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Abstract—Various methods of applying algorithmic design
techniques to on-chip RF and mm-Wave passive structures are
shown. Multiple metal and via layers are considered to explore
an expanded design space compared to single-layer structures
to achieve a superior performance within smaller area foot-
prints. Furthermore, the inherent stochasticity of metaheuristic
algorithms combined with the highly nonconvex optimization
landscape is exploited to diversify designs and generate multiple
layouts with near-identical performance, with potential applica-
tions involving hardware obfuscation and design diversification.
Finally, a method is introduced to apply algorithmic techniques
to shrink the physical sizes of pixelated layouts with minimal
loss in performance, adding another dimension to the hardware
diversification capabilities of algorithmic design techniques.

Index Terms—Algorithmic passive design, design diversifica-
tion, layout shrinking algorithms, on-chip power combiners,
passive bandpass filters (BPFs), pixelated passive devices.

I. INTRODUCTION

ASSIVE networks play a critical role in radio frequency

integrated circuits (RFICs) by enabling transistors to
operate at high frequencies, facilitating the design of wireless
transceivers for various communication and sensing applica-
tions. Traditional on-chip passive network design, shown in
Fig. 1(a), typically starts with a well-known parameterized
template (e.g., a circuit topology) from literature or a custom
topology derived from the designer’s expertise. At RF and
mm-wave frequencies, component coupling and unavoidable
layout parasitics, such as those from pads and interconnects,
necessitate full-layout electromagnetic (EM) simulations for
both design and optimization. Multiple simulations are usu-
ally required to tune performance within the design space.
If target specifications remain unmet, the designer must adopt
a revised or entirely new topology. This process is labor-
intensive and heavily reliant on experience, intuition, and
domain knowledge.

With widespread availability of modern computational
resources and advances in computational algorithms, algo-
rithmic design techniques [Fig. 1(b)] have gained significant
traction. In such approaches, an optimization algorithm
autonomously constructs the metal and dielectric geometries of
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Fig. 1. (a) Traditional passive network design procedure. (b) State-of-the-art
algorithmic and inverse design methodologies of passive networks.

an EM structure to meet target specifications, removing human
designers from the design loop. By formulating the problem
generally, algorithmic design techniques uncover nonintuitive,
high-performance layouts that traditional methods cannot pro-
duce. Algorithmic design approaches have shown significant
success in optimizing microwave devices [2], [3], [4] and
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photonic devices [5] over the past three decades. More
recently, they have gained traction in RF applications, includ-
ing on-PCB RF filters [6] and multiport on-chip passive
networks [7]. However, prior efforts have been limited to
single-layer structures, failing to leverage the multiple metal
and via layers available in standard IC fabrication, thus
missing opportunities for improved performance and reduced
area. This work, an extension of [1], addresses that gap by
demonstrating an on-chip multilayer pixelated passive design.

While most recent efforts have focused on accelerating con-
vergence either through improved computational techniques
[8], [9], [10] or machine learning (ML) assistance [7], [11],
little attention has been given to exploring other potential
applications of algorithmic design. This work also explores
new use cases of algorithmic design, including design diversi-
fication for intellectual property (IP) protection and shrinking
layouts.

Section II outlines the challenges associated with mul-
tilayered algorithmic design, while Section III summarizes
the optimization algorithms used in this work. Section IV
presents a case study of a multilayer algorithmically designed
passive network: wideband mm-wave power combiners with
built-in impedance transformation. Section V demonstrates the
design diversification capabilities of algorithmic design using
measured examples of bandpass filters (BPFs). Section VI
concludes the article.

II. ALGORITHMIC DESIGN OF MULTILAYER PASSIVES

The generalized layout templates used in algorithmic design
techniques [Fig. 1(b)] can take several forms. For example,
the design region may allow unrestricted structural flexibil-
ity, enabling arbitrary distributions of topological features
such as islands and holes with varying shapes and sizes.
These approaches often use gradient-based optimization to
evolve continuously varying parameters, such as material
properties (e.g., conductivity and dielectric constant), through
methods like density-based topology optimization [3] or
higher-dimensional level-set techniques that implicitly shift
device boundaries [12]. Efficient gradient computation typ-
ically relies on adjoint sensitivity analysis, which requires
access to the internal system matrices of EM solvers, which
are not generally available to the users in standard elec-
tronic design automation (EDA) tools used for chip design.
Moreover, despite offering maximum structural freedom, these
methods often converge to solutions that violate foundry
design rule checks (DRCs), making them unsuitable for fab-
rication. This issue becomes even more severe in multilayer
designs, where vias are subject to strict dimensional constraints
and must be placed only where metals exist directly above and
below.

A more practical alternative is to use pixelated layout
templates, where metal/dielectric layers are discretized into
grids of pixel windows [2], [4], [6], [7], [8]. These layouts
can be implicitly represented using binary matrices, with
design variables taking binary values to indicate materials
such as metal (1) or dielectric (0) at each location in the
device volume. This discretization simplifies DRC compliance
and enables the use of gradient-free optimization algorithms,
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Fig. 2. Design space for pixelated passive networks. (a) Single-layer passives.
(b) Multilayered passives with three metal + two via layers.

which do not require access to the internals of EM solvers.
Therefore, pixel-based methods are easier to implement while
still offering a significantly larger design space and greater
generality than traditional passive structures.

All prior pixelated algorithmic design efforts have been
limited to single-layer structures and have not explored the use
of multiple metal and via layers available in IC technologies.
Extending algorithmic design techniques to multilayer layouts
presents additional challenges due to the curse of dimen-
sionality: the design space expands exponentially, and EM
simulation times increase significantly because of the larger
number of unknowns in the solver’s system matrix.

A. Expansion of Design Space

For a single-layer pixelated layout with M rows and
N columns, the design space has size 2M*V [Fig. 2(a)], as
each pixel can represent either metal or dielectric. In contrast,
using three metal and two via layers expands the design space
to 13M*Nsince there are 13 distinct valid configurations in
which the three metal and two via layers can be filled at
any given location [Fig. 2(b)]. This exponential growth in
design space is both advantageous and challenging. On the
one hand, multiple layers enable a broader design space that
can yield significantly higher-performing layouts compared to
single-layer structures. On the other hand, the size of the space
reduces the likelihood of converging to a good solution due to
the increased number of suboptimal local optima. To balance
these competing considerations, a configuration with the top
three metals and two via layers was found to offer the best
tradeoff between convergence time and solution quality.

B. Increased EM Simulation Times

The solution time for any EM solver typically grows with
the number of unknowns in the solution volume. For instance,
the computation time for N unknowns in a classical finite
element method (FEM) simulator scales as O(N?) [13], while
that of a classical method of moments (MoM) simulator scales
as O(N?) [14]. Therefore, increasing the number of metal
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layers raises EM simulation times, thereby lengthening each
optimization iteration. For example, in the layouts shown in
Fig. 3, the multilayered case takes 10-20 times longer to
simulate than its single-layer counterpart, despite occupying
the same chip area.

This combination of increased EM simulation time and
exponentially larger design spaces makes it infeasible to
generate training datasets for ML-based surrogates [7], [11]
and significantly lengthens the overall algorithmic design
cycle. To address this, this work proposes optimization loops
operating on 3-D pixelated layout templates using explicit
EM simulators, combined with carefully selected optimization
algorithms (Fig. 4), to achieve acceptable convergence times
despite the use of full-wave solvers in the loop.

III. OPTIMIZATION OF 3-D PIXELATED PASSIVES

Gradient-free metaheuristic optimization algorithms [15],
which naturally handle binary optimization variables, are used
in this work. These algorithms rely on randomness to explore
the solution space as a more efficient alternative to brute-
force search. The discrete O—1 nature of pixelated templates
renders the optimization problem NP-hard, meaning no known
algorithm, besides brute-force search, can guarantee a globally
optimal solution [16]. It has also been shown that, averaged
over all possible algorithms, no class of combinatorial opti-
mization problems is intrinsically harder than others [17].
Furthermore, the no free lunch (NFL) theorems [18] state that
if an algorithm A outperforms algorithm B on a problem x,
there must exist another problem y where B outperforms A.

These factors, combined with the computational demands of
multilayered algorithmic design, make it infeasible to perform
extensive comparisons across algorithms to identify an optimal
one for a given objective function. It is also infeasible to run
any single algorithm enough times to establish statistically
meaningful success rates. Addressing these challenges would
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require significant advances in EM simulation techniques or
computational hardware, which are beyond the scope of this
work. As with any nonconvex optimization problem, the
quality of the solution depends on the appropriate combina-
tion of optimization algorithm, hyperparameters, and initial
conditions, which are typically determined through ad hoc,
problem-specific, on-the-fly adjustments.

Of the many metaheuristic algorithms available in the
literature [15], this work uses two: binary particle swarm
optimization (BPSO) and direct binary search (DBS). Due
to limitations on available CPU threads (<100), the swarm
sizes in BPSO were restricted to fewer than 15 particles.
Although DBS and BPSO performed well for the problems
addressed in this work, the NFL theorems do not guarantee
that they are the most suitable algorithms for these problems,
nor do they guarantee effectiveness for the algorithmic design
of all possible microwave structures with objective functions
different from those used in this work.

BPSO and DBS offer complementary strengths due to their
algorithmic distinctions. BPSO is exploratory, capable of effi-
ciently searching a broad region of the solution space, though
often with limited resolution. In contrast, DBS is exploitative,
well-suited for refining existing solutions through incremental
changes, but less effective at exploring globally. To balance
these tradeoffs, BPSO may first be used to generate high-
quality initial solutions, which can then be fine-tuned using
DBS to maximize performance through local exploitation.

A. Direct Binary Search

In its basic form, DBS involves initializing the pixelated
grid with the initial seed. In each iteration, a random pixel is
flipped, and the change is retained if performance improves;
otherwise, the flip is reverted, and an alternative pixel is
considered. This process continues until either the allotted
time expires or the target specification is achieved. In the
context of EM problems, a single flip may not induce a
substantial change to evaluate performance improvements in
each iteration. Additionally, the speed of EM simulations
increases sublinearly with the number of CPU cores. There-
fore, a slightly modified DBS version is utilized (Fig. 5),
testing multiple (4—12) mutations of the current-best solution
simultaneously in every iteration and picking the best out of
them. Each test solution is generated by randomly flipping
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up to ten pixels in the current-best solution, enhancing search
throughput and exploration capability without compromising
exploitation.

B. Binary Particle Swarm Optimization

Particle swarm optimization (Fig. 6) treats each test solu-
tion as a particle navigating the solution space with varying
velocities. In the binary variant of PSO, each test solution
(particle) is characterized by a 3-D binary array (the position
array) representing pixels in the EM structure, and a corre-
sponding 3-D real-valued array (the velocity array) denoting
the probabilities of flipping the pixels in the next iteration.
The particles’ positions and velocities are updated in each
iteration based on the individual and the global best-known
positions. Optimization concludes when all particles converge
to the same position. At this point, BPSO reduces to inefficient
exploitation, making the transition to DBS meaningful. Among
various BPSO variants available in the literature (see [19],
[20], [21], [22], etc.), this work adopts the approach in [19] to
generate high-quality initial seeds for subsequent optimization
using DBS.

IV. IMPEDANCE-TRANSFORMING WIDEBAND
MULTILAYERED MM-WAVE POWER COMBINERS

Power combining (Fig. 7) is widely used in power amplifiers
(PAs) to increase total transmitted RF power by summing
the outputs of individual PA cells. To maintain high PA
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efficiency, power combiners must exhibit low insertion loss
(IL). Additionally, to extract maximum power from each
PA cell without exceeding transistor breakdown limits, the
combiner must transform the 50 Q antenna impedance to a
lower value.

Wideband PAs have gained significant interest, with both
algorithmic design approaches [23] and traditional methods
[24] used to achieve broad bandwidths. However, existing
wideband solutions typically occupy large chip areas and
exhibit insertion losses exceeding 1 dB. These factors motivate
the exploration of multilayered algorithmic design techniques
to realize compact, wideband power combiners with built-in
impedance transformation and low loss.

A. On-Chip Algorithmic Design Considerations

Several factors, such as DRC compliance and ground plane
formation, must be addressed to make on-chip pixelated pas-
sive design feasible.

1) Single-Point Connection DRC Violations: Single-point
connections (Fig. 8) commonly occur in pixelated layouts
when two neighboring pixels touch only at a single corner.
These connections are undesirable, as they violate foundry
DRC rules and thus prevent fabrication. Moreover, they
introduce singularities in EM simulations, often leading to
nonconvergent solver behavior.

A simple solution is to extend one of the pixel edges at
the corner to create a slight overlap. In this work, the overlap
amount is set to the minimum allowed by the DRC, which
is smaller than the typical pixel dimensions used. These edge
extensions are included in the EM simulations of the layouts
corresponding to each binary pattern, ensuring accuracy during
every optimization iteration.

2) Ground Shield: In certain traditional on-chip passive
structures, such as spiral inductors, baluns, and transformers
[Fig. 9(a)], a solid ground shield is typically avoided beneath
the spiral patterns, as it induces eddy currents that degrade
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the quality factor due to increased loss. In contrast, for
other passive components like microstrip transmission lines
[Fig. 9(b)], the return path is deliberately designed as a solid,
low-impedance ground plane to minimize loss per unit length.

These examples illustrate that traditional design practices
offer no consistent guidelines regarding the necessity of ground
shielding. Therefore, to maintain generality in the design
process, it is essential to formulate the algorithmic design
problem such that ground shields, if beneficial, are automati-
cally synthesized by the optimization algorithm.

B. Power Combiner Design Problem Setup

The optimization template for the 2-to-1 power combiner
design is shown in Fig. 10. The design utilizes the top
three aluminum metal layers and the two corresponding tung-
sten via layers available in Tower Semiconductor’s SBC18
180-nm SiGe BiCMOS technology.

1) Optimization Layout Template: The template features a
multilayer pixelated design region at the center, surrounded
by a fixed 10-um-wide metal five outer ring, relative to which
the three EM ports are referenced. While using EM ports
referenced to global grounded planes remains the predominant
paradigm in RFIC design, this convention is primarily driven
by convenience rather than fundamental necessity. As demon-
strated in [25], transistor cells can be laid out to interface with
EM structures that use locally referenced ports. By fixing the
outer metal five-ring and pixelating only the inner region, the
algorithm is implicitly given the freedom to construct its own
ground planes, preserving generality in the optimization prob-
lem. Port 1 is always assumed to be driven with a 50-Q source
impedance, while ports 2 and 3 may present lower impedances
depending on the desired impedance transformation ratio. The
initial seed, shown in Fig. 10, is a simple dc short implemented
in metal 7, which initially connects all ports. A vertical axis
of symmetry is used to ensure a truly symmetric structure,
eliminating any systemically introduced amplitude and phase
imbalance at ports 2 and 3.

2) Optimization Objective Function: The goal of the opti-
mization problem is to find the optimal 3-D binary matrix B
that maximizes the |S,;| over the 20-120-GHz range. One
possible objective is the maximin function, defined in (1),
which seeks to maximize the minimum value of |S,;| across
the band. EM simulations are carried out over this range using

an adaptive sweep, ultimately producing S -parameters with a
100-MHz frequency step

min

B* = arg max
Be{0,1}™ xnyXnz \ fe[20,120] GHz

1S 21 (fs B)|) .
An alternative is to maximize the harmonic mean of

|S21| across all frequency points, as shown in the following

equation:

-1

max l Z ; . (2

B* =ar
gBe{O,l}"*'X”~‘X”3 N 1S21 (fi; B) |

A common feature of both objective functions is their
emphasis on worst case performance. By prioritizing low
values of |[S;|, these formulations ensure performance is
optimized uniformly across the entire frequency band. In the
context of the power combiner problem, both approaches
were found to yield solutions of comparable quality; how-
ever, the maximin formulation was ultimately adopted for the
synthesized devices. Both objective functions also implicitly
minimize |S 11| within the desired frequency range, since max-
imizing transmission from port 1 to ports 2 and 3 inherently
minimizes the power reflected back from port 1.

3) Optimizing 1S 2|, 1S33l, and |S,3]: Three-port passive
networks cannot be lossless, reciprocal, and matched simul-
taneously [26]. Therefore, loss is intentionally introduced
via an impedance Zoy (Fig. 10) across ports 2 and 3, to
achieve matching. While traditional power combiners such as
Wilkinson combiners use a purely resistive Zoy, simulations
revealed that incorporating a capacitive component improves
matching bandwidth in these nonintuitive structures.

Since Zpym only influences the odd-mode behavior of the
network, it ideally has no impact on S 1, S, or S3;, which are
determined primarily by even-mode behavior. Consequently,
Zom was determined postoptimization. However, adding a
capacitive element to Zoy does not guarantee high isolation
between ports 2 and 3 seen in traditional Wilkinson combiners,
potentially resulting in suboptimal |§,3|. Although [S,3] was
not considered in this work, future designs could incorporate
it into the optimization loop. It is important to note that a
suboptimal |S,3| does not render the device unusable, as in
many circuits, such as symmetrically power-combined PAs
(see [25]), |Sa3| is irrelevant due to the circuit operating
exclusively in even mode.

4) Hyperparameters and Impact on Scalability: Hyperpa-
rameters are inputs to an optimization algorithm that indirectly
influence the quality of the solution and the number of
iterations required to converge at the final optimized design.
In an algorithmic multilayered pixelated passive design, these
include the number of metal layers, pixel size, layout dimen-
sions, and the number of rows and columns. Identifying
the optimal combination of hyperparameters is nontrivial,
as it would require an additional optimization loop out-
side the algorithmic design loop, one that explores a highly
nonconvex hyperparameter space by repeatedly running the
already expensive algorithmic design process. Therefore,
hyperparameter tuning remains an active research area [27].
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State-of-the-art methods, such as evolutionary algorithms and
Bayesian optimization, often struggle with convergence when
the inner loop (the algorithmic design loop) is itself compu-
tationally intensive and highly nonconvex [27].

The total design time equals the EM simulation time of a
given structure multiplied by the number of iterations required.
While the exact EM simulation time for any structure cannot
be predicted in advance [14], it is known to scale with
polynomial complexity as the layout size increases in terms of
area and number of layers [13], [14]. This scaling is largely
independent of pixel resolution; to first order, only the area
and number of layers determine EM simulation time.

On the other hand, the NP-hard nature of these 0—1 prob-
lems, combined with exponentially large design spaces, makes
it infeasible to predict the number of iterations required to
converge. This uncertainty stems from the dependence on
hyperparameters, which strongly influence convergence behav-
ior, yet cannot be determined beforehand.

Consequently, it is not possible to predict either the total
convergence time or how computational requirements scale
with problem size and objective function. As illustrated by
the examples in this work, even when design space sizes
differ by hundreds of orders of magnitude, the observed
convergence times increase only by a factor of 4-5. This
highlights the dominant influence of hyperparameters and
optimization choices. However, because the optimal combi-
nation of hyperparameters, optimization algorithm, and initial
conditions cannot be known in advance, the computational cost
itself cannot be predicted a priori.

This work adopts a strategy of minimizing layout area
and pixel count to accelerate convergence. The area or pixel
count is increased only if the initial configuration fails to
yield satisfactory results within a reasonable time. Using this
approach, a pixelated grid with 11 rows and 15 columns was
found to be effective. Owing to the enforced symmetry axis,
the effective number of columns is further reduced to 8.

5) Robustness and Tolerance to Fabrication Deviations:
The robustness of the proposed pixelated passives to process
variations is comparable to that of traditionally designed
passives. This is because the discretized metal pixels used here
have lateral dimensions on the order of several micrometers,
which are much larger than typical lithographic deviations
in advanced silicon technologies (tens of nanometers). As
a result, any in-plane disturbances are unlikely to pro-
duce meaningful electrical perturbations. Variations in vertical
dimensions, such as metal thickness or interlayer dielectric
spacing, can be evaluated using conventional back-end-of-
line (BEOL) process corner simulations. While these effects
were not explicitly incorporated into the optimization flow of
Fig. 1(b), they can, in principle, be integrated into the loop
without altering the methodology.

At present, commercially available EDA tools do not expose
the internal system matrices needed to carry out tolerance
analysis of pixelated layouts directly. Therefore, statistical
robustness studies would either require large-scale measure-
ments of thousands of fabricated devices or custom adjoint
implementations within full-wave solvers, both of which are
beyond the scope of this work.
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Importantly, several multilayer structures with pixel dimen-
sions ranging from 6.5 x 6.5 um? to 10 x 10 um? are fabricated
and measured in this article. The measured results closely
tracked EM simulations, and the foundry raised no concerns
during mask preparation and optical proximity correction
(OPC). This empirical evidence underscores the manufactura-
bility and practical robustness of the proposed methodology.

6) Optimization Algorithm and Computational Require-
ments: DBS was used to synthesize various power combiners
starting from the initial seed shown in Fig. 10. In each iteration,
DBS evaluated six test solutions (Fig. 5), generated by flipping
up to nine random pixels in the current-best solution. Depend-
ing on the desired impedance transformation ratio, each design
took 6-10 h to complete. With each iteration requiring ~8 min
on 72 threads of an Intel' Xeon E5-2695 v4 CPU, the total
number of EM simulations per design ranged from 250 to 500,
despite operating within design spaces as large as 13%% ~ 10%.

C. Example Algorithmically Designed Power Combiners

Fig. 11 shows the synthesized layouts of three power
combiners designed for impedance transformation ratios of
50 Q-50 Q, 50 Q25 Q, and 50 Q-12.5 Q. Simulated results
confirm their wideband operation and low IL. All three designs
are well matched at all ports. The 10-dB isolation bandwidth
does not fully span the operational frequency range since
|S23] was not explicitly optimized. Table I compares these
combiners with prior state-of-the-art on-chip wideband power
combiners, both traditionally designed and algorithmically
designed, most of which only support 50 Q-50 Q transfor-
mation.

The proposed combiners demonstrate superior performance
across all key metrics, including loss, bandwidth, and area,
while ensuring excellent port matching and introducing no
systemic amplitude or phase imbalances, owing to their truly
symmetric layout. These results clearly demonstrate the supe-
riority of the algorithmic multilayer pixelated passive design
approach over both conventional and single-layer inverse
design techniques.

Future efforts will focus on incorporating isolation (|S23])
into the optimization objective, as well as developing more
efficient computational techniques and optimization algorithms
to achieve faster convergence.

V. DESIGN DIVERSIFICATION USING ALGORITHMIC
DESIGN TECHNIQUES

IP theft and counterfeit products are major challenges
in the semiconductor industry, resulting in billions of dol-
lars in annual losses and the elimination of thousands of
jobs [30]. Moreover, unreliable counterfeit components pose
serious risks to public health, safety, and national security
when used in critical systems such as medical devices, power
grids, communication networks, automotive safety systems,
and military or aerospace applications [31]. These concerns
have led both governments and industry stakeholders to pursue
strategies aimed at mitigating the growing threat of counter-
feits [32], [33]. Such efforts become even more crucial during

IRegistered trademark.
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Fig. 11. Combiners with 50 Q (port 1) to (a) 50 Q (ports 2 and 3), (b) 25 Q (ports 2 and 3), and (c) 12.5 Q (ports 2 and 3) impedance transformation ratios.

TABLE I

PERFORMANCE SUMMARY AND COMPARISON WITH STATE-OF-THE-ART ON-CHIP WIDEBAND POWER COMBINERS

Freq. Range (GHz)" “a"slf:'r';fggzzekaﬁo Topology IL (@B) | S11 (dB) | S22 (dB) | AAmp. (dB) | APhase (°) | Area (mm?) T)‘\’zmg"‘;e‘i‘s‘ff
[28] - IMS 2024° 25-79 50 Q10 50 L Singlelayer 0810 1.5 N/R N/R ~0 075 t0 2.3 0.16 0.0064
nverse Design
[29] - IMS 2019° 15-55 50 0 10 50 O Folded Inductor 05-117 | <-10 | <-15 <02 <3 0.0361 0.00049
This work - Fig. 11(a) 20 - 100 50 0 t0 50 Multilayer 021006 | <-10 | <-95 0 0 0.0106 0.00042
This work - Fig. 11(b) 60 - 110 50 0 {0 25 0 Algoritimie Design | 04009 [ <10 | <93 0 0 0.0081 0.00065
This work - Fig. 11(c) 68 - 100 500 (0 1250 i 8 066 to 1.1 | < -10 <10 0 0 0.02 0.0015

@ _ defined as the frequencies over which SI1 < -10 dB for structures in this work, ? - estimated from figures 3(d)-(f) of the reference, ¢ - measured results

periods of supply chain shortages, which further incentivize
counterfeiting activity [34].

As discussed in [34], counterfeit chips infiltrate supply
chains in three primary forms: gray-market recycled chips,
fraudulent clones, and overproduced or failed parts. Mitigat-
ing these threats requires chip design strategies tailored to
these counterfeiting mechanisms, without compromising chip
performance. Toward this end, this work leverages algorith-
mic design techniques as a mechanism for IP protection.
The stochastic nature of metaheuristic algorithms, combined
with the highly nonconvex landscape of algorithmic design
problems, enables the generation of multiple device layouts
with near-identical performance. RFIC vendors can exploit this
property to distribute visually distinct variants of a given com-
ponent to different clients (Fig. 12). This enables traceability of
IP leaks and improves accountability to the law. This, in turn,
serves as a deterrent to IP theft and counterfeiting. Moreover,
since algorithmically designed layouts are highly nonintuitive,
their operating principles cannot easily be comprehended.
This adds an additional layer of protection against fraudulent
cloning, as an IP thief would be unable to alter the clone’s
appearance in an attempt to disguise the theft.

This work proposes two mechanisms for layout diversifica-
tion as follows.

1) Stochastic Variation: The inherent randomness of meta-
heuristic design is leveraged to generate multiple
layouts with identical performance by running the

1(f)l Client 1
RFIC Vendor f
Initial Layout il Client 2
n Inverse Design
- =1 7] Algorithm
f
(f)l Client 3
1Sl 77"\ Desired response 1 Ien"
Mal response
JR S T

f

f

Fig. 12. Using algorithmic design for diversifying designs.

optimization algorithm multiple times with the same
objective function.

2) Adiabatic Pixel Shrinking: This technique modifies
the layout appearance while preserving electrical per-
formance by gradually shrinking pixels. It not only
diversifies the design but also reduces the layout area,
saving valuable chip real estate.

mm-Wave BPFs are synthesized to experimentally demon-
strate the design diversification capabilities of algorithmic
design techniques. It is emphasized that the primary purpose
of these BPFs was to validate diversification, not to achieve
maximum performance. As such, the filters were not necessar-
ily fully optimized for peak achievable performance. The BPFs
were all implemented in Tower Semiconductor’s SBC18 180-
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Fig. 13. Loss function definition for BPF design.

nm SiGe BiCMOS technology using the top 3 aluminum metal
layers and the 2 corresponding tungsten via layers.

A. Optimization Loss Function Definition

The loss function used for BPF design, denoted as L and
illustrated in Fig. 13, aims to maximize |S,;(f)| within the
passband and minimize it in the two stopbands. It consists of
three terms: L, for passband IL, and Ly, and Ly, for stopband
attenuation relative to the passband. Similar to the power
combiner optimization in Section IV, minimizing |S;(f)| in
the passband is not explicitly enforced. For low-loss passive
networks, energy conservation implies |So;> + [S1]> = 1,
making an explicit S ; term unnecessary. However, since some
fabricated BPFs exhibited nonnegligible loss, suboptimal in-
band |S1;(f)| was observed.

Although performance maximization was not the primary
goal of these BPFs, this issue can be addressed in future work
by adding an explicit S, term to the objective function, as
demonstrated in prior work [6]. Alternatively, return loss can
be incorporated nonlinearly with the S,; terms [35].

All terms in the loss function use |S ;| in the dB scale. The
weights w,, w1, and wy, influence the optimization outcome:
higher w), reduces IL but degrades selectivity, while lower w),
improves selectivity at the cost of higher IL. Initial values
are set to w, = 2 and wy = 1, and manually adjusted
during optimization to balance the terms and avoid undesirable
filter shapes. The passband is defined by frequencies f,; and
Sy, while fi 1 and fi m define the stopbands, automatically
determining the transition bandwidth. The optimization seeks
to drive L toward —oo for best performance.

B. Approach 1: Stochastic Variation

The vast design space available for multilayered passives
(Section IT), combined with the highly nonconvex optimization
landscape, enables the generation of multiple layouts with
near-identical functionality. The stochastic nature of meta-
heuristic optimization algorithms (SectionIII) facilitates the
discovery of such diverse solutions.

To demonstrate this capability, two nonintuitive initial
designs were first generated from 14 standard first-order LC
filters using 250 iterations of BPSO followed by approximately
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Fig. 14. Generation of initial pixelated designs by obfuscating classical
LC filters.

400 iterations of DBS (14 test solutions in each iteration),
and a distinct objective function (Fig. 14). Each iteration took
about 4 min using 72 threads on an Intel'! Xeon E5-2695 v4
CPU, resulting in a total design time of approximately 43 h
per filter. These designs served as initial seeds for subsequent
optimization and diversification.

All the designs occupied 170 x 170 um (excluding pads).
A pixel size of 10 x 10 um (17 rows, 17 columns) was
selected. The two initially algorithmically designed BPFs
(IDBPFs I and II) were intentionally designed to have different
center frequencies. The layout area and grid resolution were
chosen to be the minimum required to accommodate the initial
seeds within the 30—40-GHz frequency range. Since these
filters were intended to be starting points for further design
exploration and diversification, maximizing performance was
not the primary objective.

The pixelated patterns of IDBPFs I and II were cascaded to
form a seed for designing higher-order filters (Fig. 15). The
underlying intuition is that cascading two frequency-shifted
lower-order filters can result in a higher-order filter with a
broader bandwidth. DBS was then run twice using the same
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Fig. 15. Design diversification using stochastic variation.

objective function, producing two designs—IDBPF-III and
IDBPF-1V.

Starting from the intermediate cascaded layout, each design
was optimized using approximately 500 iterations of DBS
with eight test solutions per iteration. Using 96 threads on an
Intel Xeon Gold 5118 CPU, each iteration took about 3 min,
allowing the complete designs to be generated within a day.
Both filters exhibit nearly identical measured IL, bandwidth,
and transition band characteristics (Fig. 15).

This example demonstrates the ability of algorithmic design
techniques to generate multiple, functionally equivalent lay-
outs through stochastic variation, highlighting its potential for
design diversification.

C. Approach 2: Adiabatic Pixel Shrinking

Passives occupy the largest area in RFICs, making it
desirable to explore algorithmic design techniques not only
for performance-preserving visual diversification but also for
reducing layout area without compromising performance. To
this end, a pixel shrinking algorithm [Fig. 16(a)] was devel-
oped. The approach begins with a high-performance initial
seed and gradually reduces the pixel size. Each reduction
causes a slight performance drop, which is then recovered
by running DBS for a sufficient number of iterations. Once
performance is restored, the pixel size is further reduced,

IDBPF - IV

Reduce pixel

size slightly

Performance
recovered?

——10um X 10 um
——7umX7 um
o

——8.9um X 8.9 um
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Fig. 16. Adiabatic pixel shrinking using algorithmic design techniques.
(a) Pixel shrinking algorithm. (b) Pixel size versus iteration.

o

and the process repeats. Using this method, multiple layouts
with virtually identical measured performance but significantly
different sizes were generated.

Fig. 16(b) shows the progression of the algorithm over time.
At any given pixel size, once the performance is recovered,
the pixel edge length is reduced in steps of 0.1 yum until a
predefined error threshold is reached, which then defines the
next pixel size. Starting from an initial size of 10 x 10 um,
IDBPF-IV was successfully shrunk to 6.5 x 6.5 um over
1700 iterations (approximately three days), without degrading
performance. As shown in Fig. 16, this process not only
reduces area but also results in a visually different layout.
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TABLE II
PERFORMANCE SUMMARY AND COMPARISON

Center Freq. | BW-3dB | IL @ Peak Area
(GHz) (GHz) (dB) (mm?)

IDBPF 1 37.7 8 3 0.029
[36] 33 11.9 2.6 0.038
[37] 31 14 2.4 0.024
[38] 35 15.3 1.7 0.039
[39] 30 14 1.66 0.009
IDBPF III 35 17 2.1 0.058
IDBPF IV 36 19.5 2.7 0.058
IDBPF VIII 34.5 17.3 2.9 0.024
[40] 35 26 5 0.124
[41] 33 22 1.5 0.07
[42] 34.5 42 1.6 0.033

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

examples. The pixel shrinking algorithm further illustrated that
layouts can retain performance even as their area is reduced,
an outcome not achievable through traditional design methods.

Future work will explore algorithmic design techniques for
other passive network topologies and develop computational
techniques to significantly accelerate the optimization process.
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