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ABSTRACT

Approximate Bayesian computation (ABC) methods are applicable to statistical models specified by generative processes with
analytically intractable likelihoods. These methods try to approximate the posterior density of a model parameter by comparing
the observed data with additional process-generated simulated data sets. For computational benefit, only the values of certain
well-chosen summary statistics are usually compared, instead of the whole data set. Most ABC procedures are computation-
ally expensive, justified only heuristically, and have poor asymptotic properties. In this article, we introduce a new empirical
likelihood-based approach to the ABC paradigm called ABCel. The proposed procedure is computationally tractable and approx-
imates the target log posterior of the parameter as a sum of two functions of the data—namely, the mean of the optimal
log-empirical likelihood weights and the estimated differential entropy of the summary functions. We rigorously justify the proce-
dure via direct and reverse information projections onto appropriate classes of probability densities. Past applications of empirical
likelihood in ABC demanded constraints based on analytically tractable estimating functions that involve both the data and the
parameter; although by the nature of the ABC problem such functions may not be available in general. In contrast, we use con-
straints that are functions of the summary statistics only. Equally importantly, we show that our construction directly connects
to the reverse information projection and estimate the relevant differential entropy by a k-NN estimator. We show that ABCel is
posterior consistent and has highly favorable asymptotic properties. Its construction justifies the use of simple summary statistics
like moments, quantiles, and so forth, which in practice produce accurate approximation of the posterior density. We illustrate the
performance of the proposed procedure in a range of applications.

| Introduction are often specified by a generative process, in the sense that

The concept of likelihood is central to parametric statistical
inference. However, for many models encountered in natural,
engineering, and environmental sciences, tractable analytic
forms of their likelihoods are not available. These models

independent samples can be generated from them for any input
value of the model parameters. Approximate Bayesian compu-
tation (ABC) methods [1-8] are useful for Bayesian inference
for models like these. Given the observed data, their objective
is to estimate the posterior density of the parameters associated
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with the data generating process without specifying a functional
relationship between those parameters and the data.

In this article, we introduce a new modified empirical likelihood-
based approach to the ABC problem that we call ABCel. Along
the line of the traditional ABC procedures, it assumes the avail-
ability of the observed data and the ability to generate indepen-
dent and identically distributed data sets of the same size from
the generating process for any given value of the parameter of
interest. In particular compared to the empirical likelihood-based
BC,; — AMIS algorithm [5] our method does not require specifi-
cations of estimating equations depending both on the observed
data and the parameters, which are typically unavailable. The
estimating equations are specified by the differences in the val-
ues of the appropriate summary statistics of the observed and
the replicated data sets. These equations form natural constraints
for our proposed modified empirical likelihood without directly
involving the parameters. ABCel can be rigorously justified using
various information projections and basic principles of Bayesian
statistics. Furthermore, ABCel exhibits many favorable asymp-
totic properties and is computationally tractable.

Because of their potential application to complex models, ABC
methods have generated immense interest in statistics. Suppose
X, = (X1, X 5, - »X,,)" is the vector of observations of length n,
simulated from the “black box” (aka the data generating process)
with an unknown input 6,. Let the parameter 6 take value in the
set ©® and we assign a prior 77(8) on this set. We want to approx-
imate the posterior II(6|X,) and estimate 6, from that posterior.
The inference is based on additional data sets replicated from the
black box for various input parameters 8 € ©.

The ABC procedures proposed in the literature can be classified
into two broad groups. The first one tries to estimate the posterior
directly, and the second one attempts to estimate the density of X,
given 6 from the replicates.

1.1 | Direct Estimation of the True Posterior

The Rejection ABC procedures try to sample from the parameter
posterior directly. The basic ABC algorithm goes through the fol-
lowing steps:

1: Generate 6 from 7(0).

2: Simulate X; = (X, ...

parameter 6.

if X, = X, then
Accept 6.

end if

Return to Step 1.

,X;,) from the black box with

AN AN 2

It is undeniable that at least hypothetically, the above algorithm
provides a sample from the target posterior, from which inference
about 6, can be drawn. However, for continuous random vari-
ables the probability that X, = X is zero. So the above algorithm
cannot be used as it is in most applications. Furthermore, due to
the curse of dimensionality, an exact match of the data, even in
discrete cases might be difficult to achieve. That is direct approxi-
mation of I1(6|X,) may be computationally cumbersome [9]. The

acceptance rate of the test values of 8 might be minuscule, reduc-
ing the computational efficiency of the procedure significantly.

In order to avoid the above pitfalls an approximate posterior is
sampled from. The steps of this simple rejection algorithm are as
follows:

1: Choose a small tolerance ¢ > 0, a distance function d,
and a vector of summary statistics s(-).
2:  Generate 0 from 7 (6).

3: Simulate X, = (X3, ... ,X;,) from the black box with
parameter 6.

4: ifd(s(X,),s(X;)) < € then

5: Accept 6

6: endif

7: Return to Step 2.

Even though attractive at first glance, and in spite of the availabil-
ity of sophisticated and efficient sampling algorithms [10-12]
with improved efficiency, the simple rejection algorithm
described above has several shortcomings. First of all, instead of
the full data, a vector of summary statistics are compared. That
is, samples are actually drawn from II(0|s(X,)). If s(-) is suffi-
cient for 6, which of course cannot be determined, the posterior
given X, is the same as the posterior given s(X,). However, for
non-sufficient s(-) they may not be the same.

More crucially, the accuracy of the posterior approximation
depends heavily on the value of the pre-specified tolerance.
Clearly, small tolerances are preferred, but they are computa-
tionally prohibitive. The same curse of dimensionality prevents
the use of high-dimensional summary statistics. Available results
(e.g., Frazier et al. [13], Li and Fearnhead [14], Li and Fearnhead
[15], Miller and Dunson [16], Bernton et al. [17]) show that,
unless the pre-specified tolerance satisfies certain conditions
which depend both on the summary statistics as well as the
specified distance function (Miller and Dunson [16]; Bernton
et al. [17]), the resulting rejection ABC posteriors may not
have desirable asymptotic properties (e.g., Bayesian consistency,
correct asymptotic frequentist coverage of credible intervals).
Even though the posterior obtained from the simple rejection
ABC is often considered to be the “gold standard” in the lit-
erature, Frazier et al. [13] argue that the connection between
the exact posterior and the rejection ABC approximate could be
quite remote. We refer to Robert [18] for a more detailed and
succinct discussion of the possible pitfalls of the rejection ABC
procedures.

1.2 | Methods Based on Density Estimation

Alternatives to the rejection-based ABC are provided by the
so-called pseudo-likelihood methods. For each value of the param-
eter, these methods attempt to estimate the likelihood of the
observed summaries, from observations simulated from the data
generating process. One of the most popular pseudo-likelihood
method is the synthetic likelihood introduced by Wood [8]. Here,
in order to compute the likelihood, the summary statistics are
assumed to be approximately jointly distributed as a multivariate
normal random vector. Their mean and the covariance matrix
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vary with the parameter and are estimated using the summaries
simulated from the data generating process (see Price et al. [19]).
Synthetic likelihood does not perform well when the normal
approximations of the summary statistics are inaccurate. This
happens, for example, when extreme values of the observations
are used as summaries, or often when the process generates
data vectors with dependent components, for example, from
a time series, and so forth. In such cases, even well-chosen
marginal transformations [8] usually cannot ensure the validity
of the normal approximation over the whole parameter space.
Extensions that relax the requirement of normality have been a
continuous topic of interest for many researchers in this area.
Fasiolo et al. [20] consider an extended saddle-point approxi-
mation, whereas Dutta et al. [21] proposes a method based on
logistic regression. By making use of various transformations An,
Nott, and Drovandi [22] and Priddle and Drovandi [23] consider
semi-parametric extensions of synthetic likelihood. Drovandi,
Pettitt, and Lee [24] describe an encompassing framework for
many of the above suggestions, which they call parametric
Bayesian indirect inference. Frazier and Drovandi [25] have
recently proposed a robustified version of synthetic likelihood
that is able to detect and provide some degree of robustness to
misspecification.

1.3 | An Empirical Likelihood Based Method

The BC, — AMIS procedure introduced by Mengersen, Pudlo,
and Robert [5] is pseudo-likelihood based, where the intractable
data likelihood is replaced by a non-parametric empirical like-
lihood [26]. This procedure follows the traditional Bayesian
empirical likelihood (BayesEL) procedures [27, 28] and spec-
ifies the likelihood from the jumps of the joint empirical
distribution function of the data computed under appropriate
constraints.

In particular they assumed that X, ..., X, are i.i.d and a set
of constraints of the form E[h(X,,0)] =0, Vi=1, .. ,n are
available. Here the expectation is taken w.r.t. the unknown true
distribution. An empirical likelihood can then be calculated by

re-weighting the data by weights given by:

n
W = argmax,ey, I Iwi, where
i=1

W, = {w Y wh(X,,6) = 0} nA,_,
i=1

Empirical likelihood does not require the summaries to be
approximately normal. However, the BC, — AMIS procedure
typically requires constraints based on analytically tractable
estimating functions of both the data and the parameters. By
the nature of the ABC problem, such functions are not readily
available, and thus, the proposed BC,; — AMIS algorithm is not
always easy to implement in practice. The exponentially tilted
empirical likelihood [29] based ABC proposed by Grazian and
Liseo [30] suffers from similar problems.

The proposed paradigm of ABCel, which is essentially a modified
empirical likelihood-based method, neither uses any tolerance
parameter nor assume any specific form of a pseudo-likelihood.

It first finds an analytic expression of an approximation of the
target posterior. This expression is then used to approximate the
data density and obtain an optimal approximate of the target.

1.4 | The Proposed ABCel

The proposed ABCel procedure operates directly on the set of
densities and estimates the posterior by using only the simple
known properties of the data generating process. In particular,
it only assumes that given the parameter 6, the generated sum-
maries are independent and identically distributed.

For an input value 6, let s, be one replicated summary gener-
ated from the data generating process. Furthermore suppose that
fo(6,5;,5,)1s the true joint density of (8, sy, 5,). Clearly, our target
is the posterior density f,(8]s,). The conditional independence of
s, and s, given 6 implies that the true conditional density of (6, s,)
given s, can be factored as f(6, s;1s,) = f,(s116)I1(E]s,). Thus, in
order to approximate the posterior, we first consider a joint den-
sity f(6, s, s,) and project the corresponding conditional density
f(6,s,1s,) on a set of densities of the form f,(s;|0)q(6), where
q(0) varies over all densities defined on ©. Once the projection
fo(s116)g* () is determined, g*(6) is the required approximation
of I1(6[s,). The main result of Section 3.1 is that g*(6) obtained
from a direct information projection of f(8,s,]|s,) has a closed
form (Theorem 1). In particular, the result shows that the log
numerator of the optimal g*(8) is the sum of the true expecta-
tion of the log-joint density log f(6, s;,s,) W.r.t. f,(s;16) and the
true differential entropy of the density f,(s;|6).

It is not difficult to argue that the optimal g*(8) obtained from
the true joint density f,(6, s1,s,) is indeed I1(6|s,). The approx-
imate true posterior is by applying Theorem 1 on an estimate
of fy(6,s,,s,) obtained from a reverse-information projection
(i.e., m-projection) over a subset of the joint densities defined
on (6, s;,5,). This subset is primarily determined by the second
known property of the data-generating process, namely, the
conditional marginal densities of s, give 6 is identical to the
conditional marginal density of s; given 6.

Finally we show that the proposed empirical likelihood estimator
follows the above recipe in the sample. For the summary statistics
which can identify the underlying density, for example, quan-
tiles, moments, and so forth, constraints on the empirical likeli-
hood approximately ensure the required match of the conditional
marginal likelihoods. Moreover, the empirical likelihood is com-
puted by maximizing over a vast class of non-parametrically spec-
ified likelihoods. That is, the proposed ABCel approximates the
true joint likelihood well by satisfying the basic assumptions on
the data-generating process.

The proposed posterior has many favorable properties. Asymptot-
ically, under mild conditions, the proposed posterior is Bayesian
and posterior consistent for the true value of the parameter
when both the sample size and the number of replications grow
unbounded (Section 4). We invoke the results from Ghosh,
Chaudhuri, Gangopadhyay [31], to further explore its properties
when the number of replications increases, but the sample size
is held fixed (Section 4.2).
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Finally, perhaps the biggest advantage of our procedure is its
easy implementation. In order to compute the likelihood, a
user only needs to specify an appropriate set of summary statis-
tics and the number of replications to be simulated for each
value of the parameter. For the estimation of the differential
entropy, the order of the percentile (see Section 2.3) has to be
chosen. Unlike many ABC procedures, no other parameters
tuning or otherwise are either need to be specified or estimated.
Moreover, both the empirical likelihood and the proposed
differential entropy estimator can be computed using a fast
algorithm implemented in multiple software. An easy adaptive
Markov chain Monte Carlo procedure due to Haario, Saks-
man, and Tamminen [32] can be adapted to efficiently sample
from the resulting posterior (see Section E of the Supporting
Information).

2 | ABC Empirical Likelihood Posterior

In this section, we introduce the basic ideas of the proposed ABC
empirical likelihood (ABCel) posterior. A modified empirical
likelihood-based method which only depends on the observed
data and replicated data simulated from the generating process is
described. One part of the ABCel posterior is constructed using
this likelihood. The other part is an estimate of a differential
entropy, which is computed using a non-parametric Euclidean
likelihood. We only describe the motivation and computation of
ABCel posterior in this section. The justification of the procedure
is presented in the subsequent sections.

21 | Setup

Let 6 be the input parameter of the data generating process. We
assume O takes values in a set © and assign a prior 7(9) to it. For
any given value 6 € O, the process generates i.i.d. n-dimensional
random vectors from an unknown density depending on param-
eter 6. Since the density of the same random variable would
change with the value of the parameter, we make their connec-
tion explicit in the notation. As for example, the observed data x,
is a realization of the random variable X (6,), that is, the random
variable X, (0) generated from the process with 6 = 6,,. Addition-
ally, for each 6 € O, realizations from m i.i.d. replicated random
variables X;(0), i =1, 2, ..., m are drawn from the process with
input parameter value 6. That is in total, we consider a set of
n-dimensional random vectors {X;(0),i € M,,0 € ®}, where
M, = {o} UN, that is, the set of positive integers appended with
the symbol o. By construction, conditional on 8, {X;(6),i € M,}
are independent and identically distributed.

The true density f,(X,(6)|0) is unknown, which prevents
computation of the exact posterior IT(6|X )II(6|X,(6) = x,) x
fo(x,16)7(0). The problem is to approximate the posterior using
the observation x, and the replications X;(6),i =1, 2, ..., m.

As we have noted before due to the curse of dimensionality direct
approximation of II(6|X,) may be computationally cumbersome
[9]. Thus in most ABC applications inference on 6 is drawn using
a posterior conditional on r X 1 vector s(-) of summary statistics
of the observations.

Suppose that for a given 6 € ©, s(X(0)) inherits a density
fo(s(X(6))|0) from X(0). Using the summaries s(X;(0)), i € M,,
most ABC procedures estimate the target posterior

Jo(5(x,)10)7(6)
I fols(xp)l)m(t)dt

TI(Bs(X,NTI(6]5(X,(8)) = s5(x,)) = @

2.2 | Construction of ABCel Posterior

The ABCel posterior is based on the following observation.
Suppose 6 = 6,. Then by construction, the random variables
5(X,(6,)), s(X1(0)), ..., s(X,,(0)) are identically distributed. Now
if Egl 6 denotes the expectation w.r.t f,(s(X;(6,))|6,), then for any
i=1,..,m,

Eglea [s(X;(6,)) — s(X,(6,))] =0 @

The proposed empirical likelihood estimator of the posterior con-
sists of two parts. The first is an empirical likelihood which is
constructed using constraints based on the expectation in (2). For
any 6 € @ and for each i =1, 2, ..., m, define

h;(6) = s(X;(8)) — 5(X,(8,)) 3)

and the random set:
W, = {w 2 Y wsC6(0)) - s(X,(6,))] = o} N, @)
i=1

where A,,,_, is the m — 1 dimensional simplex.

‘We define the optimal weights w as:

W = W(0) = arg max<Hmwi> (%)

weWs  \i=1

If the problem in (5) is infeasible, w is defined to be zero. These
optimal weights are used in the first part of the posterior estimate.

The second part requires an estimate of the differential entropy
Hfle(e) of fy(-|6) at the input 6 € ©, which is defined by,

Hgle(e) = — [ fo(s16)log f(s|6)ds. Let, H‘jl@(e) is an estimate of
HSI e(@) (see Section 2.3 below for details).

By using this estimate and the optimal v) we define ABC empirical
likelihood (ABCel) estimate of the required posterior as,

. R 0
[e( iym logwi<e>>+Hs.s<9>)] 7(6)

N©1s(X,)) = (6)

1ym 5. A0
AN KEST )

When []",w; = 0, we define TI(8]s(X,)) = 0.

The empirical likelihood used in (6) is different from the original
Bayesian empirical likelihood (BayesEL) posterior [27, 28] and
the previous use of Bayesian empirical likelihood in an ABC set-
ting [5] in two ways. First, instead of the sum, it uses the mean of
the log-weights. This is significant in several ways (see below) and
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can be justified by an information projection argument described
in Section 3.1.

The second aspect is our choice of the constraints, which is
probably more significant. Usual BayesEL formulations (as in
Mengersen, Pudlo, and Robert [5]) would have used constraints
which are functions of s(X,) and 6. Such estimating equations are
not necessarily known in an ABC problem. In our formulation,
we avoid such specifications using constraints based on s(X,) and
the replicated summaries s(X;), i =1, 2, ..., m. The summaries
in (3) are routinely used in Exponential Random Graph Models
(ERGM) literature [33]; however, the weights are obtained by
maximizing the entropy [34, 35] instead of a likelihood as in (5)
above. This is equivalent to maximizing a cross-entropy term
(see (12)). Unlike the rejection ABC, we do not need to specify
any distance function or any tolerance parameter.

From the formulation of the constraints, the optimal weights
in (5) define a constrained joint-conditional empirical distri-
bution function supported on m observations (s(X;(6)),s(x,))
given 6. This is somewhat similar to the data-replication meth-
ods, discussed in Lele, Dennis, and Lutscher [36] and Doucet,
Godsill, and Robert [37] (see also Gouriéroux and Monfort [38]).
More importantly, as we argue in Section 3.3 below, for sim-
ple choices of summary our constraints ensure that the above
joint-conditional f(s(X;(6)),s(X,(6))|0) is estimated by approx-
imately equating the underlying marginal conditional densities
f(X;(0)16) and f(X,(0)]0) of X;(0) and X, (6) respectively, which
provides an argument in favor of the optimality of our procedure.

No analytic expression for the proposed ABCel posterior exists
in general. By construction, each w; is bounded for all values 6.
All components of @ in (5) and the ABCel posterior are strictly
positive iff the origin of R" is in the interior of the convex hull
defined by the vectors h,, h,, ..., h,,. Otherwise the ABCel
posterior would be zero (even though in the boundary of the
above convex hull, the constrained optimization in (5) is still
feasible). It is well-known (see, e.g., Chaudhuri, Mondal, and
Yin [39]) that the supports of the Bayesian empirical likelihood
(BayesEL) posteriors are in general non-convex. It is expected
that the proposed ABCel posterior will suffer from the same
deficiency as well. However, as we discuss below (see Section 5)
the non-convexity of the support does not make the proposed
ABCel posterior computationally expensive. One can devise easy
Markov chain Monte Carlo (MCMC) techniques to draw samples
from this posterior at a reasonable computational cost. Such
samples are enough for making posterior inference.

Finally, the proposed method is more general than the synthetic
likelihood [8]. The latter assumes normality of the joint distri-
bution of the summary statistics. Even though many summary
statistics are asymptotically normally distributed, this is not
always the case. This is especially true if the process generates
dependent data sets, for example, a time series, spatial data, and
so forth. In such cases, the synthetic likelihood can perform
quite poorly (see, e.g., Section 6.2 below). Some relaxation of
normality has been proposed by various authors, but many of
these procedures require specification or estimation of additional
tuning parameters. In our empirical likelihood approximation,
we only require the observed data and simulated data from the
generating process for a given 6.

2.3 | Differential Entropy Estimation

Several estimators of differential entropy have been studied in the
literature. The oracle estimator is given by —Z;il log f o(s(X;(8)))/
m. In this article we implement a weighted k-nearest neighbor
based estimator due to Kozachenko and Leonenko [40] described
in Berrett, Samworth, and Yuan [41]. This estimator is easy to
compute and has better asymptotic properties than histogram or
kernel-based estimators [42].

The nearest-neighbor estimator requires us to specify k, the order
of the nearest neighbor. Ideally, k should depend on m. Our exper-
iments suggest any value of k as long as it is not very small or
not very large, makes little difference. Note that, other than the
summary statistics and the number of replications m, this k is
the only parameter a user needs to specify in order to compute
the proposed posterior. No other parameters tuning or otherwise
are required.

24 | Example

In Figure 1, we compare the shape of the ABCel log-posteriors
with the true log-posteriors II for the variance of a Normal dis-
tribution with zero mean conditional on (a) sV(X;) = ¥, X, i/
(Figure 1A) and (b) s@(X,) = max; (X;) (Figure 2B). Here, for
eachi=1,2, ..,m,and j =1, 2, ..., 100, the observation ij is
drawn from a N(0, 6), with 8, = 4. We assume that the parameter
6 follows a U(0, 10) prior.

The log-posteriors were compared on a grid of parameters whose
true posterior values were larger than the 0.05. Based on 100 rep-
etitions, At each value of 6 and m, the mean and the endpoints of
the symmetric 95% confidence intervals are shown in the figure.
To make the comparison of the shapes easier, for each m, the max-
imum of the mean of ABCel log-posterior was matched with the
maximum value of the true log-posterior.

From Figure 1, it follows that for m = 25 and m = 50, for each
value of 6 the means of the estimated log-posteriors (solid col-
ored lines) are very close to the true log-posterior (solid black
line) for both sV(X,) and s@(X,). Furthermore, the 95% con-
fidence bands always cover the corresponding true value of the
log-posterior. It is evident that the proposed ABCel posterior is a
good approximation of the true posterior up to a scaling constant.
This is even true for the summary function s?(X,), which unlike
sM(X,), asymptotically does not converge to a normal random
variable under any centering or scaling.

As the number of replicates, that is, m increases (see m = 500),
in Figure 1, the log-posterior, tends to get more flat in shape.
However, the confidence bands get narrower. This is somewhat
expected. We have kept the number of summaries fixed here.
However, statistical intuition mandates that the number of sum-
maries used should increase with the number of replications.
Using results from [31], we discuss such phenomena in more
detail in Section 4.2 below. Furthermore, an example illustrating
the inter-relationship between the number and the nature of the
summary statistics with the number of replications can be found
in Section 6.1.
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Comparison of the true log-posterior with the logarithm of the proposed estimator for different values of m. The samples of size n = 100

were drawn from N(0, 6) distribution with 6, = 4. We chose (A) sV(X,) = ¥ i X; /n and (B) s(X;) = max; (X;) and a U(0, 10) prior on 6. The true

J

log-posterior is in black. For each value of 6 and m the means and the 95% confidence intervals of the estimated log-posterior based on 100 repetitions

are shown.

3 | Justification for the ABC Empirical
Likelihood Posterior

In this section, we provide a rigorous justification for the
proposed modified empirical likelihood-based posterior esti-
mate I1(0|s(X,)) introduced in Section 2. Our arguments use
direct and reverse information projections of appropriate con-
ditional densities on judiciously chosen density sets. We first
discuss a general functional form of a posterior approximation,
then use this functional form to find an accurate approxima-
tion of the true posterior. Both of these approximations are
obtained in the population. Finally, it is argued that our poste-
rior estimate T1(6|s(X,)) approximates the above recipe in the
sample.

Let 5;5(X,(0)) denote a replicated summary random variable
corresponding to X;(6) obtained from the data generating
process with an input 6 € ©. As before, the observed summary
random variable s,5(X,(0)). In order to justify the proposed
empirical likelihood-based estimator, it is more convenient to
work with the joint densities (denoted by (6, s,,s,)) defined on
(6,s4,5,)- Let F be the set of all such joint densities.

Let f,(6,s;,5,) be the true joint density of (6,s,,s,) of the data
generating process. We first explore its properties. By assumption
given on 6, the s, and s, are identically distributed and mutually
independent. If we assume that f(s,|0) is the unknown condi-
tional density s, inherits from the data-generating process, the
conditional density of s, given 8 will also be the same density. We
will denote the latter by f,(s,|6).

Clearly, the corresponding true joint density of (6, s,, s,), denoted

by f,(6, ;. 5,) is in the set 7. Furthermore, using the conditional
independence of s; and s, given 6 we get:

F0(8:51,8,) = fo(5116).fo(5,10)7(6)

where by construction the true marginal of 9, that is, f,(6)
equals the prior 7(6). From construction, it also follows that,
II(0|s(X,)) = fo(Bls,), where f(6]s,) is the conditional density
of 6 given s, corresponding to the joint f,(6, sy, s,).

‘We now focus on the conditional density of (6, s, ) given s,. Using
the conditional independence of s, and s, given 6, for all 0 € O,
the true conditional density of (6, s,) given s, can be written as:

Fo0(6,81185) = fo(8115,50) fo(Ols,) = fo(s; 1O(Os(X,))  (7)

Suppose Q' is the subset of densities on (6, s,) defined as:

Q' ={q'()fo(5116) : 4'(6) € Qo } ®

where Qg be the set of all densities defined on the set ©. Since
the posterior I1(8|s(X,)) are in Qg, the true f,(6, s, |s,) € Q'. Fur-
thermore, any density in Q’ is a product of a density of s; and a
density of 8. That is, IT(6|s(X,)) can be approximated by integrat-
ing any density in Q' with respect to s;.

Our strategy of approximating IT(6|s(X,)) is as follows:

1. Take a joint density f(6,s,,s,) € F, and find the corre-
sponding conditional density of (6, s;) given s, denoted by

J(©,511,)-

2. Find the density g*(6,s;) € Qg closest to f(6, s, |s,) under
some pre-specified criterion.

3. Integrate g*(6, s;) over s,.

The ABCel posterior described in Section 2 uses direct informa-
tion projection in Step (2), which leads to a closed form solution
of the approximate II(0|s,) for any joint f(6,s;,s,) € F. Some
heuristic justification of information projection can be found in
Cuc [43].
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3.1 | Functional Form of the Posterior
Approximation

Let f(8,s,s,) € F, and f(6,s,]s,) be the corresponding condi-
tional density of (6,s;) given s,. We compute the information
projection of f(6,s,[s,) on Q' by minimizing Kullback-Leibler
divergence between the above conditional density and each
density q(6,s,) € Q'. For any s,, the Kullback-Leibler diver-
gence [44] between q(6,s;) and f(6,s;|s,) is defined as

DKL[ @58, 515, )] = [ q(@. sl)log< f?s(esl‘)))dslde. The

information projection of f(6,s,|s,) onto Q' is given by:

g*(©,5,) = arg min Dy, (65|10, 5115,
q(6.5))€Q’

Since the set Q' is convex [45], for any density f(6, s, |s,) its pro-
jection is unique. Next, we find an analytic expression of g* (6, s;).

Theorem 1. Forany density f € F, let ES Is[log f(6,s1,8,)] =

[ fo(s11)log f(B.5,,5,)ds; and H ;(0) = — [ fo(s116)log f,
(5;16)ds; be the differential entropy of the density f,(s;|6).
Furthermore, let us define:

oo l10B S @515 +HS o (©)

©)

"©ls,) =
f1(@l o) /[EG m[[logf(tsls)]+H?1‘[(t)dt

Then q*(8,s,) = f'(6]s,)fo(5116).

The proof of above theorem is presented in the Appendix A. We
show that, for any q(6,s;) = q’(6)f,(s,16) € Q’, such that ¢’ €
Qe the relationship Dg; [q(65))IIf (6, 5,1,)] = Dy [q' O] £ (65,1
+ C holds, where C is a non-negative function of s, and some
hyper-parameters of the prior, and does not depend on q or ¢’.
Now the L.H.S. is minimum when ¢'(8) = f’(8]s,), from which
the result follows.

Theorem 1 shows that for any joint density f(6,s,,s,) € F,
the density f,(s;10)f'(6ls,) is the best approximation of
fo(s11O)II(B]s(X,)) over Q', for all 8, s; and s,. The posterior
TI(6|s(X,)) can naturally be approximated by integrating this
best approximation over s,. Since f’(6|s,) is independent of s,
the corresponding approximation of II(6|s(X,)) is trivially given

by [ fo(s:110)f"(Bls,)ds, = f(Bls,).

If f(6,s,5,) = fo(6,51,8,), clearly f.(6,s]s,) € Q’, and by
definition it is its own information projection. That is the
approximation of II(8|s(X,)) is exact. That is f{(6ls,) =
T1(|s(X,)). Furthermore, when f,(s;|6) belongs to a loca-
tion family H0 ,(6) is not a function of 6. In that case fo@ls,)

exp| S‘Q[logf()(e $1:801 }-

Note that, like it should in a Bayesian procedure, in the expres-
sion of f’(8]s,), the effect of the replicate summary s, gets inte-
grated out. In the proposed empirical likelihood-based estimator,
the expectation of the log-joint density is approximated by the
mean of the log-optimal weights, which approximately averages
out the effect of the replicated summaries from the posterior esti-
mate. Furthermore, the proposed empirical likelihood estimates
an optimal approximate of the true posterior, as we argue below.

3.2 | Optimal Posterior Approximation

Theorem 1 shows that for any joint density f(6,s,,s,) € F, the
density f’(6]s,) provides an approximation of II(6|s(X,)) via
information projection, with no other assumption required.
Furthermore, the approximation is exact when the chosen joint
density f(6,s,,s,) is the true joint density f,(6,s;,S,). It, how-
ever, does not provide a way to choose the joint f(6,s;,s,) € F
such that f/(6]s,) is an optimal approximation of the true poste-
rior in any sense. We discuss the criterion of such optimality in
this section and then discuss its relationship with the proposed
empirical likelihood-based procedure.

To that goal, suppose for a joint density f(6,s;,s,) € F, f(6,s,),
and f(s;]s,,0) respectively denote the corresponding marginal
density of (6,s,) and the conditional density of s, given 6 and
s,. Furthermore, suppose f(s;|0) and f(s,|6) respectively denote
the conditional densities of 5; and s, given 6. Recall that, unless
f(6,s,,s,) is the true joint density f, the two conditional densi-
ties of 5; and s, given 6 may not be equal. The optimality criterion
is based on the following result.

Theorem 2.

a. Let f(8,sy,5,) € F. Then forall 6, s, and s,,
log f(6.5,) = { EX ol108 f(8.1,59)] + HY () |
= Do [ o110 £ 515, )] 2 0 (10)

b. If under the joint f(6,s,,s,), s, is conditionally independent
of s, given 6, it follows that:

10g f(8.5,) = { B2 5[10g £ (8. 51.5)] + H 0) |
= D[ fo(5118)] £ s119)]

CIf £(8,51:5) = fo(851,5), E{ 5[log £(6,51,5,)] + HY (6)
=log f(6,s,) =log f,(6,s,). Furthermore, f’ (Gls )=
f@ls,) = fo@ls,) = II(Bs(X,)).

Theorem 2a can be proved by a direct expansion of the left-hand
side of the expression. The other two statements follow from
the first. In particular, we get ng[k’g fo6,s1,8,)] + H () =

5,16
log f4(8, 5,)-

This theorem shows that for any joint density f(6,s;,s,) € F,
f'(8ls,) is not same as the corresponding conditional density
f(8Bls,). The log-numerator in the expression of f'(8s,) is a lower
bound of log (6, s,). Furthermore, their difference equals the
Kullback-Leibler divergence between the true data-generating
density f,(s;|0) and the user-specified conditional density of s,
given s, and 6, that is, f(s;|s,, 0). Clearly, f, is a minima of this
divergence over F, for which, by Theorem 2c, the approximation
of TI(8[s,) by fo(Bls,) is exact. Thus, we minimize the above
Kullback-Leibler divergence to find the optimal approximation.

For any density f(6,s;,S,) € F,
Dy [ fuls10)]| 5115, ©)] = 0

S fo(8110) = f(s]s,,0) for all s;, s, and 6
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& s, is conditionally independent of s, given 8, and

f(s118) = fy(5,16) for all s,, s, and 6

Thus by minimizing the above Kullback-Leibler divergence we
can only identify the density f(s;|6). The choice of f(s,|6) and
the marginal f(8) remains arbitrary. That is minimum is not
unique and f,(6, s;, 5,) is not the unique density in 7 where the
minimum of the above Kullback-Leibler divergence is attained.

In order to make the minimal argument unique, define 7/ C F
be the collection of all joint-densities f(6,s;,s,) € F, such that
for all values of 6 € ©,

a. the corresponding conditional density of s; given 6 is the
same as the corresponding conditional density of s, given 6,
and

b. the corresponding marginal density of 8 is the prior 7.

The constraints that specify 7’ comply with our assumption
about the data generating process. In particular, the true joint
density f, € F’ (see Section 3). That is, it minimizes the diver-
gence in (10) over F’.

However, if f € F’ such that the above divergence is zero, then
forall 0, s, and s,,

J(©,51,8,) = f(5113,,0)f (5,10 (€) = f(5:10)f (5,16).f (6)

Furthermore, by the construction of 7, it follows that f(s,|0) =
fo(s,10) and f(6) = m(B) for all s, and 6. So it follows that, for all
0,s, and s,),

F(6.51,8,) = fo(8110)fo(5016)7(6) = [((6, 81,5,)
From the arguments above, the following result is now evident.

Theorem 3. Suppose F' is the subset of densities over
(6,51,5,) as defined above. Then f, € F' uniquely minimizes

Dyt [fo(s1 |6)Hf(s1 5,5 6)] over F'.
An estimate of f,(6, s1,s,) can therefore be obtained as:

Fo(@.51.5,) = argmin Dy, [ £o(s110)|F (5115, @] (D)
fer’

The estimate f,(8,s,,s,) in (11) is actually a reverse information
projection of f(s,|6) on the set of densities f(s,|s,, &) such that
f(,s,,s,) € F'. Furthermore, since f,(s,|0) is fixed, we get

arg mlin Dy, [fo(sl |6)”f(s1 [Sys 6)]
feF

= argmax / Fols118)10g £ (5115, 8)ds,
fer’

= arg max{ / Fols118)log £(s1.5,16)ds,

feF’
- log/f(sl,sole)dsl} 12)

That is, in order to minimize our loss function, we only need to
maximize the cross-entropy term over the specified 7.

3.3 | Connection to the Proposed ABCel
Posterior

From the justifications presented above, for appropriate
summary statistics, the task is to specify the set of joint den-
sities 7, at least approximately, and minimize the divergence
in (10) over this specified set. Once fo(e,sl,so) is computed,
the corresponding approximation of II(8]s,) is given by the
corresponding fé(@lso). This can be obtained by substituting

£6,51,5,) by fo(6,51,5,) in (9).

We now argue that with simple choices of summary statistics,
the proposed modified empirical likelihood-based procedure fol-
lows the same recipe. In the notations of Section 2, for i = 1, 2,
..., m, let s; = s(X;(0)) be the values of summary of X;(0) gener-
ated with input 6 € ©. Note that, the optimal weights from (5)
defines an empirical estimate of the conditional distribution of
(81 8,) given 0, supported over the points (s;,s,), i =1, 2, ..., m.
This estimate is obtained by minimizing the required divergence,
over an approximated F’. The argument takes several steps:

3.3.1 | Marginal Matching

In this section, purely for simplicity, suppose the vector of
summary statistics s consists of r quantiles of the data vectors.
Assuming that the problem in (5) is feasible the optimal weights
w(0) satisfy the constraints:

W) € A,,_, and Y w,(O)(s —5,) =0

i=1

By our construction, the empirical estimate of the conditional
joint distribution of the random vector (s;,s,) given 6 can be
obtained as:

m
F,(t,,t,10) = Zwi(e)l{(si,so)s(tl,tu)}
i=1

We first verify that the condition (a) in the definition of F’ is
approximately satisfied. Note that the constraints imply that:

/Sldpm(tl’to|e) =5

That is the conditional joint distribution is estimated by matching
s, with the marginal conditional expectation of s, given 6.

The concept of matching the expected quantiles with the
observed is the key behind the goodness-of-fit plots like the Q-Q
plots, probability plots, and so forth. If the match is close, the
densities of the corresponding random variables are approx-
imately equal. Following the same argument, the proposed
empirical likelihood-based procedure computes the estimate £,
by approximately equating the conditional marginal densities
of the observed data X, and the replicated data X, given the
input parameter value 6. Now since the summary statistics, s
(in this case r quantiles) are deterministic functions of the data,
consequently, the conditional marginal densities of s; and s,
given 6 would be approximately equal. That is, the condition (a)
in the definition of the set 7’ is approximately satisfied.
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3.3.2 | Cross-Entropy
The proposed empirical likelihood based method maximizes the
sample version of the Kullback-Leibler divergence in (12). Note
that, the empirical estimate of the marginal distribution of s,
given 6 can be obtained as:

m

A 1

Fa(16) = - Zl{q«l}
i=1

Thus the sample version of the cross-entropy term in (12) is

given by m m
" log(w(6)) - log(Zwi(6)>
i=1

i=1

Inview of the constraint that w(6) € A,,_;, thisjustifies the objec-
tive function m‘lzlﬁl log w;, thatis maximized in (5). That s, the
proposed empirical likelihood maximizes the sample version of
the required cross-entropy in (12).

3.3.3 | Approximation of F’

Other than the constraints which defines 7/, in the proposed
method F,, is computed with minimal restrictions. For any 6,
the maximum of m™Y " logw,(6) is finite when there exist
a w € W,, such that w;(6) >0, for all i =1, 2, ..., m. This is
equivalent to maximizing the divergence in (12) over all joint
densities f(6,s,,s,) € F’ such that, for all i =1, 2, ..., m, each
observation (s;,s,) is in the support of the conditional density
f(s1,5,18). The proposed empirical likelihood-based method
thus maximizes the sample version of (12) over a large flexible
set of non-parametrically specified distributions approximately
satisfying the constraints which define 7’. No parameter, tuning
or otherwise need to be specified or estimated (as in e.g., An,
Nott, and Drovandi [22]).

The above argument can be generalized for summary statistics
which approximately specify the density of the underlying ran-
dom variable. Such summaries have been rigorously studied in
statistics. Other than the quantiles, moments, up crossing pro-
portions, and so forth can be used. We discuss various choices for
the summary statistics in Section 5 below.

4 | Properties of the ABC Empirical Likelihood
Posterior

The asymptotic properties of conventional ABC methods have
been a topic of much recent research [13-15]. Here we investi-
gate some basic asymptotic properties of our proposed empirical
likelihood method. The proofs of the results are deferred to the
Supporting Information.

Following Owen [26] the weights in (5) can be expressed as W; =
a -1 a
{m( 1+ /1Thi> } , where 4 is obtained by solving the equation

e/ (14+470,) =0,

4.1 | Posterior Consistency

In what follows below, we consider limits as n and m = m(n)
grow unbounded. Furthermore, for convenience, we make the

dependencies of X, and X, X,, ..., X,, € R" on sample size n as
well as parameter 6 explicit. In what follows, a sequence of events
{E,,n > 1} is said to occur with high probability, if P(E,) — 1 as

n — oo.

Suppose that we define hf")(e) = {s(Xf'”(@)) - s(Xf)”)(GO)> },
[s(Xi('”(Q))] is finite so that we

can  write s(Xi(")(G)) = E?(Xf”)(e))w [s(Xi(")(G))] + gi(”)(e) =

£7©)] = oforalli, nand 6.

and assume that E°
s(xf‘“(s))w

3™ (0) + £™(6), where E° [
( )+§l ( )W ere S(an)(9)>|9

We make the following assumptions:

Al. (Identifiability and convergence). There is a sequence of
positive increasing real numbers b, — oo, such that, 8™ (8) =
b,{3(0) + o(1)}, where 8(0) is a one-to-one function of 6 that
does not depend on n. Furthermore, 3(6) is continuous at 6, and
for each € > 0, and for all 6 € ©, there exists § > 0, such that
whenever |6 — 6, > ¢, [|8(8) — 8(6,)|| > 6.

A2. (Feasibility). For each 6, n and i = 0,1, ..., m(n), the vec-
tors §'i(") (6) are identically distributed, supported over the whole
space, and their distribution puts positive mass on every orthant,
O, of R, u=1,2, .., 2". Furthermore, for every orthant O, as

n— oo, SuP{izgf")(e)e@u} ||§i(")(9)|| — oo in probability, uniformly

in 6.

A3. (Growth of extrema of errors). ASn — 00, SUP;co12, . m(n)}
||§'i(")(6)||b;1 — 0 in probability, uniformly in 6 € @.

Assumption (Al) ensures identifiability and additionally
implies that 8((6)/b, — 8(6) converges to zero uniformly
in 6. Assumption (A2) is important for ensuring that with high
probability the empirical likelihood ABC posterior is a valid
probability measure for n large enough. Assumptions (A2) and
(A3) also link the number of simulations m to n and ensure
concentration of the posterior with increasing n. The proofs
of the results below are given in the Appendix B. The main
result, Theorem 1, shows posterior consistency for the proposed
empirical likelihood method.

Let 1,(0) := exp(ZT"(") 1og(u‘)i(9))/m(n)> and for each n, we

i=1
define.

©,{6 : 118(6) — 8(8,)ll < b;'}. By continuity of 8 at §,, ©, is
nonempty for each n. Furthermore, since b, is increasing in n,
0, is a decreasing sequence of sets in n.

Lemmal. UnderAssumptions(Al)-(A3), with high probabil-
ity, the likelihood 1,,(6) > 0 forall 6 € ©,,.

Lemma 1 shows that for large n the estimated likelihood is strictly
positive in a neighborhood of 6. Next, we show that the empirical
likelihood is zero outside certain neighborhood of 6,,.

Lemma 2. Under Assumptions (Al)-(A3), for every € > 0, let
B(6,,€) be the open ball of radius ¢ centered at 6,. The empirical
likelihood is zero outside B(6,, €), with high probability.

9 of 20



Now suppose we choose ¢ =b;! and n > n(b;') such that
1,(8) is positive on ©, with high probability. Furthermore,
for all n and for all 6 € ©,, min,; [|s(X;(8)) — s(X;(6))]| > 0
with probability 1, which implies for an appropriate choice
of k, (see the Supporting Information) the estimate of the dif-
ferential entropy |HS‘(§)(6) |< co with probability 1 as well.

This proves that for large values of n, with high probability:
A~ 0(1) A~ 0(17)
Joco 1n(©)e™e On(O)d6 > [y 1,(0)e e Pm(6)do >0, and

. 0(n) 0(n) .
M, @15, = (L©™ O7©))/ [0 L®e™ Ox(t)dt is
a valid probability measure (with high probability). The main
result, Theorem 1 below, establishes posterior consistency.

Theorem 4. As n — oo, I1,(0]s(X,(6,))) converges in proba-
bility to 590, where 590 is the degenerate probability measure sup-
ported at 6,,.

4.2 | Behavior of the Proposed Posterior With
Growing Number of Replications

We now discuss how the proposed ABCel posterior behaves with
fixed sample size n and observed summary and growing m. Our
primary goal is to find appropriate number of replicates, that is,
m for a fixed sample size n. We also discuss the bias-variance
trade-off as observed in Figure 3 in more details.

Under the setup of fixed n and the observed summary, it is more
appropriate to consider expectation of h§">(e) conditional on

(6,s<X§")(60)>>. Since each Xi(")(e) is conditionally indepen-

dent ofo,”)(Go) given 0, foreach i =1, 2, ..., m, and 6 € © we
get:

(n)
E?(X?’(@))|<e,s(xg">(eo)))[hi (9)]

= B ) ()] —5(x0@) 0 ae

N

That is, for fixed n, after conditioning on s(Xf,”)(GO)>, the con-

straints in the problem (5) hf”)(e), i=1,2, .., mare misspecified
for all & € © almost everywhere (even when 6 = 6,). The con-
strained optimization problem in (5), however, could still be fea-
sible and the resulting estimated posterior could be positive. The
properties of empirical likelihood under misspecified but feasible
constraint have been studied by Ghosh, Chaudhuri, Gangopad-
hyay [31]. We now evoke their results.

Using the notations introduced above, when r = 1, that is, there
is only one constraint present, under conditions similar to those
described above, it can be shown that, [31, Theorem 3.4] for any
0e0:

£,(6) = — 3 log(16(6)
i=1

___ 1
T M,,(0)

Ey(y0ie)e [s(x"@®)] - [s(xgo(eo))]'
X (1+0,(1),

0,
b

n

YRG)

(8(6) —8(8,) +0(1)) —

(1+0,(1)

13)

n

where M,,,(8) is a non-random o(m) sequence such that, as m —

00, M, = 00 and both M;,!(8) max,<, [€7(6)|1 (0@m0) =
1+0,(1), and M;(6) max, ., (gi‘")(e) 1 (50 = 1+0,(1)

are satisfied.

The sequence M,,(6) is the rate at which the maximum of the
5(X;(8)) grows away from its mean. The above conditions are eas-
ily satisfied. As for example, when £9”(6,) is a N (0,0?2) random

variable, M,, ~ 0,4/2log m.

In the rest of this section, we assume that r = 1. Using the results
from Ghosh, Chaudhuri, Gangopadhyay [31] it is possible to
specify bounds on the rate of growth of the number of repli-
cates with the sample size. Since the differential entropy plays
a relatively minor role in determining the posterior, in what
follows we assume that for each 6, the estimate of the differential
entropy remains bounded, and focus on [,,(8). Furthermore, for
brevity, we present the results as Remarks below. More details
are available in the Supporting Information.

4.2.1 | Bounds on the Growth of the Number
of Replications in Terms of Sample Size

We first consider the bounds of the replication size m in terms
of sample size n. Our results follow from various advantageous
properties of the posterior. For the purposes of easier description
and illustration, we would sometime assume that the errors §'[(,")
follow a N (0, 02) distribution.

The posterior is Bayesian consistent [13] if with high probability
two things happen:

1. exp(l,,(6)) would converge to zero for all 8 # 6,, and

2. exp(l,,(8,)) would not collapse to zero.

Remark 1. In order to ensure the first condition it is enough to
choose m and n such thatb,, /M, (8) diverges. An upper bound of
the rate of growth of m can thus be obtained by inverting the rela-
tion b, > M,,(6). Depending on the distribution of £, m can be
much larger than n. For example, if 55") follows a normal distri-
bution with mean zero and variance o2, b, = \/n and M,,(6) is
of the order o,4/2log(m), which allows an upper bound of m as
large as exp(n/(202)).

Remark 2. A more accurate relationship can be obtained from
the second condition. The condition implies that there exists a
constant C; > 0 such that, [,,(6,) > —C; with a high probability.
Assuming that §§")(60) is a N(0,02) random variable, from (13),
it follows that Pr(l,,(8,) < —C,] < exp(—C?logm) = m~Ci. Now
if we fix the rate of reduction of the above probability to n= for
some o, we get m = n%/ 1,

Other bounds can be found by controlling the rate at which the
probability of a Type I error for testing the null hypothesis 6 = 8,
against the unrestricted alternative decrease to zero. By construc-
tion [,,,(0) is different from the traditional empirical likelihood, so
this problem is of broad interest.
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Remark 3. The log-likelihood ratio log LR(8,) turns out to be
[,,(6,) + logm. The test rejects H,, if log LR(6,) is smaller than
log C,, for some pre-specified C, € (0, 1). Assuming that, £"(8)
is a N(0,02) random variable, it follows that, the probability
of rejecting the null hypothesis is given by (see the Supporting
Information):

Prllogm +1,,(8,) < logC,]
< exp{—(logm)* + 2(logm)* log C,, — (log m)(log C,)* }

Now ensuring that the probability of rejecting the null hypothesis
reduces at the rate of p,, we get p, = exp{—(log m)? } which

implies the number of replications m = exp{ (—log pn)l/ 3 }

4.2.2 | Behavior of the Log-Likelihood When
M, (6)/b, Diverges

This scenario includes the situation when the sample size n
is fixed and the number of replication m grows. We discuss
the bias-variance trade-off or the flattening of the approximate
likelihood as observed in Figure 1.

Remark 4. Let us fix 0 # 6, and suppose 52")(60) follows a
N(0,02) distribution. For a fixed C, > 0, it can be shown that
(see the Supporting Information):

1\ s@rse)|
) (14)

Pl (6) < ~Cy < (=

Now, if M,,(0)/b, = c,4/2logm/b, diverges with m and n,
clearly, for large values of m and n, Pr{l,(0) < -C,| ~ m=C.
That is, for any fixed C, >0 and 6 #6,, [,,(6) > —C, with a
high probability. Furthermore, for a fixed n, R.H.S. of (14) is a
decreasing function in m. That is if the sample size is kept fixed,
increasing the number of replications will increase the proba-
bility of 1,,,(6) > —C,. As a result, the log likelihood will become
increasingly flat in shape. This is exactly the phenomenon that
was observed in Figure 1. Remark 4 provides actual justification
to our observation.

Statistical intuition mandates with an increase in m, we should
increase the number of summary statistics. Remark 4 does not
apply to such situations. We present evidence in favor of our intu-
ition in Example 6.1 below.

5 | Choice of Summary Statistics

A judicious choice of summary statistics is crucial for a good
performance of any ABC procedure [3]. The proposed method
does not necessarily require summaries that are sufficient for
the parameter, which according to many authors (e.g., Frazier
et al. [13]; Robert [18]) are usually not available. Rather from the
arguments in Section 3, it mandates an use of summaries which
approximately define the density of X;(6), for i € M,.

Sample quantiles, extreme values, or proportion of samples
exceeding the certain pre-specified thresholds that directly put
constraints on the data density (see D’Agostino and Stephens

[46]) can be used. Moreover, moments, if they exist, may under
certain conditions (e.g., Carleman’s condition) specify a density
(see Gut [47]). Thus, moments can be used as summaries in
many cases as well.

For complex data models, with dependent components, marginal
summaries may not be adequate. In such cases, constraints can be
based on joint moments, joint quantiles or joint exceedances, and
so forth can be used. Other than these generic choices, one can
base the constraints on the functionals of transformed variables.
Since a density is a one-to-one function of its characteristic func-
tion, for dependent data sets, constraints based on the smoothed
spectral density of the data can be used. For example, in the case
of stochastic processes, summaries based on the exceedance pro-
portions of log-amplitudes, which actually put constraints on the
auto-covariance function of the process, are often beneficial (see
Section 6.3 below).

In our experience, often moments work the best. A judicious mix
and match of various forms of summaries decided after some
inspection of the summaries of observed data are required. It
should also be recognized that summaries with widely different
scales or an ill-conditioned covariance matrix may lead to a poor
estimate of differential entropy and subsequently to slow mixing
of the Markov Chain Monte Carlo procedures.

Finally, the number of summaries required would depend partly
on their nature, partly on the number of replications m, and
partly on the sample size n (see (14)). Even though some judg-
ments is required, evidence shows (see Section 6) for any given
problem, appropriate summaries can be found without much
effort.

6 | Illustrative Examples and Applications

We illustrate the utility of the ABCel method with four examples
involving data simulated from a standard Gaussian model, an
ARCH(1) model (also considered in Mengersen, Pudlo, and
Robert [5]), The simple recruitment, boom and bust model
[22], and a real life example modeled as an elliptical inclu-
sion model respectively. Here in order to address dependence
we use non-Gaussian summaries based on auto-covariance
function and the periodogram of the data. We also present a
real application based on stereological extremes [48]. More
examples on the traditional g-and-k model and an application
to Erdos-Renyi random graphs can be found in the Supporting
Information.

6.1 | Normal Distribution

Our first example considers inference about a mean u for
a random sample of size n =100 from a normal density,
N(u,1). The prior for u is N(0,1). The observed data X,
is generated with u =0. The exact posterior for u is nor-
mal, N(Z;’=1Xoj/(n+1), (n+1)—1>. The proposed empirical
likelihood based method was implemented with m = 25. We
considered several choices of constraint functions s@, ..,
s, Specifically, for i =o,1, .. ,m, we take (a) sV(X;(6)) =
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X = X X,@/n 0 sOX©) = X, (X,©)-X.) /n
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median of X;(9), (e) s®)(X,(0)) = first quartile of X;(9), and

() s©(X,(©)) = third quartile of X;(8). Here the constrains

considered use the first three central moments (a-c) and the

three quartiles (d-f). Combinations of these constraints are
considered within the empirical likelihood procedure.

The posteriors obtained from our proposed empirical likelihood-
based ABC method with the above summaries are close to the
true posterior. An illustrative example, with sample mean as a
summary, is presented in Figure 2. Here, the true posterior den-
sity, that is, the dashed line, is quite close to the histogram of the
samples drawn from the posterior obtained from the proposed
method.

In order to compare the performance of the proposed pro-
cedure for different choices of the summary statistics, we
consider frequentist coverages and the average lengths of the
95% credible intervals. The results are presented in Table 1.
The coverages are based on 100 repeats of the procedure. For

Mean

loglikelihood

FIGURE2 |

each repetition, MCMC approximations to the posterior are
based on 50,000 samples with 50,000 iterations discarded as
burn-in.

As we have shown before (see Figure 1 and Remark 4) the
approximate posterior gets flatter if we keep the number of
summary statistics fixed and increase the number of replications
m. That is, with increasing m, one should increase the number
of summary statistics used. The same argument mandates that
when we increase the number of summary statistics we should
also increase the number of replications. In Table 1 we report the
value of m for which the Monte Carlo frequentist coverages were
close to the nominal value of 95%.

From Table 1, it is clear that the proposed method performs quite
well for various sets of summary statistics. For mean and the
median the frequentist coverage is matches exactly the nominal
value. Note that the sample mean is minimal sufficient for x, and
would be an ideal choice of summary statistic in conventional
likelihood-free procedures such as ABC. However, median is not
sufficient for the mean, but still produces the exact coverage.
Table 1 also shows that when multiple summary statistics are

Density

(B)

Comparison of the true posterior of the mean of a Normal distribution with unit variance conditional on the sample mean with our

proposed empirical likelihood based ABC posterior. Here n = 100 and m = 25. (A) The figure directly compares the true log-posterior (black curve)
with the means and 95% credible intervals of the proposed approximate posterior based on 1000 replications for each parameter value (in red). (B) The
figure compares the true posterior (dashed line) with the histogram of the samples drawn from the proposed empirical likelihood based ABC posterior

(underlying histogram).

TABLE1 | The coverage and the average length of 95% credible intervals for u for various choices of constraint functions when ¢ = 0 and n = 100.
Constraint functions m Coverage Average length
Mean, (a). 25 0.95 0.360
Median, (e). 25 0.95 0.446
First two central moments, (a), (b). 40 0.94 0.331
Mean and Median, (a), (e). 40 0.94 0.330
First three central moments, (a), (b), (c). 70 0.91 0.307
Three quartiles, (e), (f), (g). 75 0.93 0.329

Note: The coverage for the true posterior is 0.95 and average length is 0.39 (2 d.p.).
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used, by increasing the number of replicates it is possible to
obtain an approximate posterior with frequentist coverage close
to the nominal value of 95%.

6.2 | AnARCH(1) Model

We now present examples where summary statistics are not
close to normal, so that the assumptions behind the synthetic
likelihood are not satisfied. We consider an autoregressive
conditional heteroskedastic or ARCH(1) model, where for
each i =o0,1,2, ... ,m, the components X;,(6),X;,(), ... ,X;,(0)
are dependent for all 8 = (,, ;) € ©®. This model was also
considered in Mengersen, Pudlo, and Robert [5]. For each
i, the time series Xj;;., is generated by Xij(e)=ay.(e)sy.,
a;(e) = oc0+oc1Xi2(j_1)(6), where ¢; are iid. N(0,1) random
variables, «, > 0, and 0 < a; < 1. We assume a uniform prior
over (0, 5) X (0, 1) for (o, o).

Our summary statistics include the three quartiles of the abso-
lute values of the data. Since the data is dependent we also use
the following summary statistic. Let, for a fixed i and for each j,
Y;(6) = X;(G) — Z;IZIX;(G)/n. Then for eachi =1, 2, ..., m, we
define,

n

@ =1 —_
SOGO) = - (141,00 7i000@)20) ~ U@ @)1}
=2
That is, s is the difference between the proportion of the con-
cordant and that of the discordant pairs between series Y; with its

15
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lag-1 version. Empirical evidence suggests that s, performs better
than the usual lag-1 auto-covariance of the series X?. The quar-
tiles of the absolute values of the data provide some information
about the marginal distribution.

Our observed data were of size n = 1000, with (¢, ;) = (3,0.75)
and we used m = 50 replicates for each likelihood approxima-
tion for both empirical and synthetic likelihoods in Bayesian
computations. Marginal posterior densities were estimated for
the parameters based on 50,000 sampling iterations with 50,000
iterations burn-in for both the synthetic likelihood and pro-
posed empirical likelihood. We compare these methods with
the posterior obtained using rejection ABC with 1,000,000 sam-
ples, a tolerance of 0.0025, and linear regression adjustment.
The estimated marginal posterior densities in Figure 3 for the
proposed method are quite close to those obtained from the
rejection ABC. The synthetic likelihood produces quite different
marginal posterior densities, especially for «;. In this example
the s, statistic is highly non-Gaussian, so the assumptions of the
synthetic likelihood are not satisfied.

6.3 |
Model

The Simple Recruitment, Boom and Bust

The simple recruitment, boom and bust model is a discrete
stochastic temporal model, primarily used to explain fluctua-
tions in species population over time. The dynamics is controlled
by the parameter vector 6 = (r,x,a,3). For i =o, 1, 2,..., m,

© °

@ |

9

o

= ]

o

] 0

< T T T
EL BSL ABC

o

Estimated marginal posterior densities of parameters «, and «; in the ARCH(1) model. The top row shows kernel density estimates

(empirical likelihood ABC (solid), synthetic likelihood (dashed), rejection ABC (dotted)), while the bottom row shows boxplots of posterior samples. In

the boxplots, the horizontal dotted lines show the true parameter values.
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Estimated marginal posterior densities of parameters r, x, «, 8 in the boom and bust model. The figures show kernel density estimates
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given X;;(6) = xy, the distribution of X;;,,(6) is given by:

lj’

ifxij <k

ifxij>K

Poisson (x;(1+1)) +¢;

Xi(j+1)(0) ~ {

Binomial (x;, ) +¢;
Here ¢; ~ Poisson() distribution. The sample paths rapidly cycle
between the large and small non-negative integers.

For our simulation study we follow An, Nott, and Drovandi [22]
and set 6, = (0.4, 50, 0.09, 0.05), and assume a prior of U(0, 1) X
U(30,80) x U(0,1) X U(0, 1) on 8. We generated observations of

length n = 200, after discarding the first 50 values to remove the

transient phase of the process.

For each 6 we generated m = 40 replications from the model.
The summary statistics used were, (a) the proportion of obser-
vations in the interval (0,15), (b) the proportion of differences
X ,.j(e) — Xy j_l)(e) strictly larger than 2, and (c) the proportion of
log-amplitudes of the smoothed periodogram of the data lying in
the interval (5.120,6.278). The intervals were chosen rather judi-
ciously partly based on the observed data X,,.
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Our choice of summary statistics is targeted toward specifying
the underlying data density rather than any particular parameter.
Clearly, a process can be specified by its probabilities of
exceedance of certain thresholds. The use of lagged differ-
ences is also natural for the same reason. The periodogram of
the process is connected to its auto-covariance function. Thus,
the exceedance probabilities of its log amplitude should put
constraints on the auto-covariances between the successive
observations. Note that, none of the summary statistics are
normally distributed in the case.

The density plots of observations sampled from the proposed
ABCel (solid), synthetic likelihood (dashed), and the rejection
ABC with a ridge regression adjustment with tolerance 0.001
(dotted) are presented in Figure 4. From the plot, it is clear that
the rejection ABC has very heavy tails, which essentially cover
the whole of the support of the priors and do not change if differ-
ent tolerances or rejection methods are used. The synthetic ABC
is not expected to work well in this case. However, they seem to
show a lighter tail than the Rejection ABC. Among the three,
the proposed ABCel posterior seems to be the most concentrated
around true parameter values and seems to approximate the true
posterior well.

6.4 | Stereological Data

Next, we consider an example concerning the modeling of
diameters of inclusions (microscopic particles introduced in the
steel production process) measured from planar cross-sections
in a block of steel. The size of the largest inclusion in a block
is thought to be important for steel strength. We focus on an
elliptical inclusion model due to Bortot, Coles, and Sisson [49]
here, which is an extension of the spherical model studied by
Anderson and Coles [48]. Unlike the latter, the elliptical model
does not have a tractable likelihood.

It is assumed that the inclusion centers follow a homogeneous
Poisson process with a rate 4. For each inclusion, the three prin-
cipal diameters of the ellipse are assumed independent of each
other and of the process of inclusion centers. Given V, the largest
diameter for a given inclusion, the two other principal diameters
are determined by multiplying V with two independent uniform
U[0, 1] random variables. The diameter V, conditional on exceed-
ing a threshold value v, (5pum in Bortot, Coles, and Sisson [49])
is assumed to follow a generalized Pareto distribution:

13r(VsU|V>uO)=1_{HM}‘E

g +

The parameters of the model are given by 6 = (4,0,%). We
assume independent uniform priors with ranges (1, 200), (0, 10)
and (-5, 5) respectively. A detailed implementation of ABC for
this example is discussed in Erhardt and Sisson [50].

The observed data has 112 entries, measuring the largest prin-
cipal diameters of elliptical cross-sections of inclusions for a
planar slice. The number of inclusions L in each dataset gen-
erated from the model is random. The summary statistics used
are (a) (L —112)/100, (b) the mean and (c) the median of the
observed planar measurements, and (d) the proportion of planar

measurements less than or equal to six (approximately the
median for the observed data).

Using the summary statistics described above, we compare the
proposed empirical likelihood-based method with the synthetic
likelihood (m = 25 for both) and a rejection ABC algorithm
with small tolerance (0.00005) and linear regression adjustment.
The resulting estimated marginal posterior densities for 1,0, ¢
are shown in Figure 5. The results for the proposed empirical
likelihood-based method are more concentrated than the rejec-
tion ABC or the synthetic likelihood both of whom exhibit quite
long tails. The chosen summaries mixed faster than those used in
Pham, Nott, and Chaudhuri [51] and were comparable in speed
to the synthetic likelihood.

7 | Discussion

This article develops a new empirical likelihood-based easy-
to-use approach to the ABC paradigm called ABCel. For its
implementation, the method only requires a set of summary
statistics, their observed values, and the ability to simulate these
summary statistics from a given black box or a suitable auxiliary
model. We first use a direct information projection to derive
an analytic form for an approximation of the target posterior.
Using this analytic expression, the best approximation to the
target posterior is then obtained from a reverse information
projection. The procedure is implemented using a modified
empirical likelihood. By construction, the proposed empirical
likelihood estimates the joint distribution of the observed and
replicated summaries by minimizing a cross-entropy over a large
set of distributions. Furthermore, for appropriate summaries,
at each value of the parameter, the above joint distribution is
estimated by approximately equating the marginal densities of
the observed and the replicated data. The construction does not
require any specification of a distance function, a tolerance or a
bandwidth. Neither does it assume any asymptotic distribution
of the summary statistics. No constraints that are functions
of the parameter and the data are required either. We explore
the properties of the proposed posterior both analytically and
empirically. The method is posterior consistent under reasonable
conditions and shows good performance in simulated and real
examples.

The modified empirical likelihood works with user-specified
simple summaries like quantiles, moments or proportion of
exceedance, that specify the underlying data density. Summaries
based on the spectral density of the data can also be conveniently
used. Even though no specific algorithm is so far available, our
experience suggests appropriate simple summary statistics could
easily be postulated from basic statistical considerations for
almost all problems.

The number of replications depends in principle both on the
number and the nature of the summary statistics used. We make
recommendations on the relative magnitudes of the number of
replications and the sample size.

Finally, empirical evidence as seen in the Q-Q plots in
Sections F.2 and G of the Supporting Information, suggest
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that under suitable conditions, the proposed posteriors would
asymptotically converge to a normal density. The conditions
under which such convergences would hold is a natural question
for further investigation.
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Appendix A

Proofs of Results in Section

Proof of Theorem 1.
Leibler divergence

The proof proceeds by expanding the Kullback-
Dy [q(6, sDIf (6, 515,)]

when q(6,5,) = q'(6)f((,16)-

For a f € F, suppose f(s,) is the marginal distribution of s,. It is well
known that [52, 53] the so called log evidence, that is, log f(s,) can be
expressed as:

log f(s,) = Dy [q(6, s)IIf (6, 5, 15,))]

f6,51,5,)
+/q(6,s1)10g<—q(6,s1) )ds1 dé

For the convenience of notation, for an f € F we define:

(A1)

exp(E2 llog /©@.51.5,)])
feXP( sllog f(t,s,,t! )])dtdt’

f'@.s,) =

760 = [ 1760 and
F7@1s,) = £"@.5.)/(5,)
By substituting the expression of (6, s5,) € Q' in (A.1) we get:
Dy 96,511 ®,5,15,)]
—10g£(5,) + | ¢/(©)fy(510)108 s, 1), do
-/ q'<e>{ [ 108 r@.5, 5051005 —logq'<e>}de

exp( B2 llog f(8,5,,5,)])
q'©)

0 f( 0) >
/HS w(@)q (6)dé +log(f”( )

1 6’ 5
~tog () - [ @ og L22)
- log/exp( . O log (2,51, )])dtdt }de

/ f(so)
— [ H? y©)q'©)do + 10g< f”(so)>

= log /" (s,) - / 7©lo

(A2)
Similar to (A.1) one can show that:

log f"/(s,) = / q'(e)log(f ,(é;))de+Dﬂ[q'<e)||f”<e|sa)]

where second addendum is the Kullback-Leibler divergence between
the densities q’(6) and f”(8]s,). Moreover, the third addendum in (A.2)
depends on the hyper-parameters of 7(6) and thus independent of 6.

Suppose we denote C’ = log / exp( N It[logf(t 515 t’)])dtdt’

By substituting the above result in (A.2) and from (A.1) we get:
Dy [q(6, sIIf (6, 51s,)]

_ , f(©,51,5,)
=log f(s,) — / q'(6)fo(5:10) 1Og<m>d% dé

, ' 1(s,)
Hglle(e)q (6)d6 - C' + log< f"(SO))
(A.3)

e [0 O ©ls,)] —
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Now by expanding the first two addenda in (A.3) we get:

Dz [q'@O)NIf"(©ls,)] = [ Hy x(6)q(€)do

_ [ q'(®)
‘/ q(e){log(f%mso)) 51'9(9)}‘1@

- / 7©®110 70 a6
r@lsexp(H? ©)

_ [ qe \ "
_/q(e){10g<f/(9|%)> (log/f (tls,) exp m(t))dt) }de

(A4)

The first addendum in (A.4) is the Kullback-Leibler divergence between
q' and f’(8]s,). The second addendum is a function of s, and is indepen-
dent of 8. By denoting it by C(s,) and collecting the terms from (A.3) and
(A.4) we get:

Drr[q(®, sDIS (6, 5115,)]

=Dy, [d' Ol f'Bls,)] — C(s,) — C" + 1og<-f(so) )

rey) A

Note that, the R.H.S. of Equation (A.5) is non-negative for all ¢’ € Q.
Furthermore, only the first addendum depends on ¢’, which is also
non-negative, with equality holding iff ¢’(6) = f’(6|s,). This implies
the R.H.S. of (A.5) attains its minimum at ¢’'(8) = f'(8]s,). So, it
clearly follows that the information projection of f(6,s,[s,) is given ba

f'©@l86)fo(5,16)-

Proof of Theorem 2. From the LHS of 2 we get:

log f(0.5,) — { 2 o[10g £(8.5,,5,)] + H2 (@) }
—t0g £6,5,)~ [ F3(5,18)10g sl E)ds

_ / Fo(s116)10g £(6.5,)ds, + H? ()

£o(5,18)
/fO(Sl'e)lo <f( B m)ds

=Dy [fo(51 1O (s115,,6)]

Rest of the theorem follows from above.

Appendix B

Proofs of Results in Section 4.1

Proof of Lemma 1. 'We show that for every € > 0, there exists n, = n,(c)
such that for any n > n, for all @ € ©,, the maximization problem in (5)
is feasible with probability larger than 1 — e.

By assumption, for each 6, random vectors 55")(9) are i.i.d., put positive
mass on each orthant and supremum of their lengths in each orthant
diverge to infinity with n. The random vectors {é’i(")(@) - §£")(60)} will
inherit the same properties. That is, there exists integer n,, such that for
each n > n,, the convex hull of the vectors {51.(")(6) — &M@, } i=1,..,
m(n), would contain the unit sphere with probability larger than 1 — €/2.

We choose an n > nyand a8 € ©,,. For this choice of €:

h™(8,6,) = b,{3(6) — 3(6,)} + £™(6) —
=c,(6) + £™() - £M(6,)

£(6,)

where, [|8(6) — 8(6,)|| < b,". That is, ||c,(8)]| < 1. Now, since —c,(6) is
in the convex hull of the vectors {gf“’(e) - gf,‘”(eo)}, i=1, .., m(n),

with probability larger than 1 —¢/2, there exists weights w € A,y

such that,
m(n)

—cn(e>-2 AGRORISLCHY

Now it follows that for the above choice of w that

m(n) m(n)

Y wh©.6,) = ¢,©)+ Y w{"©®) - £, } =0
i=1 i=1

which shows that the problem in (5) is feasible. O

Proofof Lemma 2. Let ¢ be as in the statement. By Assumption (A1), for
some & > 0, |8(8) — 8(6,)|| > & for all 8 with |6 — 6, || > e.

Consider 7 > 0. We show that there exists n, = ny(n) such that for any
n > n,, the constrained maximization problem in (5) is not feasible for
all |6 — 6, || > €, with probability larger than 1 — 7.

Let if possible w € A,,(,)_, be a feasible solution. Hence we get:

m(n)

0= ’"z("’)wihgn)(e, 6,) = Zwi{S(Xf”)(9)> —s(x,)) }
i=1

i=1
m(n)
= {8"(6) - 8™(8,)} + { > wigf'”(e)} - £,)
i=1

so that

m(n)

—b,{8(6) — 8(6,) + o} = Y wE™M(©) — £7(6,)
i=1

By dividing both sides by b, we get:

m(n) (1’1)(6)
—{800) - 86t = Yw {g

i=1 bn

(n) 0
% } —o(1) (B.1)

Now, [[E@,)1/b, < SUPicto 12 . mmy 157 ©B)II /b, and

w8

Zwi lb

i=1 n

£ @)l

- i€f{o,1,2,... m(n)} bn

m(n) _(n) 6
K ||§lb( 0

i=1 n

That is, by Assumption (A3), there exists ny(») such that for any n > n,,
the RHS of (B.1) is less than & for all 8 € B(8,, €), with probability larger
than 1 —#. However, ||8(6) — 8(6,)|| > 6. We arrive at a contradiction.
Thus the problem is infeasible for every 6 € B(@O,e) with probablht&/
larger than 1 — 7.

Proof of Theorem 4. Let g(6) be a continuous, bounded function. We
choose an € > 0. Then by Lemma 2, there exists n(e), such that for any
n > n(e) and 6 € B(6,), e)c, 1,(6) = 0 and by definition (6) the posterior
I1,(0s(X,(6,))) = 0. That is for any n > n(e),

/ S(O)IT, (BI(X, (6,)))d6 = / g(O)IN, (B15(X,(6,))d8
[} (6,-€)

09€

- / 12(6) — 2O}, (B15(X, (6,)))d6
B(8,:€)

+86,) /
B(©,.c)

Since the function g(9) is bounded and continuous at 8,, the first term is
negligible. Furthermore, fB<9 9 11, (81s(X,(6,)))dd = 1. This implies the

I1,(815(X,(8,)))d®
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integral converges to g(8,). This shows, the posterior converges Weaklz
to dg .

Appendix C
Details of the Remarks in Section 4.2

Using the notations introduced above, when r = 1, that is, there is only
one constraint present, under conditions similar to those described above,
it can be shown that, [31, Theorem 3.4] for any 6 € ©:

1,(©) = Y log(u(6))
i=1

1 n n
= 3@ oy (47@)] - @] 1+ 0,0)
=——2"__1(8(0)— 38 1 —‘(’n)(e°) 1 1 C.1
__Mm(e) ( ( )_ ( o)+0( ))_ bn ( +Op( )) ( . )

Details of Remark1. In order to ensure the first condition, suppose
0 +#6,, and as m,n — oo, and in (C.1), b,/M,,(8) diverges. Since
by assumption (A3), as m,n— o, SUpicpir. | E°6,) 1 /b,
— 0, in probability, uniformly over 6, and by assumption (Al),
[18(8) — 8(6,)ll > 0, for each 6 #6,, the RH.S. of (C.1) diverges to
—o0. So exp(l,,(8)) converges to zero. That is, an upper bound of the
rate of growth of m can thus be obtained by inverting the relation
b, > M, (6).

Depending on the distribution of §c(,") , m can be much larger than n. For

example, if 55") follows a normal distribution with mean zero and vari-
ance o2, b, = \/ﬁ and M, () is of the order g,4/2log(m), which allows
an upper bound of m as large as exp(n/(202)).

Details of Remark 2. Similar to the argument for the upper bound, for
Bayesian consistency [,,,(6,) cannot diverge to —oo. There exists a constant
C, > Osuch that, [,,(6) > —C, with a high probability.

For (13), it follows that when 6 = 6,

_1E7®,) |

1, (6,) = M—(G)

(1+0,(1) (C.2)

For simplicity of presentation, we also suppose §§")(90) isa N (0, crg)
variable.

For a fixed C, > 0, we first compute Pr[l,,(6,) < —C,]. Using the tail
bound for a N (0, %) random variables we get,

£76,)|
Pr[lm(eo) < _Cl] = Prf —m(l + OP(I)) < _Cl
M, (6,)
— (n) m\¥o
i Pr[ e +op<1)]

(C.3)

2
S exp(_ %<01Aim<e,,>> >

Since §§")(60) is normally distributed, M,,(8,) = 0,1/2logm, diverges
as m — oo. So the R.H.S. of (C.3) converges to zero. That is, for any
C, >0, Pr|l,(8,) < —C,] converges to zero. Furthermore, by substituting
the expression for M,,(6,) in (C.3) we get:

Prll,,(6,) < —C,] < exp(—C}logm) = 1c (C4)
m

C;

Now as before by setting p,, = m~ T, we getm = p;I/C‘. In particular, if

_ 2
p, =n"% m=n/C.

Details of Remark 3. The likelihood ratio statistic for testing the null
hypothesis of 6 = 6, against the unrestricted alternative is given by:

exp(L,,(6,))

max,e, exp(X, logw,)/m)

LR(®,) =

Clearly, the maximum value the denominator attains is, 1/m. So the
log-likelihood ratio log LR(6,) turns out to be [,,,(8,) + log m.

The test rejects H, if logLR(6,) is smaller than logC,, for some
pre-specified C, € (0, 1). Ideally, C,, should be a function of m. However,
at this point we assume C, to be fixed.

Using (13), the probability of rejecting the null hypothesis is given by:

Pr{logm +1,,(6,) < logCy] = Pr[l,,(6,) <logC, — logm]

_ _ 1
‘Pr[ M, (E)
= Pr[

Now Suppose that £(8) is a N (O, 0'3) random variable. Using the tail
bounds for a normal distribution, we get:

Pr[
1 Co :
<exp —E{MM(GD) 10g<;> }

By substituting M,,(6,) = o,4/2logm in the exponent of the above
expression we get:

£M6,) + o(1)|(1 +0(1)) < log<%>]

£(0,) + oD+ 0(1)) > —mea)log( - )]

0
m

§07(8,) + (D[ (1 +0(1) = —A,(@,) log<%>]

(C.5)

LM ©6,)log S ’ = (logm)(log C, — log m)*
20(2) m\~o m 0

= (logm)* — 2(log m)*log C,
+ (log m)(log Cy)*

Clearly, the (logm)* term dominates and the probability of rejecting the
null hypothesis decreases at the rate of exp(—(log m)3). This is true even
if C,, increases to one with increasing m at a suitable rate.

Finally, in order to describe some relationship between m and n, sup-
pose we would like to ensure, that the probability of rejecting the
null hypothesis reduces at the rate of p,. Then it follows that the
number of replications required to ensure such a rate is of the order

m = eXp((— log p,)"/ 3)-

Details of Remark 4. Let us fix 6 # 6, and suppose gf,”(eo) follows a
N (0,02) distribution. Then for a fixed C, > 0, it can be shown that:

Pr{l,,(6) < —C,]

< Pr[ §0,)| > Mm(en{cz - js6)-50,) }]

M, (6)

2
(M (®) { -

2
203 M,,(8) |§(6) - 5(60)| } :| (C.6)

< exp [
Now by substituting M,,,(6) = g,4/21log m we get:

Pr[l,(6) < -C,] <

( ){Cz_%% ls@-sel) (c.7)

L
m

Now, if M,,(8)/b,, = ,/2logm/b, diverges with m and n, clearly, for
large values of m and n, Pr[l (6) < —C,] ~ m~C:. That is, for any fixed
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C,>0and 6 #90,, ,(0) > —C, with a high probability, and exp(l,,(6))
does not collapse to zero with a high probability.

Furthermore, for a fixed n, R.H.S. of (C.7) is a decreasing function in
m. That is if the sample size is kept fixed, increasing the number of
replications will increase the probability of [,,(6) > —C,. As a result,
the log-likelihood will be flatter in shape. Note that, from (C.1), it is
clear that the variance of the expected log likelihood gets reduced as
m increases. This explains a bias-variance trade-off in the choice of m.
Such phenomenon is evident from Figure 3, where the curve joining
the means of the proposed estimated log posterior progressively flattens
with the number of replications. The argument above provides a formal
explanation of the phenomenon.
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