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Abstract. A primary objective in many fields is identifying the relevant predic-
tors of a response from a large collection of variables. In genome-wide association
studies, for example, variable selection methods have been adapted for identify-
ing single nucleotide polymorphisms (SNPs) linked to phenotypic variation. The
mechanisms of inheritance, evolution, recombination, and gene expression produce
predictable structures in genotype, phenotype, and their associations. Guided by
these mechanisms, we develop a scalable Bayesian variable selection regression
model that unifies several recent advances in variable selection. Using a restricted
regression approach, we demonstrate a computationally stable method for estimat-
ing SNP inclusion probabilities simultaneously with sets of basis functions that
account for population structure. Motivated by the spatial arrangement of genes
and their regulators, we also accommodate the non-uniform distribution among
evolutionarily relevant SNPs by modeling their inclusion probabilities jointly with
a Markov random field. We modify our Bayesian variable selection regression
model to control the false discovery rate using hidden Markov knockoff variables
that account for linkage disequilibrium and population structure in genomic data.
In a simulation study, we demonstrate that our spatial Bayesian variable selec-
tion regression model controls the false discovery rate and increases power when
the relevant variables are clustered. We conclude with a genome-wide association
study of flowering time, a polygenic trait, measured across globally distributed
accessions of Arabidopsis thaliana and find the discoveries of our method concen-
trate near described flowering time genes.

Keywords: Markov random field, reduced rank Gaussian process, hidden Markov
model, Genome-wide association studies, restricted regression, Arabidopsis
thaliana.

1 Introduction
High-dimensional variable selection has emerged as one of the prevailing statistical chal-
lenges in the big data revolution (Saeys et al., 2007). In large scale applications, identify-
ing all the relevant variables is infeasible, and a greater emphasis is given to controlling
the proportion of selected variables that are spuriously associated with the response
(Benjamini and Hochberg, 1995; Brzyski et al., 2017; Sesia et al., 2021). A confounding
factor in many variable selection problems is that measurements of the response are
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2 Spatial Knockoff Variable Selection

often correlated as a result of latent structure in the sample (Price et al., 2006, 2010).
Lack of independence among sample units decreases power and can increase the number
of spurious associations (Sul et al., 2018). The relevant variables may also be structured
and quantifying their importance independently can forfeit gains in power (Vannucci
et al., 2010; Li and Zhang, 2010).

In genome-wide association studies (GWAS), variable selection methods have been
adapted for identifying single nucleotide polymorphisms (SNPs) associated with phe-
notypic variation (Lu et al., 2021). Variable selection in GWAS is generally the first
step in a larger pipeline for identification of causal variants (Sesia et al., 2021). Follow
up analyses involve linking the selected SNPs to genes and regulatory pathways (Wang
et al., 2010; Brodie et al., 2016; Schaid et al., 2018; Wang et al., 2020), although some
methods have been proposed for doing both steps simultaneously (Zhang et al., 2014;
Lee et al., 2023; He et al., 2024). Genes or regulatory regions linked to the selected SNPs
are prioritized for genome editing to understand and validate the functional role of each
SNP (Spisák et al., 2015). These subsequent analyses are costly, and GWAS provides
a statistically robust framework for SNP prioritization. Following previous work (Guan
and Stephens, 2011; Sesia et al., 2019, 2021), we adopt the terminology ‘relevant’ to
describe the true discoveries of GWAS methods to emphasize some discoveries, though
not necessarily spurious, may not be linked to phenotype functionally.

The vast majority of existing GWAS methods rely on marginal approaches where
each SNP is tested independently for its association with the phenotype. One of several
methods is then used to transform the marginal test statistics and control the number
of false discoveries or positives (Benjamini and Hochberg, 1995; Storey and Tibshi-
rani, 2003; Brzyski et al., 2017; Wang and Ramdas, 2022). Assuming the sample of
genotypes consists of unrelated individuals that share the same population background
(i.e., descended from a common distant relative), the preceding approach is valid and
in many cases will yield high power (Kang et al., 2010). In practice, individuals used
in many current GWAS analyses are related or drawn from different ancestries, and
relevant SNPs are often confounded with neutral genetic variation that does not influ-
ence phenotype but mimics the genetic correlations of the relevant SNPs. To attenuate
identification of these spurious associations, contemporary GWAS methods also include
genotype random effects to account for population structure and familial relatedness in
a mixed model for SNP effects (Yu et al., 2006; Kang et al., 2010; Zhou and Stephens,
2012; Sul et al., 2018).

While marginal testing approaches have been instrumental for discovering thou-
sands of genotype-phenotype associations (Donnelly, 2008), they have limitations. Many
traits are polygenic and likely associated with large collections of mutations (Risch and
Merikangas, 1996). The individual effect of each SNP within collections is generally small
(Barton et al., 2017), and testing SNPs independently can overlook collections of small
effects or SNPs that are marginally uncorrelated with the phenotype (Visscher et al.,
2012). Marginal approaches also ignore the correlation structure among SNPs which
complicates inference regarding the discoveries. Many of the selected SNPs are likely
not relevant themselves but rather highly correlated with a causal variant Buzdugan
et al. (2016). The selected SNPs, although individually strong predictors of phenotype,
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may collectively have weak predictive performance because of high mutual correlations
(Guan and Stephens, 2011).

A number of GWAS methods for simultaneously analyzing multiple SNPs have been
proposed (Guan and Stephens, 2011; Li et al., 2011; Lu et al., 2015; Buzdugan et al.,
2016; Sesia et al., 2019, 2020; Gu and Yin, 2021; Sesia et al., 2021). These methods esti-
mate genotype-phenotype associations simultaneously for all SNPs and hence quantify
the conditional relevance of each SNP. Modeling the SNPs jointly reduces the overall
residual variation and enables identification of relevant SNPs that are marginally uncor-
related with phenotype, both of which can improve power for polygenic traits (Frommlet
et al., 2012). Estimating the conditional relevance of each SNP also provides more evi-
dence that the selected SNPs have causal effects on phenotype (Buzdugan et al., 2016).
In contrast to the single SNP approaches previously described, most multiple SNP ap-
proaches do not use genotype random effects in a mixed model, but rather account for
population structure or familial relatedness by preprocessing the phenotype. Prepro-
cessing steps include regressing the phenotype of interest against principal components
that describe population structure (Price et al., 2006, 2010), or clustering genotypes
into groups of unrelated individuals with homogeneous ancestry for testing within sub-
groups (Pritchard et al., 2000). While these preprocessing steps have been shown to
reduce spurious associations and improve power, a more cohesive and theoretically jus-
tifiable approach would simultaneously estimate SNP effects along with measures of
population structure and familial relatedness.

An advantage of the Bayesian variable selection regression (BVSR) approach is the
flexibility to incorporate prior information into the selection of variables (Fridley, 2009;
Stephens and Balding, 2009). Such models have gained particular attention in biology
where the inclusion indicators of covariates were assumed to have latent structure and
have been modeled as Markov random fields (Li and Zhang, 2010; Vannucci et al.,
2010). Stingo et al. (2011) developed a BVSR model that incorporated the relationship
between genes and their membership to biochemical pathways to improve understanding
of their expression levels on a phenotype of interest. Zhang et al. (2014) extended this
framework to GWAS with a hierarchical model that use Bayesian variable selection for
selection of genes with additional layer of selection for gene linked SNPs. Li and Zhang
(2010) proposed modeling inclusion indicators of SNPs in GWAS with an Ising prior
based on the linear arrangement of SNPs within the genome. Analyses of simulated data
from these studies showed that modeling the selection indicators jointly with a Markov
random field improved power and predictive performance relative to models that did not
account for latent spatial structure among the relevant predictors. These preliminary
studies along with functional genomic evidence that suggests relevant SNPs cluster in
gene regulatory hotspots (Stern and Orgogozo, 2009) motivate the aggregation of spatial
signals in GWAS to increase power.

We develop a BVSR model that uses knockoff variables (Barber and Candès, 2015)
to achieve false discovery rate (FDR) control in finite samples. Candès et al. (2018)
first proposed the knockoff variables in the context of BVSR, but extensions and appli-
cations to real datasets are currently limited (Gu and Yin, 2021). Guan and Stephens
(2011) developed a computationally efficient BVSR model for high-dimensional vari-
able selection that produced better power and predictive performance compared with
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standard marginal variable approaches and least absolute shrinkage and selection oper-
ator (LASSO) regression. We extend the BVSR model proposed by Guan and Stephens
(2011) with three notable additions. First, we implement a restricted regression frame-
work for estimating SNP importance while accounting for population structure in the
sampled individuals. Second, we improve power to detect the relevant variants by mod-
eling the SNP inclusion probabilities jointly with a Markov random field. Third, we
modify existing BVSR approaches to control the FDR using knockoff variables tai-
lored for GWAS. We integrate each of these extensions into one unified model that has
comparable computational efficiency to its precursors. Our approach, like other GWAS
methods, is phenomenological in that we use generalized linear modeling to detect linear
genotype-phenotype associations that are undoubtedly non-linear and interactive (Zuk
et al., 2012). Nonetheless, each of our extensions is guided by a mechanistic understand-
ing of the evolution of genotype and phenotype that can improve our ability to detect
casual variants with GWAS.

Across several simulation studies, we find our spatial BVSR model improves power to
detect relevant variants relative to models that do not incorporate spatial dependence in
the variable selection procedure. To assess the performance of our spatial BVSR model
in a realistic setting, we analyzed the genetic factors influencing flowering time in 1058
wild accessions of Arabidopsis thaliana. Because of range expansions, bottlenecks, and
multiple reintroductions to its invaded ranges, wild populations of Arabidopsis thaliana
have complex population structure with high levels of admixture (Alonso-Blanco et al.,
2016; Shirsekar et al., 2021) that make variable selection challenging. We focused on
flowering time for our analysis because this trait has a polygenic architecture (Zan and
Carlborg, 2018) with 282 described candidate genes (Brachi et al., 2010). Flowering
time plays a central role in ecological adaptation and has been extensively studied for
Arabidopsis thaliana (Shindo et al., 2005; Brachi et al., 2010; Alonso-Blanco et al.,
2016; Zan and Carlborg, 2018). Traditional single SNP analyses of Arabidopsis thaliana
flowering time have shown limited success, only revealing a few significant associations
(Shindo et al., 2005; Brachi et al., 2010; Alonso-Blanco et al., 2016). We motivate our
method in the context of GWAS for Arabidopsis thaliana, but also highlight the broader
applications of our method where appropriate.

2 Methods
2.1 Bayesian Variable Selection Regression

Consider the generalized linear model (GLM)

𝒚 ∼ [𝒚|𝝁, ϕ], (1)
f(𝝁) = 𝑿𝜷 + 𝒁𝑮𝒖, (2)

where we use the bracket notation, [·], to denote probability distributions (Gelfand and
Smith, 1990), 𝒚 is a vector of phenotypes observed across n individuals with mean 𝝁, ϕ
is a set of additional parameters, possibly empty (e.g., Poisson regression), in the data
model, 𝑿 is a n×p matrix of covariates including an intercept, 𝑮 is a ng ×nu genotype
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matrix containing the number of alleles each genotype has at a particular locus for the
nu SNPs in the sample of ng genotypes, and 𝒁 is a matrix of 1s and 0s that links the
ng genotypes in the sample to the n observed phenotypes. As parameterized, the GLM
assumes an additive effect at each loci, but we could also test for dominant and recessive
effects at each loci if we added another nu covariates (Li et al., 2011). Interactive effects
could also be included but obtaining posterior inference is infeasible for comtemporary
GWAS datasets (Zuk et al., 2012).

We assumed nu >> n and that only a fraction of the nu sequenced SNPs have a
non-zero effect on phenotype. Furthermore, we assumed effect sizes of relevant SNPs are
small, with each relevant SNP explaining less than one percent of the total variation in
𝒚 (Visscher et al., 2012; Barton et al., 2017). We sought to identify the relevant SNPs
while controlling the number of SNPs we falsely conclude are important.

We adopted a BVSR approach and specified spike-and-slab priors (Mitchell and
Beauchamp, 1988) for the SNP effects,

uj ∼
{︄

𝒩 (0, σ2
a), for νj = 1

0, for νj = 0
, (3)

νj ∼ Bernoulli(πj). (4)

The indicator variables, νj , act as “switches” for adding and removing SNPs from the
model with νj = 0 indicating that the phenotype 𝒚 is independent of SNP j conditional
on the other SNPs (i.e., 𝒚 ⊥⊥ 𝒈j |𝑮−j , where 𝒈j denotes the jth column of the genotype
matrix and 𝑮−j is the genotype matrix with the jth column removed). The posterior
means of the νj are called posterior inclusion probabilities and help assess whether a
SNP is a relevant predictor of phenotype. The BVSR approach is appealing because
in GWAS many SNPs are assumed to be in non-coding and non-regulatory genomic
regions. Conditional on the inclusion of the relevant variants, these SNPs are not as-
sociated with phenotype and setting uj = 0 is theoretically justifiable (Fridley, 2009).
Removing these irrelevant SNPs from the model both reduces runtime (Lu et al., 2015)
and improves precision for the relevant SNP effects (Guan and Stephens, 2011).

Guan and Stephens (2011) introduced a flexible prior for the variance of the SNP
effects, σ2

a, that applies greater shrinkage for more complex models with many non-
zero SNP effects. We let s2

j represent the sample variance of SNP j in allelic state and
h ∼ 𝒰(0, 1). Guan and Stephens (2011) induced a conditional prior distribution for σ2

a,
[σ2

a|𝝂, 𝒔2, h], by defining

σ2
a(𝝂, 𝒔2, h) = h

1 − h

1∑︁
j:νj=1 s2

j

. (5)

Regardless of how many SNPs are estimated as non-zero, the adaptive prior holds the
proportion of variance explained by all SNPs constant (Guan and Stephens, 2011). The
prior is also heavy-tailed, an attractive property for minimally informative variance
parameters in hierarchical models (Gelman, 2006), with density proportional to f(h) =

1
(1+h)2 . We adopted the prior specification of Guan and Stephens (2011) for the variance
of the non-zero SNP effects, σ2

a.
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2.2 Accounting for Population Structure
An implicit assumption of equation (2) is that all ng genotypes constitute a random
draw of unrelated individuals from the same population background (Kang et al., 2010).
When the genotyped individuals are related or drawn from multiple ancestries, the
observed phenotypes are no longer independent, and the BVSR model may select many
SNPs that are spuriously associated with 𝒚 (Sul et al., 2018). In single SNP methods,
individual SNP effects are estimated jointly with a set of ng genotype random effects
that correct for population structure (Kang et al., 2010; Zhou and Stephens, 2012; Sul
et al., 2018) and familial relatedness (Yu et al., 2006). For the multiple SNP methods,
a common approach is to first decorrelate the observations by regressing 𝒚 against a
set of basis functions that describe population structure (Guan and Stephens, 2011; Li
et al., 2011; Lu et al., 2015; Sesia et al., 2019). The residuals from the regression then
replace 𝒚 in equation (1).

A limitation of the step-wise procedure used for multiple SNP methods is that it
does not propagate the uncertainty associated with estimating the basis function coeffi-
cients into the estimates of the other model parameters. We simultaneously estimate the
environmental, SNP, and population structure effects by extending the original GLM,
equation (2), to the following generalized linear mixed model (GLMM),

f(𝝁) = 𝑹𝜽 + 𝑿𝜷 + 𝒁𝑮𝒖, (6)

where 𝑹 is a matrix of nR basis functions that provide a low-dimensional represen-
tation of population structure. Low-dimensional representations can be obtained from
a spectral decomposition of either the genotype or kinship matrix (Price et al., 2006,
2010). The choice of basis function type and number will depend on the ancestries and
relatedness of individuals in the sample. To clarify the connection between our reduced
rank approach and the typical mixed model approach, we specified 𝜽 ∼ 𝒩 (0, σ2

θ𝑰). If
we assume the phenotype is normally distributed with homoscedastic variance σ2

e , note
that integrating 𝜽 out of the model results in

𝒚 ∼ 𝒩 (𝑿𝜷 + 𝒁𝑮𝒖, σ2
e𝑰 + σ2

θ𝑹′𝑹), (7)

which is essentially the mixed model of Kang et al. (2010) with genetic variance σ2
θ

and low-dimensional representation of the kinship matrix 𝑹′𝑹. Note that for samples
that also have familial relatedness, we could include another effect to account for known
pedigree information as in the model of Yu et al. (2006).

The coefficients 𝜽 and 𝒖 are confounded in equation (6) because of overlap in the
column spaces of 𝑹 and 𝒁𝑮. Variation in the phenotype can be explained by both SNP
effects as well as the population structure of individuals. To alleviate confounding, we
adopted a restricted regression approach (Reich et al., 2006) and reparameterized the
model as

𝝁 = 𝑹𝜽 + 𝑿𝜷 + 𝑲𝒖, (8)

where 𝑲 = (𝑰 − 𝑷𝑹)𝒁𝑮 and 𝑷𝑹 = 𝑹(𝑹′𝑹)−1𝑹′ is the projection matrix onto the
column space of 𝑹. The restricted model, equation (8), gives priority to 𝜽 to explain
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all the contested sources of variation in the response (Reich et al., 2006). Conceptually,
the restricted model is similar to the step-wise procedures in that the SNP effects are
estimated from the residual variation in 𝒚 remaining from regressions that correct for
population structure. Because SNPs are measured for an effect on the phenotype that
is not explained by population structure, both procedures lack power to detect the
relevant variants that are confounded with the ancestries or relatedness of individuals.
The benefit of the restricted model is that all parameters are estimated simultaneously
such that their uncertainties are accounted for in the model. For observational data,
the environmental and genetic effects may also be confounded, and restricted regression
could be used for 𝜷 (i.e., 𝑲 = (𝑰 − 𝑷𝑹)(𝑰 − 𝑷𝑿)𝒁𝑮).

2.3 Spatially Structured Inclusion Probabilities

Traditional approaches to BVSR have treated the inclusion probabilities as a fixed
hyperparameter, πj = π for j = 1, . . . , nu (Mitchell and Beauchamp, 1988; George
and McCulloch, 1993). While fixing πj may be appropriate for some analyses, in many
cases, the sparsity may not be known even to the correct order of magnitude. Guan and
Stephens (2011) specified the log uniform prior

log(π) ∼ 𝒰(a, b), (9)

with a = log(1/nu) and b = log(M/nu), so that the lower and upper limits on π corre-
spond to an expectation of 1 and M variables included in the model, respectively, where
M is a hyperparameter. The log uniform prior puts approximately equal probability on
different magnitudes of sparsity (e.g., 10−3, 10−4, and 10−5) whereas a uniform prior
would favor larger magnitudes. In GWAS, prior information on the sparsity of relevant
SNPs is rarely available, making the log uniform prior an appealing choice.

Guan and Stephens (2011) showed the log uniform prior provides accurate poste-
rior inference for a wide range of sparsities, but assuming a common sparsity across all
chromosomes and within each chromosome may not always be appropriate. A growing
synthesis of evidence suggests mutations contributing to phenotypic variation (i.e., the
evolutionarily relevant SNPs) are not distributed uniformly across all genetic regions
(Stern and Orgogozo, 2009). The vast majority of eukaryotic deoxyribonucleic acid is
non-exonic and likely has no influence on phenotype (Van Straalen and Roelofs, 2011).
Furthermore, for many traits, the SNPs associated with phenotype can be restricted
to relatively few clustered loci in protein coding or cis-regulatory regions (Wang et al.,
2010). In humans, for example, about 95% of disease-causing mutations occur in exonic
regions that only make up 1−2% of the entire genome (Posey, 2019). If a trait is mono-
genic, all relevant SNPs could fall within a gene of less than 20 kilobases (kb). Even
for polygenic traits, evolutionary relevant mutations tend to accumulate near a reduced
number of input-output gene nexuses in regulatory networks. In Drosophila, hundreds
of genes regulate trichome (hair-like structures used for locomotion) development on the
larval cuticle, but all evolutionarily relevant mutations are located in the cis-regulatory
region of the input-output gene shavenbaby (McGregor et al., 2007). The relevant muta-
tions are restricted to the cis-regulatory region of shavenbaby because mutations in the
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upstream (input) genes or protein coding region of shavenbaby itself would interfere with
organ development and would not persist in the population. Furthermore, coordinated
expression among multiple downstream (output) genes is required for trichome devel-
opment (Chanut-Delalande et al., 2006), such that mutations in a single downstream
gene would not influence phenotype.

Parallel evolution provides additional evidence for genetic hotspots (Stern and Or-
gogozo, 2009). Many species, as well as reproductively isolated populations, have de-
veloped mutations targeting the same gene and regulatory networks. For example, 11
insect species have developed DDT resistance through mutations on one of two amino
acids for the voltage-gated sodium channel gene para (ffrench Constant et al., 1998).
In Arabidopsis, over 20 populations have independently evolved mutations for silencing
the Frigida gene which induces early flowering (Shindo et al., 2005). The accumulation
of evolutionarily relevant mutations in restricted genetic regions could be related to
pleiotropy and epistasis. Mutations occurring in pleiotropic genes effect multiple traits
and are unlikely to increase fitness thereby occluding their selection (Cooper et al.,
2007). Likewise, the effect of mutations on epistatic genes is dependent on the genetic
background and will experience slower selection compared to mutations that improve
fitness for all genotypes. To summarize, the vast majority of mutations likely have no
influence on phenotype. Mutations that reduce fitness are quickly removed from the
population, and those which only improve fitness for certain genetic background may
be selected in natural populations more slowly. This leaves a small number of genetic
hotspots that harbor the majority of observable adaptive variation in natural pop-
ulations. Motivated by the clustering of evolutionarily relevant mutations, we propose
modeling SNP inclusion indicator jointly to aggregate spatial signals and increase power
(Benjamini and Heller, 2007).

Spatial patterns in association statistics are ubiquitous in GWAS. Nearby SNPs tend
to have similar marginal associations as a result of strong mutual correlations resulting
from limited recombination during meiosis, a pattern known as linkage disequilibrium
(Jorde, 2000). Figure 1 shows a Manhattan plot of marginal associations with flow-
ering time in Arabidopsis thaliana for the full set of ≈ 7 SNPs and a reduced set of
≈ 550k SNPs that have been filtered for linkage disequilibrium (see Section 2.5). Flow-
ering time in Arabidopsis thaliana is known to have a complex polygenic architecture
(Zan and Carlborg, 2018), and this is reflected by many moderate signals distributed
throughout the genome. We also see spatial structure among signals with the largest
marginal associations often occurring in clusters. Clusters in the Manhattan plot are
more pronounced for the full set of SNPs, but spatial signals are still prevalent in the
linkage disequilibrium filtered set. The remaining spatial signal for the filtered set may
be related to functional genomics because nearby SNPs are more likely to be part of
the same gene networks and regulatory pathways.

Motivated by the clustering of evolutionarily relevant mutations in GWAS, we inves-
tigated accounting for spatial dependence in the SNP inclusion indicators using Markov
random fields. We considered the Markov random field represented by a physically con-
tiguous arrangement of SNPs in each chromosome. In reality, SNPs are separated by
thousands of codons, but modeling them as contiguous has been argued as a viable
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Figure 1: Manhattan plot of marginal associations with flowering time for ≈ 7 million
single nucleotide polymorphisms (SNPs) in Arabidopsis thaliana. The vertical axis is the
negative log (base 10) of the p-values from t-tests for univariate linear regressions of each
SNP with flowering time. The bottom panel shows the same marginal associations but
for a reduced set of ≈ 550k (SNPs) that have been filtered for linkage disequilibrium.

approach (Sesia et al., 2019). Li and Zhang (2010) explored modeling the inclusion in-
dicators of variables in the Markov random field using an Ising model. Under the linear
chain Ising model Li and Zhang (2010) proposed for GWAS, the inclusion probability
of the jth SNP conditional on the other inclusion indicators is

P (νj = 1|𝝂−j , c, d) = logit−1(c(νj−1 + νj+1) + d), (10)

where c and d are parameters for controlling the clustering and sparsity of relevant
SNPs, respectively. Li and Zhang (2010) showed the Ising model improved power to
detect relevant SNPs for simulated spatial signals. A computational hurdle for fully
Bayesian inference of c and d under the linear chain Ising model is the normalizing
factor in the joint likelihood,

[𝝂|c, d] ≡ 1
C(c, d) exp

⎛
⎝c

nu−1∑︂
j=1

νjνj+1 + d

nu∑︂
j=1

νj

⎞
⎠ . (11)

The normalizing factor C(c, d) is the sum over all 2nu configurations of 𝝂 and is in-
feasible to evaluate for large nu. Li and Zhang (2010) fixed c and d but this approach
is unappealing for GWAS because the sparsity of the relevant SNPs is rarely known
(Guan and Stephens, 2011).
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We developed a more flexible model for inducing spatial dependence in inclusion
indicators that allows for fully Bayesian inference using a reduced rank Gaussian process.
Within each chromosome, we modeled the correlation in the SNP inclusion probabilities
with the conditional autoregressive process,

logit(𝝅) ∼ 𝒩 (μπ1, τ𝑳(ρ)), (12)

where 𝑳(ρ) = (diag(𝑨1) − ρ𝑨)−1, 𝑨 is a proximity matrix, and 1 is a nu × 1 column
of ones such that 𝑨1 is the row sums of 𝑨 (Ver Hoef et al., 2018; Hooten and Hefley,
2019). We specified the neighborhood structure,

aij =

⎧⎪⎨
⎪⎩

0, i = j

1, i ̸= j, dij ≤ dthresh

0, i ̸= j, dij ≥ dthresh

, (13)

where dij is the number of base pairs between SNP i and j, and dthresh is selected a
priori. We assume neighboring SNPs should have nearly identical inclusion indicators
and set ρ → 1 to induce an approximate intrinsic conditional autoregressive (ICAR)
process (Ver Hoef et al., 2018).

Inverting 𝑳(ρ) is prohibitive for the large nu typically encountered in GWAS. To re-
duce computational burden, we used a basis function approach for incorporating spatial
dependence (Hefley et al., 2017), and let

logit(𝝅) = μπ1 + 𝑩𝜶, (14)
𝜶 ∼ 𝒩 (0, τ𝑩′𝑳(ρ)𝑩), (15)

where 𝑩 is a basis expansion of 𝑳(ρ). Specifically, we let 𝑩 = 𝑸Λ, where 𝑸Λ𝑸′ is
the spectral decomposition of nu

1′𝑨1 𝑨. The basis functions are sinusoidal with equal
amplitude but increasing frequency allowing for more fine-scale spatial patterns (Reich
and Hodges, 2008). We reduced computational burden by using the first nα vectors from
the basis expansion. The accuracy of the approximation decreases with fewer vectors
included but selecting nα << nu generally has negligible effects on posterior inference
(Hughes and Haran, 2013). We show in the Web Supplement (Van Ee et al., 2025) that
the basis functions are insensitive to the choice of dthresh.

2.4 Controlling False Discovery Rate via Knockoffs

Accounting for population structure with principal components as in equation (6) re-
duces spurious associations but does not provide information on the expected number
of false discoveries. The prevailing practice in BVSR is to select all variables with pos-
terior inclusion probabilities greater than 0.5 (George and McCulloch, 1993; O’Hara
and Sillanpää, 2009). Referred to as the median probability model, Barbieri and Berger
(2004) showed that for linear regression using a 0.5 threshold minimizes predictive error,
but no theoretical guarantees are implied for FDR control. We calibrated selection of
relevant SNP to control FDR using a knockoff variable approach.
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Barber and Candès (2015) introduced the knockoff filter for general variable selection
and several extensions have been proposed in the context of GWAS (Candès et al.,
2018; Sesia et al., 2019, 2020, 2021). Knockoffs are synthetic variables constructed to be
exchangeable with the original predictors but independent of the response. The knockoff
filter leverages the synthetic variables to calibrate the selection procedure such that
the FDR is controlled at the desired level. Unlike traditional approaches that control
FDR asymptotically or assume independence of the tested hypotheses (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001), FDR control with the knockoff filter
is exact for finite sample sizes regardless of the design or covariates, the number of
variables in the model, or the signal-to-noise ratio (Barber and Candès, 2015). The
knockoff filter can be applied in a wide range of models, but for brevity, we describe the
method in the context of our BVSR model.

Consider the augmented model,

𝒚 ∼ [𝒚|𝝁, ϕ], (16)
f(𝝁) = 𝑹𝜽 + 𝑿𝜷 + 𝑲𝒖 + 𝑲̃𝒖̃, (17)

where 𝑲̃ = (𝑰 − 𝑷𝑹)𝒁𝑮̃ and 𝑮̃ is a knockoff of 𝑮 with ng synthetic genotypes for
nu SNPs. The vector 𝒖̃ controls the effect of the knockoff SNPs on 𝒚. We describe
the properties and construction of 𝑮̃ in the following sections. We expressed a joint
spike-and-slab model for the original and knockoff SNP effects, (uj , ũj), as

(uj , ũj) ∼ (δj , δ̃j)𝒩 (0, σ2
a), (18)

(δj , δ̃j) ∼

⎧⎪⎨
⎪⎩

(0, 1), w.p. 1/2 for νj = 1
(1, 0), w.p. 1/2 for νj = 1
(0, 0), for νj = 0

, (19)

νj ∼ Bernoulli(πj), (20)

where w.p. is an abbreviation for “with probability.” We define the quantity wj =
δj − δ̃j and denote its posterior mean w̄j = 𝔼(wj |𝒚). True discoveries are indicated by
w̄j > 0 whereas false discoveries (i.e., selected SNPs with no association to phenotype
conditional on the inclusion of all relevant SNPs) correspond to w̄j ≤ 0. We also redefine
the variance of the original and knockoff SNP effects

σ2
a(h, 𝜹, 𝜹, 𝒔2, 𝒔2) = h

1 − h

1∑︁
j:δj=1 s2

j +
∑︁

j:δ̃j=1 s̃2
j

, (21)

so that σ2
a shrinks as either type of variable is added to the model.

Suppose we select all SNPs having w̄j > t⋆ for some t⋆ ∈ (0, 1). We let Ŝ ⊂
{1, . . . , nu} be the subset of SNPs selected. The FDR of this procedure is

FDR = 𝔼

(︄
#{j : uj = 0 and j ∈ Ŝ}

#{j : j ∈ Ŝ} ∨ 1

)︄
, (22)
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where we use the notation a ∨ b to denote max{a, b}. The goal is to chose t⋆ as small
as possible subject to the constraint that FDR is controlled below some prespecified
threshold q. Barber and Candès (2015) proved the optimal t⋆ is given by

t⋆ = min
{︃

t ∈ (0, 1) : 1 + #{j : wj ≤ −t}
#{j : wj ≥ t} ∨ 1 ≤ q

}︃
. (23)

The threshold, t⋆, in equation (23) controls the expected number of false discoveries, but
note that for any one analysis the observed proportion of false discoveries may exceed
q.

‘Model-X’ Knockoffs

Knockoff variables as proposed in Barber and Candès (2015) are constructed geomet-
rically and only valid if nu < 2ng. Candès et al. (2018) introduced probabilistically
constructed ‘Model-X’ knockoffs for high-dimensional variable selection. Given a family
of random variables 𝒈 = (g1, . . . , gnu)′, a ‘Model-X’ knockoff, 𝒈 = (g̃1, . . . , g̃nu)′, satisfies
two properties:

1. for any subset S ⊂ {1, . . . , nu}, (𝒈, 𝒈)swap(S)
d= (𝒈, 𝒈),

2. 𝒈 ⊥⊥ 𝒚|𝒈,

where d= denotes equality in distribution and (𝒈, 𝒈)swap(S) is obtained by swapping the
variables gj and g̃j for all j ∈ S. Following Candès et al. (2018), henceforth, we refer to
criteria 1 and 2 as the exchangeability and nullity of knockoffs, respectively.

A trivial knockoff satisfying exchangeability and nullity is 𝒈 = 𝒈. This knockoff
would be of little practical use because w̄j = 0 for all j yielding no power. As a more
relevant example, if the variables follow a Gaussian distribution, 𝒈 ∼ 𝒩 (0, Σ), one
possible knockoff construction is

(𝒈, 𝒈) ∼ 𝒩 (0, 𝑯), where 𝑯 =
(︃

Σ Σ − diag(𝒔)
Σ − diag(𝒔) Σ

)︃
, (24)

and diag(𝒔) is any diagonal matrix selected in such a way that the joint covariance
matrix is positive definite. In general, knockoffs become more powerful as the absolute
pairwise correlation between each variable and its knockoff decreases.

Hidden Markov Model Knockoffs

The knockoff construction presented in equation (24) is challenging to implement for
high-dimensional data. As the number of variables, nu, grows, the domain of 𝒔 that
ensures 𝑯 is positive definite collapses, and knockoffs generated using equation (24)
become indistinguishable from the original variables. Simulating 𝒈 from equation (24)
has computational complexity 𝒪(n3

u) and memory requirement 𝒪(n2
u), which may not
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be feasible. The Gaussian assumption is particularly unappealing in the context of
GWAS where 𝒈 is discrete-valued, and simulations from Rosenblatt et al. (2019) sug-
gest that discrete knockoffs generated under the Gaussian construction often violate
exchangeability.

Sesia et al. (2019) developed a knockoff generator, SNPknock, for SNP data based
on the hidden Markov model (HMM) described by Scheet and Stephens (2006) that
addresses the aforementioned challenges. The HMM approach produces discrete knock-
offs and accommodates linkage disequilibrium patterns in haplotype blocks that lead
to high mutual correlation among neighboring SNPs (Jorde, 2000). Compared to the
Gaussian knockoff construction, SNPknock substantially reduces computational burden
and has computational complexity and memory requirements 𝒪(n2

u) and 𝒪(nu), re-
spectively. Simulations using real genotype matrices demonstrated knockoffs generated
using SNPknock control the false discovery rate while yielding high power (Sesia et al.,
2019).

In principle, the knockoffs generated with SNPknock should also account for popu-
lation structure, but this may not be the case if the SNPs have been heavily filtered
prior to analysis. Sesia et al. (2021) extended their approach to accommodate genome-
wide correlations related to population structure. Specifically, kinship coefficients and
principal components calculated from knockoffs generated using the new algorithm,
knockoffGWAS, and from a reduced number of SNPs are indistinguishable from the
original genotypes. We describe our implementation of their HMM framework for the
Arabidopsis thaliana in Section 2.5.

2.5 Implementation

Identifying the relevant SNPs in GWAS is particularly challenging because of the mas-
sive number of variables considered and high mutual correlations among SNPs arising
from linkage disequilibrium (Weinwurm et al., 2013). Clustering and pruning SNPs prior
to analysis can improve performance (Wang et al., 2010; Lu et al., 2015; Candès et al.,
2018; Sesia et al., 2019), and several approaches have been suggested in the context
of GWAS (Selinski and Ickstadt, 2008; Wang et al., 2015; Candès et al., 2018). While
clustering and pruning variables based on correlation prior to selection has several dis-
advantages (Lippitt et al., 2024), correlational clustering may be warranted in GWAS
(Candès et al., 2018; Sesia et al., 2019, 2020; He et al., 2024). Fitting models to all
SNPs jointly is often computationally infeasible necessitating some degree of variable
thinning. Furthermore, a common post hoc analysis in GWAS involves augmenting the
group considered for genetic fine mapping by adding SNPs in linkage disequilibrium
with the selected ones using PLINK (Purcell et al., 2007). The motivation for post hoc
aggregation is that the unit of inference is not an individual SNP but genomic regions.
However, if FDR control is specified at the SNP level, as is common practice, this
standard pipeline creates a mismatch between the units for true and false discoveries
(Benjamini and Heller, 2007; Brzyski et al., 2017).

The solution proposed by recent GWAS methods (Candès et al., 2018; Sesia et al.,
2019, 2020; He et al., 2024) involves clustering SNPs prior to analysis and selecting
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individuals within clusters as representatives for broader genomic associations that are
identifiable from a variable selection perspective. Correlational clustering achieves both
of these efforts by grouping SNPs using genetic distance, which coincides with correla-
tion as a result of linkage disequilibrium, and removing SNPs that are too similar to
discriminate. We hierarchically clustered the SNPs using their absolute correlation as
a measure of similarity, and cut the dendrogram at the height such that collections of
SNPs having mutual correlations of 0.5 or more were classified into clusters. We then
used 20% of the observations of flowering time to calculate marginal t-tests for each
SNP within clusters and choose the SNP with the lowest p-value as the cluster repre-
sentative. A full description and justification of this procedure is provided in the Web
Supplement of Candès et al. (2018).

The commonly used variable pruning procedure reduced the total number of SNPs
considered to nu = 558,321. Larger nu increases the challenge of simulating knockoffs
that satisfy exchangeability in Section 2.4 and are distinct from the original genotypes
(Sesia et al., 2021). To improve power, we generated knockoffs for the pruned genotype
using SNPknock (Sesia et al., 2019) rather than simulating knockoffs for all ≈ 7 million
SNPs. Arabidopsis thaliana is a highly self-fertilizing species, and it is assumed that
the wild collected lines are fully inbred. The genotype matrix available for Arabidopsis
thaliana is a variant matrix where 1 and 0 encode homozygous for the reference and
alternate alleles, respectively (Togninalli et al., 2018). Because the genotype matrix is
binary, we used the haplotype implementation of FastPhase and SNPknock even though
Arabidopsis thaliana is diploid. This implementation reflects the breeding structure of
Arabidopsis thaliana in that both haplotypes are inherited from the same parent and
therefore identical. Note that while SNPknock does not explicitly account for popula-
tion structure, principal components calculated from the knockoffs were similar to those
calculated from the original genotypes (see Web Supplement). Following Candès et al.
(2018), we set the rows of the knockoff genotype matrix corresponding to the observa-
tions used for determining the cluster representatives to their original values to ensure
they met the exchangeability lemma.

We obtained a posterior sample for all unobserved quantities in our model using
Markov chain Monte Carlo (MCMC). Implementing BVSR for large sets of variables
with MCMC is computationally demanding (Griffin et al., 2021). A pivotal compo-
nent of making BVSR computationally feasible in GWAS is the Rao-Blackwellization
(Casella and Robert, 1996) of the SNP marginal posterior inclusion probabilities (Guan
and Stephens, 2011). With the massive number of SNPs considered, mixing of the in-
clusion indicators, νj , is poor, and Monte Carlo estimates of the posterior inclusion
probabilities calculated as the proportion of MCMC samples for which νj = 1 are prone
to high sampling variance. Guan and Stephens (2011) suggested a Rao-Blackwellized
estimate for SNP posterior inclusion probabilities that can dramatically improve mix-
ing. In our approach, the knockoff statistics are the difference in posterior inclusion
probabilities for the SNP and its knockoff and are amenable to Rao-Blackwellization
regardless of whether inclusion probabilities have spatial dependence. The derivations of
the Rao-Blackwellized knockoff statistics are provided in the Web Supplement as well as
a description of several additional sampling strategies we used to improve convergence.
For the Ising model, we obtained samples of c and d using a Gaussian random walk
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Metropolis-Hastings algorithm. The normalizing function in the Ising model is compu-
tationally intractable, and we used the pseudolikelihood (Besag, 1975) approximation
[𝝂|c, d] ≈ ∏︁nu

j=1[νj |𝝂−j , c, d].

3 Results
We fit our spatial BVSR model with an ICAR process on SNP inclusion probabilities
as in (12) to a variety of simulated datasets and flowering time observations for 1058
wild accessions of Arabidopsis thaliana. We also fit a spatial BVSR model with an Ising
process and a non-spatial BVSR model with a log uniform prior on SNP inclusion prob-
abilities (equations (11) and (9), respectively). To quantify the relative advantages of
the BVSR approach over other common GWAS methods, we fit modified LASSO re-
gression (Tibshirani, 1996) and linear mixed models (Kang et al., 2010) to all datasets.
Specifically, we fit a LASSO regression model to the genotype matrix augmented with
the same knockoffs used in the BVSR models. The model also included the same envi-
ronmental covariates and population structure basis functions (for datasets simulated
with population structure), but no penalization was applied to these effects. We calcu-
lated the knockoff statistics for each SNP as the difference in the magnitude of effects
for the original and knockoff variables. This model and knockoff procedure follows the
approach presented by Sesia et al. (2019). All linear mixed models were fit using effi-
cient mixed-model association eXpedited (EMMAX) with the same kinship matrix from
which the population structure basis functions were derived (Kang et al., 2010). We es-
timated the effects of the original and knockoff variables for each SNP and calculated
knockoff statistics as the difference in magnitudes like before.

While Model-X knockoffs do not place any assumptions on the distribution of 𝒚|𝑮,
our BVSR model as well as its competitors (e.g., LASSO) implicitly assume sparse and
linear associations between SNPs and phenotype. The assumption of sparsity is valid
because the majority of genetic variants are known to have no impact on phenotype,
but effects of the relevant SNPs are undoubtedly non-linear and interactive (Zuk et al.,
2012). To capture the discrepancy between the biological processes that give rise to
phenotype and the models used for detecting relevant SNPs, we simulated the effect
of each relevant SNP and phenotype using a neural network framework with rectified
linear unit (ReLU) link function to capture non-linear genotype-phenotype associations.
Across simulations we varied the signal-to-noise ratio, degree of spatial structure, and
the inclusion of both population structure and linkage disequilibrium. In addition to
measuring the false discovery and true positive rate, we also assessed out-of-sample
predictive performance for the BVSR and LASSO models by withholding a number of
genotypes from model fitting for each simulated dataset. For the analysis of Arabidopsis
flowering time, we randomly generated 10 folds of 100 genotypes and let the eleventh fold
contain the remaining 58 genotypes. We provide full model statements, data simulation
and preprocessing details, and model fitting statistics for the simulated and real datasets
in Web Supplements B and C, respectively.

Power decreased in all models as the signal-to-noise ratio increased (Figure 2). Power
was generally lowest for the single SNP approach (EMMAX) and LASSO. Performance
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Figure 2: Means, 5th, and 95th quantiles of false discovery proportion, true positive
proportion, and out-of-sample predictive performance. The true positive proportion
is the number of relevant SNPs correctly identified divided by 30, the true number
of simulated relevant SNPs. We varied the signal-to-noise ratio by setting σ2

e = 1 in
equation (2) and letting uj = 0.25, 0.50, . . . , 1.5 in equation (3) for the 30 relevant SNPs.
Results are pooled across six clustering regimes: all relevant SNPs in 1, 3, 5, 10, 15, and
30 clusters, respectively. We simulated 10 datasets for each clustering regime and signal-
to-noise ratio, for a total of 360 datasets. All simulated datasets are for nu = 20, 000
uncorrelated SNPs (no linkage disequilibrium) observed across n = 1, 000 unrelated
individuals with no population structure. The red horizontal line depicts the targeted
false discovery proportion of q = 0.20. The root mean squared error was calculated
for 100 random genotypes that were withheld from model fitting and is divided by the
standard deviation of 𝒚.

was similar for the three BVSR approaches, but the spatial BVSR approaches had
a higher upper bound. All three approaches gave similar power for datasets simulated
without spatial structure, but when the relevant SNPs were clustered, the spatial BVSR
models attained higher power (Figure 3). For datasets with moderate levels of spatial
structure (i.e., clusters of 3-6 relevant SNPs), the Ising model had higher power than
the ICAR model. As expected, the mean FDR did not depend on the signal-to-noise
ratio or clustering regime and was close to the targeted rate of q = 0.20. There was
little difference in predictive performance across the BVSR methods. Even for datasets
for which the spatial BVSR models attained significantly higher power, there was no
appreciable difference in predictive performance. Note that if a variable had a large
effect on predictive performance, it would be identified well by each method. The spatial
BVSR models leverage dependence among the relevant variables to detect predictors
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that are only weakly associated with the response.

Figure 3: Means, 5th, and 95th quantiles of false discovery proportion, true positive
proportion, and out-of-sample predictive performance. The true positive proportion is
the number of relevant SNPs correctly identified divided by 30, the true number of
relevant SNPs. The horizontal axis depicts the number of clusters of relevant SNPs and
ranges from extreme (all relevant SNPs in one cluster) to no spatial structure (random
uniform position for all relevant SNPs). Results shown are for a signal-to-noise ratio of
0.5. Results are summarized across 10 datasets for each clustering regime. All simulated
datasets are for nu = 20, 000 uncorrelated SNPs (no linkage disequilibrium) observed
across n = 1, 000 unrelated individuals with no population structure. The red horizontal
line depicts the targeted false discovery proportion of q = 0.20. The root mean squared
error was calculated for 100 random genotypes that were withheld from model fitting
and is divided by the standard deviation of 𝒚.

Power decreased for all methods in the presence of linkage disequilibrium and popu-
lation structure (Figure 4). When SNPs are correlated, associations can become masked
lowering power to detect relevant SNPs. For the datasets simulated without population
structure and linkage disequilibrium, the relevant SNPs tended to be among the top
100 SNPs with highest marginal association, but when we introduced population struc-
ture and linkage disequilibrium, it was not uncommon to observe relevant SNPs with
marginal associations that ranked in the bottom half. This trend is exacerbated with
increased clustering of the relevant SNPs because linkage disequilibrium decays with
distance, and we observed that power slightly decreased for the LASSO and non-spatial
BVSR model as we increased spatial dependence. The spatial BVSR models, on the
other hand, increased in power as the relevant SNPs became more clustered. For ex-
treme spatial clustering (i.e., all 30 relevant SNPs in a single cluster), the ICAR model
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Figure 4: Means, 25th, and 75th quantiles of false discovery proportion, true positive
proportion, and out-of-sample predictive performance. The true positive proportion is
the number of relevant SNPs correctly identified divided by 30, the true number of
relevant SNPs. The horizontal axis depicts the number of clusters of relevant SNPs
and ranges from extreme (all relevant SNPs in one cluster) to no spatial structure
(random uniform position for all relevant SNPs). Results shown are for a signal-to-
noise ratio of 1 (i.e., σ2

e = 1 in equation (2) and uj = 1 in equation (3)). Results are
summarized across 27 datasets for each clustering regime. All simulated datasets are
for nu = 20, 000 SNPs extracted from chromosomes 1-5 of Arabidopsis thaliana and
n = ng = 1, 058 individuals with population structure mimicking Arabidopsis thaliana.
Linkage disequilibrium among SNPs was partially attenuated using the variable pruning
procedure described in Section 2.5. The red horizontal line depicts the targeted false
discovery proportion of q = 0.20. The root mean squared error was calculated for 20
random genotypes that were withheld from model fitting and is divided by the standard
deviation of 𝒚.

had the greatest power, but, as before, the Ising model showed slightly greater power
for datasets with more moderate levels of spatial dependence. The non-spatial BVSR
model generally had greater power than the LASSO model. The EMMAX method failed
to detect any relevant SNPs at the targeted false discovery proportion. As before, there
was no appreciable difference in predictive performance across approaches.

Figure 5 presents the knockoff statistics for nu = 558,321 SNP cluster representatives
in Arabidopsis thaliana. At a false discovery proportion threshold of 0.20, we made 0, 25,
27, 40, and 65 discoveries with the EMMAX, Ising BVSR, LASSO, non-spatial BVSR,
and ICAR BVSR models, respectively. We identified SNPs likely tagging flowering time
genes by noting whether any of the SNPs in their cluster fell within 10 kb, the estimated
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Figure 5: Arabidopsis thaliana flowering time knockoff statistics for nu = 558,321 sin-
gle nucleotide polymorphism (SNP) cluster representatives considered. Labels denote
the 3, 7, 6, and 14 knockoff statistics for SNP clusters falling in buffers of flowering
time genes selected in the Ising BVSR, LASSO, non-spatial BVSR, and ICAR BVSR
models, respectively. Knockoff statistics have been scaled to yield the same variance
across methods. The five vertical lines depict the starting points of each chromosome.
The dashed horizontal lines depict the threshold needed to obtain the targeted false
discovery proportion of q = 0.20. Shape indicates whether a SNP cluster fell within a 10
kilobase buffer of one of the 282 described flowering time genes in Brachi et al. (2010).

linkage disequilibrium rate of Arabidopsis thaliana (Kim et al., 2007), of a described
gene. The number of cluster representatives in flowering time gene buffers was 0, 3, 7,
6 and 14, respectively. Approximately 15.8% of the 558,321 SNP clusters in our subset
had a cluster member that fell within the 10 kb buffer of one of the 282 flowering time
genes described in Brachi et al. (2010). Thus, in the non-spatial and Ising BVSR models,
we selected roughly the proportion of SNP clusters tagging flowering time genes that we
would have expected by chance, whereas in the LASSO and spatial BVSR models, we
selected a higher proportion of SNP representatives tagging flowering time genes (26%
and 22%, respectively).

All four models selected SNP clusters that had representatives within the 10 kb
buffers of the flowering time genes AT5G13480 (FY ) and three of four models had a
representative in AT3G58070 (GIS). FY had one of the strongest estimated associa-
tions and encodes a protein with similarity to yeast Pfs2p, a messenger ribonucleic acid
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Figure 6: Arabidopsis thaliana change in flowering time effects for 25, 27, 40, and 65 sin-
gle nucleotide polymorphism (SNP) cluster representatives selected in the Ising BVSR,
LASSO, non-spatial BVSR, and ICAR BVSR models, respectively. Effects represent the
change in days to flowering induced by swapping two copies of the early flowering allele
for two copies of the late flowering allele at a particular locus. Selected SNP clusters
falling within a 10 kilobase buffer of one of the 282 described flowering time genes in
Brachi et al. (2010) are depicted by columns with a black outline and gene names are
given in parenthesis. Bar widths vary based on the number of discoveries in each chro-
mosome and how many methods identified a SNP.

processing factor that influences flowering time (Schmid et al., 2005). In the BVSR mod-
els, associations were also strong for AT3G26790 (FUS3 ), which regulates the hormones
gibberellin and abscisic acid that can influence flowering time via their interactions with
the transcription of the gene AT5G61850 (LEAFY ) (Gazzarrini et al., 2004). Many of
the selected SNP clusters, while not directly linked to genes in the list described by
Brachi et al. (2010), are likely involved in the biochemical pathways regulating flower-
ing time. For example, two additional discoveries made by the ICAR BVSR model in
chromosome 4 had cluster members in the genes AT4G01650 and AT4G02120 (CTPS3 ),
which are expressed during many development stages including flowering (Schmid et al.,
2005).

Figure 6 gives the absolute value of the coefficients, uj , for the subset of SNPs
selected in each model. Because 𝑮 is a variant matrix (i.e., binary), the absolute value
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of the coefficients, uj , represents the expected change in days to flowering associated
with replacing both copies of the early flowering allele with the late flowering allele at
locus j. For the BVSR models, effects varied from 2-9 days and were similar for cluster
representatives selected in both models. Effects were shrunk near zero for the LASSO
model. The mean, minimum, and maximum relative root mean squared error across the
11 folds of out-of-sample data were 0.97 (0.90, 1.10), 1.04 (0.95, 1.14), 1.01 (0.90, 1.22),
and 1.03 (0.95, 1.14) for the LASSO, non-spatial BVSR, Ising BVSR, and ICAR BVSR
models, respectively. Note that for the LASSO model, our estimates for out-of-sample
predictive performance are optimistic because we used the same observations both for
choosing the optimal penalty value and model fitting. The LASSO model also applied
greater regularization to the SNP effects than did the BVSR models (Figure 6), which
could also explain its improved predictive performance (Hooten and Hobbs, 2015).

4 Discussion
We developed a spatial BVSR model for improving power and controlling false dis-
coveries. While we motivated and validated our spatial BVSR model in the context of
GWAS, our method is more broadly applicable for high-dimensional variable selection
and is tailored for contexts in which the relevant variables have latent spatial structure
(e.g., gene expression (Stingo et al., 2011) or functional MRI studies (Li and Zhang,
2010)). Variable selection in GWAS is particularly challenging because SNP effects are
often confounded with population structure. We demonstrated how to alleviate the con-
founding between SNP and population structure effects with restricted regression. Our
restricted regression approach is appealing in GWAS because the SNP effects are esti-
mated from the residuals of 𝒚, or “corrected” trait, as proposed in previous methods
(Guan and Stephens, 2011; Li et al., 2011; Lu et al., 2015; Sesia et al., 2021). However,
rather than correcting for population structure and then estimating SNP effects sequen-
tially, we estimate all quantities simultaneously in a fully Bayesian model that accounts
for all sources of uncertainty.

In both the simulation study and analysis of Arabidopsis thaliana flowering time,
we showed that jointly modeling SNP inclusion probabilities can improve power when
the relevant variants have latent spatial structure. In the analysis of flowering time, the
ICAR BVSR model had the most discoveries and a greater proportion of discoveries
near described flowering time genes. In simulations, the Ising and ICAR BVSR mod-
els generally gave similar performance, but, for the flowering time analysis, the Ising
approach was much less powerful. We suspect the lower power of the Ising approach
is related to overly localized neighborhood effects. SNP inclusion indicators are only
dependent on the two nearest neighbors, which is likely too fine-scale for the 550k SNPs
considered. We could broaden dependency in the Ising model by increasing neighbor-
hood size, but it is unclear how to choose a suitable neighborhood structure a priori.
An analogous choice for the ICAR model relates to specifying dthresh in equation (13),
but the ICAR approach is insensitive to the choice of dthresh, and we used the same
adjacency matrix for both the simulation study and real data analysis. Thus, while it
does increase computation burden, the ICAR approach offers more flexibility.
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The case study of Arabidopsis thaliana flowering time also highlighted the advan-
tages of the BVSR approach for identifying relevant variants as compared to standard
single SNP approaches. In addition to being more powerful than the traditional single
SNP approaches, the BVSR model also selected variables that varied considerably in
their marginal associations. For example, among the 65 SNPs selected in the ICAR
BVSR model, rankings based on marginal associations varied from 2 to 2654, with only
9 SNP clusters selected from the top 100 ranks. In the BVSR model, many of the low
ranked SNPs are uncorrelated with the trait conditional on the hundreds of other SNPs
included in the model, and hence go unselected. Congruent with our focus on the in-
finitesimal genetic model (Barton et al., 2017), we simulated phenotypes influenced by
many SNPs with small effect sizes and validated our approach on flowering time, a trait
with polygenic architecture. While the infinitesimal model is widely applicable, some
traits may only be influenced by a few large effect loci for which single SNP testing
approaches, like EMMAX, have been shown to outperform multiple SNP approaches
(Kang et al., 2010; Buzdugan et al., 2016).

Zan and Carlborg (2018) provided a comprehensive description of the genetic archi-
tecture underpinning Arabidopsis thaliana flowering time and identified 33 SNPs that
collectively described 55.1% of the total phenotypic variance in flowering time. Zan and
Carlborg (2018) first reduced the number of SNPs considered by screening for SNPs
associated with the 282 flowering time genes described in Brachi et al. (2010). The joint
effect and associations of the remaining SNPs was then estimated with a backward
elimination association analysis with an adaptive FDR based threshold of 0.15. The
selected SNPs were congruent with functional genomics with 11 SNPs located within a
flowering time gene.

While the adherence of the SNPs selected with our ICAR BVSR model to flowering
time genes was less strong, the selected SNPs still tended to be closer to flowering time
genes than we would expect by chance. In cases where prior information is available
regarding the location of genes, Fridley (2009) and Stephens and Balding (2009) noted
that performance could be improved by inflating the prior inclusion probabilities of
these exonic SNPs and their cis-reglatory regions by specifying a non-zero mean for 𝜶
in equation (15). Similarly, if prior information is available on gene networks, we could
extend our framework to include additional layers of dependence based on distance
metrics related to functional genomics (i.e., dependence in inclusion indicators for SNPs
belonging to the same gene network). For comparison with the non-spatial methods,
we specified homogeneous prior inclusion probabilities for all SNPs in the Arabidopsis
thaliana analysis and did not incorporate any prior information on gene networks. One
caveat to correlating true discoveries with gene proximity is that in genetic fine mapping
SNPs selected in GWAS can be linked to causal genes up to 2 Mbps away (Brodie et al.,
2016). Furthermore, some causal SNPs show no associations to genes or their regulators
entirely (Niu et al., 2019). Hence, even though a number of the SNPs selected from
our BVSR model were far from described flowering time genes, their associations to
flowering time is not necessarily spurious. Implementing knockoff variable approaches
within LASSO for GWAS, Candès et al. (2018) and Sesia et al. (2019) also reported a
number of discoveries that were not replicated in previous analyses.
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Model-X knockoffs are appealing choice for FDR control in GWAS because they are
compatible with a wide range of modeling frameworks that can accommodate additional
sources of information (e.g., prior information or data on gene pathways and locations).
While several more recently proposed variable selection methods may perform well in
simple settings (Wang and Ramdas, 2022; Dai et al., 2023; Xing et al., 2023), it is not
readily apparent how to incorporate biological information into these approaches. Given
the biological complexity of how mutations contribute to phenotypic variation coupled
with the variability in these mechanisms across organisms (Stern and Orgogozo, 2009),
some have cautioned against restrictive assumptions on 𝒚|𝑮 (Sesia et al., 2019, 2021).
Under the Model-X knockoff approach, distributional assumptions are shifted to 𝑮.
In practice, the distribution of 𝑮 is always unknown, but prior information is readily
available from both well-described mechanisms of genetic inheritance and the plethora
of observed genomes. Barber et al. (2020) showed that under the Model-X knockoff
approach, inflation of the false discovery rate is proportional to the error in estimating
the distribution of each feature conditional on all the rest (i.e., 𝒈j |𝑮−j). The accuracy
of several genotype imputation methods (Scheet and Stephens, 2006; Delaneau et al.,
2012) suggest that this error will be small and justify the Model-X knockoffs approach
for GWAS. Incorporating Model-X knockoffs into a fully parametric model, as we have
described, necessarily implies other assumptions (i.e., linearity, normality, sparsity, etc.),
but in the simulation study, we found that our BVSR model can detect relevant variants
even when these assumptions are not met.

Because Model-X knockoffs are stochastic, different runs of an algorithm can pro-
duce discrepancies in the selected variables based on the generated knockoff variables
(Ren et al., 2023). In our analysis of Arabidopsis thaliana, the lowest knockoff statistic
for all three models occurred in chromosome 4 and is linked to a SNP cluster with repre-
sentative in the 10 kb buffer of the flowering time gene AT4G20370 (TSF). AT4G20370
is the “twin sister” of AT1G65480 (FT), a previously identified flowering time gene for
traditional GWAS approaches (Alonso-Blanco et al., 2016). Just by chance, the knock-
off of this SNP was more associated with flowering time than the true SNP. Gu and
Yin (2021) suggested treating the knockoffs as random variables and sampling them
directly in the MCMC algorithm. An advantage of this approach is that it can stabi-
lize the knockoff filter by attenuating issues related to only using one realization of the
knockoff variables. In principle, we could embed a Bayesian implementation of the HMM
proposed by Sesia et al. (2019) within our BVSR and sample the knockoff SNPs at each
MCMC iteration, but this approach would be computationally infeasible for the large
number of SNPs considered in most GWAS settings. We could take a derandomized
knockoff approach and summarize the selected variables across multiple instances fit in
parallel (Ren et al., 2023), but this would also be computationally infeasible for GWAS.

The consequences of clustering for variable selection and multiple testing have been
discussed at length (Benjamini and Heller, 2007; Dai and Barber, 2016; Brzyski et al.,
2017). In GWAS, treating SNPs as independent units may not be appropriate if the
goal is to discover genomic regions associated with a phenotype (Wang et al., 2010;
Lu et al., 2015; Brodie et al., 2016; Brzyski et al., 2017; Candès et al., 2018; Sesia
et al., 2019). Variable selection within quantitative trait loci may not always be feasible
because of high multicollinearity among clustered SNPs. We preprocessed the genotype
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matrix by first clustering SNPs with high mutual correlations and then choosing cluster
representatives (Candès et al., 2018; Sesia et al., 2019, 2020; He et al., 2024). Another
option would be to include all SNPs but assign clusters to joint inclusion indicators as
proposed by Lu et al. (2015) using group knockoffs (Dai and Barber, 2016). Our spatial
BVSR model can be viewed as a more flexible version of this model that encourages
nearby SNPs to have the same inclusion indicator as a result of the spatially structured
inclusion probabilities. Modeling either the inclusion indicators or probabilities jointly
has the potential to both improve power and reduce false discoveries because they
can magnify true but negligible individual effects as well as dilute one-off spurious
associations (Benjamini and Heller, 2007; Zhang et al., 2014; Lu et al., 2015; Brzyski
et al., 2017; Lee et al., 2023).

Increased genomic and phenotypic data collection has highlighted the importance
of methods for understanding the association between a response and an increasingly
large number of predictors. Our proposed BVSR approach incorporates several recent
advances in variable selection into one cohesive hierarchical model tailored for GWAS.
Using restricted regression, we stabilized posterior computation for confounded factors
that are generally estimated in a step-wise procedure. We achieved rigorous FDR con-
trol with knockoff variables customized to the study system. We corroborated previous
research that showed incorporating biological mechanisms into the selection of variables
can improve performance (Li and Zhang, 2010). Lastly, by combining reduced rank ap-
proximations and sampling strategies, we demonstrated the computational feasibility of
Bayesian methods for high-dimensional variable selection.
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