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Abstract
Quantum topology provides various frameworks for defining and computing invariants of manifolds
inspired by quantum theory. One such framework of substantial interest in both mathematics
and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of
a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor
network contractions. In this work we analyze the computational complexity of state sum invariants
of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest
source of state sum invariants beyond finite abelian groups (whose invariants can be computed in
polynomial time) their computational complexities are yet to be fully understood. We first establish
that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to
compute, so that one expects the same to be true of the whole family. Our main result is then the
existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where
the parameter is the first Betti number of the 3-manifold with Z/2Z coefficients.

Contrary to other domains of computational topology, such as graphs on surfaces, very few hard
problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter.
However, such algorithms are of particular interest as their complexity depends only polynomially on
the combinatorial representation of the input, regardless of size or combinatorial width. Additionally,
in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one
generally expects quantum invariants to be hard to compute classically, our results suggest that
the hardness of computing state sum invariants from Tambara-Yamagami categories arises from
classical 3-manifold topology rather than the quantum nature of the algebraic input.
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1 Introduction

Quantum physics – especially quantum field theory – is a profuse source of invariants in
low-dimensional topology, and these invariants often provide information about manifolds
beyond the reach of classical topology. For example, on one hand, the Alexander polynomial
of a knot is determined “classically” (from the first homology of the knot’s universal abelian
cover) and infinitely many different knots have trivial Alexander polynomial; on the other
hand, the Jones polynomial (the prototypical example of a quantum invariant) has never been
shown to be trivial on any non-trivial knot. However, the native paradigm for (approximately)
computing quantum invariants is manifestly quantum computational, so that in general one
should expect them to be hard to compute on a classical computer [19]. Naturally then
we seek to understand the full landscape of the computational complexities of quantum
invariants. From the point of view of computational topology we are particularly interested in
a middle ground where there may be interesting invariants that are not too hard to compute,
and to develop algorithms to compute them as efficiently as possible.

In this work, we investigate the complexity landscape of a specific class of quantum
invariants of 3-manifolds, namely, the Turaev-Viro-Barrett-Westbury (TVBW) state sum
construction [30, 2]. Unlike other quantum invariants (e.g. Donaldson invariants), the TVBW
construction is a priori algorithmically computable, combining a finite amount of algebraic
data in the form of a (skeletalized) spherical fusion category C with a triangulation T of a
closed, oriented 3-manifold M to generate a complex algebraic number |M |C ∈ C that is an
orientation-preserving homeomorphism invariant of M . The invariant |M |C is defined as the
contraction of a certain tensor network built by decorating T with the data of C, and can
be formally described via a combinatorial state sum formula. We refer the reader to the
full version of this article [8] for a brief review of the TVBW construction (in the case of
multiplicity-free, pseudo-unitary spherical categories) and [32] for more background.

As we review at the end of this introduction, it is desirable to understand the computational
complexity of evaluating the TVBW invariant | · |C on a given triangulated 3-manifold

| · |C : {triangulations of closed, oriented 3-manifolds} → C

triangulation T of M 7→ |M |C .

More precisely, we would like to understand how the computation of these invariants depends
on the choice of spherical fusion category C, since there are countably infinitely many
equivalence classes of such categories, and their classification is at least as hard as the
classification of finite groups. As usual, we aim to understand the complexity of computing
|M |C as a function of the size of a triangulation T used to encode M .

We approach this complexity-theoretic classification problem from the perspective that
fusion categories are “quantum” generalizations of (the representation theory of) finite groups.
While this perspective has not been made explicitly overt in the computational topology
literature, it is common in quantum algebra, where the extent to which a fusion category
deviates from a finite group G can be made precise in various ways. For the sake of space,
we will not review these notions here, but will note that anyway one cuts it, the simplest
spherical fusion categories are of the type Vec(A) – where A is an abelian group – consisting
of A-graded finite-dimensional vector spaces, with a tensor product that comes from the
group operation in A. In fact, for any finite group G, the category of G-graded vector spaces
Vec(G) forms a spherical fusion category, but if G is non-abelian, we consider this category
to be more “complicated” than Vec(A). One reason for this is that | · |Vec(A) is always
polynomial-time computable, whereas | · |Vec(G) is often #P -hard for non-abelian groups [21].
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Arguably, after Vec(A), the next simplest family of fusion categories consists of the
Tambara-Yamagami categories TY(A,χ, ν). Such a category is determined by a finite
abelian group A, together with a small amount of additional data: a bicharacter (i.e., a
non-degenerate symmetric bilinear pairing) χ : A×A → U(1), and a choice of square root
ν = ±1/

√
|A| = ±|A|−1/2 [28]. (See [8] for a complete description of these categories using

this data.) And yet, in the full version of this article [8], we show that already in the simplest
non-trivial case with A = Z/2Z, the invariants | · |TY(Z/2Z,χ,−1/

√
2) are #P -hard to compute.

This is more-or-less a restatement of known results about the Turaev-Viro invariant TV4
[14, 23], since | · |TY(Z/2Z,χ,1/

√
2) = TV4(·). However, as we shall explain, our approach

offers a conceptual clarification by placing TV4 within the broader taxonomy of spherical
fusion categories. In particular, we conjecture that the TVBW state sum invariant of every
non-trivial Tambara-Yamagami category TY(A,χ, ν) is #P-hard.

Our main result is a parameterized algorithm to compute the TVBW state sum invariants
|M |TY(A,χ,ν) associated to Tambara-Yamagami categories, where our parameter is the first
Z/2Z Betti number β1.

▶ Main Result (Informal; see Theorem 4). Fix an integer B ≥ 0 and a Tambara-Yamagami
category TY(A,χ, ν). Then there exists a polynomial time algorithm to evaluate |M |TY(A,χ,ν)
for triangulated 3-manifolds with β1(M) ≤ B.

While the hardness of general Tambara-Yamagami invariants is still conjectural, we interpret
our main result as showing that any such hardness is explainable by a simple classical
topological fact: there exist triangulations T of 3-manifolds M with n simplices where β1(M)
can be as large as Θ(n).

Our algorithm succeeds by converting the natively quantum topological computational
problem of computing a TVBW state sum invariant of a triangulated 3-manifold – which a
priori requires an expensive tensor network contraction – into a sequence of other much more
efficient classical computational problems in algebraic number theory and combinatorial-
algebraic topology. Prior to our work, to the best of our knowledge, the only published
algorithm in 3-manifold topology directly parameterized by an efficiently computable topolog-
ical quantity (whose value is independent of the presentation of the input) is the algorithm
of Maria and Spreer to compute the Turaev-Viro quantum invariant TV4 of 3-manifolds [30]
at a 4th root of unity in O(2β1n3) operations [23].

The technical underpinnings of our algorithm are explained in Section 3; the algorithm
itself is precisely described and analyzed in Section 4. At the heart of our algorithm is
a (non-obvious!) observation: |M |TY(A,χ,ν) can be identified with a (normalized) sum of
|H1(M,Z/2Z)| = 2β1 many Gauss sums of Q/Z-valued quadratic forms on certain finite
abelian groups derived from A and the given triangulation of M .

|M |TY(A,χ,ν) =
∑

θ∈Adm(T)

|T|θ (def. of TVBW state
sum i varia t; Sec. 2.3)

=
∑

α∈Z1(T,Z/2Z)

∑
θ∈Adm(T,α)

|T|θ︸ ︷︷ ︸
partial state sum at
cocycle α; Sec. 3.2

(Z/2Z-gradi g of
TY(A, χ, ν); Sec. 3.1)

= #B1(T, Z/2Z) ·
∑

[α]∈H1(T,Z/2Z)

∑
θ∈Adm(T,α)

|T|θ︸ ︷︷ ︸
(⋆) poly. time computable as a

quadratic Gauss sum

(follows from [31];
Sec. 3.5)
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spherical category C complexity of |M |C FPT in β1? Reference
Vec(A) for A abelian in fP Yes well-known, e.g. [20]

TY(Z/2Z, exp(πiab), −1/
√

2) #P-hard Yes [14, 23], long version [8]
TY(A, χ, ν) unknown in general Yes this work

Vec(G) for G non-abelian solvable unknown unknown
Vec(G) for G non-abelian simple #P-complete No (unless fP = #P) [20]

Uqsl2-mod (q a non-lattice root of 1) #P-hard No (unless fP = #P) [13, 19]

Figure 1 State of the art for computing TVBW invariants based on “simple” spherical fusion
categories.

The second and third equalities above follow for a rather general reason: TY(A,χ, ν) possesses
the structure of a Z/2Z-grading and so by general facts related to homotopy quantum field
theory [31], we are able to reduce |M |TY(A,χ,ν) to a sum of 2β1 terms in a manner similar
in spirit to [23]. Notably, however, the concept of graded fusion categories is absent from
[23], and this structure enables us to analyze the state sum invariant of M directly from
any simplicial triangulation, without having to pass to a one-vertex triangulation via the
crushing algorithm of Jaco and Rubinstein [12] (as in [23]).

The bulk of Section 3 is then concerned with explaining and justifying (⋆), and our methods
here diverge substantially from [23]. The efficient algorithmic evaluation of quadratic Gauss
sums appears to be well-known to experts in algebraic number theory, although we were
unable to find specific references for this fact, the closest apparently being [3]; see Section 2.1
and [8] for further discussion.

The general nature of our main result allows us to establish new conceptual insight into
the complexity-theoretic landscape of TVBW invariants, a portion of which we summarize in
Figure 1. It is known that TVBW 3-manifold invariants are often #P-hard to compute exactly,
and sometimes hard even just to approximate [13, 14, 18, 19, 20, 21]; moreover, in many of
these cases, it is known that there can be no tractable algorithm in β1. Thus the existence
of a parametrized algorithm in a topological and efficiently computable parameter for the
Tambara-Yamagami invariants is an interesting counterpoint to their expected hardness. This
suggests that the hardness of computing the invariants is due to some intrinsic hardness in
3-manifold topology, rather than the Tambara-Yamagami category alone, whose construction
is only a small modification of Vec(A).

After scrutinizing Figure 1, it seems sensible to expect that there should be a dichotomy
theorem for TVBW invariants. A naïve conjecture would be that | · |C is in fP if and only if
C ≃ Vec(A), and otherwise | · |C is #P-hard. However, this cannot be correct, as there are
“twisted” versions of A-graded vector spaces Vec(A, η), η ∈ H3(A,U(1)), for which | · |Vec(A,η)
is also known to be polynomial-time computable. More subtly, if G is any 2-step nilpotent
group, then |M |Vec(G) = #{π1(M) → G}/#G should also be in fP.

A systematic understanding of the computational complexity of state sum invariants is
significant because they fit into the larger framework of a fully-extended 3D TQFT. Indeed,
this connection endows the invariants with important applications to fault-tolerant quantum
computation and the characterization of topologically ordered phases of matter, e.g. via
topological quantum computing [16, 17, 26, 34], as well as to the developing paradigm of
“non-invertible” or “categorical” symmetries and dualities present in quantum field theories
and lattice models [1, 6, 9, 10, 29]. Of course, there is plenty of motivation from low-
dimensional topology as well, where these invariants can be used in practice to distinguish
non-homeomorphic 3-manifolds. TVBW invariants are heuristically strong, with a typical
category C capable of distinguishing “most” pairs of non-homeomorphic manifolds.
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2 Background

In this section we introduce the TVBW invariants of 3-manifolds derived from Tambara-
Yamagami categories, as well as some of the basic components necessary for our algorithm.

2.1 Elements of algorithmic number theory
Finite abelian groups. Let (A,+) be a finite abelian group with |A| elements, denoted
additively. The fundamental theorem of finitely generated abelian groups shows that A
admits a unique primary decomposition of the form:

A ∼=
⊕

p prime

⊕
ki,ni : i∈Ip

(
Z/pkiZ

)ni

for finitely many primes p, and positive integers ki, ni > 0. For a finite abelian group A, we
denote by d(A) the number of non-trivial summands in its primary decomposition. We use
A(p) to denote the subgroup elements whose order is a power of p. Hence,

A =
⊕

p prime
A(p), where A(p) =

⊕
ki,ni : i∈Ip

(
Z/pkiZ

)ni
.

The following is a standard algorithmic result for finite abelian groups, formulated
according to our needs in this article; see for example [25, Chap. 1.11].

▶ Theorem 1. Let H be a finite abelian group presented via a primary decomposition with
generators h1, . . . , hd(H) for each of its prime summands. If G ⊆ H is a subgroup of H
specified via a set of generators g1, . . . , gd(G) (each of which is encoded by a list of integers
nij such that gi =

∑
j nijhj), then there exists a polynomial time algorithm using O(d(|H|)3)

operations in H that finds a presentation of the primary decomposition of G – that is, a new
minimal set of generators of G denoted g′

1, . . . , g
′
d(G) (each of which is, as before, represented

by a list of integers n′
ij such that g′

i =
∑

j n
′
ijhj) together with relations of the form (g′

i)p
ki
i

for primes pi and positive integers ki.

Pairings and forms on finite abelian groups. We now quickly review the basics of quadratic
forms on finite abelian groups. We refer the reader to [27] for more background.

Let (A,+) be a finite abelian group, denoted additively. A symmetric bilinear pairing
b : A×A → G into the (not necessarily finite) abelian group (G,+) is a map satisfying

b(x, y) = b(y, x), b(x+y, z) = b(x, z)+b(y, z), and b(x, y+z) = b(x, y)+b(x, z) for all x, y, z.

A pairing is non-degenerate if for every x ∈ A, x ̸= 0, there exists some y ∈ A such that b(x, y)
is not trivial in G. When the symmetric bilinear pairing takes value in (G,+) = (Q/Z,+),
where (Q/Z,+) is the additive group of rational numbers modulo the integers, we call the
pair (A, b) a discriminant pairing. For any real number x ∈ R, denote by e(x) the quantity
exp(2πix). Let (U(1),×) be the multiplicative group of complex numbers {e(x) : x ∈ R/Z}
on the unit circle. There is a natural group isomorphism Q/Z → U(1), x 7→ e(x). When
a symmetric bilinear pairing b is non-degenerate and takes value in (U(1),×), we call it
a bicharacter. Note that (A, b) is a non-degenerate discriminant pairing if and only if
(A, e(b(·, ·))) is a bicharacter. If (A, b) is a discriminant pairing and e1, . . . , ek ∈ A, then the
Gram matrix of (e1, . . . , ek) is the k × k matrix (b(ei, ej))i,j .

For a map q : A → G, define ∂q : A × A → G by ∂q(x, y) := q(x + y) − q(x) − q(y) for
any x, y ∈ A. The map q is a (homogeneous) quadratic form if, for any x ∈ A and u ∈ Z,
q(ux) = u2q(x) and the map ∂q is bilinear. For a quadratic form q, we call ∂q the bilinear

SoCG 2025
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pairing associated to q. A quadratic form q is non-degenerate if the bilinear pairing ∂q is
non-degenerate. If q takes value in Q/Z, the pair (A, q) is called a pre-metric group, and if
moreover q is non-degenerate, (A, q) is a metric group.

Gauss sums on pre-metric groups. If γ ∈ Q/Z, let e(γ) := exp(2πiγ). To every pre-metric
group (G, q) we associate a complex number Θ(G, q) called the Gauss sum:

Θ(G, q) := 1
|
√

|G||

∑
x∈G

e(q(x)).

Our next theorem is one of the central tools in our algorithm for computing the TVBW
invariants of Tambara-Yamagami categories.

▶ Theorem 2. Let G be a finite abelian group presented via a primary decomposition with
d(G) summands. If oracle access to a quadratic form q : G → Q/Z is provided, then the Gauss
sum Θ(G, q) can be evaluated in polynomial time using O(d(G)3 poly(log |G|)) operations,
O(d(G)2) oracle accesses, and O(d(G)2 poly(log |G|)) memory words.

Theorem 2 is seemingly folklore in the algebraic number theory literature, but we were
unable to find any references proving it. We understand it as a consequence of a scattered
collection of works on pre-metric groups and algorithms. Wall [33] abstractly classifies metric
groups by showing how to decompose them into direct sums of elementary pieces; Basak and
Johnson [3] later provide an algorithmic formulation of the decomposition theorem and explain
that the Gauss sum of a metric group can be computed readily from the decomposition.
We have however not found a complexity analysis of this construction anywhere in the
literature. The closest we are aware of is [5, Thm. 1.1], which shows that Gauss sums of
(not-necessarily-homogeneous) quadratic forms on cyclic groups Z/NZ are computable in
polynomial time; however, even if A itself is cyclic, the Gauss sums we will need to compute
in our algorithm for |M |TY(A,χ,ν) are on non-cyclic pre-metric groups of the form (An, q). In
order to fill this gap, we prove Theorem 2 in the full version of the paper [8] by supplementing
the algorithm of [3] with a detailed complexity analysis.

2.2 Combinatorial and algebraic topology
(Co)homology. Throughout this article we employ the simplicial cohomology of simplicial
complexes with Z/2Z coefficients. We assume the reader is familiar with the basic definitions
(see [11] for an introduction to the topic). The following well-known fact can be understood
as an application of Theorem 1.

▶ Theorem 3. Let T be a simplicial complex with n simplices. For any dimension d =
0, 1, 2, . . . , the following can be computed in polynomial time using O(n3) operations: a basis
of Zd(T,Z/2Z); a basis of Bd(T; Z/2Z); a set of elements in Zd(T; Z/2Z) that represent a
basis of Hd(T; Z/2Z). In particular, the dimension of each of these spaces can be computed
in polynomial time.

Triangulated 3-manifolds. The most common data type in computational 3-manifold
topology is that of a generalized triangulation; e.g., see [24]. However, strictly speaking, the
TVBW invariants are only defined for simplicial (or PL) triangulations. It is possible to
extend the definition to “polytope decompositions” (including generalized triangulations)
[15], but we will not need to work at this level of generality.
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Thus, throughout this work, we make the following conventions: a 3-manifold M is
always closed and oriented, and presented by a simplicial triangulation, denoted T, together
with an orientation of T. The orientability of M is reflected in the fact that the simplicial
homology group H3(T; Z) is isomorphic to Z (this can be checked quickly from T), and then
an orientation of T is encoded by labeling each tetrahedron in T with a sign +1 or −1 in a
way that gives rise to a {+1,−1}-valued cellular 0-cocycle on the cellulation dual to T.

Later, it will also be convenient to decorate each edge of an oriented triangulation with
an arbitrarily chosen orientation. We stress that these edge orientations are arbitrary, and
have nothing to do with the orientation of the manifold’s tetrahedra. Going forward, by
a small abuse of language, if we say triangulation, then we will usually mean an oriented
triangulation equipped with such an edge orientation. We denote the set of vertices of T by
V , the set of edges by E, the set of triangular faces by F , and the set of tetrahedra by T .

2.3 Tambara-Yamagami quantum invariants
The quantum invariants we consider in this article are C-valued topological invariants of
closed 3-manifolds derived from algebraic data (a spherical fusion category) attached to
a combinatorial presentation of the 3-manifold (a simplicial triangulation), together with
evaluation rules described in the works of Turaev and Viro [30] and Barrett and Westbury [2].
We now give an extremely brief introduction to Tambara-Yamagami quantum invariants,
which are the TVBW invariants produced by a particular infinite family of spherical fusion
categories called Tambara-Yamagami categories [28]. For the sake of space, here we provide
only the details necessary to follow the proofs of our main results. We refer the reader to [8]
for the full details of the combinatorial description of spherical fusion categories in general
and for Tambara-Yamagami categories in particular, as well as the general construction of
TVBW invariants (for unitary and multiplicity-free categories).

Let (A,+) be a finite abelian group with |A| elements, χ : A×A → U(1) a bicharacter
on A, and ν a choice of square root ν = ±1/

√
|A| = ±|A|−1/2. The Tambara-Yamagami

category TY(A,χ, ν) is an algebraic object which gives rise to the following data:
a set of colors L def= A ⊔ {m} (where m is some symbol not in A), together with a duality
operation ∗ defined by a∗ def= −a and m∗ def= m.
scalars da and dm associated to every color in L called quantum dimensions, as well as
the (global) quantum dimension scalar D. These scalars are defined as follows:

da
def= 1 for all a ∈ A, dm

def= +|A|1/2, D
def=

∑
x∈L

d2
x = 2|A|.

a set of admissible triples of colors

{(a, b,−a− b), (a,m,m), (m, a,m), (m,m, a) : a, b ∈ A} ⊂ L× L× L,

and a system of C-valued tetrahedron weights defined below.

A coloring θ : E → L of a triangulation T is an assignment of a color to each edge of T.
Given an edge e0 on the boundary of a face f , the orientation of e0 determines a direction
along which to traverse the three boundary edges of f ; call these edges e0, e1 and e2, according
to the order in which we first see them while doing this traversal. Now associate a triple of
colors (θ(e0), θ(e1)(∗), θ(e2)(∗)), where θ(ei)(∗) means we apply the duality operation ∗ to the
label θ(ei) if the direction of traversal around f disagrees with the orientation of ei. The
coloring θ is called admissible if every such triple associated to an edge-face pair is admissible.
The set of admissible colorings is denoted by AdmL(T).

SoCG 2025
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We now describe the tetrahedral weights involved in the definition of the Tambara-
Yamagami invariants. Let θ be a coloring of T and let θe := θ(e) ∈ L denote the label of an
edge e ∈ E. For each tetrahedron t ∈ T with edges e1, e2, . . . e6 and orientation O(t) ∈ {+,−},
we assign a tetrahedral weight |t|O(t)

θ ∈ C. If θ is inadmissible, then |t|O(t)
θ

def= 0. Otherwise, θ
is admissible and so, as described in [8], takes on one of four possible types; taking O(t) into
account we then assign the tetrahedral weights as follows:

m-empty m-triangle∣∣∣∣ a b a+ b

b− c a+ c c

∣∣∣∣+

= 1
∣∣∣∣ m m a

a a+ b m

∣∣∣∣+

= dm

∣∣∣∣ a b a+ b

c− b a+ c c

∣∣∣∣−

= 1
∣∣∣∣ a b a+ b

m m m

∣∣∣∣−

= dm

flat m-quad crooked m-quad∣∣∣∣ a m m

b m m

∣∣∣∣+

= dmχ(a, b)
∣∣∣∣ m m a

m m b

∣∣∣∣+

= νd2
mχ(a, b)

∣∣∣∣ a m m

b m m

∣∣∣∣−

= dmχ(a, b)
∣∣∣∣ m m a

m m b

∣∣∣∣−

= ν−1d2
mχ(a, b),

where a, b, c are arbitrary elements in A.
Finally, the Tambara-Yamagami quantum invariant |M |TY(A,χ,ν) of a 3-manifold M with

triangulation T is defined via the following “state sum formula:”

|M |TY(A,χ,ν)
def=

∑
θ∈AdmL(T)

∏
t∈T

|t|O(t)
θ

∏
e∈E

dθe∏
f∈F

√
dθe1dθe2dθe3

∏
v∈V

D.

We note that for a fixed coloring θ and tetrahedron t, testing its admissibility on t and
determining its type can be carried out in constant time. Thus, there is a naïve algorithm
to compute |M |TY(A,χ,ν) directly from this definition with running time exponential in the
size of T. In fact, this is true of |M |C for any spherical fusion category C. We now turn
to showing that we can do much better when C = TY(A,χ, ν) if we bound the Z/2Z Betti
number β1(M).

3 The role of the Betti number in Tambara-Yamagami invariants

We are interested in the following algorithmic problem:

TY(A, χ, ν)-invariant computation
Input: T a triangulation of an oriented closed 3-manifold M

Output: |M |TY(A,χ,ν)

Since we are not working uniformly in the data A,χ, ν, there is no harm in assuming we
have full “explicit” access to it. Our main result is

▶ Theorem 4. For a fixed Tambara-Yamagami category TY(A,χ, ν), there is a deterministic
algorithm that, given as input a triangulation of an orientable closed 3-manifold M with n
tetrahedra, computes the quantum invariant |M |TY(A,χ,ν) in O(2β1n3) operations and using
O(n2) memory words.
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In this section we expound the ideas introduced in Section 1 that lead to this algorithm;
its proof is deferred until Section 4. Hereafter A,χ, and ν are fixed.

3.1 Admissible colorings induce simplicial 1-cocycles
We begin by noting that each admissible coloring determines a Z/2Z-valued simplicial
1-cocycle. More precisely, consider the function

ϕ : AdmL(T) → C1(T,Z/2Z), ϕ(θ)(e) =
{

1 if θ(e) = m

0 otherwise (1)

that assigns to an admissible coloring of T a Z/2Z-valued simplicial 1-cochain of the triangu-
lation (that is, a function E → Z/2Z).

▶ Lemma 5. For any admissible coloring θ of a triangulation T, ϕ(θ) is a 1-cocycle.

In the case of TY(Z/2Z, exp(iπab),−1/
√

2) = TV4, this lemma was proved in [4, 22]
and used in the algorithm of [23]. It can be proved easily in the general case by examining
the definition of admissible triples in TY(A,χ, ν) – the calculation boils down to the simple
observation that in any admissible coloring, the number of edges around any face of T colored
by m is either 0 or 2. More conceptually, this lemma follows from the fact that TY(A,χ, ν) is
a spherical Z/2Z-graded fusion category, and a similar result holds for any spherical G-graded
fusion category, cf. [31].

3.2 The partial state sum at a 1-cocycle
Fix a 1-cocycle α ∈ Z1(T,Z/2Z) and consider the partial state sum at α, defined by only
summing over the admissible labelings associated to α:

|T, α|TY(A,χ,ν)
def=

∑
θ∈ϕ−1(α)

∏
t∈T

|t|O(t)
θ

∏
e∈E

dθe∏
f∈F

√
dθe1dθe2dθe3

∏
v∈V

D
.

By definition, all admissible colorings of ϕ−1(α) have the same set of edges colored by
the object m. We partition E, F , and T , such that for every coloring in ϕ−1(α):
1. E = E∅ ⊔ E• where E∅ is the set of edges colored by an element of A, and E• is the set

of edges colored by m,
2. F = F∅ ⊔F•• where F∅ is the set of faces whose edges are colored exclusively by elements

of A, and F•• is the set of faces with exactly two edges colored by m,
3. T = T∅ ⊔ T△ ⊔ T⊞ ⊔ T⊟ ⊔ T+⋄ ⊔ T−⋄ , where T∅ is the set of m-empty faces, T△ is the set of

m-triangles, T⊞ and T⊟ are respectively the set of positively and negatively oriented flat
m-quads, and T+⋄ and T−⋄ are respectively the set of positively and negatively oriented
crooked m-quads (see end of Section 2.3 for conventions).

Replacing |t|O(t)
θ by the appropriate values and factorizing, we now rewrite the partial

state sum at the 1-cocycle α.
For an admissible coloring θ and an m-quad tetrahedron t in θ (either flat or crooked),

define χθ(t) to be the value χ(a, b) where a, b are the colors in θ assigned to the two opposite
edges not colored by m in the (flat or crooked) m-quad tetrahedron t. One can then check:

|T, α|TY(A,χ,ν) = D−|V | ·dCα
m ·ν|T+⋄ |−|T−⋄ |

∑
θ∈ϕ−1(α)

 ∏
t∈T⊞

χθ(t) ·
∏

t∈T⊟

χθ(t) ·
∏

t∈T+⋄
χθ(t) ·

∏
t∈T−⋄

χθ(t)


(2)

where Cα = |E•| − |F••| + |T⊞| + |T⊟| + 2|T+⋄| + 2|T−⋄|.
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In Section 3.4 we prove:

▶ Theorem 6. Fix a category TY(A,χ, ν). Let e1, . . . , e|E| be an arbitrary ordering of the
edges of T. For any collections P,Q of pairs of indices (i, j), 1 ≤ i, j ≤ |E|, with potentially
repeated pairs, such that |P|, |Q| ∈ O(n), there is an algorithm to evaluate the sum:∑

θ∈ϕ−1(α)

∏
(i,j)∈P

χ(θei , θej )
∏

(r,s)∈Q

χ(θer , θes) (3)

in O(n3) operations, using O(n2) memory words.

Using the theorem, we arrive at a key step towards our main result.

▶ Corollary 7. Fix a category TY(A,χ, ν). Given as input a 3-manifold triangulation T

with n tetrahedra, and a 1-cocycle α in T, the sum (2) can be evaluated in O(n3) operations,
using O(n2) memory words.

Proof. By definition of the projection ϕ (Equation (1)), the 1-cocycle α gives a description
of the edges colored by the object m in all admissible colorings of ϕ−1(α). Additionally, the
multiplicative constant D−|V | · dCα

m · ν|T+⋄ |−|T−⋄ | in front of the sum (Equation (2)) depends
exclusively on the set of edges colored by m. In consequence, the multiplicative constant can
be evaluated in linear time by checking the set of m-colored edges of each tetrahedron. Using
the notations of Theorem 6, we consider the pairs P (resp. Q) of indices (i, j) of opposite
edges (ei, ej) not colored by m in tetrahedra of type T⊞ ⊔ T−⋄ (resp. T⊟ ⊔ T+⋄), in order to
evaluate the sum

∑
θ∈ϕ−1(α)

(∏
t∈T⊞

χθ(t) ·
∏

t∈T⊟
χθ(t) ·

∏
t∈T+⋄ χθ(t) ·

∏
t∈T−⋄ χθ(t)

)
in cubic

time. ◀

3.3 Efficiently characterizing colorings over a 1-cocycle
For a given 1-cocycle α ∈ Z1(T; Z/2Z), we now characterize the set ϕ−1(α) ⊆ Adm(T).
Recall that E∅ is the set of edges not colored by m and F∅ is the set of faces with no edge
colored by m.

▶ Lemma 8. If the finite abelian group A is given by its primary decomposition with d(A)
summands, and the triangulation T has n = |T| tetrahedra, then the set ϕ−1(α) is in bijection
with the elements of a finite abelian group G with O(d(A)n) generators.

Proof. Fix an arbitrary orientation of the edges of the triangulation. The admissibility
constraints for colorings in a Tambara-Yamagami category imply that the set ϕ−1(α) is in
bijection with the set of assignments θ : E∅ → A satisfying the following linear equations: for
any m-empty face with edges e1, e2, e3,

ε1θ(e1) + ε2θ(e2) + ε3θ(e3) = 0,

where εi ∈ {±1} depending whether the orientations of edges e1, e2, e3 agree or not with
an arbitrarily chosen orientation of the triangular face. Consider the group homomorphism
λ : A|E∅| → A|F∅| where the |F∅|-many values are the relations ε1θ(e1) + ε2θ(e2) + ε3θ(e3)
above. The set ϕ−1(α) is in bijection with the kernel of this application. Because A|E∅|

is a finite abelian group with d(A)|E∅| summands in its primary decomposition, with
|E∅| ≤ |E| ∈ O(n), then kerλ is a finite abelian group with O(d(A)n) generators. ◀

Additionally, a minimal family of generators (y1, . . . , yℓ), yi ∈ A|E∅|, for kerλ can be
computed in polynomial time.
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▶ Lemma 9. For a fixed abelian group A, with the notations above, a minimal family of
generators for kerλ can be computed in O(n3) operations, using O(n2) memory words.

Proof. The proof is standard linear algebra over Z using Smith normal form, see the proof
of [8, Lemma 3.0] for details. ◀

In conclusion, any generator of the kernel kerλ ⊆ A|E∅| can be interpreted as an assignment
of colors to the empty edges of the triangulation E∅ → A. For a fixed 1-cocycle α of the
triangulation, any admissible coloring in ϕ−1(α) can be expressed as a sum (with integer
coefficients) of elements of the kernel (where the sum of colors is edge-wise) following the
rule of addition in A.

3.4 Partial state sums are (normalized) Gauss sums
The goal of this subsection is to prove Theorem 6. Consider a finite abelian group (A,+)
with d := d(A) generators x1, . . . , xd for the summands of its primary decomposition, its
product Ak with generators (xij)i=1...d,j=1...k, and a subgroup (G,+) with g := d(G).

For a group element y ∈ G, we express y =
∑

i,j nij(y)xij , for integer coefficients nij(y),
in the set of generators for Ak. We also write y(j) :=

∑
i=1...d nij(y)xi ∈ A for the projection

of y into the j-th component of the product Ak.
Let P,Q be arbitrary sets of pairs of indices (i, j), with 1 ≤ i, j ≤ k, and possible

multiplicities pij ≥ 1 for the pair (i, j) ∈ P, and qij for the pair (i, j) ∈ Q. Consider the
product:

ψ : G → U(1), y 7→
∏

(i,j)∈P

χ(y(i), y(j))pij

∏
(r,s)∈Q

χ(y(r), y(s))−qrs . (4)

and define the complex valued sum:

Ω(P,Q) := 1
|
√

|G||

∑
y∈G

ψ(y). (5)

▶ Lemma 10. The sum Ω(P,Q) in Equation (5) is a quadratic Gauss sum over G, i.e.,
there exists a quadratic form q : G → Q/Z s.t.,

Ω(P,Q) = Θ(G, q) = 1
|
√

|G||

∑
x∈G

e(q(x)).

Proof. Define the pairing b : A × A → Q/Z satisfying, for any x, y ∈ A, the equality
χ(x, y) = e(b(x, y)). The map b is a bilinear pairing. This follows from the definition of a
bicharacter. For any x, y, z ∈ A,

χ(x+ y, z) = e(b(x+ y, z)) = χ(x, z)χ(y, z) = e(b(x, z) + b(y, z)),

and in consequence b(x + y, z) = b(x, z) + b(y, z) mod Z. By symmetry of χ, bilinearity
follows. Define q : G → Q/Z by:

q(y) :=
∑

(i,j)∈P

pij · b(y(i), y(j)) −
∑

(r,s)∈Q

qrs · b(y(r), y(s)),

such that
∣∣∣√|G|

∣∣∣ Ω(P,Q) =
∑

x∈G e(q(x)). The map q is a quadratic form. Indeed, first
notice that, for any integer u, q(uy) = u2q(y) follows from the fact that b(uy(i), uy(j)) =
u2b(y(i), y(j)). Second, the form ∂q : (y, y′) 7→ q(y + y′) − q(y) − q(y′) is bilinear, as it can
be expressed as a sum of evaluations of the bilinear pairing b on (y(i), y′(j)) for some i, j. ◀
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Proof of Theorem 6. Using the notation of Theorem 6, we identify the following sum on
the triangulation:∑

θ∈ϕ−1(α)

∏
(i,j)∈P

χ(θei , θej )
∏

(r,s)∈Q

χ(θer , θes) (6)

with the quantity
∣∣∣√|G|

∣∣∣ Ω(P,Q) in Equation (5), where the group G is the subgroup kerλ
of the product A|E∅|, whose presentation we identify in polynomial time via Lemma 9. The
pairs of indices P and Q represent indices of edges in Equation (6), and particular copies of
A in the product A|E∅| in Equation (4), with a natural correspondence induced by the fact
that copies of A in A|E∅| are in bijection with edges not colored by m (once the 1-cocycle α
is fixed). The order of the finite group G = kerλ can be evaluated by finding the primary
decomposition of G, which can be done in polynomial time (Theorem 1). Let q be the
quadratic form defined in the proof of Theorem 10. We can compute the Gram matrix of a
minimal family of generators of kerλ (computed in Lemma 9) for the discriminant pairing
(G, ∂q) by evaluating ∂q, and compute the Gauss sum Ω(P,Q) in polynomial time (by virtue
of Theorem 2), with the expected complexity. ◀

3.5 Cohomologous 1-cocycles have equal partial state sums
The tools introduced so far in this section would only be enough to construct a parameterized
algorithm in terms of the number of 1-cocycles Z1(T; Z/2Z). The final ingredient necessary
to further reduce the parameter to β1(M) follows from a general statement about TVBW
invariants of spherical G-graded fusion categories (for any finite group G) first described by
Turaev and Virelizier [31, Thm. 7.1], specialized to our situation: TY(A,χ, ν) is a spherical
Z/2Z-graded fusion category.

▶ Theorem 11 (special case of Thm. 7.1 in [31]). If α and β are cohomologous elements of
the group of cocycles Z1(T; Z/2Z), then |T, α|TY(A,χ,ν) = |T, β|TY(A,χ,ν).

4 Fixed parameter tractable algorithm in the first Betti number

Fix the data of TY(A,χ, ν). Given as input an arbitrary triangulation T of a closed oriented
3-manifold M , our algorithm to compute the TVBW invariant |M |TY(A,χ,ν) is as follows:

1. Compute a set of 1-cocycles {α1, . . . , αβ1} ⊂ Z1(T,Z/2Z) such that {[α1], . . . , [αβ1 ]}
forms a basis of the 1-cohomology vector space H1(T,Z/2Z).
Compute a basis for B1(T,Z/2Z) ; the cardinality #B1(T,Z/2Z) of the set of 1-
coboundaries is equal to 2dim B1(T,Z/2Z). [Theorem 3]

2. For each of the 2β1 distinct 1-cohomology classes [α] of H1(T,Z/2Z), construct a rep-
resentative α ∈ Z1(T,Z/2Z) by enumerating all 2β1 Z/2Z-combinations of elements in
{α1, . . . , αβ1}, i.e., all α = ε1α1 + . . .+ εβ1αβ1 , for εi ∈ Z/2Z.
Now, for each such α, apply Corollary 7 to compute the partial state sum |T, α|TY(A,χ,ν),
with the following steps:
a. Compute a minimal family of generators for kerλ = ⟨x1, . . . , xg⟩, [Lemma 9]

b. Compute the primary decomposition of kerλ with generators kerλ = ⟨x′
1, . . . , x

′
g⟩ for

the summands, [Theorem 1]

c. Compute the Gram matrix of x′
1, . . . , x

′
g for the pre-metric form (kerλ, q), by evaluating

∂q on all pairs (x′
i, x

′
j). [defined in Lemma 10]
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d. Evaluate the Gauss sum of (kerλ, q), [Theorem 2]

and multiply by
∣∣∣√|G|

∣∣∣. [proof of Theorem 6]

Normalize to get the state sum |T, α|TY(A,χ,ν), with multiplicative factor as in Equa-
tion (2). [Corollary 7]

3. Sum over all α:

|M |TY(A,χ,ν) =
∑

α = ε1α1 + . . . εβ1αβ1

with εi ∈ Z/2Z, and s.t.,
⟨[α1], . . . , [αβ1 ]⟩ = H1(T,Z/2Z)

#B1(T,Z/2Z) · |T, α|TY(A,χ,ν).

Our main Theorem 4 follows readily from the following:

▶ Theorem 12. Fix a Tambara-Yamagami category TY(A,χ, ν). Given a triangulation T

of a closed 3-manifold M with n tetrahedra, the above algorithm computes |M |TY(A,χ,ν) in
O(2β1n3) operations and using O(n2) memory words.

Proof. Computing a basis for B1(T,Z/2Z), as well as a set of generators {α1, . . . , αβ1}
whose cohomology classes form a basis of H1(T,Z/2Z), in step (1) is a standard procedure
in computer algebra (Theorem 3), done by normalizing a O(n) × O(n) matrix with Z/2Z
coefficients. This can be done in O(n3) operations in Z/2Z with Gaussian eliminations,
where an arithmetic operation in Z/2Z has constant complexity.

Given the 1-cocycles {α1, . . . , αβ1}, we can enumerate every combination α = ε1α1 + . . .+
εβ1αβ1 in (amortized) O(n) operations per α. Indeed, enumerating all {ε1, . . . , εβ1} is akin
to incrementing a β1-bits binary counter from 0 . . . 0 to 1 . . . 1, which induces an (amortized)
change of O(1) bits per increment [7, Chapter 16]. The 1-cocycles are represented by formal
sums of O(n) edges, and computing the sum of two 1-cocycles takes O(n) operations.

For each α as above, we compute the partial state sum using Corollary 7 in polynomial
time. Specifically, step (2a) is solved by computing a Smith normal form, together with
transformation matrices, of a particular O(d(A)n) × O(d(A)n)-integer matrix, which has
complexity O(n3) (Lemma 9) with (modular) Gaussian eliminations, once A is fixed.

We can read-off the generators x1, . . . , xg of kerλ from the transformation matrices, and
compute the generators x′

1, . . . , x
′
g of step (2b) by computing the primary decomposition

of the subgroup kerλ (Theorem 1). Computing the Gram matrix in step (2c) is done by
evaluating the bilinear pairing ∂q, defined in Lemma 10, on all pairs (x′

i, x
′
j). The quadratic

form q is defined as a sum of O(n) terms of the form b(x′
i, x

′
j), and the overall Gram matrix can

be computed in O(g2n) operations. Recall that we have an oracle access to the function b(·, ·)
(see beginning of Section 3). By Theorem 2, the Gauss sum of (kerλ, q) can be evaluated from
the Gram matrix of x′

1, . . . , x
′
g in O(g3) operations in Q/Z, where the arithmetic complexity

of operations in Q/Z depend solely on the maximal order of an element of A (independently
of the size of the Gram matrix). See the full version [8] for details.

Finally, the invariant |M |TY(A,χ,ν) computed in step (3) is the sum of 2β1 complex
numbers represented with a constant number of memory words each for a fixed group A (with
β1 ≤ n). In consequence, the overall complexity of the algorithm, knowing g ∈ O(d(A)n)
and considering d(A), |A| constant for a fixed group A, is O(2β1n3). The memory complexity
is bounded by the size of the matrices, which is O(n2), since we have a fixed A (coefficients
are represented with a constant number of memory words, and d(A) is a constant). ◀
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