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Abstract: Freezing of wind turbines causes loss of wind-generated power. Forecasting or prediction
of icing on wind turbine blades based on SCADA sensor data allows taking appropriate actions
before icing occurs. This paper presents a newly developed deep learning network model named
PCTG (Parallel CNN-TCN GRU) for the purpose of high-accuracy and long-term prediction of icing
on wind turbine blades. This model combines three networks, the CNN, TCN, and GRU, in order
to incorporate both the temporal aspect of SCADA time-series data as well as the dependencies of
SCADA variables. The experimentations conducted by using this model and SCADA data from
three wind turbines in a wind farm have generated average prediction accuracies of about 97% for
prediction horizons of up to 2 days ahead. The developed model is shown to maintain at least 95%
prediction accuracy for long prediction horizons of up to 22 days ahead. Furthermore, for another
wind farm SCADA dataset, it is shown that the developed PCTG model achieves over 99% icing
prediction accuracy 10 days ahead.

Keywords: icing prediction on wind turbines; icing forecast using SCADA data; ensemble CNN-
TCN-GRU network

1. Introduction

The share of wind energy among various energy sources has grown significantly to
7.8% of the world’s energy consumption [1]. Wind energy worldwide has now grown to
more than 1000 GW, with most of the wind energy growth occurring in China and the
United States [2]. According to the VTT Technical Research Center [3], approximately
20% of all wind turbine installations are in cold climate regions. In these regions, icing
of wind turbines has a significant negative impact on the power generation capacity of
wind farms. For example, wind turbine blade icing changes the aerodynamic shape of its
surface, thus reducing its power production. It could also lead to stalling of the blades
due to ice buildup. Also, because of the non-uniformity of icing, the blades would bear
unbalanced loads, resulting in rotor imbalance and thus increasing the chance of structural
damage. Furthermore, ice on the blades may break off and fly away at high speeds, posing
a potential safety hazard to the equipment and operating personnel.

There are many works in the literature related to the detection of icing on wind
turbines using SCADA data, e.g., [4–8]. Detection involves obtaining whether icing exists
at the current time. This work addresses icing prediction, which is different than icing
detection as it involves forecasting the presence of icing at a future time. Similar to the
icing detection problem, SCADA data and weather data are used here as input for icing
prediction. The capability to predict icing on wind turbines ahead of time would allow
taking appropriate actions such as shifting electricity production to other sources of energy,
shutting down the equipment to avoid damage, or turning on heaters for those turbines
that are equipped with them.

Sensors 2024, 24, 8167. https://doi.org/10.3390/s24248167 https://www.mdpi.com/journal/sensors



Sensors 2024, 24, 8167 2 of 15

The literature on modern icing prediction or forecasting on wind turbines covers the
use of deep learning networks based on SCADA (Supervisory Control and Data Acquisition)
data without requiring the installation of new sensors other than those used for collecting
SCADA data. In the review article [9], we discussed the existing techniques for icing
prediction together with their shortcomings. In [10,11], our research team introduced a
prediction framework to forecast icing on wind turbines and an entire wind farm based
on SCADA data via Temporal Convolutional Network (TCN) predictors. An average
prediction accuracy of about 80% was reported in [10]. In this paper, we have developed
a new deep neural network model for the purpose of achieving high icing prediction
accuracies at long prediction horizons.

In deep learning-based approaches to icing prediction, as depicted in Figure 1, the
current and previous values of the variables or features in SCADA data are used as the
input to a deep learning network to predict one of the two states of normal operation and
icing at a future time as the network output.

Figure 1. Prediction or forecasting at a future time.

Previous papers on icing prediction have utilized two major types of network models
to establish the relationship between historical data and future icing states. The first type
has focused on capturing the temporal aspect of SCADA data, e.g., [12–14]. However, these
models mainly capture the temporal aspect of the SCADA features and do not take into
consideration the spatial relationships between the features such as temperature, humidity,
and wind speed. The second type of network models has focused on utilizing multiple
learners to capture patterns between historical data and future icing states, e.g., [15–19]. By
using multiple learners, the nonlinear relationships between the SCADA features are more
effectively captured. However, such models normally assume that the input features are
independent, and their temporal dependency is not taken into consideration, thus making
the outcome highly dependent on the selected SCADA features. In a recent paper [20],
icing prediction was performed by capturing spatial relationships between SCADA data
features. It is often challenging for such models to ensure that the captured relationships
between the features are meaningful, especially for the features that are influenced by the
climate, such as temperature, humidity, and wind speed.

As discussed in detail in [9], among the deep learning networks that have been applied
to icing prediction, in general, higher accuracies are reported with combined networks. A
combined or ensemble network usually consists of the use of two networks. Different ways
are considered to integrate such two networks for capturing both the temporal and spatial
information in SCADA data. For example, the CNN (Convolutional Neural Network) and
GRU (Gated Recurrent Unit) were used together in [21], or bidirectional LSTM (Long Short-
Term Memory) and an SVM (Support Vector Machine) were used together in [19]. Here, it
is important to note that certain limitations exist in the existing papers when it comes to



Sensors 2024, 24, 8167 3 of 15

comparing their results, including differences in SCADA features used as input, differences
in prediction horizons, and the use of different datasets that are not publicly available.

The main contribution of this paper lies in developing a new deep learning architecture
that combines local temporal features, their long-term relationships, and their global
dependency. Compared with the existing models used for icing prediction, this new model
offers higher icing prediction accuracies over longer prediction horizons.

The remaining sections of this paper are organized as follows. Section 2 introduces the
ensemble model named PCTG towards achieving high-accuracy and long-term prediction
of icing on wind turbine blades. Then, Section 3 provides a description of the SCADA
features used and their preprocessing. Furthermore, the experimental setup together with
the evaluation metrics are stated in this section. Section 4 presents the experimental results
and their discussion in terms of prediction performance and computational aspects. Finally,
the conclusions and future enhancements are mentioned in Section 5.

2. Ensemble Network PCTG

In this paper, a new network is introduced for the prediction of icing by adding CNN
and GNU layers to our previously developed TCN. Figure 2 shows the architecture of this
ensemble network. The incorporation of CNN and GRU layers into the TCN allows for
the more effective capture of relationships between SCADA features. The combination of
these networks is named PCTG (Parallel CNN-TCN GRU) network. The PCTG uses the
CNN and TCN in parallel and then integrates their outputs into the GRU. All three of these
networks have been previously used for prediction tasks in different applications. The
CNN has been used to capture local changes or to extract local temporal features. The TCN
has been used to capture long-term dependencies through dilated convolutions. The GRU
has been used to capture global time dependency via a gate mechanism. These networks
have been combined in this work to take advantage of their complementary prediction
attributes. Further details of this new architecture are stated next.

Figure 2. Architecture of the developed Parallel CNN-TCN GRU network named PCTG for high-
accuracy prediction of icing on wind turbines.
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2.1. Objective Function

Wind turbine icing prediction can be viewed as a sequential two-class classification
problem. For such problems, binary cross-entropy is commonly used as the loss function. In
other words, the output probability that minimizes the following loss function is obtained:

Min − 1
N ∑N

i=1[yilog(P(ŷi)) + (1 − yi)log(1 − P(ŷi))] (1)

where N represents the number of data samples, yi true icing label (0 or 1), and P(ŷi)
predicted probability by the model (a value between 0 and 1).

Consider a dataset represented by Xn = {xn,1, xn,2, . . . , xn,T}, where Xn denotes the
input corresponding to the nth SCADA feature or variable. oc,t denotes the CNN, TCN, or
GRU output values of channel c at time t.

oc,tcnn = CNN(X1, X2, . . . , Xn) (2)

oc,ttcn = TCN(X1, X2, . . . , Xn) (3)

X′
c,tconcat = [oc,1, oc,2, . . . , oc,tcnn , oc,1, oc,2, . . . , oc,ttcn ] (4)

oc,tgru = GRU
(
X′

1,tconcat , X′
2,tconcat , . . . , X′

c,tconcat

)
(5)

P(ŷi) = Dense
(

o1,tgru , o2,tgru , . . . , oc,tgru

)
(6)

The outputs for the CNN and TCN modules process the input SCADA data independently,
and then they are concatenated and fed into the GRU module to obtain predicted probabilities.

2.2. CNN Module

The CNN module consists of two CNN layers aimed at capturing local temporal
patterns in a sequence or time series. Given a dataset Xn = {xn,1, xn,2, . . . , xn,T}, we assume
Kn = {k1,n, k2,n, k3,n}, where Kn denotes the CNN kernel function associated with the nth
SCADA feature. Convolution is used for extracting local attributes of the features by sliding
a commonly used convolution kernel of size 3 [22] over input data according to

hn,t′ = ∑2
i=0 xn,t+i ∗ ki+1,n (7)

Normalization and maxpooling layers are then added for the purpose of stabilizing
the gradient computation and making the differences more prominent. In other words,

hc,tcnn = Layer Normalization
(
φc
(
h1,t′ , h2,t′ , . . . , hn,t′

))
(8)

maxhc,tcnn = max
i

(hc,i, hc,i+1),i = 1, 3, 5, . . . , t − 1 (9)

where hn,t′ denotes the t’th convolutional outcome of Xn and Kn for the nth SCADA feature,
hc,tcnn the t’th layer normalization of the kernel function associated with hn,t′ for channel c.
Finally, ReLU (Rectified Linear Unit) is utilized for the nonlinearity mapping to the output

oc,tcnn = ReLU(maxhc,tcnn) (10)

Essentially, the use of the CNN allows local patterns of features in a time series to be
extracted via convolution and maxpooling operations.
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2.3. TCN Module

The TCN module consists of two TCN layers to extract long-term temporal dependen-
cies. Dilated convolutions are carried out as follows:

h′n,t′ = ∑2
i=0 xn,t+2i ∗ k′ i+1,n (11)

Layer normalization is then applied to stabilize the gradient computation, which is

h′c,ttcn = Layer Normalization
(
φc

(
h′1,t′ , h′2,t′ , . . . , h′n,t′

))
(12)

where h′n,t′ represents the t’th convolutional outcome of Xn and Kn for the nth SCADA
feature, h′c,ttcn the t’th layer normalization of the kernel function associated with hn,t′ for
channel c. Finally, ReLU (Rectified Linear Unit) is utilized for the nonlinearity mapping to
the output

o′c,ttcn = ReLU
(
h′c,ttcn

)
(13)

By dilated convolutions, the extracted patterns by the TCN are made more global-
capturing long-term dependencies in a time series.

2.4. GRU Module

The outputs from the CNN and TCN modules are concatenated and inputted into a
GRU module. Let the input to the GRU module be

X′
c,tconcat =

[
oc,1, oc,2, . . . , oc,tcnn , o′c,1, o′c,2, . . . , o′c,ttcn

]
. (14)

The GRU module consists of two layers. Each layer comprises two gates: an update
gate and a reset gate. These two gates maintain and adjust the state of the network by
controlling the flow of information towards capturing the dependencies in time-series data.
The GRU computation can be expressed as

zc,t = ∅
(
Wz·

[
hc,t−1, x′c,t

]
+ bz

)
(15)

rc,t = ∅
(
Wr·

[
hc,t−1, x′c,t

]
+ br

)
(16)

ĥc,t = tanh
(

Wh·
[
rc,t·hc,t−1, x′c,t

]
+ bh

)
(17)

hc,t = (1 − zc,t)·hc,t−1 + zc,t·ĥc,t (18)

where zc,t represents the update gate determining how much of the information from
the previous time step is passed to the current time step towards capturing long-term
dependencies;rc,t represents the reset gate determining how much of the hidden state
information from the current input to the previous time step is discarded towards capturing
short-term dependencies; ĥc,t denotes the current memory generated by combining the
current input and the hidden state of the previous time step adjusted via the reset gate; hc,t
denotes the hidden state, which is generated by balancing the hidden state of the previous
time step and the current memory content via the update gate; Wz, Wr, and Wh denote
weight matrices for the update gate, the reset gate, and the current memory, respectively.
Layer normalization is applied to stabilize the gradient computation, and the dropout
layers are applied to avoid model overfitting, which is

oc,t = Dropout(Layer Normalization(hc,t)) (19)

The GRU module controls the flow of data and updates the hidden states through a
mechanism of resetting and updating gates. In other words, after concatenating the CNN
and TCN outputs, the GRU first captures all prominent local attributes and then gradually
fits their trend within a long-term relationship. As a result, compared with the CNN-GRU,
the long-term trend of a time series gets more effectively captured, and thus a more accurate
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prediction of a far future time can be made. Compared with the TCN, this is equivalent to
setting some threshold points in advance as a regularization term to prevent overfitting.
The above combined network of the CNN, TCN, and GRU forms a new ensemble network
named PCTG (Parallel CNN-TCN GRU).

3. Data Preprocessing and Experiment Settings

For the experiments conducted, the SCADA data of three wind turbines of a wind
farm used in [10] were considered. The accuracy and stability of the PCTG were compared
with four previous prediction models. The same feature selection and ice labeling methods
in [10] were used here. The weather data corresponding to temperature and relative
humidity were also added to the SCADA data as additional features. The dataset examined
contains 14,000 data samples of 12 SCADA variables/features, as reported in [10], at a
sampling rate of one sample per 10 min from January 2023 to April 2023. Table 1 includes
all the features or variables used as input for the ensemble network PCTG.

Table 1. Selected features from SCADA data together with weather, temperature, and relative humidity.

Features

Average power
Gear bearing temperature

Generator speed
Relative humidity

Wind speed
Generator temperature

Nacelle temperature
Blade pitch angle

Weather temperature
Wind direction

Nacelle direction
Ambient temperature

Based on the ice labeling rules in [10], about 35% of the data of the winter season from
January to April generated icing state labels. For data balancing, the number of normal
operation data samples was chosen to be the same as the number of icing data samples.
The ratio of training to testing was set to 80% to 20% randomly chosen with no overlap
between them. Table 2 lists the rules used in [8] for labeling data samples as ice or normal
states, and Table 3 lists the number of data samples used for the training and testing.

Table 2. Ice labelling rules.

Labeling Rules

Temperature < 0 ◦C
Relative Humidity > 85%

Actual Power < 85% × Power Curve

Table 3. Numbers of SCADA data samples.

Normal Icing

Training 4588 4588
Testing 1148 1148

3.1. Baseline Models

In this study, the following baseline models were compared to our newly developed
model: 1D-CNN, LSTM, CNN-GRU, XGBoost, and TCN. These models were considered
due to their capabilities to cope with time-series data and their proven effectiveness in prior
works discussed in [9].
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The 1D-CNN is adept at capturing local temporal patterns in sequential data through
convolutional operations. This model is considered to serve as a baseline due to its sim-
plicity in processing time-series data. LSTM is a type of RNN (Recurrent Neural Network)
designed to learn long-term dependencies in time-series data. It is included here as another
baseline model because of its widespread use and success in various time-series prediction
tasks. XGBoost (Extreme Gradient Boosting) is another baseline model considered here
that uses gradient boosted decision trees to conduct prediction. CNN-GRU is a combined
model that integrates the 1D-CNN with the GRU. It utilizes the strength of the CNN to
capture spatial patterns and the strength of the GRU to capture temporal dependencies.
This combined network is also included as another baseline model due to its high accuracy,
as reported in [23]. TCN is another form of convolutional network tailored for time-series
data. It was used in the previous study by our research team in [8], and thus it is included
here as yet another baseline model.

3.2. Window Size

The size of the window used for the input data to the models plays a crucial role
in the prediction. If the window size is too short, it fails to provide sufficient input
information for constructing a stable prediction model. Conversely, if the window size
is excessively long, it leads to little attention to local changes and higher noise, thus
diminishing prediction accuracy.

We started with the window size of 21 units (each unit represents 10 min) as reported
in [10] and increased it in steps of 4 units instead of 1 unit in order to save training time by
not doing retraining for every single step size. The average prediction accuracy across the
prediction horizons from 1 h to 48 h ahead was then considered to set the best window size.
The window size was increased till the average prediction accuracy started falling, which
was an indication of overfitting. Figure 3 shows the result of the window size selection
experiment. As can be seen from this figure and Table 4, the best window size depends on
the model used. For the next set of experiments, the best window size of each model was
considered for testing. In Figure 3, points marked by ‘x’ represent the highest point before
the accuracy drops as the window size grows, and the value shown are the accuracies at
that point.

Figure 3. Window size selection.
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Table 4. Best window size reached based on average prediction accuracy across prediction horizons.

Network Best Window Size

1D-CNN 61
LSTM 41

XGBoost 53
CNN-GRU 29

TCN 57
PCTG 53

3.3. Prediction Accuracy

The commonly used metrics of accuracy and F1-score were computed to evaluate the
performance of the developed wind turbine icing prediction model. Accuracy measures
the portion of all the samples for which the model predicts correctly as indicated by

Accuracy = (TP + TN)/(TP + TN + FP + FN) (20)

where icing state was taken to be positive and normal state to be negative; True Positive
(TP) denotes the number of samples that were predicted to be positive, which were actually
positive, while True Negative (TN) denotes the number of samples predicted to be negative,
which were actually negative. Conversely, False Positive (FP) represents the number of
samples predicted to be positive but were actually negative, and False Negative (FN)
represents the number of samples predicted to be negative but were actually positive.

F1-score is another measure, which corresponds to the harmonic mean of Precision
and Recall as defined in the following equations:

Precision = TP/(TP + FP) (21)

Recall = TP/(TP + FN) (22)

F1 − score = 2 × Precision × Recall/(Precision + Recall) (23)

where Precision denotes the ratio of the samples that are in an actual icing state to those
predicted to be in an icing state, and Recall denotes the ratio of the icing state samples
that are correctly predicted to all the icing state samples. F1-score is a measure, which is
inversely related to the number of incorrectly predicted samples. In other words, the higher
the F1-score is, the lower the false prediction errors are.

3.4. Computational Aspects

This subsection includes the computational aspects of the model developed in com-
parison with the existing models. These aspects are shown in Table 5 in terms of the
number of parameters, training time, and prediction time for each model on the T4 GPU of
Google Colab [24]. The experiments were conducted using Python libraries TensorFlow
(version 2.17), NumPy (version 1.26), and scikit-learn (version 1.6) on Google Colab.

Table 5. Computational aspects.

Model Parameters Training Time Prediction Time

1D-CNN 4705 1 min 39 s 5 ms
LSTM 79,529 2 min 45 s 6 ms

XGBoost 1157 29 s 1 ms
CNN-GRU 55,681 30 min 10 s 12 ms

TCN 6593 1 min 14 s 5 ms
PCTG 40,461 6 min 15 s 7 ms

Although our model takes more time to train than the other models, it should be noted
that the training is carried out offline; that is, it does not play a role in the actual real-time
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deployment of our prediction solution. The offline training is carried out only once. What
matters is how long it takes to perform a prediction as a new data sample becomes available.
As shown in Table 5, all the models carry out a prediction within a few milliseconds, which
is far shorter than the data or decision update rate of 10 min. In other words, the prediction
process, regardless of which model is deployed, operates in real time, noting that real time
here means a prediction is made as soon as a new SCADA data sample becomes available.

4. Experimental Results and Discussion

4.1. Experiment Results

Figure 4 as well as Table 6 presents the prediction accuracies and F1-scores of the
testing data (time sequence segments of the window size) corresponding to the PCTG and
the five baseline models for three wind turbines in the wind farm studied in [11].

Turbine 1 Turbine 2 

 
Turbine 3 

Figure 4. Testing data prediction accuracies from 1 h to 48 h ahead.

Figure 5 as well as Table 7 presents the prediction accuracies and F1-scores across the
entire time-series data corresponding to the PCTG and the five baseline models for the
same three wind turbines.
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Table 6. Average prediction accuracies and F1-scores of testing data.

Accuracy F1-Score

Turbine 1 testing data

Model mean std mean std

1D-CNN 0.8889 0.0376 0.8853 0.0451
LSTM 0.9166 0.0215 0.9174 0.0222

XGBoost 0.9461 0.0123 0.9473 0.0123
CNN-GRU 0.9527 0.0284 0.9522 0.0293

TCN 0.9674 0.0149 0.9675 0.0149
PCTG 0.9791 0.0082 0.9792 0.0083

Turbine 2 testing data

Model mean std mean std

1D-CNN 0.8494 0.0411 0.8391 0.0549
LSTM 0.8827 0.0323 0.8748 0.0373

XGBoost 0.9391 0.0100 0.9407 0.0080
CNN-GRU 0.9249 0.0362 0.9223 0.0418

TCN 0.9539 0.0169 0.9531 0.0177
PCTG 0.9653 0.0124 0.9657 0.0124

Turbine 3 testing data

Model mean std mean std

1D-CNN 0.8777 0.0468 0.8704 0.0581
LSTM 0.9248 0.0204 0.9245 0.0207

XGBoost 0.9488 0.0048 0.9498 0.0047
CNN-GRU 0.9554 0.0256 0.9550 0.0270

TCN 0.9762 0.0117 0.9761 0.0122
PCTG 0.9821 0.0078 0.9821 0.0079

Table 7. Average prediction accuracies and F1-scores of time-series data.

Accuracy F1-Score

Turbine 1 time-series data

Model mean std mean std

1D-CNN 0.9065 0.0324 0.7946 0.0557
LSTM 0.9093 0.0361 0.8091 0.0578

XGboost 0.9416 0.0096 0.8700 0.0196
CNN-GRU 0.9560 0.0272 0.8988 0.0534

TCN 0.9663 0.0160 0.9209 0.0324
PCTG 0.9777 0.0096 0.9466 0.0211

Turbine 2 time-series data

Model mean std mean std

1D-CNN 0.8952 0.0289 0.6587 0.0622
LSTM 0.9219 0.0229 0.7229 0.0668

XGBoost 0.9304 0.0197 0.9407 0.0100
CNN-GRU 0.9411 0.0263 0.7924 0.0723

TCN 0.9626 0.0163 0.8605 0.0501
PCTG 0.9648 0.0138 0.8700 0.0450

Turbine 3 time-series data

Model mean std mean std

1D-CNN 0.9096 0.0328 0.7292 0.0673
LSTM 0.9270 0.0289 0.7850 0.0656

XGBoost 0.9413 0.0118 0.8232 0.0290
CNN-GRU 0.9600 0.0207 0.8721 0.0536

TCN 0.9752 0.0105 0.9169 0.0322
PCTG 0.9784 0.0092 0.9276 0.0274

The comparison indicates that the developed ensemble PCTG network performs the
best for the testing data.



Sensors 2024, 24, 8167 11 of 15

Turbine 1 Turbine 2 

 
Turbine 3 

Figure 5. Time-series prediction accuracies from 1 h to 48 h ahead.

4.2. Discussion of Results

The experimental results presented in Tables 6 and 7 show the superior performance
of the PCTG network model in predicting icing compared to the other models: the 1D-
CNN, LSTM, XGBoost, CNN-GRU, and TCN. The tables include three different turbines or
SCADA datasets. For Turbine 1, the PCTG-net achieved the highest accuracy of 0.9791 and
F1-score of 0.9792 with the smallest standard deviations of 0.0082 and 0.0083, respectively.
These outcomes indicate that not only is the PCTG more accurate but it is also more
consistent across different prediction horizons, outperforming the next-best model (TCN),
which provided an accuracy of 0.9674 and an F1-score of 0.9675. For Turbine 2, the PCTG
maintained its superior performance with an accuracy of 0.9645 and an F1-score of 0.9649.
For Turbine 3, again, the PCTG generated the best accuracy of 0.9810 and an F1-score
of 0.9811.

Table 7 extends the analysis where the data were processed in a time-series manner,
simulating the way prediction is performed in a real-time or live manner. The results
reported in this table confirm the superiority of the PCTG over the other models. Similar to
the testing data case, for all the three turbines, the PCTG achieved the highest performance
compared with the other models.
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Another experiment was conducted for a limited examination of the model perfor-
mance due to seasonal variations, noting that a comprehensive examination of seasonal
variations requires the availability of a multi-year, multi-seasonal dataset, which is not cur-
rently available in the public domain. The dataset used here covers the period from January
2023 to June 2023. In this experiment, the testing was repeated for the springtime duration,
May to June, instead of the wintertime duration of January to April. As expected, the
prediction for the springtime duration produced no icing state or 100% prediction accuracy.

Figure 6 shows an example of the icing state as a time series for a 6 h-ahead prediction.
As can be seen from this figure, the predicted icing state is nearly identical to the ground
truth icing labels, illustrating the effectiveness of the PCTG when conducting wind turbine
icing prediction in a real-time or live manner.

Figure 6. A time-series example showing ground truth and predicted icing states (0: normal state,
1: icing state).

As illustrated in Figures 4 and 5, from 1 h ahead to 48 h ahead for all three turbines,
the PCTG outperformed the other models. The superior performance of the PCTG is
attributed to its ability to capture both short-term and long-term temporal patterns as well
as dependencies on SCADA data, making it a highly effective model for long-term ice
prediction or forecasting on wind turbines.

To further show the effectiveness of the PCTG for long-term ice prediction, another
experiment was carried out to examine how far ahead the prediction can be made. Such an
analysis on ice prediction has not been provided in any previous papers. A model that can
predict the farthest time into the future is clearly a more effective model. In this experiment,
the breakdown in prediction was defined to be when the average prediction accuracy in
the last 5 h became lower than 95%. Table 8 shows the outcome of this experiment. The
PCTG network model provided the farthest prediction horizon of 22 days ahead, far more
than the other models.

Table 8. Farthest prediction horizon.

Model Long-Term Prediction Accuracy

1D-CNN <5 h
LSTM 6 h

XGBoost 14 h
CNN-GRU 28 h

TCN 63 h
PCTG 549 h
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4.3. Additional Experiments on Public Domain Dataset

To demonstrate the generalization capability of the PCTG model across different
datasets, the public domain dataset from the 2017 China’s Industrial Big Data Compe-
tition [25] was also considered. This dataset covers the period from November 2015 to
January 2016, focusing on a winter season when icing conditions are prevalent. It consists
of the SCADA data samples for 60 days, with each sample labeled as normal or ice. The
ratio of normal to ice data samples is approximately 16.5:1, and the data have a sampling
time interval of either 7 or 10 s. For consistency, the dataset was resampled to a one-minute
interval, and the same feature selection, window size, and training–testing data separation
steps carried out for the first dataset were applied to this dataset. As shown in Table 9, the
PCTG achieved high accuracies even at 10 days ahead for this dataset as well.

Table 9. Accuracies of the public SCADA dataset over 10 days.

Prediction Horizons (day) 1 2 3 4 5

Accuracy (%) 99.32 99.48 99.05 99.68 99.74

Prediction Horizons (day) 6 7 8 9 10

Accuracy (%) 99.38 99.42 99.69 99.54 99.47

Furthermore, to evaluate the superiority of the PCTG for the long-term prediction of
icing, its performance for time-series data was compared with the other models. As shown
in Table 10, the PCTG achieved the highest accuracy of 0.99 and the highest F1-score of 0.92.

Table 10. Average accuracies and F1-scores of different models for the time-series of the public
SCADA dataset at 10 days ahead.

Model Mean Accuracy Mean F1-Score

Public time-series SCADA data

1D-CNN 0.9653 0.8049
LSTM 0. 9788 0. 8725

XGBoost 0.9607 0.6893
CNN-GRU 0.9691 0.8203

TCN 0.9798 0.8739
PCTG 0.9886 0.9246

5. Conclusions and Future Enhancements

In this paper, a new combined or ensemble deep learning network model named
PCTG is introduced for the purpose of high-accuracy and long-term prediction of icing
on wind turbine blades based on SCADA data. This model integrates the advantages
of the CNN, TCN, and GRU by incorporating both short-term and long-term temporal
patterns as well as dependencies on SCADA variables. The experimentations carried out
have shown that this new model achieves high prediction accuracies across long prediction
horizons for the two datasets examined. In summary, the newly developed data-driven
icing prediction model of PCTG provides higher prediction accuracies and, at the same
time, longer prediction horizons than the previously used models for the prediction of icing
on wind turbines.

While this study has demonstrated the effectiveness of the developed ensemble model
for wind turbine icing prediction, a number of enhancements can be performed in future
research. One enhancement involves improving the model’s generalization capability
by applying it to a broader range of datasets from various geographical locations. This
would allow its adaptability to different climate conditions and turbine structures. Another
enhancement involves training the model across multiple years upon the availability of
such datasets in order to improve its generalization capability for seasonal variations. The
model can also be extended as part of a fusion framework to encompass an entire wind
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farm consisting of many individual wind turbines by aggregating predictions from multiple
turbines to predict the power production capacity of a wind farm due to icing.
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