛)
𝑜 , 𝑚 can be much larger than 𝑛. For

example, if 𝜉(𝑛)
𝑜 follows a normal distribution with mean zero and vari-

ance 𝜎2
𝑜
, 𝑏𝑛 =

√
𝑛 and𝑚(𝜃) is of the order 𝜎𝑜

√
2 log(𝑚), which allows

an upper bound of𝑚 as large as exp
(
𝑛∕

(
2𝜎2

𝑜

))
.

Details of Remark 2. Similar to the argument for the upper bound, for
Bayesian consistency 𝑙𝑚(𝜃𝑜) cannot diverge to−∞. There exists a constant
𝐶1 > 0 such that, 𝑙𝑚(𝜃) > −𝐶1 with a high probability.

For (13), it follows that when 𝜃 = 𝜃𝑜 :

𝑙𝑚(𝜃𝑜) = −
∣ 𝜉(𝑛)

𝑜 (𝜃𝑜) ∣

𝑚(𝜃𝑜)

(
1 + 𝑜𝑝(1)

)
(C.2)

For simplicity of presentation, we also suppose 𝜉(𝑛)
𝑜 (𝜃𝑜) is a 𝑁

(
0, 𝜎2

𝑜

)
variable.

For a fixed 𝐶1 > 0, we first compute Pr[𝑙𝑚(𝜃𝑜) ≤ −𝐶1]. Using the tail
bound for a 𝑁

(
0, 𝜎2

𝑜

)
random variables we get,

Pr[𝑙𝑚(𝜃𝑜) ≤ −𝐶1] = Pr
⎡⎢⎢⎣−

|||𝜉(𝑛)
𝑜 (𝜃𝑜)

|||
𝑚(𝜃𝑜)

(
1 + 𝑜𝑝(1)

) ≤ −𝐶1

⎤⎥⎥⎦
= Pr

[|||𝜉(𝑛)
𝑜 (𝜃𝑜)

||| ≥ 𝐶1
𝑚(𝜃𝑜)

1 + 𝑜𝑝(1)

]

≤ exp

(
−
1
2

(
𝐶1𝑚(𝜃𝑜)

𝜎𝑜

)2
)

(C.3)

Since 𝜉(𝑛)
𝑜 (𝜃𝑜) is normally distributed, 𝑚(𝜃𝑜) = 𝜎𝑜

√
2 log𝑚, diverges

as 𝑚 → ∞. So the R.H.S. of (C.3) converges to zero. That is, for any
𝐶1 > 0, Pr[𝑙𝑚(𝜃𝑜) ≤ −𝐶1] converges to zero. Furthermore, by substituting
the expression for𝑚(𝜃𝑜) in (C.3) we get:

Pr[𝑙𝑚(𝜃𝑜) ≤ −𝐶1] ≤ exp
(
−𝐶2

1 log𝑚
)

=
1

𝑚𝐶2
1

(C.4)

Now as before by setting 𝑝𝑛 = 𝑚−𝐶2
1 , we get 𝑚 = 𝑝

−1∕𝐶2
1

𝑛 . In particular, if
𝑝𝑛 = 𝑛−𝛼 ,𝑚 = 𝑛𝛼∕𝐶2

1 .

Details of Remark 3. The likelihood ratio statistic for testing the null
hypothesis of 𝜃 = 𝜃𝑜 against the unrestricted alternative is given by:

LR(𝜃𝑜) =
exp(𝑙𝑚(𝜃𝑜))

max𝑤∈Δ𝑚−1
exp

(∑𝑚
𝑖=1 log(𝑤𝑖)∕𝑚

)
Clearly, the maximum value the denominator attains is, 1∕𝑚. So the
log-likelihood ratio logLR(𝜃𝑜) turns out to be 𝑙𝑚(𝜃𝑜) + log𝑚.

The test rejects 𝐻0 if logLR(𝜃𝑜) is smaller than log𝐶0, for some
pre-specified 𝐶0 ∈ (0, 1). Ideally, 𝐶0 should be a function of 𝑚. However,
at this point we assume 𝐶0 to be fixed.

Using (13), the probability of rejecting the null hypothesis is given by:

Pr[log𝑚 + 𝑙𝑚(𝜃𝑜) ≤ log𝐶0] = Pr[𝑙𝑚(𝜃𝑜) ≤ log𝐶0 − log𝑚]

= Pr
[
−

1
𝑚(𝜃𝑜)

|||𝜉(𝑛)
𝑜 (𝜃𝑜) + 𝑜(1)|||(1 + 𝑜(1)) ≤ log

(
𝐶0

𝑚

)]
= Pr

[|||𝜉(𝑛)
𝑜 (𝜃𝑜) + 𝑜(1)|||(1 + 𝑜(1)) ≥ −𝑚(𝜃𝑜) log

(
𝐶0

𝑚

)]
Now Suppose that 𝜉(𝑛)(𝜃) is a 𝑁

(
0, 𝜎20

)
random variable. Using the tail

bounds for a normal distribution, we get:

Pr
[|||𝜉(𝑛)

𝑜 (𝜃𝑜) + 𝑜(1)|||(1 + 𝑜(1)) ≥ −𝑚(𝜃𝑜) log
(

𝐶0

𝑚

)]
≤ exp

(
−

1
2𝜎2

𝑜

{
𝑚(𝜃𝑜) log

(
𝐶0

𝑚

)}2
)

(C.5)

By substituting 𝑚(𝜃𝑜) = 𝜎𝑜

√
2 log𝑚 in the exponent of the above

expression we get:

1
2𝜎2

𝑜

{
𝑚(𝜃𝑜) log

(
𝐶0

𝑚

)}2

= (log𝑚)(log𝐶0 − log𝑚)2

= (log𝑚)3 − 2(log𝑚)2 log𝐶0

+ (log𝑚)(log𝐶0)
2

Clearly, the (log𝑚)3 term dominates and the probability of rejecting the
null hypothesis decreases at the rate of exp

(
−(log𝑚)3

)
. This is true even

if 𝐶0 increases to one with increasing 𝑚 at a suitable rate.

Finally, in order to describe some relationship between 𝑚 and 𝑛, sup-
pose we would like to ensure, that the probability of rejecting the
null hypothesis reduces at the rate of 𝑝𝑛 . Then it follows that the
number of replications required to ensure such a rate is of the order
𝑚 = exp

(
(− log𝑝𝑛)

1∕3
)
.

Details of Remark 4. Let us fix 𝜃 ≠ 𝜃𝑜 and suppose 𝜉(𝑛)
𝑜 (𝜃𝑜) follows a

𝑁
(
0, 𝜎2

𝑜

)
distribution. Then for a fixed 𝐶2 > 0, it can be shown that:

Pr[𝑙𝑚(𝜃) ≤ −𝐶2]

≤ Pr
[|||𝜉(𝑛)

𝑜 (𝜃𝑜)
||| ≥ 𝑚(𝜃)

{
𝐶2 −

𝑏𝑛

𝑚(𝜃)
||𝔰(𝜃) − 𝔰(𝜃𝑜)

||}]
≤ exp

[
−

(𝑚(𝜃))
2

2𝜎2
𝑜

{
𝐶2 −

𝑏𝑛

𝑚(𝜃)
||𝔰(𝜃) − 𝔰(𝜃𝑜)

||}2
]

(C.6)

Now by substituting𝑚(𝜃) = 𝜎𝑜

√
2 log𝑚 we get:

Pr[𝑙𝑚(𝜃) ≤ −𝐶2] ≤
( 1

𝑚

){
𝐶2−

𝑏𝑛

𝜎𝑜
√
2 log𝑚

|𝔰(𝜃)−𝔰(𝜃𝑜)|}2

(C.7)

Now, if 𝑚(𝜃)∕𝑏𝑛 = 𝜎𝑜

√
2 log𝑚∕𝑏𝑛 diverges with 𝑚 and 𝑛, clearly, for

large values of 𝑚 and 𝑛, Pr[𝑙𝑚(𝜃) ≤ −𝐶2] ≈ 𝑚−𝐶2
2 . That is, for any fixed
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𝐶2 > 0 and 𝜃 ≠ 𝜃𝑜 , 𝑙𝑚(𝜃) ≥ −𝐶2 with a high probability, and exp(𝑙𝑚(𝜃))
does not collapse to zero with a high probability.

Furthermore, for a fixed 𝑛, R.H.S. of (C.7) is a decreasing function in
𝑚. That is if the sample size is kept fixed, increasing the number of
replications will increase the probability of 𝑙𝑚(𝜃) ≥ −𝐶2. As a result,
the log-likelihood will be flatter in shape. Note that, from (C.1), it is
clear that the variance of the expected log likelihood gets reduced as
𝑚 increases. This explains a bias-variance trade-off in the choice of 𝑚.
Such phenomenon is evident from Figure 3, where the curve joining
the means of the proposed estimated log posterior progressively flattens
with the number of replications. The argument above provides a formal
explanation of the phenomenon.
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